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ABSTRACT Compact 1D Time Model Spectrum

One way of deriving the discrete Fourier transform (DFT) is by eg-
uispaced sampling of periodic signals or signals on a circle. In this
paper, we show that an analogous derivation can be used to obtain
the DCT (type 2). To achieve this goal, we replace the circle by a
line graph with symmetric boundary conditions, and define signal
space, filter space, and filtering operation appropriately. Further, we
derive the corresponding sampling theorem including the proper no-
tions of “bandlimited” and “sinc function.” The results show that, in

a rigorous sense, the DCT is closely related to the DFT, and can be h
introduced without concepts from statistical signal processing as is
the current practice.
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1. INTRODUCTION . .

For years, researchers have been using the DCT in image progessing

with the theoretical justification that it is an input-independent transfig, 1. Compact continuous and discrete time models (directed),
form best approximating (under suitable assumptions) the signaktonnected by sampling. This is one way of deriving the DFT.
dependent Karhunen-gwee transform [1, 2, 3]. However, recent re-

search [4, 5] offers a possibly more satisfying explanation. Namely, Compact 1D Space Model Spectrum

the DCT is a Fourier transform (in a strict mathematical sense), if the
space of signals, the space of filters, and the filtering operation are
chosen appropriately. The authors call such a choice a signal model
and show that models associated with standard time signal process-
ing are directed, whereas models associated with the DCTs are undi-
rected and are consequently called space models (since space, in
contrast to time, has no inherent direction).

As within this theory it is possible to have notions of filtering
and Fourier transform different from the usual ones associated with
time, an immediate task is to extend other concepts fundamental to
signal processing. Two such concepts are sampling and the associ-

ated sampling theorem—the focus of this paper. To give a more coq_:ig_ 2. Compact continuous and discrete “space” models (undi-

creie |Qea of ‘.Nh‘?t we want to do, (_:on5|der F!g. L. Or_1 the top Ief_t W?ected), connected by sampling. These can be used to derive the
?tak:t "g'th ple”c’d'chs'g”a's' or, eq“"’")’"e”rt]'y’ signals gert on @ CI(rCIqDCTS and DSTs (only DCT-2 is shown). The details, and the asso-
which explains the term “compact”). The spectrum is discrete (top_. . : RO '

right) and the associated Fourier transform is the (continuous time%Iated sampling theorem are provided in this paper.

Fourier series, or CTFS. Sampling (left column) leads to discrete pe-

riodic signals, or, signals on a discrete circle. The spectrum becomesh q q . wributi is the derivafi fth )
periodic (bottom right) and the associated Fourier transform is novU-t edseconl_, art]h main (_:onl ”d_” 'Ot?]v Is the en\;_a lon ?b ed?SS'(t)C(Ij-
the DFT. In fact, the DFT can be derived this way from the Fourier2!€C Sampling theorem Including the proper notions or bandiimite
series. An associated (known) sampling theorem states which sarfdPspace and the equivalent of the sinc function.

pled signals can be perfectly reconstructed from their samples. _ There are two additional benefits_to this e>_(ercise. First, we ob-
The first contribution of this paper is to identify the same di- tain the continuous structure underlying the discrete DCT. Second,

agram for the DCT (focusing on the best-known DCT type 2 [3], W& derive the DCT not based on the KLT, and without any concepts

denoted as DCT-2): the result is shown in Fig. 2 and explained latef"om Statistical signal processing. _ _
Organization of the paper. In Section 2, we derive the sam-

This work was supported by NSF through award 0310941, anddy t pllng theorem associated with Flg 1. The corresponding derivation
PA State Tobacco Settlement, Kamlet-Smith Bioinformatics Gran for Fig. 2 in Section 3 will then be completely analogous. Section 3
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Compact Continuous 1D Time Model Compact Discrete 1D Time Model

Signal model Signal model 1 .
0 12 0 .
N-1 *
Signal symmetry s(kI+t)=s(t), keZ Sampling period T=%
N-1
Filter symmetry h(kI+t)=h(t), keZ Sampled signal sr(t) = Z s(nT)5(t — nT)
Invariant subspaces S ={ae’’ T |acCl ke :]:01
ox R _ . kn2rw
FT (=CTFS) sr=cf) s(t)e 9 "t FT (=DFT) srr=cy s(nT)e? N
n=0
Symmetry of FT None ) )
Symmetry of FT ST, mN+k = 8T,k
Spectrum visualized - °1—>5—>1 -
T Spectrum visualized : .
Inverse FT sit) =243 e T 0 .
kEZ )
Frequency response hy, = cfol h(t)e‘jﬁtdt N-1 *
R IE - s [l 0<k<N-1,
Inverse frequency responseh(t) = L ;E:the 1 FT of sinc filter o = { 0 otherwise
Sinc filter I(t) = Lei™NT ;:z(%ti)

