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Abstract—We develop the framework for signal processing on a
spatial, or undirected, 2-D hexagonal lattice for both an infinite
and a finite array of signal samples. This framework includes
the proper notions of z-transform, boundary conditions, filter-
ing or convolution, spectrum, frequency response, and Fourier
transform. In the finite case, the Fourier transform is called
discrete triangle transform (DTT). Like the hexagonal lattice,
this transform is nonseparable. The derivation of the framework
makes it a natural extension of the algebraic signal processing
theory that we recently introduced. Namely, we construct the
proper signal models, given by polynomial algebras, bottom-
up from a suitable definition of hexagonal space shifts using a
procedure provided by the algebraic theory. These signal models,
in turn, then provide all the basic signal processing concepts. The
framework developed in this paper is related to Mersereau’s
early work on hexagonal lattices in the same way as the discrete
cosine and sine transforms are related to the discrete Fourier
transform—a fact that will be made rigorous in this paper.

Index Terms—Discrete triangle transform, polynomial algebra,
Chebyshev polynomials in two variables, nonseparable, discrete
cosine transform, representation theory, convolution, spectrum

I. I NTRODUCTION

It is well-known that applying a 2-D discrete Fourier trans-
form (DFT) to ann× n set of signal values implicitly places
it on a square array with cyclic boundary conditions and a
periodic signal extension. Further, the array is directed because
of the availability of shifts in both dimensions (see Fig. 1(a)).
Similarly, and less well-known, for the 2-D discrete cosineand
sine transforms (DCTs and DSTs), the signal is again placed
on a square array, but this time the boundary conditions are
symmetric or antisymmetric (depending on the type of DCT or
DST) [1] and the array is undirected (see Fig. 1(b)). Intuitively,
this property makes these transforms more suitable for spatial1

signals, i.e., signals without inherent direction, like images.
In this paper, we develop the framework for signal process-

ing on an undirected or spatial hexagonal lattice extendingour
preliminary work [2]. We consider both the case of an infinite
hexagonal lattice and of a finite array shown in Fig. 1(c). In
particular, for the latter, we introduce the proper 2-D spectral
transform, which we call discrete triangle transform (DTT).
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1In signal processing, the term “space” is often used for any type of
2-D processing; we use the term to distinguish undirected from directed
signal processing. This distinction is made rigorous by the algebraic signal
processing theory introduced later.

Since the array in Fig. 1(c) is nonseparable the DTT is not a
Kronecker product of 1-D transforms.

We develop the signal processing on a spatial hexagonal
lattice as an application and natural extension of the algebraic
signal processing theory—a general approach to linear signal
processing introduced in [3], [4], [5]. In particular, we intro-
duced in [3] a bottom-up procedure to derive signal process-
ing frameworks, called signal models, from basic principles,
namely from a suitable definition of the shift operator. We
will apply this procedure to suitably chosen hexagonal space
shifts to derive for the hexagonal lattice the sensible choices
of boundary conditions and signal extension, the proper notion
of associated “z-transform,” filtering or convolution, as well as
spectrum, frequency response, Fourier transform, and its diag-
onalization properties. In the finite case, the Fourier transform
is exactly the DTT, of which we derive two variants.

Equally important as the results is the actual derivation,
which we will show to parallel in many ways the derivation of
the signal models underlying the DCTs/DSTs [5]. Examples
of parallels include the best choices of boundary conditions
and the occurrence of Chebyshev polynomials in one and two
variables, respectively. For this reason, and to make the paper
as self-contained as possible, we first spend some time on
introducing the relevant parts of the algebraic signal process-
ing theory including the derivation of the signal processing
framework associated with the DCTs and DSTs.

The DTT also possesses fast Cooley-Tukey FFT type al-
gorithms that puts it in the same complexity class as its
separable counterparts [6]. These algorithms are also derived
using the algebraic theory, namely through a 2-D extension
of the methods used in [7] to derive DFT, DCT, and DST
algorithms. A detailed version of [6] will serve as second part
[8] to the present paper.

Related work. Signal processing, in particular the proper
forms of spectral analysis, on an infinite and finite hexagonal
lattice has been studied to great detail in the seminal paper
of Mersereau [9] as application of his general theory of
multi-dimensional signal processing [10]. However, the lattices
considered by Mersereau are directed, i.e., are of the type
shown in Fig. 1(a) in contrast to Fig. 1(b) and (c). In other
words, the relationship between this paper and [9] is the same
as between signal processing using the DCTs/DSTs and using
the DFT.

Several papers deal with the question of speeding-up the
computation of Mersereau’s definition of a hexagonal DFT; see
[11] and the references given therein. The problem of resam-
pling from Cartesian to hexagonal coordinates was considered
in [12]. Splines for hexagonal lattices were introduced in [13].

A more extensive treatment of hexagonal lattices in image
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(c) DTT

Fig. 1. Visualizations of the signal models underlying (a) the 2-D DFT (cyclic boundary conditions are omitted); (b) the 2-D DCTs/DSTs (symmet-
ric/antisymmetric boundary conditions are omitted); and (c) the DTTs (boundary conditions are omitted) introduced in thispaper.

processing and applications can be found in [14] and [15]:
[14] discusses in detail halftoning techniques for rectangularly
and hexagonally sampled images; [15] includes an up to
date overview on the field of hexagonal image processing
including applications and investigates in detail the difference
to standard rectangular image processing. Regarding spectral
analysis, both books built on the work of Mersereau, i.e., adopt
directed signal models.

The only reference aiming to derive a DCT equivalent for
hexagonal lattices appears to be [16]. However, the paper
is very short and provides little insights in the presented
transform, which is different from the ones derived here. It
appears that [16] does not take all the six neighbor connections
of a lattice point into account as we do by choosing the proper
notions of shifts. Also, the actual transform is only a part of
our contribution, which is a complete basic framework for
spatial hexagonal signal processing.

Organization. The first three sections after this introduction
provide background. In Section II we give a brief overview on
the algebraic signal processing theory in the general case and
then, to greater detail, in the special case of shift-invariant
finite signal models, which require polynomial algebras as
underlying structure. In Sections III and IV we sketch the
derivation of the signal models for a spatial 1-D lattice. The
derivation is structured to parallel the corresponding derivation
of the 2-D hexagonal spatial signal models in Section V
(infinite case) and Section VI (finite case). Section VII shows
a small application example. Finally, we offer conclusionsin
Section VIII.

