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Abstract—We propose a novel algorithm for the compression
of ECG signals, in particular QRS complexes. The algorithm
is based on the expansion of signals with compact support
into a basis of discrete Hermite functions. These functiongan
be constructed by sampling continuous Hermite functions at
specific sampling points. They form an orthogonal basis in th
underlying signal space. The proposed algorithm relies onhie
theory of signal models based on orthogonal polynomials. We . .
demonstrate that the constructed discrete Hermite functias have | _P-R I
important advantages compared to continuous Hermite fundbns, P iseement
which have previously been suggested for the compression of ;
QRS complexes. Our algorithm achieves higher compression
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ratios compared with previously reported algorithms basedon i 1< i
continuous Hermite functions, discrete Fourier, cosine, owavelet ; - ; QRSS i o ;
tranSforms' : interval : interval ! interval i

Index Terms—QRS complex, ECG signal, compression, Her- _ .
mite function, Hermite transform, signal model, orthogond Fig. 1. The schematic structure of an ECG signal.
polynomials.

one can use either a continuous or a discrete basis. When

I. INTRODUCTION : e . .
Some classes of electrophysiological signals have (o ean continuous basis is used, the projection and recongiructi
physiologi '9 v a compact-support signal are computed using numerical

aSSL_Jmed to have) a compact support. These signals rEpreﬁ%{hods for integral approximation, for example, a nunaric
the impulse responses of a system or an organ to an electr L‘ilaldrature. When a discrete basis is used, a discrete signal

;timulation that is _recorde_d on the body surface. Exa_lmpl ansform, such as the discrete Fourier transform or theetis
include electrocardiographic (ECG), eleciroencephapi, cosine transform, is applied to a digitized signal. Thegaais

an_lqhmyoe_lectn? sgnallls.t hvsiological sianals is t _dcan be obtained from continuous ones by sampling at specific
€ major role of electrophysiological sighais 1S 1o previ sampling points. The choice of the quadrature formula, or

mr:ormano_n ?‘bolﬁt a r;a?en;cs cgg_célmonztand ref:ectl;mpdntt_ the sampling points is an important characteristic of the
changes in his/her state. In addition, it may also be desired . iioh scheme.

to store electrophysiological signals for later analysisl a . .
. . 2 In both cases of continuous and discrete bases, usually
reference. However, the visual analysis and monitoring of

long-term repetitive signals is a tedious task that reguihe only a few projgction cogﬁicients are useq for the storage
presence of a human operator. In these cases computd-bggg reconstruction of a signal. This reduction of expansion
systems can be utilized to faci.litate this proceés coefficients leads to a reconstruction error. The goal of the

o . i ?ompression optimization then is to minimize the error whil
For efficient storage, automatic monitoring, and accurafe

. . ) . . Mmaximizing the compression ratio. This can be achieved,
interpretation of electrophysiological signals, they asaally . - .
) ? for example, by using only the coefficients with the largest
represented by a set of features, either heuristic, such as . Y -
; : .. _magnitude, and minimizing the number of coefficients used
duration and amplitude, or formal, such as the coefficients .
oo . Or reconstruction.
of the expansion in an orthogonal basis. In the latter case, . . .
In this paper, we introduce a novel algorithm for the
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choice of the treatment.

2) The detection of conduction abnormalities between atria
and ventricles (bundle branch blocks, fascicular blocks,
and others).

3) The detection of accessory pathways (Wolf-Parkinson-
White syndrome). @) wo(t, o) (B) ¢1(t, o)
4) The evaluation of the effect of specific anti-arrhythmic
medications (such as sodium channel blockers). /\ K
Our proposed algorithm is based on the expansion of
QRS complexes into the basis discreteHermite functions. \/
Such functions are obtained by samplicgntinuousHermite
functions at specific sampling points, not necessarily texdta ©) pa(t, o) (d) @s3(t, o)
on a uniform grid. We originally proposed this compression

method in [2] In this paper, we extend our previous Worﬁig. 2. First four Hermite functions (plotted for the samalea).
by rigorously formulating and describing the signal model

used for the description of QRS complexes. In particulaf?)r ¢ > 2, with Ho(t) = 1 and H,(t) = 2t. They are known
0 — ) .