Table 1. Essential concepts for the compact continuous 1D time i

model. Signals and filters both belong£0 ([0, I)). The constant ~ Bandlim. subspace SpL ={s€ S |5 =0,k <0,k > N}
¢ # 0in the Fourier transform definition can be chosen arbitrarily. Basis forSp 1, b= {l(t—nT)|0<n< N}

also identifies the proper definitions of signals, filters, and filtering Sampling Theorem: For s(t) € Spe,

(convolution) yielding the structures shown in Fig. 2 and thus under- s(t) = ZN:OI s(nT)I(t — nT)
lie the DCT. -

Table 2. Essential concepts for the compact discrete 1D time model
2. SAMPLING THEOREM FOR THE COMPACT 1D TIME obtained by sampling the model in Table 1.

MODEL

To derive the sampling theorem for the 1D compspacemodel the coefficients of the series are projections ontasheThe Fourier

(Fig. 2), we start with the compatime r_no_d_el (Fig._ 1), which, f'il' . transform for this case is well known and is called continuous-time
though less well known than the usual infinite 1D time model, is stlllFOurier series (CTFS, see Table 1)

intuitive and will thus show how to proceed in the space case. First, Sampling. The sampling process and the derivation of the sam-

we define the signal space, filter space, and the notion of filterin%ling theorem can be described using the following steps, which we

this is What we call a Sign"?" modeligollowing [‘.1])'| lain wh will apply later for the model associated with the DCT (the main
Continuous compact time model. To precisely explain what concepts are summarized in Table 2):

we mean by compact continuous time we define the following (the Sample the signalWe first define the sampling period; —

most _|mp<|)rtan(; cloncepts "’.‘ée sumrr_1ar|zed In 'I_'agllg 1).: Is with I/N, which impliesN samples. To place the samples at equispaced
Signal mo el:We consider continuous periodit -signals wit locations on the circle, we can start at any location in the interval

fundamental period in the intervf, I). Equivalently, the signal [0,T); we choosed. (Different starting points lead to slightly dif-

e : . -
space isS = L([0,1)), .where the |ntelrval parameterlges a plrcle ferent versions of the DFT below.) Sampling can be described as a
with circumferencd or diameterl /(27).” The space of filterg{ is multiplication by a train of Dirac pulseE apart:

alsoL! ([0, I)). Filtering is defined as usual on the circle (continuous

circular convolution). The signal space is closed under filtering with N—1 N-1
these definitions. sr(t) = s(t) > 6(t—nT) = Y s(nT)s(t —nT).
Fourier transform:To find the Fourier transform, one first has to n=0 n=0

identify the eigenspaces under filtering. It is well known that theseW then find the Fourier trans fth led sianal b i
are spanned by complex exponentials: edgh= {aej@t | a € ©fhen findhe Founertransiorm ot the sampled signat by applying

C} < 8,k € Z,is asimultaneous eigenspace for all filterginThe the CTFS to get

Fourier transform expands a signal as a series in these exponentials; N—1
kn2m

I Lo .
Sk = c/ sT(t)e_]¥tdt =c Z s(nT)e™ N, (1)
0

n=0

1We could also choosé? signals but in the compact case’ O £2.



wherec # 0 is a normalizing constant that can be chosen arbitrarily. Compact Continuous 1D Space Model

With ¢ = 1, and denotingVy = ejQWﬂ, we recognize the above as
the DFT of a sequence of lengi¥i (see Fig. 1). Signal model