II. A LGEBRAIC SIGNAL PROCESSINGTHEORY

The derivation of the signal processing framework for the 2-
D spatial hexagonal lattice uses and makes it a natural part of
the algebraic signal processing theory [3]. In this background
section, we first introduce the general theory and, in particular,
the concept of a signal model, which is central in this theory
and the foundation for different ways of doing linear signal
processing. Then we discuss to greater detail the special case
of shift-invariant signal models in 1-D and 2-D. The latter
provides the underpinning for signal processing on the spatial
hexagonal lattice.

For details that exceed the scope of this paper, we refer the
reader to [3].

A. Basic Concepts

The algebraic signal processing theory is a general frame-
work for linear signal processing (henceforth simply called
SP), i.e., signals are assumed to be elements of vector spaces
and filters operate on signals as linear mappings. The crucial
observation underlying the theory is that the structure in SP
goes beyond vector spaces as explained next.

Filter space = algebra.An algebra is a vector space that
is also a ring, i.e., it permits the multiplication of elements
and the distributivity law holds. If we define in the space of
filters (or SISO systems) multiplication as concatenation,then
the filter space becomes an algebra. For example, in infinite
discrete time SP, this algebra (in thez-domain) is given by2

A = {h =
∑

n∈Z

hnz
−n |

h = (. . . , h−1, h0, h1, . . . ) ∈ ℓ1(Z)}. (1)

Note that we use bold-faced symbols likeh to denote coordi-
nate representations, i.e., sequences of scalars from the base
field (assumed to beC). The corresponding element of an
algebra (or module below) is written unbolded likeh.

Signal space = module.The signal space in SP is a vector
space. Since filters operate as linear mappings on this space,
it obtains additional structure, namely those of anA-module,
written asM. In the infinite discrete time case, the module
(also in thez-domain) commonly assumed is

M = {s =
∑

n∈Z

snz
−n |

s = (. . . , s−1, s0, s1, . . . ) ∈ ℓ2(Z)}. (2)

Signal model. Discrete signals arise in applications as
sequences of numbers (e.g., after sampling) not as elements
of modules. These sequences naturally form a vector spaceV .
However, to have a notion of filtering and thus the associated
notion of Fourier analysis, an algebra and a module have to be
chosen or assigned. This is the purpose of thesignal model,
defined as a triple(A,M,Φ), whereA is an algebra,M is
anA-module of the same dimension asV , andΦ is a one-to-
one mapping fromV to M. As an example, the signal model

2Replacingℓ1 with ℓ2 in (1) destroys the algebra structure: the concatena-
tion of two ℓ2 filters is in general not anℓ2 filter.
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Fig. 2. Visualization of the infinite discrete time model (3).

adopted in infinite discrete time SP is given byA in (1), M
in (2), andΦ is thez-transform

Φ : s = (. . . , s−1, s0, s1, . . . ) 7→ s =
∑

n∈Z

snz
−n. (3)

It is a model for finite-energy sequencess∈ V = ℓ2(Z).
We call a modelregular if A = M. The model (3) is not

regular.
Once a model is chosen, filtering, Fourier analysis, and other

concepts are automatically defined through the well-developed
representation theory of algebras [3].

In discrete models, the shift operator(s)generate the alge-
brasA.3 For example, (1) is generated byz−1. A signal model
is shift-invariant if and only if A is commutative. Wevisualize
a model by letting the shift operator(s) operate on the basis
b of M implicitly chosen throughΦ (e.g., b = (z−n)n∈Z in
(3)) and by representing this operation as a graph. For example
the discrete time model defined above is visualized in Fig. 2
(z−1 is replaced byx). Note that the graph is directed, which is
intuitive, as it visualizes a time model. We will later encounter
space models that have undirected visualizations.

B. Finite Shift-Invariant Signal Models in 1-D

In the previous section we have asserted that a shift invari-
ant signal model(A,M,Φ) necessarily has a commutative
algebraA. If, in addition, the model is discrete and finite,
i.e., for a finite number of samples, thenA is a polynomial
algebra [3]. Thus, polynomial algebras provide the underlying
structure for many signal processing applications. Theoryand
many examples were developed in [3].

As necessary background for this paper, we introduce now
polynomial algebras and the necessary properties of signal
models built from them. We focus the discussion on the com-
plex base fieldC. Other base fields are handled analogously.
Further, we start with the 1-D case, in which exactly one
shift is available. The 2-D case (with two shifts) is discussed
afterwards. As running example in this section, we use the
signal model associated with the DFT.

Polynomial algebras (one variable).Let p(x) ∈ C[x] be a
polynomial. A polynomial algebra (in one variable) is the set

C[x]/p(x) = {s(x) ∈ C[x] | deg(s) < deg(p)}.

Clearly,C[x]/p(x) is a vector space, but it is also an algebra if
we define the multiplication of polynomials modulo the fixed
polynomial p(x). In the following, we require thatp(x) has
pairwise distinct zeros denoted withα = (α0, . . . , αn−1).

Signals models built from polynomial algebras.Assume
C[x]/p(x) is given. Then we can build a regular signal model

3This means that every element inA is a polynomial or series in the shift
operator(s).
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Fig. 3. Visualization of the finite discrete time model (5) for which the DFT
is the Fourier transform.

for V = C
n by choosing a basisb = (p0, . . . , pn−1) and

setting

A = M = C[x]/p(x),

Φ : C
n → M, s 7→ s = s(x) =

∑

0≤ℓ<n sℓpℓ(x).
(4)

In (4), Φ is the “z-transform” andx is the shift (operator)
that generatesA. Signals and filters in this model both are
polynomials: s(x) ∈ M and h(x) ∈ A. Filtering is the
multiplication modulop(x)

hs = h(x)s(x) mod p(x).

As an example,

A = M = C[x]/(xn − 1), Φ : s 7→
∑

0≤ℓ<n

sℓx
ℓ (5)

defines a signal model. Filtering is multiplication of polyno-
mials h ands moduloxn − 1, which is equivalent to circular
convolution of the coefficient vectorsh and s [17]. For this
reason, we callΦ the finitez-transform [4].

Filtering in coordinates. Every filter h = h(x) is a linear
mapping, and thus can be represented by a matrixMh with
respect to the basisb implicitly defined in the model (4). This
defines a mapping

φ : A → C
n×n, h 7→ Mh.

Mh is the coordinate version of the filterh:

h(x)s(x) mod p(x) ⇔ Mhs.

φ is a homomorphism (of algebras), i.e.,φ(h(x)) = h(φ(x))
for all polynomialsq.

In our example (5), the matricesφ(h) are precisely all
circulant matrices. Thus, as well-known, circular convolution
is equivalent to multiplying by a circulant matrix.

