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Abstract—We propose a novel algorithm for the compression
of ECG signals, in particular QRS complexes. The algorithm
is based on the expansion of signals with compact support
into a basis of discrete Hermite functions. These functionscan
be constructed by sampling continuous Hermite functions at
specific sampling points. They form an orthogonal basis in the
underlying signal space. The proposed algorithm relies on the
theory of signal models based on orthogonal polynomials. We
demonstrate that the constructed discrete Hermite functions have
important advantages compared to continuous Hermite functions,
which have previously been suggested for the compression of
QRS complexes. Our algorithm achieves higher compression
ratios compared with previously reported algorithms basedon
continuous Hermite functions, discrete Fourier, cosine, or wavelet
transforms.

Index Terms—QRS complex, ECG signal, compression, Her-
mite function, Hermite transform, signal model, orthogonal
polynomials.

I. I NTRODUCTION

Some classes of electrophysiological signals have (or can be
assumed to have) a compact support. These signals represent
the impulse responses of a system or an organ to an electrical
stimulation that is recorded on the body surface. Examples
include electrocardiographic (ECG), electroencephalographic,
and myoelectric signals.

The major role of electrophysiological signals is to provide
information about a patient’s condition, and reflect important
changes in his/her state. In addition, it may also be desired
to store electrophysiological signals for later analysis and
reference. However, the visual analysis and monitoring of
long-term repetitive signals is a tedious task that requires the
presence of a human operator. In these cases, computer-based
systems can be utilized to facilitate this process.

For efficient storage, automatic monitoring, and accurate
interpretation of electrophysiological signals, they areusually
represented by a set of features, either heuristic, such as
duration and amplitude, or formal, such as the coefficients
of the expansion in an orthogonal basis. In the latter case,
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Fig. 1. The schematic structure of an ECG signal.

one can use either a continuous or a discrete basis. When
a continuous basis is used, the projection and reconstruction
of a compact-support signal are computed using numerical
methods for integral approximation, for example, a numerical
quadrature. When a discrete basis is used, a discrete signal
transform, such as the discrete Fourier transform or the discrete
cosine transform, is applied to a digitized signal. These signals
can be obtained from continuous ones by sampling at specific
sampling points. The choice of the quadrature formula, or
the sampling points is an important characteristic of the
representation scheme.

In both cases of continuous and discrete bases, usually
only a few projection coefficients are used for the storage
and reconstruction of a signal. This reduction of expansion
coefficients leads to a reconstruction error. The goal of the
compression optimization then is to minimize the error while
maximizing the compression ratio. This can be achieved,
for example, by using only the coefficients with the largest
magnitude, and minimizing the number of coefficients used
for reconstruction.

In this paper, we introduce a novel algorithm for the
compression ofQRS complexes(also known as QRS intervals),
which are the most characteristic waves of ECG signals. The
structure of an ECG signal is shown in Fig. 1. The morphology
of QRS complexes is important to cardiologists on different
stages of diagnosis and treatment [1]. Examples include, but
are not limited to,

1) The detection of the rhythm origin (supraventricular,
from the upper chambers of the heart, or ventricular,
from the bottom chambers). This is a key factor in the
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choice of the treatment.
2) The detection of conduction abnormalities between atria

and ventricles (bundle branch blocks, fascicular blocks,
and others).

3) The detection of accessory pathways (Wolf-Parkinson-
White syndrome).

4) The evaluation of the effect of specific anti-arrhythmic
medications (such as sodium channel blockers).

Our proposed algorithm is based on the expansion of
QRS complexes into the basis ofdiscreteHermite functions.
Such functions are obtained by samplingcontinuousHermite
functions at specific sampling points, not necessarily located
on a uniform grid. We originally proposed this compression
method in [2]. In this paper, we extend our previous work
by rigorously formulating and describing the signal model
used for the description of QRS complexes. In particular,
we utilize results from our recently developed theory of
signal models based on orthogonal polynomials [3]–[5]. We
also identify a fast algorithm for the implementation of the
proposed compression method. Finally, we demonstrate with
experimental results that the proposed method achieves higher
compression ratios, compared to other methods, when used to
obtain medically acceptable compressed ECG signals. Here,
we call a compressed ECG signalmedically acceptable, if
visually it is sufficiently similar to the original signal, and
would not lead to an incorrect interpretation and diagnosis.
In our experiments, the identification of medically acceptable
compressed signals has been performed by one of the authors
who is a cardiologist with extensive experience in cardiac
electrophysiology.