we utilize results from our recently developed theory . ! ;
signal models based on orthogonal polynomials [3][5] WalsHermne polynomialsThese polynomials are orthcggonal on
- "YRe real lineR with respect to the weight functioer?" :

also identify a fast algorithm for the implementation of the ~
proposed compression method. Finally, we demonstrate with 2 5 ot
experimental results that the proposed method achievéshig /,OO He(t) Hin (#)e™" dt = 200/ - 00—, 2)
compression ratios, compared to other methods, when useﬁitt]?nmediately follows from (2) that the functions
obtain medically acceptable compressed ECG signals. Here,
we call a compressed ECG signaledically acceptableif ou(t,o) = 1
visually it is sufficiently similar to the original signal,nd Vo2t /r
would not lead to an incorrect interpretation and diagnosig.e orthonormal oriR with respect to the standard inner
In our experiments, the identification of medically accéfga product
compressed signals has been performed by one of the authors
who is a cardiologist with extensive experience in cardiac (,,(t,0), o, (t,0)) = / ©e(t, ) pm(t,0)dt = Sp_m. (4)
electrophysiology. R

Related work. Previous work on the compression of QRS The set of functiongy,(t, o)},>0, calledcontinuous Her-
complexes includes the use of continuous Hermite functiongite functionsis an orthonormal basis in the Hilbert space
as the expansion basis [6]-[9]. Due to the shape similarigy continuous functions defined oR [10]-[13]. Any such
between continuous Hermite functions and QRS complexésnction s(t) can be represented as a linear combination of
these functions were identified as a suitable basis for ttiee basis functions
representation and compression of the latter. These works,
however, only provide a theoretical framework for the com- s(t) = chw(t, 7), ®)
pression algorithm. The actual implementation is not dised £20
and no experimental data is provided that would confirm thathere
the proposed compression method indeed performs better tha
other methods. In addition, as we discuss in Section Il, the ce = (s(t), e(t, 0)) = / s(t)ee(t, o)dt.
computer implementations of the previously proposed algo- N
rithms suffer from certain limitations, such as the inabito
obtain an exact reconstruction of a signal, large companati
cost, and an a priori selection of coefficients for recorcdioum.

e 12" Hy(to) ©)

The first four continuous Hermite functions are shown in
Fig. 2. Notice that eachky,(¢, o) quickly approaches zero as
the value of|t| increases: sincély(t/o) is a polynomial of
degree,

lim eftz/Q"ZHg(t/U) =0.
Il. BACKGROUND [t —o00

. . . : : As a consequence, for practical purposes we can as-
In this section, we discuss the expansion of continuous d P purp

signals using Hermite functions, its digital implemerdati szgesjhator(teangé::ril:ntl:](i)sus aHirrmlefg ;lfjtr;?]tlworﬂac?nla \(/:v(|)trr?
and its use in signal compression. P pport. pap y

the first L continuous Hermite functions, we assume that
wol(t, o), v1(t,0),...,pL-1(t o) have the same compact sup-
A. Continuous Hermite functions port [-T,,T,], whereT, is a suitably chosen constant that

. . . d d dL. In oth ds,
Consider the family of polynomialdi,(t), ¢ > 0, that epends o an N OIher words, we assume

satisfy the recursion wi(t,o) =0fort ¢ [-T,, Ty,
Hy(t) = 2tHp_1(t) — 2(€ — 1)H,_o(t), (1) where0 < /¢ < L. If a signals(t) also has a compact support



of [-T,,T,], then we can compute the coefficiemtsusing a whered ¢ REE+D*M gych that itsn-th column is the,,,-th
finite integral: Hermite function sampled at the pointSg, 7 k41, ., 7Tk :

T,
Ce :/Rs(t)w(tvff)dt: /T s(t)pe(t, o)dt. (6) ® = [#en Tk, 0) 0<k<2K+1, 0<m<M (13)
’ As follows from (11)-(12), in order to achieve the perfect

B. Compression with continuous Hermite functions reconstructiors = s, ® must satisfydd” = Iy .
Coefficient-based compressionin practical applications, ~Compression of QRS complexes: Previous workThe
only a finite numberM of Hermite functions are used tocompression of QRS complexes using the expansion into
represent the signaé(¢) in (5). Accordingly, only a few continuous Hermite functions has been studied in [6]-[®]. |

coefficientscy,, ..., cs,,_, need to be computed. Here; —~ Was originally motivated by the visual similarity of QRS com
corresponds tey, (¢, o) in (6). The approximated signal thenplexes, centered around their peaks, and Hermite functions
is as can be observed from Figs. 1 and 2. Varying the value