Shift matrix and visualization. Specifically, we callφ(x)
the shift matrix. The graph that hasφ(x) as adjacency matrix
is called thevisualization of the model (4). It visualizes the
operation of the shift on the basis and, in a sense, the structure
imposed on a vectors by the signal model. The signal values
are associated with the nodes of the graph.

In our example (5),φ(x) is the circular shift matrix because
x ·xℓ = xℓ+1 mod (xn−1). The associated graph is the circle
shown in Fig. 3. The graph, as its infinite counterpart in Fig.2,
is directed. For this reason, we call (5) a finitetime model [4].

Note thatp(x) = xn − 1 = 0 or xn = 1 encodes the cyclic
boundary condition. Reducing allxk, k ∈ Z, moduloxn − 1
yields the periodic signal extension associated with this model.

Spectrum and Fourier transform. The spectral decompo-
sition of the signal spaceM in the model (4) is given by the
Chinese remainder theorem (CRT). It decomposesM into a
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direct sum of one-dimensionalA-modules, the spectrum of
M:

∆ : C[x]/p(x) → C[x]/(x − α0) ⊕ . . . ⊕ C[x]/(x − αn−1),

s = s(x) 7→ (s(α0), . . . , s(αn−1)).

∆ is the Fourier transform for the model (4) and∆(s) is the
spectrum of the signals.

With respect to the basisb of M and the bases(x0) = (1)
in each of theC[x]/(x − αk), ∆ is represented by a matrix,
the so-calledpolynomial transform

Pb,α = [pℓ(αk)]0≤k,ℓ<n.

As ∆, we also callPb,α a Fourier transform for the model (4).
The algebraic theory establishes that the transform is invertible
(with the above assumptions).

Computing the Fourier transform for a signals becomes in
coordinates the matrix-vector multiplication

∆(s) ⇔ Pb,αs.

Choosing different bases(βk) in the spectrum yields thescaled
polynomial transform

diag(1/β0, . . . , 1/βn−1)Pb,α.

We call any polynomial transform (scaled or not) a Fourier
transform for the model (4) and denote it withF .

In our example (5), the zeros ofxn − 1 are given by
α = (ω0

n, . . . , ω
n−1
n ), ωn = exp(−2πj/n). Thus, the spectral

decomposition is

∆ : C[x]/p(x) → C[x]/(x − ω0
n) ⊕ . . . ⊕ C[x]/(x − ωn−1

n ),

s = s(x) 7→ (s(ω0
n), . . . , s(ω

n−1
n )).

The polynomial transform is precisely the DFT:

Pb,α = [ωkℓn ]0≤k,ℓ<n = DFTn .

This further motivates the notions of finitez-transform and
finite time model introduced before.

Diagonalization properties. The algebraic theory asserts
that the matrices diagonalized by any Fourier transformF ,
i.e., (scaled) polynomial transform, are precisely the matrices
φ(h), h ∈ A. Specifically,

Fφ(h)F−1 = diag(h(α0), . . . , h(αn−1)).

The collection of theh(αk) is the frequency response of the
filter h.

Applied to our example, this establishes that the DFT
diagonalizes all circulant matrices, a well-known fact.

C. Finite Shift-Invariant Signal Models in 2-D

Extending the theory of the previous section to 2-D signal
models is in most parts straightforward. The main difference
is that in 2-D two shifts are available, which means we
have to work with polynomial algebras in two variablesx, y.
Consequently, we now also need to compute modulo (at
least) two polynomialsp(x, y), q(x, y) to make the polynomial
algebras finite-dimensional.

Polynomial algebras (two variables). Let p(x, y),
q(x, y) ∈ C[x, y] be two polynomials in two variables. For
simplicity, we require that both polynomials have the same
total degree4 n and that the leading term, i.e., the term of
highest degree, ofp(x, y) is xn and the leading term ofq(x, y)
is yn. The polynomial algebra in two variables corresponding
to p(x, y) andq(x, y) is written as

A = C[x, y]/〈p(x, y), q(x, y)〉.
As in the univariate caseA is a vector space, but also an
algebra if we define multiplication modulop(x, y) andq(x, y).
This is done by performing division with remainder as far as
possible with respect top(x, y) andq(x, y).5

The dimension ofA is n2; a possible choice of basis forA
is {xiyj | i, j = 0, . . . , n− 1}. We require in addition that the
set α = {(µ, ν) ∈ C

2 | p(µ, ν) = q(µ, ν) = 0} of common
zeros has the maximum possible cardinalityn2.

Signal model built from polynomial algebras.We setA =
M = C[x, y]/〈p(x, y), q(x, y)〉. Let b = (p0, . . . , pn2−1) be a
basis ofM. Then we can define a signal model through

Φ : C
n2 → M, s 7→ s = s(x, y) =

∑

0≤ℓ<n2

sℓpℓ(x, y). (6)

Filter and signals both are polynomials in two variables,h =
h(x, y), s = s(x, y). Filtering is the multiplicationhs modulo
p andq.

Filtering in coordinates. Every filterh = h(x, y) is a linear
mapping, and thus can be represented by a matrixMh with
respect to the basisb. This defines a mapping

φ : A → C
n2×n2

, h 7→ Mh,

i.e., Mh is the coordinate version of the filter with respect to
the basisb. Filtering in coordinates thus becomes

h(x, y)s(x, y) mod 〈p(x, y), q(x, y)〉 ⇔ Mhs.

φ is a homomorphism (of algebras), i.e.,φ(h(x, y)) =
h(φ(x), φ(y)) for all polynomialsh.

Shift matrices and visualization. In difference to the 1-D
case, we now have two shift matrices, namelyφ(x) andφ(y),
i.e., two associated graphs with the same set of nodes. We
visualize the model (6) by superimposing these graphs, i.e.,
by the graph that hasφ(x) + φ(y) as adjacency matrix.

Spectrum and Fourier transform. In the 2-D case the
CRT again gives the spectral decomposition of the signal
spaceM in the model (6). By assumption the polynomials
p(x, y) and q(x, y) have n2 distinct common zerosα =
((µ0, ν0), . . . , (µn2−1, νn2−1)). Now, the CRT decomposes
M = C[x, y]/〈p(x, y), q(x, y)〉 into a direct sum ofn2 one-
dimensionalA-modules, the spectrum ofM:

∆ : M → ⊕

0≤i<n2 C[x, y]/〈x − µi, y − νi〉,
s = s(x, y) 7→ (s(µ0, ν0), . . . , s(µn2−1, νn2−1)).

