
Chapter 1

DFT and FFT: An Algebraic
View

In infinite, or non-periodic, discrete-time signal processing, there is a strong connection
between thez-transform, Laurent series, convolution, and the discrete-time Fourier
transform (DTFT) [10]. As one may expect, a similar connection exists for the DFT but
bears surprises. Namely, it turns out that the proper framework for the DFT requires
modulo operations of polynomials, which means working withso-called polynomial
algebras [6]. Associated with polynomial algebras is the Chinese remainder theorem,
which describes the DFT algebraically and can be used as a tool to concisely derive
various FFTs as well as convolution algorithms [9, 20, 21, 1](see also Chapter??).
The polynomial algebra framework was fully developed for signal processing as part
of the algebraic signal processing theory. It identifies thestructure underlying many
transforms used in signal processing, provides deep insight into their properties, and
enables the derivation of their fast algorithms [14, 12, 11,13]. Here we focus on
the algebraic description of the DFT and on the algebraic derivation of the general-
radix Cooley-Tukey FFT from Chapter??. We start with motivating the appearance of
modulo operations.

Thez-transform associates with infinite discrete signalsX = (. . . , x(−1), x(0), x(1), . . . ),
a Laurent series:

X 7→ X(s) =
∑

n∈Z

x(n)sn. (1.1)

Here we useds = z−1 to simplify the notation in the following. The DTFT ofX is the
evaluation ofX(s) on the unit circle

X(e−jω), −π < ω ≤ π. (1.2)

Finally, filtering or (linear) convolution is simply the multiplication of Laurent series,

H ∗ X ↔ H(s)X(s). (1.3)

For finite signalsX = (x(0), . . . , x(N − 1)) one expects that the equivalent of
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Concept Infinite time Finite time

Signal X(s) =
∑

n∈Z
x(n)sn

∑N−1
n=0 x(n)sn

Filter H(s) =
∑

n∈Z
h(n)sn

∑N−1
n=0 h(n)sn

Convolution Linear:H(s)X(s) Circular:H(s)X(s) mod(sn − 1)

Fourier transform DTFT:X(e−jω), −π < ω ≤ π DFT: X(e−j 2πk

n ), 0 ≤ k < n

Table 1.1: Infinite and finite discrete time signal processing.

(1.1) becomes a mapping to polynomials of degreeN − 1,

X 7→ X(s) =

N−1
∑

n=0

x(n)sn, (1.4)

and that the DFT is an evaluation of these polynomials. Indeed, the definition of the
DFT in (??) shows that

C(k) = X(W k
N ) = X(e−j 2πk

N ), 0 ≤ k < N, (1.5)

i.e., the DFT computes the evaluations of the polynomialX(s) at then nth roots of
unity.

The problem arises with the equivalent of (1.3), since the multiplication H(s)X(s)
of two polynomials of degreeN − 1 yields one of degree2N − 2. Also, it does
not coincide with the circular convolution known to be associated with the DFT. The
solution to both problems is to reduce the product modulosn − 1:

H ∗circ X ↔ H(s)X(s) mod(sn − 1). (1.6)

The resulting polynomial then has again degreeN − 1 and this form of convolution
becomes equivalent to circular convolution of the polynomial coefficients. We also
observe that the evaluation points in (1.5) are precisely the roots ofsn − 1. This
connection will become clear in this chapter.

The discussion is summarized in Table 1.1.
The proper framework to describe the multiplication of polynomials modulo a fixed

polynomial are polynomial algebras. Together with the Chinese remainder theorem,
they provide the theoretical underpinning for the DFT and the Cooley-Tukey FFT.

In this chapter, the DFT will naturally arise as a linear mapping with respect to
chosen bases, i.e., as a matrix. Indeed, the definition showsthat if all input and outputs
are collected into vectorsX = (X(0), . . . ,X(N −1)) andC = (C(0), . . . C(N −1)),
then (??) is equivalent to

C = DFTN X, (1.7)

where
DFTN = [W kn

N ]0≤k,n<N . (1.8)

The matrix point of view is adopted in the FFT books [18, 17].
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1.1 Polynomial Algebras and the DFT

In this section we introduce polynomial algebras and explain how they are associated
to transforms. Then we identify this connection for the DFT.Later we use polynomial
algebras to derive the Cooley-Tukey FFT.

For further background on the mathematics in this section and polynomial algebras
in particular, we refer to [6].

1.1.1 Polynomial Algebra

An algebraA is a vector space that also provides a multiplication of its elements such
that the distributivity law holds (see [6] for a complete definition). Examples include
the sets of complex or real numbersC or R, and the sets of complex or real polynomials
in the variables: C[s] or R[s].