M—1 of o corresponds to “stretching” or “compressing” Hermite

()= Y e, (t,0). (") functionsy,(t, o) to optimally match a given QRS complex.
m=0 Since ECG signals are usually available as discrete signals

Alternatively, a larger pool of coefficients can be compute@quidistantly sampled at, = kA, previously reported work
from which M optimal ones are selected. It is well-known thagssumed, explicitly or implicitlyt, = 7, = kA in (8)-
for an orthonormal basis selecting coefficients with thgeat (9), and hence led exactly to the matrix-vector products
magnitude minimizes the approximation error computed $ (11) and (12). In addition, they proposed to use only the
the energy of the difference between the siga@) and its first A/ Hermite functionsyy(t, o), ..., enm—1(t,0) for the
approximation with\/ basis functions. If a basis is orthogonalapproximation of QRS complexes.
but not orthonormal (i.e. the basis functions do not havé uni This compression algorithm has several important limita-
norms), an additional weighting of coefficients proportity tions. First of all, since®®” # I, for 7, = kA,
to the norms of the basis functions can be performed. the approximatiors does not converge to original signsl|
Digital implementation. The coefficients, in (6) and the regardless of the numbar of Hermite functions used for the
Hermite expansion (5) are computed using the continuogénstruction of an approximation. As a result, originaisig
functions. However, in practice they have to be computed §cannot be reconstructed exactly.
a digital form. This problem could theoretically be addressed by using
In particular, for each coefficiert,, the integral in (6) can A7 = 2K + 1 coefficients and replacing@? with ®~* to
be calculated using a numerical quadrature that is based, (f,@mpute coefficients in (11). However, the computation of

example, on a rectangle rule: ! is a non-trivial task. Moreover, the matrix-vector product
T, ®~ s requires(2K + 1)? operations. This cost can become
c,, = / s5(t)e,, (t,o)dt prohibitive for large value ofl and make this approach
*KTU impractical.
N Finally, the approximation of(¢) with thefirst M < 2K+
~ k_Z_KS(T’“)Wm (7, @)t — ti1). ® coefficientscy, c1, ..., car—1 in (8) may not be the optimal

choice for the construction of approximati@with M basis
Here,-T =t_g 1 <tl_g <...<tg_1 <tx =T. Each fynctions.

sampling pointr, is located inside the corresponding interval: |n section IV, we propose an improved compression algo-
th—1 < T < g rithm that samples ECG signals at non-equidistant poimis, a

~ Then, we can compute the discrete version of the apprasiects coefficients,, with the largest magnitude among a
imation signals(). It corresponds tdi(t) sampled at points |5rger selection of coefficients.

T, —K <k < K:
M-1 I1l. SIGNAL MODEL FOR QRSCOMPLEXES

8(m) = Z Ct Pt (Tk: 0. ©) In this section, we construct a signal model for the descrip-
. m=0 . . _ tion of QRS complexes. It is based on the scaled Hermite
Usually, pointst, are assumed to lie on a uniform gridyqynomials. We identify the Fourier transform for this netd
such thatty, — t;—, = A for all k. Then (8) and (9) can be 5jjed aHermite transform as well as its inverse. We also
expressed in matrix-vector notation. Let us define vectors yascribe a fast algorithm for the corresponding Hermitestra
s(T_K) o 5(T k) form. These results will be used in Section IV to construct

s— Cc= 8= . (10) and implement the novel compression algorithm.
s(7x0) M 3(rxc) A. Signal model
Then Let us define polynomials
c = AdTs (11) 1



where H,(t) denotes the/-th Hermite polynomials (1). the matrix-vector product
Throughout the paper, we refer to polynomidlgt), ¢ > 0,

asscaled Hermite polynomials zgz?; 2(1)
Signal model. Consider the vector spacgt of functions : =Ppra- . : (18)
spanned by the firsh scaled Hermite polynomials (14): S(a' ) 5 ’
N—-1 N-1

M= {SOPO(L‘) +s1P(t)+.. + 3N—1PN—1(t)}7 (15)  Inverse Hermite transform. In general, it is non-trivial to
T N . compute the inverse of matriRp ,, for arbitrary polynomials
where (so,s1,...,sv—1) € RY. Since eachPy(t) is a p,(t). However, we demonstrated in [3][5] that the inverse

polynomial of degre€, M is a vector space of degre€. It of the Hermite transform (17) can be found as
is closed under the addition and linear scaling of its elésien . T
Ppo=Ppa-D, (19)