(7)

4The total degree ofp(x, y) is the largesta + b over all summandscxayb

of p.
5Strictly speaking the algebra is defined by computing modulo the ideal

generated byp(x, y) andq(x, y), see [18]. In general, an ideal may have more
than two generators, but not in this paper. Also, the simple greedy algorithm
of performing division with remainder with respect top(x, y) and q(x, y)
works in our situation; in general a Gröbner basis is required [18].
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∆ is the Fourier transform for the model (6) and∆(s) is the
spectrum of the signals. Choosing the basisb in M and (1)
in each spectral component,∆ is represented by the matrix

Pb,α = [pℓ(µk, νk)]0≤k,ℓ<n2 ,

which we call a 2-D polynomial transform and also a Fourier
transform. Invertibility is guaranteed under by the algebraic
theory under the above assumptions.

As in the 1-D case choosing different bases in the spectrum
yields ascaled polynomial transformF .

Diagonalization properties.The Fourier transformF diag-
onalizes precisely the matricesφ(h), whereh = h(x, y) ∈ A.
Specifically,

Fφ(h)F−1 = diag(h(µ0, ν0), . . . , h(µn2−1, νn2−1)).

The collection of theh(µk, νk) is the frequency response of
the filter h.

The separable case.There is a simple way to construct
a 2-D signal model from a 1-D signal model(A,M,Φ) as
explained in [5]. Consider the 1-D signal model forC

n in
(4), which implicitly fixes the basisb = (p0, . . . , pn−1) and
A = M = C[x]/p(x).

The correspondingseparable 2-D model is obtained by
setting

A×A = M×M = C[x]/p(x) ⊗ C[y]/p(y)

= C[x, y]/〈p(x), p(y)〉
and

Φ : C
n×n → M×M,

s 7→ s = s(x, y) =
∑

0≤k,ℓ<n

sk,ℓpk(x)pℓ(y).

The model is usually adopted for a squaren×n array of signal
valuess∈ C

n×n; we emphasize this by writingCn×n instead
of C

n2

.
A Fourier transform for this model is simply the Kro-

necker product ofPb,α with itself. The visualization of the
model is the direct product of the 1-D visualization (the
graph) with itself. The adjacency matrix of this graph is
φ(x) ⊗ In +In⊗φ(y). Examples are shown in Figs. 1(a) and
(b) (without the boundary conditions).

The signal models derived in this paper are nonseparable.

III. I NFINITE 1-D SPACE MODELS

So far, we have introduced the general framework (provided
by the algebraic theory of signal processing) for shift-invariant
signal processing, focusing on the finite case. This framework
will also provide the underpinning for the spatial hexagonal
lattice. However, the question is how to derive the appropriate
signal model to apply the theory.

In [4] we introduced a procedure for deriving signal models
from basic principles and used it to derive the well-known
infinite and finite time models discussed before, but also to
derive infinite and finitespace models. Space, in the algebraic
theory, means that the model is undirected versus the directed
signal models associated with time. This will become clearer
below.

b b b

tn−1 tn tn+1

1
2

1
2

Fig. 4. The space shiftq ⋄ tn.

b b b

tn−k tn tn+k

1
2

1
2

Fig. 5. Thek-fold space shiftqk ⋄ tn.

We introduce the procedure in this section by sketching the
derivation of 1-D space models, which eventually leads to the
DCTs and DSTs as associated Fourier transforms. The same
derivation will later yield the signal models for the spatial
hexagonal lattice and also highlight the analogy between 1-D
DCTs and the new transforms to be introduced later.

The detailed version of the derivation can be found in [5],
which also contains all the proofs.

A. Derivation

The derivation of the discrete 1-D space model (as the
derivation of the other 1-D models in [3]) follows three steps:
definition of the shift, linear extension, and realization.

Definition of the shift. To define a suitable shift operator
q, we first need a set ofspace marks (tn)n∈Z, the shift can
operate on. These marks will later be associated with the
discrete signal values. We denote the shift operation abstractly
with ⋄. The well-known time shift would be defined as
q⋄tn = tn+1; the below derivation would yield thez-transform
and DTFT in the infinite case, and the finitez-transform and
DFT in the finite case.

Since we want an undirected model, the shift has to operate
symmetrically. The simplest choice is

q ⋄ tn =
1

2
(tn−1 + tn+1), (8)

which we call the (1-D) space shift. It is visualized in Fig. 4.
Next, we need ak-fold space shiftqk. A suitable definition

is
qk ⋄ tn =

1

2
(tn−k + tn+k). (9)

It is visualized in Fig. 5. Every space mark is reachable from
tn with exactly onek-fold space shift,k ≥ 0.

From the definition it follows thatqk = Tk(q) is the
Chebyshev polynomial of the first kind and degreek. This
becomes clear from the power form ofTk; see Table III in
Appendix A, which we invite the reader to read at this point.

Linear extension.We first linearly extend the operation of
q to the entire vector spaceM = {∑n∈Z

sntn} and then to
the operator domainA = {

∑

k≥0
hkTk(q)}. M will become

our signal module, andA the associated filter algebra. Note
that A contains only right-sided sequences sinceT−k = Tk
(because this holds forqk in (9)).

Through the linear extension, filtering fors ∈ M andh ∈ A
is now abstractly defined as

∑

k≥0

hkTk(q) ⋄
∑

n∈Z

sntn =
∑

n∈Z

∑

i+j=n

hisj(Ti(q) ⋄ tj). (10)
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Since the sums are infinite we have to take care of convergence
issues. This will be done next as part of the realization.

Realization. The realization replaces the abstract shift and
space marks with concrete objects. We do this by settingq =
x and ⋄ = · (the ordinary multiplication). The space marks
are now determined as polynomials ofx. Namely, (8) is now
equivalent to

tn+1 = 2xtn − tn−1,

which is precisely the recursion for the general Chebyshev
polynomials (see (35) in Appendix A). Thus,

tn = Cn(x).

After normalizingC0 = 1, there is a degree of freedom in
how to chooseC1 as a polynomial of degree 1;C0 and C1

together then determine allCn, n ∈ Z. Sincedeg(Cn) = n
for n ≥ 0, {Cn | n ≥ 0} is a basis of all polynomialsC[x].
Since everyC−m, m > 0 is also a polynomial of degree at
mostm, it can be written as

C−m =
∑

0≤ℓ≤m

sℓCℓ, (11)

wheresℓ ∈ C. In other words, the left half of the sequence
n < 0 depends on the right halfn ≥ 0. As a consequence,M
can contain only right-sided sequences

∑

n≥0
snCn and (11)

encodes the left signal extension associated withM.
Since we have a degree of freedom in choosingC1, we force

the simplest possible signal extension, calledmonomial signal
extension. This means that in (11), the sum has at most one
summand for allm > 0. As shown in [5], there are exactly four
series of Chebyshev polynomials that yield a monomial signal
extension, denoted withC = T,U, V,W . They are called,
respectively, the Chebyshev polynomials of the first, second,
third, and fourth kind; the first two kinds are explained in
Appendix A. For C = T , (11) becomesT−m = Tm, i.e.,
the signal extension is whole-point symmetric; forC = U ,
U−m = −Um−2 holds, which is whole-point antisymmetric
and impliesU−1 = 0.