The key player in this chapter is thepolynomial algebra. Given a fixed polynomial
P (s) of degreedeg(P ) = N , we define a polynomial algebra as the set

C[s]/P (s) = {X(s) | deg(X) < deg(P )}

of polynomials of degree smaller thanN with addition and multiplication moduloP .
Viewed as a vector space,C[s]/P (s) hence has dimensionN .

Every polynomialX(s) ∈ C[s] is reduced to a unique polynomialR(s) modulo
P (s) of degree smaller thanN . R(s) is computed using division with rest, namely

X(s) = Q(s)P (s) + R(s), deg(R) < deg(P ).

Regarding this equation moduloP , P (s) becomes zero, and we get

X(s) ≡ R(s) modP (s).

We read this equation as “X(s) is congruent (or equal)R(s) moduloP (s).” We will
also writeX(s) modP (s) to denote thatX(s) is reduced moduloP (s). Obviously,

P (s) ≡ 0 modP (s).

As a simple example we considerA = C[s]/(s2 − 1), which has dimension 2. A
possible basis isb = (1, s). InA, for example,s·(s+1) = s2+s ≡ s+1 mod(s2−1),
obtained through division with rest

s2 + s = 1 · (s2 − 1) + (s + 1)

or simply by replacings2 with 1 (sinces2 − 1 = 0 impliess2 = 1).

1.1.2 Chinese Remainder Theorem (CRT)

AssumeP (s) = Q(s)R(s) factors into two coprime (no common factors) polynomials
Q andR. Then the Chinese remainder theorem (CRT) for polynomials is the linear
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mapping1

∆ : C[s]/P (s) → C[s]/Q(s) ⊕ C[s]/R(s),
X(s) 7→ (X(s) modQ(s),X(s) modR(s)).

Here,⊕ is the Cartesian product of vector spaces with elementwise operation (also
called outer direct sum). In words, the CRT asserts that computing (addition, multi-
plication, scalar multiplication) inC[s]/P (s) is equivalent to computing in parallel in
C[s]/Q(s) andC[s]/R(s).

If we choose basesb, c, d in the three polynomial algebras, then∆ can be expressed
as a matrix. As usual with linear mappings, this matrix is obtained by mapping every
element ofb with ∆, expressing it in the concatenationc ∪ d of the basesc andd, and
writing the results into the columns of the matrix.

As an example, we consider again the polynomialP (s) = s2 − 1 = (s− 1)(s + 1)
and the CRT decomposition

∆ : C[s]/(s2 − 1) → C[s]/(x − 1) ⊕ C[s]/(x + 1).

As bases, we chooseb = (1, x), c = (1), d = (1). ∆(1) = (1, 1) with the same
coordinate vector inc ∪ d = (1, 1). Further, because ofx ≡ 1 mod(x − 1) and
x ≡ −1 mod(x + 1), ∆(x) = (x, x) ≡ (1,−1) with the same coordinate vector.
Thus,∆ in matrix form is the so-called butterfly matrix, which is a DFT of size 2:
DFT2 = [ 1 1

1 −1 ].

1.1.3 Polynomial Transforms

AssumeP (s) ∈ C[s] has pairwise distinct zerosα = (α0, . . . , αN−1). Then the CRT
can be used to completely decomposeC[s]/P (s) into its spectrum:

∆ : C[s]/P (s) → C[s]/(s − α0) ⊕ . . . ⊕ C[s]/(s − αN−1),
X(s) 7→ (X(s) mod(s − α0), . . . ,X(s) mod(s − αN−1))

= (s(α0), . . . , s(αN−1)).
(1.9)

If we choose a basisb = (P0(s), . . . , PN−1(s)) in C[s]/P (s) and basesbi = (1) in
eachC[s]/(s−αi), then∆, as a linear mapping, is represented by a matrix. The matrix
is obtained by mapping every basis elementPn, 0 ≤ n < N , and collecting the results
in the columns of the matrix. The result is

Pb,α = [Pn(αk)]0≤k,n<N

and is called thepolynomial transform for A = C[s]/P (s) with basisb.
If, in general, we choosebi = (βi) as spectral basis, then the matrix corresponding

to the decomposition (1.9) is thescaled polynomial transform

diag0≤k<N (1/βn)Pb,α,

wherediag0≤n<N (γn) denotes a diagonal matrix with diagonal entriesγn.
We jointly refer to polynomial transforms, scaled or not, asFourier transforms.