Assume thatM is also closed under the multiplication of _ _ o _
its elements modulo polynomidty (¢)1. As we demonstrate where D € RV*Y is a diagonal matrix withk-th diagonal
in [3]-[5], in this caseM has exactlyN spectral components, element equal to

and thek-th component of a signal 3N
Dy = .
s(t) = soPy(t) + s1PL(t) + ... + sy_1Py_1(t) BT Pa 1 (o) Pl (k)
is defined as

B. Fast algorithm for Hermite transform

s(ag) = soPo(ak) + s1Pr(ag) + ...+ sn—1Pn-1(ag). A straightforward computation of the matrix-vector protiuc

in (18) requires, in generak N2 additions and multiplications.
Alternatively, 43N logs N additions and multiplications can

be required, if one uses an algorithm proposed in [21]. In
both cases, the computational cost can become unacceptable
Hermite transform. The spectral decomposition of signafor large values ofN, especially if the product has to be

where ag, a1, ...,an—_1 are the roots ofPy(t). Note that
g, a1, ...,an—1 are all distinct real numbers [10]. Without
loss of generality, we assumg < a; < ... < ay_1.

s(t) is defined as computed in real-time (for example, in the case of ECG signal
T processing). The same applies to the invd?géa.
S(a) = (s(ao) s(a1) ... s(an-1))" . (16) Here, we provide an improved computational algorithm for

the matrix-vector product in (18). It reduces the compaotal
We can express the spectral decompositions@f in the cost approximately by a factor of 4. We only state the
following matrix-vector notation. Consider th€ x N matrix a|gorithm here, without the proofs. It can be verified by dire
Do - {P (a )} (17) computation. However, originally we derived this algomithy
P 8% applying the theory of fast polynomial transforms devetbpe
t in [4], [22] to the signal space (15).

0<k,(<N

The ¢-th column of Pp, is polynomialsP(t) evaluated a

OOy N1 I_n general, matrices Wlt.h this structure arel’heorem 1let N — 20 be an even number. Then the
called polynomial transformsin the particular case of (17), :
polynomial transform(17) can be factored as

We call Pp,, the (forward) Hermite transforrh

o I
The spectral decomposition (16) can then be computed as M
D _ (Im —Ju aMm
Pa IM IM
QN1
Istrictly speaking, we must consider two separate spatemd M that P N
have the same elementd: = M. A is an algebra: it is a vector space closed X P BoB1...By-1Ly . (20)

under the addition and multiplication of its elements mod#ly (t). Then
M can be viewed as aml-module, and its spectral decomposition can bédere, I, is an identity matrix of sizeM, and J,; is a

defined. ; ; ; ; ol
A and M comprise a part of what we call agebraic signal modellt is compllmentary Identlty matrix of size:
a central component of thaelgebraic signal processing theodeveloped by 1

the authors in [3]-[5], [14]-[18].
In particular, in [3]-[5] we introduce signal models based arthogonal
polynomials (of which Hermite polynomials are a specialedas\ family of YRS
polynomials { Py(t) }¢>¢ is called orthogonal if they satisfy a recursion of 1
the formtPy(t) = apPp_1(t) + bePy(t) + coPpy1(t), usually with initial 1
conditions Py(t) = 1 and P_; = 0. Each family is orthogonal over an ) . ) )
interval I C IR with a weight functionw(t) : [, P(t)Prm (Hw(t)dt = 0 if ~ Matrix Pys is an M x M polynomial transform defined as
¢ # m. Each polynomialP,(t) has exactly¢ simple real roots. A detailed
diszcussiqn on orthogonal polynomials can be fo.und in _[]II}]—.[ Py = [p% (akJrM)}
Hermite transform have been defined previously in other ecdst In
particular, one should not confuse the Hermite transform @ith the Hermite . . . . .
transform defined in [19], [20], which, to a large extent,responds to our EachB, is an |dent|ty matrix except 'tSM"'kv M+k)'th and
definition of the inverse Hermite transform (19). (M +k—1, M+FE)-th elements are equal t¢/2/(2k + 1) and