Related work. Previous work on the compression of QRS
complexes includes the use of continuous Hermite functions
as the expansion basis [6]–[9]. Due to the shape similarity
between continuous Hermite functions and QRS complexes,
these functions were identified as a suitable basis for the
representation and compression of the latter. These works,
however, only provide a theoretical framework for the com-
pression algorithm. The actual implementation is not discussed
and no experimental data is provided that would confirm that
the proposed compression method indeed performs better than
other methods. In addition, as we discuss in Section II, the
computer implementations of the previously proposed algo-
rithms suffer from certain limitations, such as the inability to
obtain an exact reconstruction of a signal, large computational
cost, and an a priori selection of coefficients for reconstruction.

II. BACKGROUND

In this section, we discuss the expansion of continuous
signals using Hermite functions, its digital implementation,
and its use in signal compression.

A. Continuous Hermite functions

Consider the family of polynomialsHℓ(t), ℓ ≥ 0, that
satisfy the recursion

Hℓ(t) = 2tHℓ−1(t)− 2(ℓ− 1)Hℓ−2(t), (1)

(a) ϕ0(t, σ) (b) ϕ1(t, σ)

(c) ϕ2(t, σ) (d) ϕ3(t, σ)

Fig. 2. First four Hermite functions (plotted for the same scale σ).

for ℓ ≥ 2, with H0(t) = 1 andH1(t) = 2t. They are known
asHermite polynomials. These polynomials are orthogonal on
the real lineR with respect to the weight functione−t2 :

∫ ∞

−∞

Hℓ(t)Hm(t)e−t2dt = 2ℓℓ!
√
π · δℓ−m. (2)

It immediately follows from (2) that the functions

ϕℓ(t, σ) =
1

√

σ2ℓℓ!
√
π
e−t2/2σ2

Hℓ(t/σ) (3)

are orthonormal onR with respect to the standard inner
product

〈ϕℓ(t, σ), ϕm(t, σ)〉 =
∫

R

ϕℓ(t, σ)ϕm(t, σ)dt = δℓ−m. (4)

The set of functions{ϕℓ(t, σ)}ℓ≥0, calledcontinuous Her-
mite functions, is an orthonormal basis in the Hilbert space
of continuous functions defined onR [10]–[13]. Any such
function s(t) can be represented as a linear combination of
the basis functions

s(t) =
∑

ℓ≥0

cℓϕℓ(t, σ), (5)

where

cℓ = 〈s(t), ϕℓ(t, σ)〉 =
∫

R

s(t)ϕℓ(t, σ)dt.

The first four continuous Hermite functions are shown in
Fig. 2. Notice that eachϕℓ(t, σ) quickly approaches zero as
the value of|t| increases: sinceHℓ(t/σ) is a polynomial of
degreeℓ,

lim
|t|→∞

e−t2/2σ2

Hℓ(t/σ) = 0.

As a consequence, for practical purposes we can as-
sume that each continuous Hermite function has a com-
pact support. Since in this paper we often work only with
the first L continuous Hermite functions, we assume that
ϕ0(t, σ), ϕ1(t, σ), . . . , ϕL−1(t, σ) have the same compact sup-
port [−Tσ, Tσ], whereTσ is a suitably chosen constant that
depends onσ andL. In other words, we assume

ϕℓ(t, σ) = 0 for t /∈ [−Tσ, Tσ],

where0 ≤ ℓ < L. If a signals(t) also has a compact support
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of [−Tσ, Tσ], then we can compute the coefficientscℓ using a
finite integral:

cℓ =

∫

R

s(t)ϕℓ(t, σ)dt =

∫ Tσ

−Tσ

s(t)ϕℓ(t, σ)dt. (6)

