Chapter 1

DFT and FFT: An Algebraic
View

Ininfinite, or non-periodic, discrete-time signal prodagsthere is a strong connection
between the:-transform, Laurent series, convolution, and the disetiete Fourier
transform (DTFT) [10]. As one may expect, a similar conracxists for the DFT but
bears surprises. Namely, it turns out that the proper fraomefor the DFT requires
modulo operations of polynomials, which means working veithcalled polynomial
algebras [6]. Associated with polynomial algebras is thin€e remainder theorem,
which describes the DFT algebraically and can be used asl #got@oncisely derive
various FFTs as well as convolution algorithms [9, 20, 21(s&f also Chaptée??).
The polynomial algebra framework was fully developed fgnsil processing as part
of the algebraic signal processing theory. It identifiesgtracture underlying many
transforms used in signal processing, provides deep insightheir properties, and
enables the derivation of their fast algorithms [14, 12, 13]. Here we focus on
the algebraic description of the DFT and on the algebraitvaiéon of the general-
radix Cooley-Tukey FFT from Chapte@f. We start with motivating the appearance of
modulo operations.
Thez-transform associates with infinite discrete sigmals- (..., z(—1),2(0), z(1),...),

a Laurent series:

X~ X(s)= Z x(n)s™. (1.1)

nez

Here we used = 2! to simplify the notation in the following. The DTFT of is the
evaluation ofX (s) on the unit circle

X)), —m<w<m. (1.2)
Finally, filtering or (linear) convolution is simply the ntiglication of Laurent series,
HxX — H(s)X(s). (1.3)

For finite signalsX = (z(0),...,2(IN — 1)) one expects that the equivalent of
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2 CHAPTER 1. DFT AND FFT: AN ALGEBRAIC VIEW

Concept Infinite time Finite time
Signal X(5) =X, ep x(n)s" SN (n)s”
Filter H(s) =3, cp h(n)s™ SN h(n)s™

Convolution Linear:H (s)X (s) Circular: H(s)X (s) mod(s™ — 1)
) k

Fourier transform DTFTX (e %), —m<w<nm DFT:X(e7*"), 0<k<n

)

Table 1.1: Infinite and finite discrete time signal procegsin

(1.1) becomes a mapping to polynomials of degkee 1,

N-1

X X(s)= Z z(n)s", (1.4)

n=0

and that the DFT is an evaluation of these polynomials. ldd#ee definition of the
DFT in (??) shows that

2k

Clk)=X(WE)=X(e %), 0<k<N, (1.5)

i.e., the DFT computes the evaluations of the polynomigs) at then nth roots of
unity.

The problem arises with the equivalent of (1.3), since th#iplication H(s)X (s)
of two polynomials of degreé&v — 1 yields one of degre@ N — 2. Also, it does
not coincide with the circular convolution known to be asated with the DFT. The
solution to both problems is to reduce the product moddle- 1:

H s#¢ire X < H(s)X(s) mod(s™ —1). (1.6)

The resulting polynomial then has again degiée- 1 and this form of convolution
becomes equivalent to circular convolution of the polyraincoefficients. We also
observe that the evaluation points in (1.5) are precisedyrtiots ofs™ — 1. This
connection will become clear in this chapter.

The discussion is summarized in Table 1.1.

The proper framework to describe the multiplication of padgnials modulo a fixed
polynomial are polynomial algebras. Together with the @eerremainder theorem,
they provide the theoretical underpinning for the DFT arel@ooley-Tukey FFT.

In this chapter, the DFT will naturally arise as a linear magpwith respect to
chosen bases, i.e., as a matrix. Indeed, the definition stiav# all input and outputs
are collected into vecto®¥ = (X (0),...,X(N —1))andC = (C(0),...C(N —1)),
then (?) is equivalent to

C =DFTy X, (1.7)
where
DFTy = [W¥"o<kmen- (1.8)

The matrix point of view is adopted in the FFT books [18, 17].
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1.1 Polynomial Algebrasand the DFT

In this section we introduce polynomial algebras and erghaiw they are associated
to transforms. Then we identify this connection for the DEdter we use polynomial
algebras to derive the Cooley-Tukey FFT.

For further background on the mathematics in this sectiaipafynomial algebras
in particular, we refer to [6].