Filtering as in (10) (for right-sided signals) converges if
h ∈ ℓ1(N) ands∈ ℓ2(N).

Infinite 1-D space models.In summary, we obtained four
infinite space signal models(A,M,Φ) for V = ℓ2(N),
collectively described by

A = {h =
∑

k≥0
hkTk(x) | h ∈ ℓ1(N)},

M = {s =
∑

n≥0
snCn(x) | s∈ ℓ2(N)},

Φ : V → M, s 7→
∑

n≥0
snCn(x),

(12)

whereC ∈ {T,U, V,W}. Φ is called theC-transform, or if
the choice is specified,T -, U -, V -, W -transform. Note that
the filters are represented as series in thek-fold space shifts
Tk, independent of the choice ofC. Filtering in this model
is the multiplicationhs, where h ∈ A and s ∈ M. The
corresponding operation on the coordinate vectorsh and s
(not shown here) is the associated notion of convolution.

b b b b b b b b

T0 T1 T2 T3 T4

b b b b b b b b

U0 U1 U2 U3 U4

Fig. 6. Visualization of the infinite space models given by theC-transform
for C ∈ {T, U}. For each internal edge, the arrows go in both directions and
are thus omitted. Also, the common edge scaling factor1/2 is omitted.

B. Properties

Visualization. The visualization of the above models are
obtained by letting the shiftx operate on the basis. For the
T - and U -transform we obtain the two graphs in Fig. 6 (the
common factor of1/2 is omitted). Note that the graphs are
undirected, which motivates the notion of space model.

For theT -transform, the extra arrow fromT0 to T1 repre-
sents the left b.c.T−1 = T1. Similarly, for theU -transform
U−1 = 0 implies the absence of this arrow.

Spectrum and Fourier transform. The infinite space
models in (12) have an associated notion of spectrum, Fourier
transform, and frequency response [5]. We will not show them
here due to space limitations and to focus on the finite case
discussed next.

IV. D ERIVATION OF FINITE 1-D SPACE MODELS

To obtain finite space models associated with the infinite
ones in (12) is only a small step. Since these models should
also be shift-invariant we know already that their underly-
ing structure will be provided by polynomial algebras. The
question is how to construct them. In particular, the crucial
question is how to choosep(x) in (4), which determines the
filter algebra and the signal module, the notion of filtering,and
the spectrum. It turns out that the choice ofp(x) is equivalent
to the design of proper boundary conditions.

A. Derivation

We want to build a model for discrete finite signalss =
(s0, . . . , sn−1) ∈ C

n. Following the same steps as in the finite
case seems to lead to a signal space consisting of polynomials
of degree less thann represented as

s = s(x) =
∑

0≤ℓ<n

sℓCℓ(x). (13)

As discussed before, the choice ofC determines the left
boundary condition and the left signal extension. Four choices
of C lead to a monomial extension. However, in the finite case
we also have to take care of the right boundary.

Right boundary. The problem with (13) is that these
polynomials are not closed under the shift operation, since
multiplying by x increases the degree. Specifically,

xCn−1 =
1

2
(Cn−2 + Cn)

has degreen. This can be fixed by introducing aright b.c.
that expressesCn as a linear combination ofC0, . . . , Cn−1
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b b b b b b b b b b b

T0 T1 T2 Tn−3 Tn−2 Tn−1

b b b b b b b b b b b

U0 U1 U2 Un−3 Un−2 Un−1

Fig. 7. Visualizations of the finite space models for which theDCT, type
3 (above) and the DST, type 3 (below) are Fourier transforms. Again, the
common edge scaling factor1/2 is omitted.

and effectively reduces the degree again:

Cn =
∑

0≤ℓ<n

βℓCℓ ⇔ p(x) = Cn −
∑

0≤ℓ<n

βℓCℓ = 0.

Mathematically, this means that the signal space becomes the
polynomial algebraM = C[x]/p(x). So we get the desired
structure and understand that the choice ofp is equivalent to
the right b.c., which in turn determines the entire right signal
extension by reducingCℓ, ℓ ≥ n modulop.

Again, we are interested in the simplest, i.e., monomial
signal extension. It turns out that for each of the four choices
of C there are four possible right b.c., leading to a total of
16 finite space models corresponding to 16 DCTs/DSTs as
associated Fourier transforms.

We consider two cases. ForC = T , the b.c.Tn = 0 implies
the right signal extensionTn+k = −Tn−k. ForC = U , 2Tn =
Un − Un−2 implies the b.c.Un = Un−2 and the right signal
extensionUn+k = Un−k−2.

Finite 1-D space models.We only state the above two out
of sixteen finite space models since they have corresponding
2-D hexagonal space models derived later.

The two signal models are simultaneously defined by

A = M = C[x]/Tn, Φ : s 7→
∑

0≤ℓ<n

sℓCℓ, (14)

where C ∈ {T,U}. We call Φ a finite T -transform orU -
transform.

In both cases, the elements ofA (the filters) are expressed as
h =

∑

0≤k<n hkTk, i.e., as combination ofk-fold space shifts.
Filtering in both cases is the multiplication of polynomials
moduloTn. The difference is in the choice of basis inM.

B. Properties

Visualization. In (14) for C = T , the left b.c. iss−1 = s1,
sinceC = T . The right b.c. issn = 0, sinceTn = 0 in M.
The operation of the shift yields the visualization in Fig. 7
(top).

In (14) forC = U , the b.c.’s are reversed. TheU -basis inM
assertss−1 = 0, sinceU−1 = 0, andUn − Un−2 = 0 implies
sn = sn−2. The visualization is shown in Fig. 7 (bottom).

Fourier transform. We consider (14) forC = T . The zeros
of Tn are given in Table III in Appendix A asαk = cos(k +
1/2)π/n, 0 ≤ k < n. The (polynomial) Fourier transform is
thus given by the DCT, type 3:

F = Pb,α = [Tℓ(cos(k + 1/2)π/n)]0≤k,ℓ<n = DCT-3n.