B. Compression with continuous Hermite functions

Coefficient-based compression.In practical applications,
only a finite numberM of Hermite functions are used to
represent the signals(t) in (5). Accordingly, only a few
coefficientscℓ0 , . . . , cℓM−1

need to be computed. Here,cℓm
corresponds toϕℓm(t, σ) in (6). The approximated signal then
is

ŝ(t) =

M−1
∑

m=0

cℓmϕℓm(t, σ). (7)

Alternatively, a larger pool of coefficients can be computed,
from whichM optimal ones are selected. It is well-known that
for an orthonormal basis selecting coefficients with the largest
magnitude minimizes the approximation error computed as
the energy of the difference between the signals(t) and its
approximation withM basis functions. If a basis is orthogonal,
but not orthonormal (i.e. the basis functions do not have unit
norms), an additional weighting of coefficients proportionally
to the norms of the basis functions can be performed.

Digital implementation. The coefficientscℓ in (6) and the
Hermite expansion (5) are computed using the continuous
functions. However, in practice they have to be computed in
a digital form.

In particular, for each coefficientcℓm the integral in (6) can
be calculated using a numerical quadrature that is based, for
example, on a rectangle rule:

cℓm =

∫ Tσ

−Tσ

s(t)ϕℓm(t, σ)dt

≈
K
∑

k=−K

s(τk)ϕℓm(τk, σ)(tk − tk−1). (8)

Here,−T = t−K−1 < t−K < . . . < tK−1 < tK = T. Each
sampling pointτk is located inside the corresponding interval:
tk−1 ≤ τk ≤ tk.

Then, we can compute the discrete version of the approx-
imation signalŝ(t). It corresponds tôs(t) sampled at points
τk, −K ≤ k ≤ K:

ŝ(τk) =

M−1
∑

m=0

cℓmϕℓm(τk, σ). (9)

Usually, pointstk are assumed to lie on a uniform grid,
such thattk − tk−1 = ∆ for all k. Then (8) and (9) can be
expressed in matrix-vector notation. Let us define vectors

s=







s(τ−K)
...

s(τK)






, c =







c0
...

cM−1






, ŝ=







ŝ(τ−K)
...

ŝ(τK)






. (10)

Then

c = ∆ΦT s, (11)

ŝ = Φc, (12)

whereΦ ∈ R
(2K+1)×M , such that itsm-th column is theℓm-th

Hermite function sampled at the pointsτ−K , τ−K+1, . . . , τK :

Φ =
[

ϕℓm(τk−K , σ)
]

0≤k<2K+1, 0≤m<M
. (13)

As follows from (11)-(12), in order to achieve the perfect
reconstruction̂s= s, Φ must satisfyΦΦT = I2K+1.

Compression of QRS complexes: Previous work.The
compression of QRS complexes using the expansion into
continuous Hermite functions has been studied in [6]–[9]. It
was originally motivated by the visual similarity of QRS com-
plexes, centered around their peaks, and Hermite functions,
as can be observed from Figs. 1 and 2. Varying the value
of σ corresponds to “stretching” or “compressing” Hermite
functionsϕℓ(t, σ) to optimally match a given QRS complex.

Since ECG signals are usually available as discrete signals
equidistantly sampled atτk = k∆, previously reported work
assumed, explicitly or implicitly,tk = τk = k∆ in (8)–
(9), and hence led exactly to the matrix-vector products
in (11) and (12). In addition, they proposed to use only the
first M Hermite functionsϕ0(t, σ), . . . , ϕM−1(t, σ) for the
approximation of QRS complexes.

This compression algorithm has several important limita-
tions. First of all, sinceΦΦT 6= I2K+1 for τk = k∆,
the approximation̂s does not converge to original signals,
regardless of the numberM of Hermite functions used for the
construction of an approximation. As a result, original signal
s cannot be reconstructed exactly.

This problem could theoretically be addressed by using
M = 2K + 1 coefficients and replacingΦT with Φ−1 to
compute coefficientsc in (11). However, the computation of
Φ−1 is a non-trivial task. Moreover, the matrix-vector product
Φ−1s requires(2K + 1)2 operations. This cost can become
prohibitive for large value ofK and make this approach
impractical.