1More precisely, isomorphism of algebras or isomorphism ofA-modules.
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1.1.4 DFT as a Polynomial Transform

We show that theDFTN is a polynomial transform forA = C[s]/(sN − 1) with basis
b = (1, s, . . . , sN−1). Namely,

sN − 1 =
∏

0≤k<N

(x − W k
N ),

which means that∆ takes the form

∆ : C[s]/(sN − 1) → C[s]/(s − W 0
N ) ⊕ . . . ⊕ C[s]/(s − WN−1

N ),

X(s) 7→ (X(s) mod(s − W 0
N ), . . . ,X(s) mod(s − WN−1

N ))

= (X(W 0
N ), . . . ,X(WN−1

N )).

(1.10)

The associated polynomial transform hence becomes

Pb,α = [W kn
N ]0≤k,n<N = DFTN .

This interpretation of the DFT has been known at least since [20, 9] and clarifies the
connection between the evaluation points in (1.5) and the circular convolution in (1.6).

In [3], DFTs of types 1–4 are defined, with type 1 being the standard DFT. In the
algebraic framework, type 3 is obtained by choosingA = C[s]/(sN + 1) as algebra
with the same basis as before:

Pb,α = [W
(k+1/2)n
N ]0≤k,n<N = DFT-3N , (1.11)

The DFTs of type 2 and 4 are scaled polynomial transforms [14].

1.2 Algebraic Derivation of the Cooley-Tukey FFT

Knowing the polynomial algebra underlying the DFT enables us to derive the Cooley-
Tukey FFTalgebraically. This means that instead of manipulating the DFT definition,
we manipulate the polynomial algebraC[s]/(sN − 1). The basic idea is intuitive.
We showed that the DFT is the matrix representation of the complete decomposition
(1.10). The Cooley-Tukey FFT is now derived be performing this decompositionin
steps as shown in Fig. (1.1). Each step yields a sparse matrix; hence, theDFTN is
factorized into a product of sparse matrices, which will be the matrix representation of
the Cooley-Tukey FFT.

This stepwise decomposition can be formulated genericallyfor polynomial trans-
forms [15, 13]. Here, we consider only the DFT.

We first introduce the matrix notation we will use and in particular the Kronecker
product formalism that became mainstream for FFTs in in [18,17].

Then we first derive the radix-2 FFT using afactorization of sN −1. Subsequently,
we obtain the general-radix FFT using adecomposition of sN − 1.
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Figure 1.1: Basic idea behind the algebraic derivation of Cooley-Tukey type algorithms
for a Fourier transform.

1.2.1 Matrix Notation

We denote theN × N identity matrix withIN , and diagonal matrices with

diag0≤k<N (γk) =







γ0

.. .
γN−1






.

TheN × N stride permutation matrix is defined forN = KM by the permutation

LN
M : iK + j 7→ jM + i (1.12)

for 0 ≤ i < K, 0 ≤ j < M . This definition shows thatLN
M transposes aK × M

matrix stored in row-major order. Alternatively, we can write

LN
M : i 7→ iM modN − 1, for 0 ≤ i < N − 1,

N − 1 7→ N − 1.

For example (· means 0),

L6
2 =

















1 · · · · ·
· · 1 · · ·
· · · · 1 ·
· 1 · · · ·
· · · 1 · ·
· · · · · 1

















.

LN
N/2 is sometimes called the perfect shuffle.

Further, we use matrix operators; namely the direct sum

A ⊕ B =

[

A
B

]
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and the Kronecker or tensor product

A ⊗ B = [ak,ℓB]k,ℓ, for A = [ak,ℓ].

In particular,

In ⊗ A = A ⊕ . . . ⊕ A =







A
. . .

A







is block-diagonal.
We may also construct a larger matrix as a matrix of matrices,e.g.,

[

A B
B A

]

.

If an algorithm for a transform is given as a product of sparsematrices built from
the constructs above, then an algorithm for the transpose orinverse of the transform
can be readily derived using mathematical properties including

(AB)T = BT AT , (AB)−1 = B−1A−1,

(A ⊕ B)T = AT ⊕ BT , (A ⊕ B)−1 = A−1 ⊕ B−1,

(A ⊗ B)T = AT ⊗ BT , (A ⊗ B)−1 = A−1 ⊗ B−1.

(1.13)

Permutation matrices are orthogonal, i.e.,PT = P−1. The transposition or inversion
of diagonal matrices is obvious.