Similarly, (14) forC = U has the DST, type 3 as associated
Fourier transform (a scaled polynomial transform in this case).

b b b

b b b

b b b

t−1,−1 t0,−1 t1,−1

t−1,0 t0,0 t1,0

t−1,1 t0,1 t1,1

b b b

b b b

b b bbbb

b

b b

b

tm,n−1

tm−1,n+1

tm+1,n

tm,n

1
3

1
3

1
3

b b

b

b

tm+1,n−1

tm,n+1

tm−1,n

tm,n

1
3

1
3

1
3

Fig. 8. A hexagonal array of space marks and two hexagonal space shifts
q ⋄ tm,n andq ⋄ tm,n operating on it.

Unitary version. TheDCT-3n andDST-3n diagonalize the
adjacency matrices of the two graphs (i.e., the shift matrices)
in Fig. 7, respectively. Since these are almost symmetric
(since the graphs are undirected except for the boundary), the
transforms are almost unitary. Indeed, as it is well-known,
suitable scaling factors make the transforms unitary and even
orthogonal. Their derivation is explained, e.g., in [5].

Separable extension to 2-D.The separable extension of the
1-D space models to 2-D is straightforward using the theory in
Section II-C. Fig. 1(b) visualizes the models obtained (without
boundary conditions).

V. I NFINITE 2-D HEXAGONAL SPACE MODEL

A. Derivation

The derivation of a signal model for the 2-D hexagonal
spatial lattice is completely analogous to the derivation of the
1-D space models in Section III-A. The reader may want to
frequently go back to that section to get a better intuition
for the proceedings here. The crucial starting point for the
derivation of the hexagonal space model is the proper choice
of two shifts.

Definition of the shifts. First, we define a 2-D array
of space marks(tm,n)m,n∈Z, assumed to be arranged on a
hexagonal6 lattice as shown in Fig. 8 (left). Since we derive
a 2-D model, we need two shift operatorsq, q. Every space
mark has six neighbors, so each shift should contain three. A
proper definition is

q ⋄ tm,n =
1

3
(tm+1,n + tm,n−1 + tm−1,n+1), (15)

q ⋄ tm,n =
1

3
(tm,n+1 + tm−1,n + tm+1,n−1). (16)

They are visualized in Fig. 8 (right). Overlaying these shifts on
the hexagonal lattice yields each edge in each direction. This
will later make the model undirected, i.e., spatial, as desired.

6Every point has at equal distance six neighbors, which form ahexagon.
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b

b

b

b

b

b

b

k

ℓ

tm,n

tm+k+ℓ,n−ℓ

tm+k,n+ℓ

tm−k,n+k+ℓ

tm+ℓ,n−k−ℓ

tm−ℓ,n−k

tm−k−ℓ,n+k

Fig. 9. The(k, ℓ)-fold hexagonal space shiftqk,ℓ; the common edge weight
of 1/6 is omitted. In particular,q1,0 = q, q0,1 = q.

Next, we need a(k, ℓ)-fold shift qk,ℓ. The proper definition
is

qk,ℓ ⋄ tm,n =
1

6
(tm+k,n+ℓ + tm+k+ℓ,n−ℓ + tm+ℓ,n−k−ℓ

+ tm−ℓ,n−k + tm−k−ℓ,n+k + tm−k,n+k+ℓ) (17)

and is visualized in Fig. 9. In particular,

qk,0 ⋄ tm,n =
1

3
(tm+k,n + tm,n−k + tm−k,n+k), (18)

q0,ℓ ⋄ tm,n =
1

3
(tm,n+ℓ + tm−ℓ,n + tm+ℓ,n−ℓ). (19)

Note that for any space marktm,n every point in the hexagonal
lattice is reachable with exactly one(k, ℓ)-fold shift, k, ℓ ≥ 0.
Further,q = q1,0 andq = q0,1.

Here, the Chebyshev polynomials in two variables (of the
first kind) come into play the first time. We invite the reader
to read Appendix B at this point.

Lemma 1 The (k, ℓ)-fold shift is a polynomial inq, q. Specif-
ically,

qk,ℓ = Tk,ℓ(q, q),

whereTk,ℓ denotes the Chebyshev polynomial of the first kind
in two variables.

Proof: The assertion follows from the power form onTk,ℓ
shown in Table IV in Appendix B.

Linear extension. As in the 1-D case, we extend the
shift operation ⋄ linearly first to the entire vector space
M = {∑m,n∈Z

sm,ntm,n} and then to the operator domain
A = {

∑

k,ℓ≥0
hk,ℓTk,ℓ(q, q)}; k, ℓ are non-negative, since the

symmetry properties ofTk,ℓ (see Appendix B) show that each
Tk,ℓ is equal to aTk′,ℓ′ with k′, ℓ′ ≥ 0. Specifically, for
k, ℓ ≥ 0, T−k,−ℓ = Tℓ,k, and

T−k,ℓ =

{

Tk,ℓ−k ℓ ≥ k

Tℓ,k−ℓ ℓ < k
, Tk,−ℓ =

{

Tk−ℓ,ℓ k ≥ ℓ

Tℓ−k,k k < ℓ
. (20)

M will become the signal space andA the associated alge-
bra of filters. Filtering is defined through the linear extension

of ⋄ to A andM:
∑

k,ℓ≥0

hk,ℓTk,ℓ(q, q) ⋄
∑

m,n∈Z

sm,ntm,n =

∑

m,n∈Z

∑

i+j=m,k+ℓ=n

hi,ksj,ℓ(Ti,k(q, q) ⋄ tj,ℓ). (21)

Convergence issues and boundaries will be handled next.
Realization. For the realization, we setq = x, q = y,

and ⋄ = · (multiplication). The space markstm,n are now
determined as polynomials in two variables. Namely, (15) and
(16) are precisely equivalent to the two recurrences for the
general Chebyshev polynomials in two variables (see (40) and
(41) in Appendix B). Thus,

tm,n = Cm,n(x, y).

Appendix A asserts that six initial conditions are needed
to determine the entire array(Cm,n | m,n ∈ Z), namely
C0,0 = 1, C0,1, C0,2, C1,0, C1,1, C2,0. As in the 1-D case, the
question is which choices yield a simple, ideally monomial
signal extension? In the 1-D case we proved that there are ex-
actly four choices [5]. Here, the situation is more complicated:
we do not have an exhaustive characterization, but give only
two choices ofCm,n, which provide a monomial extension.
Namely, as one may expect, the Chebyshev polynomials of
the first and second kind in two variables (see Appendix B):
T andU . The monomial extension in both cases follows from
the symmetry properties in Table IV, Appendix B.