Finally, the approximation of̂s(tk) with thefirst M < 2K+
1 coefficientsc0, c1, . . . , cM−1 in (8) may not be the optimal
choice for the construction of approximationŝ with M basis
functions.

In Section IV, we propose an improved compression algo-
rithm that samples ECG signals at non-equidistant points, and
selects coefficientscℓm with the largest magnitude among a
larger selection of coefficients.

III. S IGNAL MODEL FOR QRSCOMPLEXES

In this section, we construct a signal model for the descrip-
tion of QRS complexes. It is based on the scaled Hermite
polynomials. We identify the Fourier transform for this model,
called aHermite transform, as well as its inverse. We also
describe a fast algorithm for the corresponding Hermite trans-
form. These results will be used in Section IV to construct
and implement the novel compression algorithm.

A. Signal model

Let us define polynomials

Pℓ(t) =
1√
2ℓℓ!

Hℓ(t), (14)
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where Hℓ(t) denotes theℓ-th Hermite polynomials (1).
Throughout the paper, we refer to polynomialsPℓ(t), ℓ ≥ 0,
asscaled Hermite polynomials.

Signal model. Consider the vector spaceM of functions
spanned by the firstN scaled Hermite polynomials (14):

M =
{

s0P0(t) + s1P1(t) + . . .+ sN−1PN−1(t)
}

, (15)

where
(

s0, s1, . . . , sN−1

)T ∈ R
N . Since eachPℓ(t) is a

polynomial of degreeℓ, M is a vector space of degreeN. It
is closed under the addition and linear scaling of its elements.

Assume thatM is also closed under the multiplication of
its elements modulo polynomialPN (t)1. As we demonstrate
in [3]–[5], in this caseM has exactlyN spectral components,
and thek-th component of a signal

s(t) = s0P0(t) + s1P1(t) + . . .+ sN−1PN−1(t)

is defined as

s(αk) = s0P0(αk) + s1P1(αk) + . . .+ sN−1PN−1(αk).

where α0, α1, . . . , αN−1 are the roots ofPN (t). Note that
α0, α1, . . . , αN−1 are all distinct real numbers [10]. Without
loss of generality, we assumeα0 < α1 < . . . < αN−1.

Hermite transform. The spectral decomposition of signal
s(t) is defined as

S(α) =
(

s(α0) s(α1) . . . s(αN−1)
)T

. (16)

We can express the spectral decomposition ofs(t) in the
following matrix-vector notation. Consider theN ×N matrix

PP,α =
[

Pℓ(αk)
]

0≤k,ℓ<N
. (17)

The ℓ-th column ofPP,α is polynomialsPℓ(t) evaluated at
α0, . . . , αN−1. In general, matrices with this structure are
called polynomial transforms. In the particular case of (17),
We callPP,α the (forward) Hermite transform2.

The spectral decomposition (16) can then be computed as

1Strictly speaking, we must consider two separate spacesA andM that
have the same elements:A = M. A is an algebra: it is a vector space closed
under the addition and multiplication of its elements modulo PN (t). Then
M can be viewed as anA-module, and its spectral decomposition can be
defined.
A andM comprise a part of what we call analgebraic signal model. It is

a central component of thealgebraic signal processing theorydeveloped by
the authors in [3]–[5], [14]–[18].

In particular, in [3]–[5] we introduce signal models based on orthogonal
polynomials (of which Hermite polynomials are a special case). A family of
polynomials{Pℓ(t)}ℓ≥0 is calledorthogonal, if they satisfy a recursion of
the form tPℓ(t) = aℓPℓ−1(t) + bℓPℓ(t) + cℓPℓ+1(t), usually with initial
conditionsP0(t) = 1 and P−1 = 0. Each family is orthogonal over an
interval I ⊆ R with a weight functionw(t) :

∫
I
Pℓ(t)Pm(t)w(t)dt = 0 if

ℓ 6= m. Each polynomialPℓ(t) has exactlyℓ simple real roots. A detailed
discussion on orthogonal polynomials can be found in [10]–[13].