1.1.1 Polynomial Algebra

An algebraA is a vector space that also provides a multiplication oflgsnents such
that the distributivity law holds (see [6] for a complete défon). Examples include
the sets of complex or real numb&®r R, and the sets of complex or real polynomials
in the variables: C[s] or R[s].

The key player in this chapter is tipelynomial algebra. Given a fixed polynomial
P(s) of degreedeg(P) = N, we define a polynomial algebra as the set

Clsl/P(s) = {X(s) | deg(X) < deg(P)}

of polynomials of degree smaller thavi with addition and multiplication modul®.
Viewed as a vector spac€[s]/P(s) hence has dimensiaN.

Every polynomialX (s) € CJ[s] is reduced to a unique polynomi&l(s) modulo
P(s) of degree smaller thalV. R(s) is computed using division with rest, namely

X(s) = Q(s)P(s) + R(s), deg(R) < deg(P).
Regarding this equation modul®, P(s) becomes zero, and we get
X (s) = R(s) modP(s).

We read this equation as\(s) is congruent (or equall(s) modulo P(s).” We will
also write X (s) mod P(s) to denote thafX (s) is reduced moduld@(s). Obviously,

P(s) = 0modP(s).
As a simple example we considdr = C[s]/(s? — 1), which has dimension 2. A
possible basis &= (1, s). In A, forexamples-(s+1) = s*>+s = s+1 mod(s?—1),
obtained through division with rest

s24+s=1-(s>=1)+(s+1)

or simply by replacing? with 1 (sinces? — 1 = 0 impliess? = 1).

1.1.2 Chinese Remainder Theorem (CRT)

AssumeP(s) = Q(s)R(s) factors into two coprime (no common factors) polynomials
@ and R. Then the Chinese remainder theorem (CRT) for polynomsatheé linear
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mapping

A: Csl/P(s) — C[s]/Q(s) ® Cls]/R(s),
X(s) +— (X(s)modQ(s),X(s) modR(s)).

Here, @ is the Cartesian product of vector spaces with elementwigeation (also
called outer direct sum). In words, the CRT asserts that coimg (addition, multi-
plication, scalar multiplication) if[s]/P(s) is equivalent to computing in parallel in
Cls]/Q(s) andC[s]/R(s).

If we choose basds ¢, d in the three polynomial algebras, th&ncan be expressed
as a matrix. As usual with linear mappings, this matrix isagie#d by mapping every
element ob with A, expressing it in the concatenation d of the bases andd, and
writing the results into the columns of the matrix.

As an example, we consider again the polynomiléd) = s> —1 = (s — 1)(s + 1)
and the CRT decomposition

A Cls]/(s* =1) = Cls]/(z — 1) & C[s] /(= + 1).

As bases, we choode= (1,z), ¢ = (1), d = (1). A(1) = (1,1) with the same
coordinate vector irtUd = (1, ) Further, because of = 1 mod(z — 1) and
z = —1mod(z + 1), A(z) = ( = (1,—1) with the same coordinate vector.
Thus A in matrix form is the s called butterfly matrix, which is a Dief size 2:
DFTy =[] _1].

1.1.3 Polynomial Transforms

AssumeP(s) € C[s] has pairwise distinct zeras = (ay, ..., any—1). Then the CRT
can be used to completely decomp@¥e]/ P(s) into its spectrum:

A: Clsl/P(s) = C[s]/(s —a0) ® Clsl/(s = an-1),
X(s)— (X (s )mod(s—ao) ., X(s)ymod(s —an_1)) (1.9)

= (s(@0), ..., s(an-1))-
If we choose a basis = (Py(s),...,Pn-1(s)) in C[s]/P(s) and base$; = (1) in
eachCls]/(s—a;), thenA, as alinear mapping, is represented by a matrix. The matrix

is obtained by mapping every basis elemBpt0 < n < N, and collecting the results
in the columns of the matrix. The result is

Pba = [ 7L(ak)]0§k,7L<N

and is called th@olynomial transformfor A = C|s]/P(s) with basisb.
If, in general, we choosk = (3;) as spectral basis, then the matrix corresponding
to the decomposition (1.9) is tisealed polynomial transform

diag0§k<N(1/ﬁn)Pb,m

wherediag, ., . v () denotes a diagonal matrix with diagonal entrigs
We jointly refer to polynomial transforms, scaled or notFasirier transforms.