1.2.2 Radix-2 FFT

The DFT decomposesA = C[s]/(sN − 1) with basisb = (1, s, . . . , sN−1) as shown
in (1.10). We assumeN = 2M . Then

s2M − 1 = (sM − 1)(sM + 1)

factors and we can apply the CRT in the following steps:

C[s]/(sN − 1)

→ C[s]/(sM − 1) ⊕ C[s]/(sM + 1) (1.14)

→
⊕

0≤i<M

C[s]/(x − W 2i
N ) ⊕

⊕

0≤i<M

C[s]/(x − W 2i+1
M ) (1.15)

→
⊕

0≤i<N

C[s]/(x − W i
N ). (1.16)

As bases in the smaller algebrasC[s]/(sM − 1) andC[s]/(sM + 1), we choosec =
d = (1, s, . . . , sM−1). The derivation of an algorithm forDFTN based on (1.14)-
(1.16) is now completely mechanical by reading off the matrix for each of the three
decomposition steps. The product of these matrices is equalto theDFTN .
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First, we derive the base change matrixB corresponding to (1.14). To do so, we
have to express the base elementssn ∈ b in the basisc ∪ d; the coordinate vectors are
the columns ofB. For0 ≤ n < M , sn is actually contained inc andd, so the firstM
columns ofB are

B =

[

IM ∗
IM ∗

]

,

where the entries∗ are determined next. For the base elementssM+n, 0 ≤ n < M , we
have

sM+n ≡ sn mod(sM − 1),

sM+n ≡ −sn mod(sM + 1),

which yields the final result

B =

[

IM IM

IM −IM

]

= DFT2 ⊗IM .

Next, we consider step (1.15).C[s]/(sM − 1) is decomposed byDFTM and
C[s]/(sM + 1) by DFT-3M in (1.11).

Finally, the permutation in step (1.16) is the perfect shuffle LN
M , which interleaves

the even and odd spectral components (even and odd exponentsof WN ).
The final algorithm obtained is

DFT2M = LN
M (DFTM ⊕DFT-3M )(DFT2 ⊗IM ).

To obtain a better known form, we useDFT-3M = DFTM DM , with DM = diag0≤i<M (W i
N ),

which is evident from (1.11). It yields

DFT2M = LN
M (DFTM ⊕DFTM DM )(DFT2 ⊗IM )

= LN
M (I2 ⊗ DFTM )(IM ⊕ DM )(DFT2 ⊗IM ).

The last expression is the radix-2 decimation-in-frequency Cooley-Tukey FFT. The
corresponding decimation-in-time version is obtained by transposition using (1.13) and
the symmetry of the DFT:

DFT2M = (DFT2 ⊗IM )(IM ⊕ DM )(I2 ⊗ DFTM )LN
2 .

The entries of the diagonal matrixIM ⊕ DM are commonly calledtwiddle factors.
The above method for deriving DFT algorithms is used extensively in [9].

1.2.3 General-radix FFT

To algebraically derive the general-radix FFT, we use thedecomposition property of
sN − 1. Namely, ifN = KM then

sN − 1 = (sM )K − 1.
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Decomposition means that the polynomial is written as the composition of two poly-
nomials: here,sM is inserted intosK − 1. Note that this is a special property: most
polynomials do not decompose.

Based on this polynomial decomposition, we obtain the following stepwise de-
composition ofC[s]/(sN − 1), which is more general than the previous one in (1.14)–
(1.16). The basic idea is to first decompose with respect to the outer polynomialtK−1,
t = sM , and then completely [15]:

C[s]/(sN − 1) = C[x]/((sM )K − 1)

→
⊕

0≤i<K

C[s]/(sM − W i
K) (1.17)

→
⊕

0≤i<K

⊕

0≤j<M

C[s]/(x − W jK+i
N ) (1.18)

→
⊕

0≤i<N

C[s]/(x − W i
N ). (1.19)

As bases in the smaller algebrasC[s]/(sM − W i
K) we chooseci = (1, s, . . . , sM−1).

As before, the derivation is completely mechanical from here: only the three matrices
corresponding to (1.17)–(1.19) have to be read off.

The first decomposition step requires us to computesn mod(sM −W i
K), 0 ≤ n <

N . To do so, we decompose the indexn asn = ℓM + m and compute

sn = sℓM+m = (sM )ℓsm ≡ W ℓm
k sm mod(sM − W i

K).

This shows that the matrix for (1.17) is given byDFTK ⊗IM .
In step (1.18), eachC[s]/(sM −W i

K) is completely decomposed by its polynomial
transform

DFTM (i,K) = DFTM ·diag0≤i<M (W ij
N ).

At this point,C[s]/(sN − 1) is completely decomposed, but the spectrum is ordered
according tojK + i, 0 ≤ i < M , 0 ≤ j < K (j runs faster). The desired order is
iM + j.