For C = T , that table establishes symmetry with respect
to both x-axis (formed by all space markstk,0) and y-axis
(formed by all space markst0,ℓ) in the hexagonal lattice. Using
this symmetry, everyTm,n with m < 0 or n < 0 is a Tm′,n′

with m′, n′ > 0 as already explained in (20). In particular, we
have the left and bottom boundary conditions

T−1,ℓ = T1,ℓ−1 (left boundary), (22)

Tk,−1 = Tk−1,1 (bottom boundary). (23)

Similarly, for C = U , Table IV establishes antisymmetry
with respect to the two axes given by the space markstk,−1

and t−1,ℓ, respectively. The left and bottom boundary is thus
given byU−1,ℓ = Uk,−1 = 0.

This discussion establishes that the hexagonal space model
will be for 2-D signals on the positive quadrantN × N

only. Convergence of filtering as in (21) for these signals is
guaranteed ifh ∈ ℓ1(N × N) ands∈ ℓ2(N × N).

Infinite 2-D hexagonal space models.In summary, we
obtain two infinite hexagonal space models(A,M,Φ) for
V = ℓ2(N × N). They are jointly defined by

A = {h =
∑

k,ℓ≥0
hk,ℓTk,ℓ(x, y) | h ∈ ℓ1(N × N)},

M = {s =
∑

m,n≥0
sm,nCm,n(x) | s∈ ℓ2(N × N)},

Φ : V → M, s 7→ ∑

m,n≥0
sm,nCm,n(x, y),

(24)
whereC ∈ {T,U}. We callΦ the 2-D hexagonalC-transform
or, if specified,T - or U -transform. Note that independent of
C, the filters are represented as series inTk,ℓ, the (k, ℓ)-fold
space shifts.
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(a) Visualization forC = T
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(b) Visualization forC = U

Fig. 10. Visualizations of the two infinite spatial hexagonal signal models
given in (24): (a) 2-D hexagonalT -transform; and (b) 2-D hexagonalU -
transform. The common edge weight factor of1/3 is omitted.

Filtering in this model is the multiplicationhs of series
h ∈ A, s ∈ M, and can be evaluated using (21) and (17). The
corresponding operation on the coordinate sequencesh ands
is the associated notion of convolution.

B. Properties

Visualization. In (24) we have to distinguish the casesC =
T and C = U . If C = T then the left and bottom b.c.’s are
given by (22) and (23). The operation of the two shifts yields
the visualization in Fig. 10(a).

Due to the antisymmetry with respect to the coordinate axes
we getUk,−1 = U−1,ℓ = 0 for all k, ℓ ∈ Z. Thus, the operation
of the two shifts yields the visualization in Fig. 10(b).

Spectrum and Fourier transform. The spectrum and
Fourier transform for the models (24) are obtained similarly
as for the infinite 1-D space models [5], namely by expanding
s =

∑
sm,nCm,n(x, y) using the power form ofC and setting

u = ejω1 and v = ejω2 . The frequency response of a filter
h is obtained in the same way. The spectrum is periodic
in ω1 and ω2 but has additional six-fold symmetry, which
reduces the domain to the triangle in Fig. 11(c) with symmetric
b.c.’s. For contrast, Fig. 11(a) and (b) visualize the spectrum
of the 2-D z-transform (periodic in both dimensions) and
the 2-D T -transform (symmetric in both dimensions on the
smaller domain shown, since the spectrum possesses a four-
fold symmetry).

In other words, in Fig. 11(b) the torus (square with periodic
b.c.’s) in Fig. 11 is partitioned into four squares as shown.In
Fig. 11(c) the torus is partitioned into six triangles as shown.
Note that four of these triangles cross the boundary of the

large square in the representation, which is displayed dashed
for this reason.

Fig. 11(c) was obtained by slightly adapting [19], which
studies the dual situation to this paper, namely, in SP terms,
2-D continuous signals that are defined on a triangle and
symmetrically extended to the entire plane.

VI. F INITE HEXAGONAL SPACE MODEL

The derivation of the finite hexagonal space model is
analogous to the derivation of the 1-D space model in Sec-
tion IV. This means, the problem is in designing the boundary
conditions and thus the proper polynomial algebra. The general
theory in Section II-C then provides all basic SP concepts and
in particular, the associated Fourier transform.

A. Derivation

We build a model for ann × n array of signal values
(sk,ℓ)0≤k,ℓ<n ∈ C

n×n.7 Following the derivation steps in
Section V leads to a signal space consisting of polynomials in
two variables, represented as

s = s(x, y) =
∑

0≤k,ℓ<n

sk,ℓCk,ℓ(x, y), (25)

whereC = T or C = U to ensure a monomial left and bottom
signal extension. Since the array is now finite, we also have
to take care of the right (k ≥ n) and upper (ℓ ≥ n) boundary.

Right and upper boundary. Applying anx- or y-shift to
a space markCn−1,ℓ at the right boundary or a space mark
Ck,n−1 at the upper boundary leaves the array. For example,

xCn−1,ℓ =
1

3
(Cn,ℓ + Cn−1,ℓ−1 + Cn−2,ℓ+1);

Cn,ℓ is outside the array. In other words, the set of polynomials
in (25) is not closed under shifting. To remedy this problem,
we introduce right and upper boundary conditions, which in
turn define right and upper signal extensions. Again, we aim
for the simplest signal extension. However, in this case a
monomial signal extension seems to be not achievable, only a
2-monomial extension. This means that everyCu,v with u ≥ n
or v ≥ n is a linear combination of at most twoCk,ℓ inside
the array.

Due to the more complicated structure of the model, unlike
in the 1-D case, we do not claim an exhaustive list of
reasonable possible signal extensions. Rather, we providefor
each of the two infinite models in (24) one choice, thus
obtaining two finite models.

We considerC = T and claim that

A = M = C[x, y]/〈Tn,0, T0,n〉 (26)

yields the desired extension. First, we compute the right and
upper boundary.Tn,0 = 0 implies that

0 = T0,kTn,0 =
1

3
(Tn,k + Tn−k,0 + Tn+k,−k)

=
2

3
Tn,k +

1

3
Tn−k,0,

7Extending the discussion tom × n arrays is straightforward.
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0 2π
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(a) 2-D z-transform

0 π 2π
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2π

(b) 2-D T -transform

0 2π
3

π 4π
3 2π

0

π
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(c) 2-D hexagonalT -transform

Fig. 11. Visualization of the spectral domains (gray area) ofthe infinite 2-D time, space, and hexagonal space models in theω1, ω2 plane. The symmetries, or
boundary conditions, are apparent through(x, y) parameterizations: (a)(ejω1 , ejω2 ) (periodic); (b)(cos(ω1), cos(ω2)) (symmetric); (c)1

3
(ejω1 + ejω2 +

e−j(ω1+ω2), e−jω1 + e−jω2 + ej(ω1+ω2)) (symmetric). TheU -transforms’ parameterizations yield antisymmetric b.c.’s in(b) and (c).

where we used (18) and (20). The same computation can be
performed starting withT0,n = 0. We get

Tn,ℓ = −1

2
Tn−ℓ,0 (right boundary), (27)

Tk,n = −1

2
T0,n−k (upper boundary). (28)

The left and bottom boundaries are the same as in the infinite
model (22) and (23).