2Hermite transform have been defined previously in other contexts. In
particular, one should not confuse the Hermite transform (17) with the Hermite
transform defined in [19], [20], which, to a large extent, corresponds to our
definition of the inverse Hermite transform (19).

the matrix-vector product










s(α0)
s(α1)

...
s(αN−1)











= PP,α ·











s0
s1
...

sN−1











. (18)

Inverse Hermite transform. In general, it is non-trivial to
compute the inverse of matrixPP,α for arbitrary polynomials
Pℓ(t). However, we demonstrated in [3]–[5] that the inverse
of the Hermite transform (17) can be found as

P−1
P,α = PT

P,α ·D, (19)

whereD ∈ R
N×N is a diagonal matrix withk-th diagonal

element equal to

Dk,k =

√

2/N

PN−1(αk)P ′
N (αk)

.

B. Fast algorithm for Hermite transform

A straightforward computation of the matrix-vector product
in (18) requires, in general,2N2 additions and multiplications.
Alternatively, 43N log22 N additions and multiplications can
be required, if one uses an algorithm proposed in [21]. In
both cases, the computational cost can become unacceptable
for large values ofN , especially if the product has to be
computed in real-time (for example, in the case of ECG signal
processing). The same applies to the inverseP−1

H,α.
Here, we provide an improved computational algorithm for

the matrix-vector product in (18). It reduces the computational
cost approximately by a factor of 4. We only state the
algorithm here, without the proofs. It can be verified by direct
computation. However, originally we derived this algorithm by
applying the theory of fast polynomial transforms developed
in [4], [22] to the signal space (15).

Theorem 1 Let N = 2M be an even number. Then the
polynomial transform(17) can be factored as

PP,α =

(

JM −JM
IM IM

)











IM
αM

. . .

αN−1











×
(

PM

PM

)

B0B1 . . . BM−1L
N
2 . (20)

Here, IM is an identity matrix of sizeM , and JM is a
complimentary identity matrix of sizeM :

JM =











1

. .
.

1
1











.

Matrix PM is anM ×M polynomial transform defined as

PM =
[

P2ℓ(αk+M )
]

0≤k,ℓ<M
.

EachBk is an identity matrix except its(M+k,M+k)-th and
(M+k−1,M+k)-th elements are equal to

√

2/(2k + 1) and
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−
√

2k/(2k + 1), respectively.LN
2 is a permutation matrix:

its (k, ℓ)-th element is1 if ℓ = ⌊ 2k(N+1)
N ⌋ mod N, and 0

otherwise.

The algorithm for odd values ofN is similar.

Theorem 2 Let N = 2M + 1 be an odd number. Then the
polynomial transform(17) can be factored as

PP,α =





JM −JM
1

IM IM















IM+1

αM+1

. . .

α2M











×
(

PM+1

PM

)

B0B1 . . . BM−1L
N
2 . (21)

Here,PM+1 is an (M + 1)× (M + 1) polynomial transform
defined as

PM+1 =
[

P2ℓ(αk+M )
]

0≤k,ℓ<M+1
.

PM is a submatrix ofPM+1 obtained by removing the first
row and last column of the latter. EachBk is an identity matrix
except its(M +1+k,M+1+k)-th and(M +k,M+1+k)-
th elements are equal to

√

2/(2k + 1) and−
√

2k/(2k + 1),
respectively. MatricesIM , JM , and LN

2 are as described
above.

We show in [4] that the polynomial transformsPM and
PM+1 in Theorems 1 and 2 are also based on orthogonal
polynomials. Hence, they can also be computed using approx-
imately 2M2 or 43M log22 M additions and multiplications,
depending on the choice of the algorithm. Since other matrices
in factorizations (20) and (21) require approximately3N
additions and multiplication, the computational algorithms in
Theorems 1 and 2 require approximately four times fewer
operations compared to other algorithms.

IV. COMPRESSION ALGORITHM

As we mentioned in Section II, the parameterσ in the
definition of the continuous Hermite functions (3) can be used
to “stretch” and “compress” the functions relatively to the
signals(t).