0<k,b<M



—+/2k/(2k + 1), respectively.LY is a permutation matrix:  Discrete Hermite functions. We call the vector

its (k, ¢)-th element isl if ¢ = [wj mod N, and 0 T
otherwise. N Py = (pe(a0,1) welar,1) ... @ilan-1,1))",
_ o the ¢-th discrete Hermite functian
The algorithm for odd values oV is similar. If, as previouslyts — tx_1 = A in (22), then the compu-

tation of each coefficient, in (22) can be seen as an inner
Theorem 2 Let N = 2M + 1 be an odd number. Then theproduct of the discrete signal
polynomial transform(17) can be factored as

T
s= (s(aX) s(a1X) ... s(aar41A))
Iprgn . . . .
Iy —Ju M1 with the /-th discrete Hermite functio®, :
PP,Q = 1 . K
In I ’ e~ A Z S(Oék+K)\)<pg(Oék+K, 1) =A- <(I)g,5>.
X2M =K
Prr+1 N : . . _
X P ByB;...By-1Ly . (21) Expansion matrix. The matrix ® in (13) can now be
M rewritten as
Here, Pas+1 is an (M + 1) x (M + 1) polynomial transform d =1 VAW Pp.,, (23)
defined as
where ,
— A - /2
Prrtr = [PM(O%JFM)}OSIC,Z<M+1. W = diag (¢~ )0§k<2K+1

P is a submatrix ofPy,.1 obtained by removing the firstS @ diagonal matrix, an®p,, is given in (17).
row and last column of the latter. Eadby, is an identity matrix ~ Finally, if M = 2K +1, and ® is a square2K + 1) x
except its(M +1+k, M +1+k)-th and (M +k, M +1 +k)- (2K + 1) matrix, then it follows from (19) that the rows &f
th elements are equal tg/2/(2k + 1) and —,/2k/(2k + 1), form an orthogonal basis:
respectively. Matricesly;, Jys, and LY are as described T — 122 p-1. (24)
above.
We denote the diagonal matrix on the right-hand side of (84) a

We show in [4] that the polynomial transforn?3,; and A. Later, to account for the vector norms, we will pre-multiply
Pr+1 in Theorems 1 and 2 are also based on orthogorthk input signak with the weight matrixA 1.
polynomials. Hence, they can also be computed using approxProposed algorithm. The proposed compression algorithm
imately 2)/2 or 43M logj M additions and multiplications, operates as follows. We assume that the ECG sigftalis
depending on the choice of the algorithm. Since other medricsampled at pointsy,; kA, —K < k < K, to obtain a vector
in factorizations (20) and (21) require approximatdy of samples
additions and multiplication, the computational algarithin

T
Theorems 1 and 2 require approximately four times fewer S= (3(00)\)’8(041/\)7---aS(a2K)\)) .
operations compared to other algorithms. The selection of parameteris discussed in Section V. Then
we compute the vector of expansion coefficients

IV. COMPRESSION ALGORITHM c=Ad®TA s

As we mentioned in Section Il, the parameterin the . . . .
- . L P te where ® and A are given in (23) and (24). Following this,
definition of the continuous Hermite functions (3) can beduse . ; o :
“ i N R . . we construct the vectadr by keeping onlyM coefficients inc
to “stretch” and “compress” the functions relatively to the'. ) . ;
with the largest magnitudes and setting others to zerolliina

signals(t). we useC to obtain the signal approximation
Algorithm modifications. Alternatively, we can fixo = 1, 9 PP
and introduce a parameteto “stretch” and “compress” signal §=A"1de (25)

s(tA) instead. In this case the numerical quadrature (8) can be ,
rewritten as Advantages. The proposed algorithm addresses several

T limitations of the original compression algorithms based o
A

o = / s(t\) e (t, 1)dt continuous Hermite functions.
—Tx Since the rows ofb form an orthogonal basis, increasing
K the number of vectors used for the approximation of a signal
~ Z (T A) (T, 1)tk — to—1). (22) decreases the approximation error. Thus, if an exact recon-
k=-K struction of signals is required, it can be achieved by using

Furthermore, instead of sampling points on a uniform grid/ = 2K + 1 coefficients to obtairt.
we propose to use non-equispaced sampling points assbciate=urthermore, we minimize the approximation error, since
with the roots of Hermite polynomials. Namely, we sgt= we pre-compute all coefficients, ci, . .., cax, and only after
arr i, —K < k < K, to be the roots of the scaled Hermitghis select the ones with the largest magnitude to oltain
polynomial Pogx 41 (t). Finally, the proposed algorithm is more efficient computa-
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Fig. 4. A QRS complex and its approximations with 10% and 20férs.

tionally, since the computational cost @fin (23) (as well as

®T) is approximately 4 times lower compared to the cost of ) ) ) ]
® (and®7) in (13), as explained in Section I1I-B. signal would be immediately sampled at the desired points.