IMore precisely, isomorphism of algebras or isomorphismiahodules.
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1.1.4 DFT asaPolynomial Transform

We show that th®F T y is a polynomial transform fadl = C[s]/(s™ — 1) with basis
b=(1,s,...,s¥"1). Namely,

SN*l: H (':C7W1]\€/)7
0<k<N

which means thaf\ takes the form

A: Cls]/(sN —=1) = C[s]/(s— W) @...®C[s]/(s — WIZVV_l),
X(s) = (X(s)mod(s —W),...,X(s) mod(s — W]]\\,]*I)) (1.10)
= (X(WR),.... X(WN™)).

The associated polynomial transform hence becomes
Pb,a = [Wﬁn]0§k7n<N = DFTN .

This interpretation of the DFT has been known at least siffe 9] and clarifies the
connection between the evaluation points in (1.5) and tteglleir convolution in (1.6).

In [3], DFTs of types 1-4 are defined, with type 1 being the déad DFT. In the
algebraic framework, type 3 is obtained by choositig= C[s]/(s" + 1) as algebra
with the same basis as before:

Poo = WP o<k men = DFT-3y, (1.11)

The DFTs of type 2 and 4 are scaled polynomial transforms [14]

1.2 Algebraic Derivation of the Cooley-Tukey FFT

Knowing the polynomial algebra underlying the DFT enablesauderive the Cooley-
Tukey FFTalgebraically. This means that instead of manipulating the DFT definition,
we manipulate the polynomial algeb€s]/(s — 1). The basic idea is intuitive.
We showed that the DFT is the matrix representation of theptet® decomposition
(1.10). The Cooley-Tukey FFT is now derived be performinig tecompositiornin
steps as shown in Fig. (1.1). Each step yields a sparse matrix;ehghe DFT y is
factorized into a product of sparse matrices, which willlie hatrix representation of
the Cooley-Tukey FFT.

This stepwise decomposition can be formulated generi¢atlpolynomial trans-
forms [15, 13]. Here, we consider only the DFT.

We first introduce the matrix notation we will use and in parar the Kronecker
product formalism that became mainstream for FFTs in in 1178,

Then we first derive the radix-2 FFT usindegtorization of s — 1. Subsequently,
we obtain the general-radix FFT usinglecomposition of s’V — 1.
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\

partial decomposition

Clsl/P(s)

Fourier transform

D Clsl/(s — an)

0<k<N

Figure 1.1: Basic idea behind the algebraic derivation afl€p Tukey type algorithms
for a Fourier transform.

1.2.1 Matrix Notation

We denote théV x N identity matrix with [y, and diagonal matrices with

Yo
diagogk<N(%) =

IN-1
The N x N stride permutation matrix is defined forV = K M by the permutation
LYt iK 4 j— jM +i (1.12)

for0 < i < K, 0 < j < M. This definition shows that}; transposes & x M
matrix stored in row-major order. Alternatively, we canteri

Ly - i iMmodN —1, for0<i< N —1,
N—-1—N—-1.

For example (means 0),

L%/Q is sometimes called the perfect shuffle.
Further, we use matrix operators; namely the direct sum

aop=|t ]
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and the Kronecker or tensor product
AQ B = [aij]k’g, for A = [ak)g].

In particular,
A

[LRA=A®...0 A=
A

is block-diagonal.
We may also construct a larger matrix as a matrix of matriegs,

5 4]

If an algorithm for a transform is given as a product of spansgrices built from
the constructs above, then an algorithm for the transpogaverse of the transform
can be readily derived using mathematical properties dioty

(AB)T = BT AT, (AB)"l =B~1A~1
(AeB)T =ATo BT, (AeB)'=A"1eB™!, (1.13)
(A B =AT@ BT, (A@B)"'=A"1t®B L

Permutation matrices are orthogonal, i®”, = P~!. The transposition or inversion
of diagonal matrices is obvious.