1 1

The above process gives rise to the compact discrete time model. 0 . '
shown in the bottom row of Fig. 1. The signal lives on a circle with @lgnal symmetry s(hl+1) =s(kl —t), k€ Z
N points (it is discrete periodic with a fundamental period of length Filter symmetry h(kI+t)=h(kI —t), ke Z
N) and the shift moves the signal by one sample clockwise. Apply- )
ing the shiftV times yields the original signal. In the spectrum, the Invariant subspaces S = {acos(*Ft) [a € C} k>0
points denote théVth roots of unity and depict the periodic nature _ R I ko
of the DFT. Note that all four graphs are directed. FT (=CSFS) Sk = Cfo s(t) cos(“Ft)dt
Extract the original spectrum using an ideal lowpass filtérom Symmetry of FT Sy = én
(1), we see that after sampling the spectrum becomes periodic, thaty
iS, 87.mn+x = 87,k. Thus, for reconstruction, we need to extract gpectrum visualized "4
only one period of it by applying an ideal lowpass filter. In the time 0o 1 2
domain, this is equivalent to the convolution of the signal and the Lk
inverse Fourier transform of this lowpass filter. This is the filter with Inverse FT s(t) = oo+ 5 Y % cos(—-t)
the cut-off “Nyquist frequency.” We will in general term it agg k=1
as it has to be exactly att = 0 and0 at all other sampling points A | km
t = nT, just as the sinc in the infinite continuous case. The exactFrequency response i = CJO h(t) cos(5t)dt .
form of the sinc is given in Table 2. _ 13 2 7 kT
Find the space of bandlimited signalsve can then define the Inverse frequency responseh(t) = zrho + 7 = o cos( I t

spaceSgy, of those signals bandlimited exactly to the bandwidth of

the sinc (see Table 2). We also define the basis the space as the

set of sincs translated by multiplesBf(same table). Table 3. Essential concepts for one of four possible compact contin-
Sampling theorem. Based on our discussion, the sampling the-uous 1D space models. Signals and filters both beloutf (0, 1]).

orem can be seen as the expansion of signals belong®gtaising  The constant # 0 in the definition of the Fourier transform can be

the translated sind$t—nT'), and itis simply expressed; For a signal chosen arbitrarily.

s(t) belonging toSp:

N-l Direct computation shows that, with this definition, the signal space
s(t) = Z s(nT)I(t —nT). is closed under filtering. Since this form of filtering operates sym-
n=0 metrically ons(t), we call the model undirected or a space model;
pictorially, the line in the graph does not contain an arrow.
3. SAMPLING THEOREM FOR THE COMPACT 1D SPACE The definition of filtering in (3) is equivalent to taking a sig-
MODEL nal and a filter, both symmetrically extended outsjégl], view-

ing them as2I-periodic, applying the filtering from the compact
The question now is: How do we repeat the previous sequence dime model (circular convolution), and reducing the (symmetric on
steps to get the well-known DCT-2 instead of the DFT? The mair{0, 21)) result to[0, I].
problem is in identifying the underlying continuous model, that is, =~ We can define three other compact space models similarly, by
the space of signals, space of filters, and the filtering operation. &onsidering all combinations of symmetric and antisymmetric ex-

summary of the following is in Table 3. tensions to the left and to the right. To obtain the DCT-2, the above
Continuous compact space model. We start by identifying sig- compact model is the right starting point.
nal and filter spaces. Now we proceed as in Section 2; we find the appropriate notion
Signal model:We consider signals on the intenjal 7], which ~ of Fourier transform. o o
are symmetrically extended to the left and to the right: Fourier transform: The subspaces invariant under filtering are
given byS, = {acos(®:t) | a € C} < Sfor k > 0. Note that
s(—t) = s(t), S_1 = &i; thus the structure of the spectrum shown in Table 3.
s(I+t) = s(I-t). @ This symmetry is pictorially shown as a transition betwées 0

andk = 1 with weight1 and can be explained as follows: going
This implies that the signals a@-periodic, sinces(2I + t) = to the left fromk = 0 would lead us tGr,—1, which, since it does
s(I + (I +1)) = s(—t) = s(t). The structure produced by these not exist, is redirected t6r,1; in other words3r,—1 = 37,1. The
extensions is not a circle but the one shown in Table 3, under thEourier transform expands a signdt) € S in a series in the above
heading “Signal model”. It graphically depicts the domain of thecosine functions. Analogously to the CTFS, we call it continuous
signal. The extensions at the left and right boundaries as in (2gpace Fourier series (CSFS); it is given in Table 3.

become loops with weightsat¢ = 0 andt = I, respectively. The Sampling. By virtue of sampling, we produce a discrete model;
structure can be parameterized [By ], yielding the signal space the main concepts we need are summarized in Table 4. We proceed
S = £'([0,1]). as in the time case.