Thus, in step (1.19), we need to apply the permutationjK + i 7→ iM + j, which
is exactly the stride permutationLN

M in (1.12).
In summary, we obtain the Cooley-Tukey decimation-in-frequency FFT with arbi-

trary radix:

LN
M





⊕

0≤i<K

DFTM ·diagM−1
j=0 (W ij

N )



 (DFTk ⊗IM )

= LN
M (IK ⊗ DFTM )TN

M (DFTk ⊗IM ). (1.20)

The matrixTN
M is diagonal and usually called thetwiddle matrix. Transposition using

(1.13) yields the corresponding decimation-in-time version:

(DFTk ⊗IM )TN
M (IK ⊗ DFTM )LN

K .
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1.3 Discussion and Further Reading

This chapter only scratches the surface of the connection between algebra and the DFT
or signal processing in general. We provide a few referencesfor further reading.

1.3.1 Algebraic Derivation of Transform Algorithms

As mentioned before, the use of polynomial algebras and the CRT underlies much of
the early work on FFTs and convolution algorithms [20, 9, 1].For example, Winograd’s
work on FFTs minimizes the number of non-rational multiplications. This and his work
on complexity theory in general makes heavy use of polynomial algebras [20, 21, 22]
(see Chapter?? for more information and references). See [4] for a broad treatment of
algebraic complexity theory.

SinceC[x]/(sN −1) = C[CN ] can be viewed a group algebra for the cyclic group,
the methods shown in this chapter can be translated into the context of group repre-
sentation theory. For example, [8] derives the general-radix FFT using group theory
and also uses already the Kronecker product formalism. So does Beth and started the
area of FFTs for more general groups [2, 7]. However, Fouriertransforms for groups
have found only sporadic applications [16]. Along a relatedline of work, [5] shows
that using group theory it is possible that to discover and generate certain algorithms
for trigonometric transforms, such as discrete cosine transforms (DCTs), automatically
using a computer program.

More recently, the polynomial algebra framework was extended to include most
trigonometric transforms used in signal processing [12, 14]. It turns out that the same
techniques shown in this chapter can then be applied to derive, explain, and classify
most of the known algorithms for these transforms and even obtain a large class of new
algorithms including general-radix algorithms for the discrete cosine and sine trans-
forms (DCTs/DSTs) [15, 13, 19].

This latter line of work is part of the algebraic signal processing theory briefly
discussed next.

1.3.2 Algebraic Signal Processing Theory

The algebraic properties of transforms used in the above work on algorithm derivation
hints at a connection between algebra and (linear) signal processing itself. This is
indeed the case and was fully developed in a recent body of work called algebraic
signal processing theory (ASP) [14, 12, 11].

ASP first identifies the algebraic structure of (linear) signal processing: the com-
mon assumptions on available operations for filters and signals make the set of filters
an algebra A and the set of signals an associatedA-module M. ASP then builds a
signal processing theory formally from the axiomatic definition of a signal model: a
triple (A,M,Φ), whereΦ generalizes the idea of thez-transform to mappings from
vector spaces of signal values toM. If a signal model is given, other concepts, such
as spectrum, Fourier transform, frequency response are automatically defined but take
different forms for different models. For example, infiniteand finite time as discussed
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Signal model Infinite time Finite time

A

{

∑

n∈Z

H(n)sn | (. . . ,H(−1),H(0),H(1), . . . ) ∈ ℓ1(Z)

}

C[x]/(sn − 1)

M

{

∑

n∈Z

X(n)sn | (. . . ,X(−1),X(0),X(1), . . . ) ∈ ℓ2(Z)

}

C[s]/(sn − 1)

Φ Φ : ℓ2(Z) → M Φ : C
n → M

defined in (1.1) defined in (1.4)

Table 1.2: Infinite and finite time models as defined in ASP.Φ is thez-transform and
finite z-transform, respectively.

in Table 1.1 are two examples of signal models. Their complete definition is pro-
vided in Table 1.2 and identifies the proper notion of a finitez-transform as a mapping
C

n → C[s]/(sn − 1).
ASP shows that many signal models are in principle possible,each with its own

notion of filtering and Fourier transform. Those that support shift-invariance have
commutative algebras. Since finite-dimensional commutative algebras are precisely
polynomial algebras, their appearance in signal processing is explained. For example,
ASP identifies the polynomial algebras underlying the DCTs and DSTs, which hence
become Fourier transforms in the ASP sense. The signal models are called finitespace
models since they support signal processing based on an undirected shift operator, dif-
ferent from the directed time shift. Many more insights are provided by ASP including
the need for and choices in choosing boundary conditions, properties of transforms,
techniques for deriving new signal models, and the concise derivation of algorithms
mentioned before.
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