122 Radix-2FFT

The DFT decomposed = C[s]/(s" — 1) with basisb = (1,s,...,sV 1) as shown
in (1.10). We assum& = 2M. Then

M 1= (M —1)(sM +1)

factors and we can apply the CRT in the following steps:

Cls]/(s = 1)

— Cls]/(s™ =1) @ C[s]/(sM + 1) (1.14)

- Clsl/(x-Wi)® @ Clsl/(x— Wit (1.15)
0<i<M 0<i<M

— Cls)/(xz — W). (1.16)
0<i<N

As bases in the smaller algebr@gs] /(s — 1) andC[s]/(s™ + 1), we choose: =
d = (1,s,...,sM~1). The derivation of an algorithm fobF T based on (1.14)-
(1.16) is now completely mechanical by reading off the mafior each of the three
decomposition steps. The product of these matrices is ¢gtiaé DEFT .
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First, we derive the base change matlxcorresponding to (1.14). To do so, we
have to express the base elemefits b in the basis: U d; the coordinate vectors are
the columns ofB. For0 < n < M, s™ is actually contained im andd, so the first\M/
columns ofB are

B _ I:IM *:| ’

Iy =

where the entries are determined next. For the base elemeffts™, 0 < n < M, we
have

sMn = s"mod(sM — 1),
SA1+7L = _s" mod (SI\/I 4 1)’

which yields the final result

[I M Iy

= DFTy ®1),;.
Iy IM:| 2

Next, we consider step (1.15)C[s]/(s™ — 1) is decomposed b¥FT,,; and
Cls]/(s™ + 1) by DFT-3); in (1.11).

Finally, the permutation in step (1.16) is the perfect skeuif];, which interleaves
the even and odd spectral components (even and odd expafiéts).

The final algorithm obtained is

DFTan = LY (DFT s @DFT-3,7)(DF T @1 ).

To obtain a better known form, we uB& T-3,; = DFT s Dy, With Dy = diag0§i<1\l(W]iV)’
which is evident from (1.11). It yields

DFToy = LY (DFTy @ DFTyy Das)(DFTy ®1y)
L (Iy @ DET ) (Ins @ Dpr)(DFTo @10y).

The last expression is the radix-2 decimation-in-freqye@ooley-Tukey FFT. The
corresponding decimation-in-time version is obtainedrggposition using (1.13) and
the symmetry of the DFT:

DFTayn = (DFTy ®10)(Inr @ Dag)(Io @ DFT ) LY.

The entries of the diagonal matrix; & D,; are commonly calletividdle factors.
The above method for deriving DFT algorithms is used extehgin [9].

1.2.3 General-radix FFT

To algebraically derive the general-radix FFT, we usedémmposition property of
sV — 1. Namely, if N = KM then

sV —1=(s"M)E —1.



1.2. ALGEBRAIC DERIVATION OF THE COOLEY-TUKEY FFT 9

Decomposition means that the polynomial is written as threpmsition of two poly-
nomials: heres™ is inserted intos™ — 1. Note that this is a special property: most
polynomials do not decompose.

Based on this polynomial decomposition, we obtain the Valhy stepwise de-
composition ofC[s] /(s — 1), which is more general than the previous one in (1.14)—
(1.16). The basic idea is to first decompose with respectetotiter polynomiat™ —1,

t = sM, and then completely [15]:

Cls]/(s" = 1) = Clz]/((s")" — 1)

= C[s]/(s™ = W) (1.17)
0<i<K

- P P clsl/@-wit (1.18)
0<i<K 0<j<M

- P Clsl/(z— W) (1.19)
0<i<N

As bases in the smaller algebr@gs]/(s™ — W) we choose; = (1,s,...,sM~1).
As before, the derivation is completely mechanical fronehe@nly the three matrices
corresponding to (1.17)—(1.19) have to be read off.

The first decomposition step requires us to comptiteod (s™ —Wi.),0 < n <
N. To do so, we decompose the indexsn = M + m and compute

st = gtMAm — (GMyEgm = yimsm mod (sM — W).

This shows that the matrix for (1.17) is given BT i Q1.
In step (1.18), eacti[s]/(s™ — W) is completely decomposed by its polynomial
transform -
DFTy (i, K) = DF Ty - diago<; < (Wy).

At this point,C[s] /(s — 1) is completely decomposed, but the spectrum is ordered
according toj K +4,0 <i < M, 0 < j < K (j runs faster). The desired order is
M+ 3.

Thus, in step (1.19), we need to apply the permutafiBin+- ¢ — iM + j, which
is exactly the stride permutatia; in (1.12).