Algorithm modifications. Alternatively, we can fixσ = 1,
and introduce a parameterλ to “stretch” and “compress” signal
s(tλ) instead. In this case the numerical quadrature (8) can be
rewritten as

cℓ =

∫ Tλ

−Tλ

s(tλ)ϕℓ(t, 1)dt

≈
K
∑

k=−K

s(τkλ)ϕℓ(τk, 1)(tk − tk−1). (22)

Furthermore, instead of sampling points on a uniform grid,
we propose to use non-equispaced sampling points associated
with the roots of Hermite polynomials. Namely, we setτk =
αk+K , −K ≤ k ≤ K, to be the roots of the scaled Hermite
polynomialP2K+1(t).

Discrete Hermite functions. We call the vector

Φℓ =
(

ϕℓ(α0, 1) ϕℓ(α1, 1) . . . ϕℓ(αN−1, 1)
)T

,

the ℓ-th discrete Hermite function.
If, as previously,tk − tk−1 = ∆ in (22), then the compu-

tation of each coefficientcℓ in (22) can be seen as an inner
product of the discrete signal

s=
(

s(α0λ) s(α1λ) . . . s(α2K+1λ)
)T

with the ℓ-th discrete Hermite functionΦℓ :

cℓ ≈ ∆

K
∑

k=−K

s(αk+Kλ)ϕℓ(αk+K , 1) = ∆ · 〈Φℓ, s〉.

Expansion matrix. The matrix Φ in (13) can now be
rewritten as

Φ = π−1/4WPP,α, (23)

where
W = diag

(

e−α2

k
/2
)

0≤k<2K+1

is a diagonal matrix, andPP,α is given in (17).
Finally, if M = 2K + 1, andΦ is a square(2K + 1) ×

(2K+1) matrix, then it follows from (19) that the rows ofΦ
form an orthogonal basis:

ΦΦT = π−1/2W 2D−1. (24)

We denote the diagonal matrix on the right-hand side of (24) as
Λ. Later, to account for the vector norms, we will pre-multiply
the input signals with the weight matrixΛ−1.

Proposed algorithm.The proposed compression algorithm
operates as follows. We assume that the ECG signals(t) is
sampled at pointsαk+Kλ, −K ≤ k ≤ K, to obtain a vector
of samples

s=
(

s(α0λ), s(α1λ), . . . , s(α2Kλ)
)T

.

The selection of parameterλ is discussed in Section V. Then
we compute the vector of expansion coefficients

c = ∆ΦTΛ−1s,

whereΦ and Λ are given in (23) and (24). Following this,
we construct the vector̂c by keeping onlyM coefficients inc
with the largest magnitudes and setting others to zero. Finally,
we useĉ to obtain the signal approximation

ŝ= ∆−1Φĉ. (25)

Advantages. The proposed algorithm addresses several
limitations of the original compression algorithms based on
continuous Hermite functions.

Since the rows ofΦ form an orthogonal basis, increasing
the number of vectors used for the approximation of a signal
decreases the approximation error. Thus, if an exact recon-
struction of signals is required, it can be achieved by using
M = 2K + 1 coefficients to obtain̂c.

Furthermore, we minimize the approximation error, since
we pre-compute all coefficientsc0, c1, . . . , c2K , and only after
this select the ones with the largest magnitude to obtainĉ.

Finally, the proposed algorithm is more efficient computa-
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Fig. 3. An example ECG signal with two leads.

tionally, since the computational cost ofΦ in (23) (as well as
ΦT ) is approximately 4 times lower compared to the cost of
Φ (andΦT ) in (13), as explained in Section III-B.

V. EXPERIMENTS

Setup. In order to analyze the performance of the proposed
compression algorithm, we study the compression of QRS
complexes extracted from ECG signals in the MIT-BIH ECG
Compression Test Database [23]. The database contains 168
ECG signals sampled at 250 Hz. An example ECG signal with
two recorded channels, orleads, is shown in Fig. 3.