Hence, the interpolation step would not be required.

Objective. The main objective of the experiments is to
achieve the maximal compression ratio for a desired approxi

Setup. In order to analyze the performance of the proposedation error. We define the error as the norm of the difference
compression algorithm, we study the compression of QRfetween the original signal and its approximation, nornedli
complexes extracted from ECG signals in the MIT-BIH EC®y the norm of the original signal:
Compression Test Database [23]. The database contains 168
ECG signals sampled at 250 Hz. An example ECG signal with approximation error =
two recorded channels, égads is shown in Fig. 3.

PreprocessingTo make the experiments uniform across the In this paper, we seek to achieveld% approximation
database, we only used the first 10 seconds of the first lezior. It has been verified by one of the authors who is an
of each signal. All detectable QRS complexes were extractexperienced cardiologist, that all signals in the MIT-BIRG&
automatically, a total ofV = 1486 complexes. During the Compression Database can be compressed with the methods
extraction, we require that each extracted complex is cedteconsidered in this paper with th&% error while remaining
around the R peak. As a result, each extracted complexniedically acceptableThis means that visually all signals
available as a discrete signal of len@R +1 € {27,29,31}, remain sufficiently similar to their original versions, awduld
where the K +1)-th sample corresponds to the R peak. Henceot lead to incorrect interpretation and diagnoses.
each signal represents a continuous QRS complex of duratioWe also provide compression ratios f®5%, 20%, and
104, 112, or 120 milliseconds sampled at 250 Hz. 25% approximation errors. In general, signals in the MIT-

For the new compression algorithm, QRS complexes miH ECG Compression Database compressed with these errors
be sampled at pointsi,, x A proportional to the roots of have been found medically unacceptable. For example, in our
Py 11 (t). These signals are not available directly from MITexperiments for the approximation error 2%, 630 out of
BIH ECG Compression Test Database. Hence, we had 1636 (42.4%) compressed QRS complexes were identified
construct the required discrete signals prior to running tlas medically unacceptable. However, most of the distostion
experiments. In particular, we reconstructed continuoRSQ were introduced at the boundaries of the compressed QRS
complexes by interpolating the extracted discrete QRS compmplexes, as demonstrated in the example shown in Fig. 4.
plexes with sinc functions. Then we sampled the obtainefPotentially, this problem could be addressed by smoottiiag t
continuous signals at the required poiatg, x A\. The value boundaries, and hence reducing the approximation error.
of the parameteik was determined for each lead separately to Compression algorithms.For the original compression al-
maximize the resulting compression ratio. gorithm that expands QRS complexes into continuous Hermite

Similarly, we determined the value of the parameter functions, as described in Section I1I-B, we compute a seffici
for each lead to maximize the compression ratio for theumberM of coefficientscy,...,cp—1 in (11). We use the
original compression algorithm that expands QRS complexasnimal possibleM that ensures that the reconstructisn
into continuous Hermite functions. in (12) has the desired approximation error (26).

In a real-time system, the parametersr ¢ would be pre-  For the new compression algorithm, we compf€ + 1
set for each lead. In addition, the incoming continuous ECébefficients, and select a sufficient numbdr of the coeffi-

V. EXPERIMENTS

IS — sl

e (26)



Error Proposed algorithm  Original algorithm DFT-based EtfaEed DWT-based

10% 5.3 (5.8) 5(9.0) 3.7(83) 43(73) 3.3 (9.4)

15% 7.0 (4.4) 3(72)  42(74)  51(61) 4.2 (7.5)

20% 9.2 (3.4) 50 (6.2) 46 (6.7) 58(53) 4.8 (6.5)