As the filter space, we also choose= L£'([0, I]). We define Sample the signalAs opposed to the time case, where we could
filtering (convolution) ofs € S with h € H as have started equispaced sampling at any poiat[0, T'), here, the

situation is different; Only the starting points= 0 andt = 7/2
1 /! 1 allow equispaced sampling. Any other starting point has a distance
(hxs)(r) = 7/0 h(t)5(s(r =) +s(r+1))dt. () 1o itself (via the left signal extension) that is not a multipleTaf



Similarly, we have two choices where to end sampling at the right Compact Discrete 1D Space Model
boundary, namely ator I — T'/2, for a total of four choices. These

1

lead to four different versions of the DCT. To get the DCT-2, we haveSignal model (,IQH B
to sample fron¥'/2 to I — T'/2 as we do next. With this choice, and 01 - N2NI
to obtainV samples, we set agaifi = I /N. The sampled signal is Sampling period T=4+
then N-1
N-1 T T A T T
sp(t) = Z s(nT + 5)5(75 nT — 5)7 Sampled signal st(t) = Z s(nT + 5)6(75 —nT — 5)
n=0 n=0
while its CSFS is N-1 1
FT (=DCT-2) e =e 3 s(nT + L cos(FRE 2T,
Nl T k(n -+ l)71' n=0 2 N
St = ¢ Z s(nT + E)COS(T2), 4)
"e0 Symmetry of FT SrmN4ke = (=1)" 87 mN—k

which, withc = 1, is nothing else but the DCT-2. In words, the gpectrum visualized /o, . .

DCT-2 is the Fourier transform for a continuous signal given on 0 1.~ N2 NI

[0, I], symmetrically extended to the right and left, and sampled at ¢T/2 0<k<N-1

the N equispaced point§'/2,37/2,...,(2N — 1)T'/2 (with the T of sinc fil i - T ’

notion of filtering as in (3)). of sinc filter r=qcT/4 k= N’_
This way of sampling gives rise to a compact discrete space 0 otherwise

model in which the signal lives on the discrete structure shown in_

Table 4, under the heading “Signal model”. This graph, as opposeqin¢ filter

to the signal model graph in Table 2, is undirected as only symmets, . R

ric filters are available (the discrete counterparts of the continuoutg’and“m' subspace  Spr ={s € 5|5 =0,k <0,k > N}

filters in (3)). Basis forSpr, b={l(t—nT-ZL)|0<n< N}
Extract the original spectrum using an ideal lowpass filt€he

spectrum of the sampled signal in (4) has the following symmetry, . .

properties:ér,_, = &1 on the left, andsr v = 0, 8r,n+x = Sampling Theorem: Fors(t) € Spe,

l(t) _ 1 sin(FY)

= 3N Tan(gir D

—§71, n—r On the right; these yield the spectrum structure shown in N-1 T T
Table 4. For reconstruction, we again need to extract only one “pe- s(t) = Z s(nT + E)l(t —nT — 5)
riod,” that is, the spectrum from, ..., N — 1. The inverse Fourier n=0

transform (that is, the inverse CSFS) of the corresponding ideal low
pass filter is the sinc for this case:

Table4. Essential concepts for the compact discrete 1D space model

1 sin(Ft) obtained by sampling the continuous model in Table 3 as explained
l(t) = ﬁ tiﬂ. (5) in the text.
an(mt)

Find the space of bandlimited signalSimilarly to what was
done for the time case, we can define the sgge of those signals ~ as well. However, their translated versions are and can be used as
bandlimited exactly to the bandwidth of the sinc (see Table 4). weasis functions for the bandlimited space. We derived the sampling
also define the basisfor Sz, as the set of those sincs translated bytheorems for all 16 DCTs and DSTs; however, due to the lack of
multiples ofT" starting atl’/2 (same table). space, these will be given in a future paper.

Sampling theorem. The sampling theorem now states that for a
signals(t) belonging to the bandlimited space spanned by the trans- 4. REFERENCES
lated sincd(t — nT — %), the signal can be reconstructed from its
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s(t) = Z s(nT + Z)l(t —nT — Z). [2] Y. Yemini and J. Pearl, “Asymptotic properties of discrete uni-
70 2 2 tary transforms,1IEEE Trans. on Pattern Analysis and Machine

. . Intelligence vol. PAMI-1, no. 4, pp. 366—371, 1979.
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and, for each, there are four choices of how to sample. This gives Advantages, Application#\cademic Press, 1990.
atotal of 16 cases, which yield the 16 known DCTs and DSTs. Wg4] M. Piischel and J. M. F. Moura, “Algebraic theory of signal pro-
can follow the same “recipe” we presented for the DCT-2. However,  cessing: Foundation and 1-D time,” submitted for publication.
pitfalls abound. For example, for the continuous models which ar
antisymmetric at the left boundary, signals are necessarily é-ai.
Thus, when sampling at points= nT', one needs to start at= 7.
Also, for the same models, signal and filter space are different, and
thus the Fourier transform of a signal and the frequency response
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those cases, the sincs we found (which are filters) are not signals
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