In summary, we obtain the Cooley-Tukey decimation-in-frerocy FFT with arbi-
trary radix:

LY, ( P DFTy -diagj*igl(wﬁ)) (DFTy ®1y)

0<i<K

—  LY(Ix ® DFT )T (DFT, ®1y). (1.20)

The matrixT3 is diagonal and usually called ttwiddle matrix. Transposition using
(1.13) yields the corresponding decimation-in-time \amnsi

(DFTy, @) Tay (I @ DET ) LY.
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1.3 Discussion and Further Reading

This chapter only scratches the surface of the connectitweles algebra and the DFT
or signal processing in general. We provide a few referefardsirther reading.

1.3.1 Algebraic Derivation of Transform Algorithms

As mentioned before, the use of polynomial algebras and RE @hderlies much of
the early work on FFTs and convolution algorithms [20, 9 Fdr example, Winograd’s
work on FFTs minimizes the number of non-rational multigtions. This and his work
on complexity theory in general makes heavy use of polynbatigebras [20, 21, 22]
(see Chapte?? for more information and references). See [4] for a broaatinent of
algebraic complexity theory.

SinceClz]/(sN —1) = C[Cy] can be viewed a group algebra for the cyclic group,
the methods shown in this chapter can be translated intodhext of group repre-
sentation theory. For example, [8] derives the generakrBBT using group theory
and also uses already the Kronecker product formalism. $e Beth and started the
area of FFTs for more general groups [2, 7]. However, Fouraersforms for groups
have found only sporadic applications [16]. Along a reldied of work, [5] shows
that using group theory it is possible that to discover amieggte certain algorithms
for trigonometric transforms, such as discrete cosinestrams (DCTSs), automatically
using a computer program.

More recently, the polynomial algebra framework was exéehtd include most
trigonometric transforms used in signal processing [12, t4urns out that the same
techniques shown in this chapter can then be applied toajegiplain, and classify
most of the known algorithms for these transforms and evégimh large class of new
algorithms including general-radix algorithms for theadéete cosine and sine trans-
forms (DCTs/DSTs) [15, 13, 19].

This latter line of work is part of the algebraic signal prssi@g theory briefly
discussed next.

1.3.2 Algebraic Signal Processing Theory

The algebraic properties of transforms used in the abovk& woalgorithm derivation
hints at a connection between algebra and (linear) sigralegsing itself. This is
indeed the case and was fully developed in a recent body df walted algebraic
signal processing theory (ASP) [14, 12, 11].

ASP first identifies the algebraic structure of (linear) sigorocessing: the com-
mon assumptions on available operations for filters andatsgmake the set of filters
analgebra A and the set of signals an associatédnodule M. ASP then builds a
signal processing theory formally from the axiomatic déiomi of asignal model: a
triple (A, M, ®), where® generalizes the idea of thetransform to mappings from
vector spaces of signal valuesAd. If a signal model is given, other concepts, such
as spectrum, Fourier transform, frequency response apenatitally defined but take
different forms for different models. For example, infinged finite time as discussed
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Signal model Infinite time Finite time
A {Z H(n)s™ | (..., H(=1),H(0),H(1),...) eel(Z)} Clz]/(s™ — 1)
nez
M ZX(n)s" [ (..., X(-1),X(0),X(1),...) eEQ(Z)} Cls]/(s™ — 1)
o 0" 2(Z) - M o C" M
defined in (1.1) defined in (1.4)

Table 1.2: Infinite and finite time models as defined in ABRs the z-transform and
finite z-transform, respectively.

in Table 1.1 are two examples of signal models. Their corapiifinition is pro-
vided in Table 1.2 and identifies the proper notion of a finiteansform as a mapping
C™ — C[s]/(s™ = 1).

ASP shows that many signal models are in principle posséadeh with its own
notion of filtering and Fourier transform. Those that supmdift-invariance have
commutative algebras. Since finite-dimensional commugagigebras are precisely
polynomial algebras, their appearance in signal procgssiaxplained. For example,
ASP identifies the polynomial algebras underlying the DCiig BSTSs, which hence
become Fourier transforms in the ASP sense. The signal madektalled finitespace
models since they support signal processing based on areatat shift operator, dif-
ferent from the directed time shift. Many more insights a@vjgled by ASP including
the need for and choices in choosing boundary conditiorepepties of transforms,
techniques for deriving new signal models, and the conois&vation of algorithms
mentioned before.
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