25% 10.4 (2.9) 8(54) 51(6.1) 6.6 (47) 55 (5.6)
TABLE |

AVERAGE COMPRESSION RATIOS OF DIFFERENT ALGORITHMS FOR)%, 15%, 20% AND 25% APPROXIMATION ERRORS THE AVERAGE NUMBER OF
COEFFICIENTS REQUIRED TO ACHIEVE THE DESIRED ERROR IS INDATED IN THE PARENTHESIS NEXT TO THE CORRESPONDING RATIO

cients with the largest magnitude to obtain the approxiomati The larger compression ratio of the proposed algorithm
§in (25) that yields the required approximation error (26). in comparison with the original expansion into continuous
In addition, we study the accuracy of compression algtiermite functions can be explained by the improvements
rithms based on widely used orthogonal discrete signaktramliscussed in Sections Il and IV. The comparison with other
forms. In particular, we consider the discrete Fourierdfarm algorithms, however, yields important insights into thead
(DFT), the discrete cosine transform (DCT), and discretages of the proposed algorithm.
wavelet transform (DWT). In the latter case, we consider anOrthogonal transforms, such as DFT, DCT, and DWT, have
orthogonal DWT based on Daubechies filters of length 4 witteen widely used for signal compression, for example, in
three levels of decomposition [24]. Since all these tramsfo image compression standards, such as JPEG and JPEG 2000
are orthogonal, we can repladein (11) and (12) with the (for the description of these standards, see, for examipée, t
corresponding transform, apply the transforms to the $ignadiscussion in [24] and references therein). These comipress
in (10), and select a sufficient numbgf of coefficients with methods can efficiently compress “smooth” signals by captur
the largest magnitudes, such that reconstructiom (12) has ing the low-frequency part of a signal with a few expansion co
the desired approximation error (26). efficients, and removing the high-frequency part that nezsui
Results. The average compression ratios fi—25% ap- many additional coefficients. However, the high-frequency
proximation errors are shown in Table |. The ratios wereomponent of a QRS complex cannot be dropped without dis-

computed as torting the signal. Consequently, compression methodsdas
_ _ on DFT, DCT, and DWT have to use a larger number of
average ratio = Z (2K, + 1)/ Z M,,. expansion coefficients.

Future improvements. As we mentioned in Section V, the
compression with an approximation error higher thid%
frequently leads to medically unacceptable signals. Hewev

most of the distortion is introduced at the boundaries of the
hﬁ;Rmpressed QRS complexes.

Fig. 4 shows an example of such distortions for #0&%

approximation error. While the shape of the compressedkign

ds similar to the original QRS complex, the compressed digna

Is clearly corrupted at the left and right boundaries. As a

(esult discontinuities are introduced on the edge between

compressed QRS complex and the preceding P-R segment, as

well as on the edge of the QRS complex and the following
V1. DISCUSSION ANDCONCLUSIONS S-T segment. Potentially, one could address this problem

As we observe from Table |, the proposed compressi®y smoothing the compressed signal at the boundaries, thus
algorithm has the highest compression ratio for all conside reducing the approximation error.
approximation errors. In particular, it requires on averag Conclusions.We have constructed a novel algorithm for the
only 6 coefficients to reconstruct compressed QRS complexasnpression of QRS complexes. The proposed algorithm is
that are medically acceptable. This is2a% improvement based on the expansion of signals with compact support (such
compared to using DCT as the compressing transform,aa ECG signals) into the basis of discrete Hermite functions
33% improvement compared to using DFT or the compressidrhese functions are constructed by sampling the continuous
algorithm based on continuous Hermite functions, and% Hermite functions at sampling points proportional to thetso
improvement compared to using DWT. As an interestingf a corresponding Hermite polynomial.
observation, recall that here we are using the DWT with threeThe proposed algorithm uses results from our recently
decomposition levels; we tested DWT with other numbers diveloped theory of signal models for orthogonal polyndsnia
decomposition levels, and the compression ratios were evenconfirmed by the experiments, the novel algorithm aclieve
lower. a higher compression ratio compared with the original algo-

Here, 2K,, + 1 € {27,29,31} is the length of then-th
sampled QRS complex, and,, is the number of coefficients
required to achieve the desired approximation error. Ndljur
the higher the compression ratio, the better the algorit
performance, since fewer coefficients are required.

In Table I, we also identify the average minimal numBér
of coefficientsey,, required to achieve the desired approxim
tion error. This characteristic is included for implemeita
purposes and the ease of interpretation of compressiasrat



rithm based on the expansion into continuous Hermite fungss
tions, as well as other widely used compression algorithms ==

In addition, we developed a fast computational algorithi
for the proposed compression method. The proposed appro
reduces the number of operations approximately by a facp =

of 4.
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