Preprocessing.To make the experiments uniform across the
database, we only used the first 10 seconds of the first lead
of each signal. All detectable QRS complexes were extracted
automatically, a total ofN = 1486 complexes. During the
extraction, we require that each extracted complex is centered
around the R peak. As a result, each extracted complex is
available as a discrete signal of length2K+1 ∈ {27, 29, 31},
where the(K+1)-th sample corresponds to the R peak. Hence,
each signal represents a continuous QRS complex of duration
104, 112, or 120 milliseconds sampled at 250 Hz.

For the new compression algorithm, QRS complexes must
be sampled at pointsαk+Kλ proportional to the roots of
P2K+1(t). These signals are not available directly from MIT-
BIH ECG Compression Test Database. Hence, we had to
construct the required discrete signals prior to running the
experiments. In particular, we reconstructed continuous QRS
complexes by interpolating the extracted discrete QRS com-
plexes with sinc functions. Then we sampled the obtained
continuous signals at the required pointsαk+Kλ. The value
of the parameterλ was determined for each lead separately to
maximize the resulting compression ratio.

Similarly, we determined the value of the parameterσ
for each lead to maximize the compression ratio for the
original compression algorithm that expands QRS complexes
into continuous Hermite functions.

In a real-time system, the parametersλ or σ would be pre-
set for each lead. In addition, the incoming continuous ECG
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Fig. 4. A QRS complex and its approximations with 10% and 20% errors.

signal would be immediately sampled at the desired points.
Hence, the interpolation step would not be required.

Objective. The main objective of the experiments is to
achieve the maximal compression ratio for a desired approxi-
mation error. We define the error as the norm of the difference
between the original signal and its approximation, normalized
by the norm of the original signal:

approximation error =
||̂s− s||2
||s||2

. (26)

In this paper, we seek to achieve a10% approximation
error. It has been verified by one of the authors who is an
experienced cardiologist, that all signals in the MIT-BIH ECG
Compression Database can be compressed with the methods
considered in this paper with the10% error while remaining
medically acceptable. This means that visually all signals
remain sufficiently similar to their original versions, andwould
not lead to incorrect interpretation and diagnoses.

We also provide compression ratios for15%, 20%, and
25% approximation errors. In general, signals in the MIT-
BIH ECG Compression Database compressed with these errors
have been found medically unacceptable. For example, in our
experiments for the approximation error of20%, 630 out of
1486 (42.4%) compressed QRS complexes were identified
as medically unacceptable. However, most of the distortions
were introduced at the boundaries of the compressed QRS
complexes, as demonstrated in the example shown in Fig. 4.
Potentially, this problem could be addressed by smoothing the
boundaries, and hence reducing the approximation error.

Compression algorithms.For the original compression al-
gorithm that expands QRS complexes into continuous Hermite
functions, as described in Section II-B, we compute a sufficient
numberM of coefficientsc0, . . . , cM−1 in (11). We use the
minimal possibleM that ensures that the reconstructionŝ
in (12) has the desired approximation error (26).

For the new compression algorithm, we compute2K + 1
coefficients, and select a sufficient numberM of the coeffi-
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Error Proposed algorithm Original algorithm DFT-based DCT-based DWT-based

10% 5.3 (5.8) 3.5 (9.0) 3.7 (8.3) 4.3 (7.3) 3.3 (9.4)

15% 7.0 (4.4) 4.3 (7.2) 4.2 (7.4) 5.1 (6.1) 4.2 (7.5)

20% 9.2 (3.4) 5.0 (6.2) 4.6 (6.7) 5.8 (5.3) 4.8 (6.5)

25% 10.4 (2.9) 5.8 (5.4) 5.1 (6.1) 6.6 (4.7) 5.5 (5.6)

TABLE I
AVERAGE COMPRESSION RATIOS OF DIFFERENT ALGORITHMS FOR10%, 15%, 20% AND 25% APPROXIMATION ERRORS. THE AVERAGE NUMBER OF

COEFFICIENTS REQUIRED TO ACHIEVE THE DESIRED ERROR IS INDICATED IN THE PARENTHESIS NEXT TO THE CORRESPONDING RATIO.

cients with the largest magnitude to obtain the approximation
ŝ in (25) that yields the required approximation error (26).

In addition, we study the accuracy of compression algo-
rithms based on widely used orthogonal discrete signal trans-
forms. In particular, we consider the discrete Fourier transform
(DFT), the discrete cosine transform (DCT), and discrete
wavelet transform (DWT). In the latter case, we consider an
orthogonal DWT based on Daubechies filters of length 4 with
three levels of decomposition [24]. Since all these transforms
are orthogonal, we can replaceΦ in (11) and (12) with the
corresponding transform, apply the transforms to the signal s
in (10), and select a sufficient numberM of coefficients with
the largest magnitudes, such that reconstructionŝ in (12) has
the desired approximation error (26).

Results. The average compression ratios for10–25% ap-
proximation errors are shown in Table I. The ratios were
computed as

average ratio =
N−1
∑

n=0

(2Kn + 1)
/

N−1
∑

n=0

Mn.

Here, 2Kn + 1 ∈ {27, 29, 31} is the length of then-th
sampled QRS complex, andMn is the number of coefficients
required to achieve the desired approximation error. Naturally,
the higher the compression ratio, the better the algorithm
performance, since fewer coefficients are required.

In Table I, we also identify the average minimal numberM
of coefficientscℓm required to achieve the desired approxima-
tion error. This characteristic is included for implementation
purposes and the ease of interpretation of compression ratios.

VI. D ISCUSSION ANDCONCLUSIONS

As we observe from Table I, the proposed compression
algorithm has the highest compression ratio for all considered
approximation errors. In particular, it requires on average
only 6 coefficients to reconstruct compressed QRS complexes
that are medically acceptable. This is a25% improvement
compared to using DCT as the compressing transform, a
33% improvement compared to using DFT or the compression
algorithm based on continuous Hermite functions, and a40%
improvement compared to using DWT. As an interesting
observation, recall that here we are using the DWT with three
decomposition levels; we tested DWT with other numbers of
decomposition levels, and the compression ratios were even
lower.

The larger compression ratio of the proposed algorithm
in comparison with the original expansion into continuous
Hermite functions can be explained by the improvements
discussed in Sections II and IV. The comparison with other
algorithms, however, yields important insights into the advan-
tages of the proposed algorithm.

Orthogonal transforms, such as DFT, DCT, and DWT, have
been widely used for signal compression, for example, in
image compression standards, such as JPEG and JPEG 2000
(for the description of these standards, see, for example, the
discussion in [24] and references therein). These compression
methods can efficiently compress “smooth” signals by captur-
ing the low-frequency part of a signal with a few expansion co-
efficients, and removing the high-frequency part that requires
many additional coefficients. However, the high-frequency
component of a QRS complex cannot be dropped without dis-
torting the signal. Consequently, compression methods based
on DFT, DCT, and DWT have to use a larger number of
expansion coefficients.

Future improvements. As we mentioned in Section V, the
compression with an approximation error higher than10%
frequently leads to medically unacceptable signals. However,
most of the distortion is introduced at the boundaries of the
compressed QRS complexes.

Fig. 4 shows an example of such distortions for the20%
approximation error. While the shape of the compressed signal
is similar to the original QRS complex, the compressed signal
is clearly corrupted at the left and right boundaries. As a
result, discontinuities are introduced on the edge betweenthe
compressed QRS complex and the preceding P-R segment, as
well as on the edge of the QRS complex and the following
S-T segment. Potentially, one could address this problem
by smoothing the compressed signal at the boundaries, thus
reducing the approximation error.

Conclusions.We have constructed a novel algorithm for the
compression of QRS complexes. The proposed algorithm is
based on the expansion of signals with compact support (such
as ECG signals) into the basis of discrete Hermite functions.
These functions are constructed by sampling the continuous
Hermite functions at sampling points proportional to the roots
of a corresponding Hermite polynomial.

The proposed algorithm uses results from our recently
developed theory of signal models for orthogonal polynomials.
As confirmed by the experiments, the novel algorithm achieves
a higher compression ratio compared with the original algo-
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rithm based on the expansion into continuous Hermite func-
tions, as well as other widely used compression algorithms.

In addition, we developed a fast computational algorithm
for the proposed compression method. The proposed approach
reduces the number of operations approximately by a factor
of 4.
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