To get the right signal extension, we multiply (27) byTk,0
using again (18) and use the symmetry properties in (20).
Similarly, we multiply (28) byT0,ℓ to get the upper signal
extension. The result is

Tn+k,ℓ = −Tn−k,ℓ+k − Tn−k−ℓ,k,

Tk,n+ℓ = −Tk+ℓ,n−ℓ − Tℓ,n−k−ℓ.

For C = U , we use the same algebra and module (26) as
in the previous case. The effect is a different set of boundary
conditions and signal extension obtained analogous to above.
Namely,Tn,0 = 0 impliesUn,0 = Un−2,1−Un−3,0 (using (43)
in Appendix B). Multiplying this equation withT0,ℓ yields the
right boundaryUn,ℓ. The upper boundary is obtained similarly,
starting withT0,n = 0. The result is

Un,ℓ = Un−2,ℓ+1 − Un−3−ℓ,0 (right boundary), (29)

Uk,n = Uk+1,n−2 − U0,n−3−k (upper boundary). (30)

Finite 2-D hexagonal space models.We derived two finite
signal models forV = C

n×n. They are jointly defined by

A = M = C[x, y]/〈Tn,0, T0,n〉,
Φ : s 7→ ∑

0≤k,ℓ<n sk,ℓCk,ℓ,
(31)

whereC = T or C = U . We call Φ the finite 2-D hexagonal
C-transform (orT - or U -transform). Both models are regular.
The basis inA consists, independent ofC, of the (k, ℓ)-fold
space shiftsTk,ℓ.

Filtering in this model is the multiplicationhs of poly-
nomials h ∈ A and s ∈ M modulo Tn,0 and T0,n. It can

t
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Fig. 12. Visualization of the finite 2-D hexagonal space modelfor which
the DTT, type 1, is a Fourier transform (the casen = 5 is shown). For all
solid (dashed) lines a common edge scaling factor of1/3 (−1/2) is omitted.

be computed using (17) and (27) and (28) for the modulo
reduction. The effect on the coordinate sequencesh and s is
the associated notion of convolution.

B. Properties

Visualization. To visualize the two finite models, we com-
pute the shift matricesφ(x) andφ(y) by lettingx andy operate
on the respective basis ofM. The graph withφ(x) + φ(y) as
adjacency matrix is the visualization of the finite model and
is shown in Fig. 12 forn = 5. The inner structure and the left
and bottom are the same as in the infinite case (see Fig. 10).
The right and upper boundary reflect (27) and (28).

Spectrum and Fourier transform. The spectrum is deter-
mined by the solutions ofTn,0 = T0,n = 0. To do so, we
use the power forms (44) and (45). Setting in these equations
a = un and b = vn, we first solve fora and b; the nth roots
are then the resultingu and v and can be inserted into (42)
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for the result. The desiredn2 pairs of (u, v) are

(ui, vj) = (ωin, ω
1+3j
3n ), 0 ≤ i, j < n, (32)

which determine the zeros(xi,j , yi,j) via (42). The spectral
decomposition ofM is now a special case of (7).

The Fourier transforms for the two models are accordingly
given byn2×n2 matrices, which we call thediscrete triangle
transforms (DTT)8. For theT -transform it is given by

DTTn×n = [Tk,ℓ(xi,j , yi,j)]0≤i,j<n,0≤k,ℓ<n; (33)

we call it the DTT of type 1. The double index(i, j) is
the row index, and(k, ℓ) is the column index of the matrix,
both ordered lexicographically. The exact form is obtained
by inserting (32) into the power form ofTk,ℓ (Table IV in
Appendix B): the entry at position(i, j), (k, ℓ) is then given
by

1

6

(
ω3ki−3ℓj−ℓ

3n + ω3kj−3ℓi+k
3n + ω3ki+3ℓi+3ℓj+ℓ

3n

+ω3ℓi+3kj+3ℓj+k+ℓ
3n +ω−3ki−3ℓi−3kj−k

3n +ω−3ki−3kj−3ℓj−k−ℓ
3n

)
.

The DTT is invertible by construction (see Section II-C), and
even “almost” orthogonal as explained below.

The smallest example isn = 2. We haveT0,0 = 1, T0,1 =
y, T1,0 = x, T1,1 = 1

2
(3xy − 1); the zeros ofT2,0 = T0,2 = 0,

i.e., 3x2 − 2y = 3y2 − 2x = 0, are given by (in this order)

( 2

3
, 2

3
), (0, 0), ( 2

3
ω3,

2

3
ω2

3), ( 2

3
ω2

3 , 2

3
ω3).

Thus,DTT2×2 is the4 × 4 matrix

DTT2×2 =









1 2

3

2

3

1

6

1 0 0 − 1

2

1 2

3
ω2

3
2

3
ω3

1

6

1 2

3
ω3

2

3
ω2

3
1

6









.

Similarly, we can define a DTT of type 2 by replacingT with
U in (33).

It is well-known that the 2-D DFT samples the continuous
spectrum associated with the 2-Dz-transform in Fig. 11(a)
at lattice points(αk, βℓ) = (2πk/n, 2πℓ/n), 0 ≤ k, ℓ < n.
Similarly, the DTT (type 1) samples the continuous spectrum
associated with the 2-D hexagonalT -transform in Fig. 11(c).
The details are shown in Fig. 13. Namely, (32) determines
the sampling points in Fig. 13(a) spread over the entire
torus in Fig. 11(a), i.e., over all six copies of the triangular
spectral domain in Fig. 11(c). To obtain the actual sampling,
we map all points into the triangle (Fig. 13(b)) using affine
mappings according to the symmetric b.c.’s in Fig. 11(c).
The sampling points form a honeycomb pattern, which is
best seen by mapping (again in an affine way) the triangle
to an equilateral one as shown in Fig. 13(c). For practical
applications Fig. 13(c) seems to be a natural choice because
the sampling points are evenly distributed. We will show a
small application example later in Section VII.

Unitary version and inverse. In Section IV-B we asserted
that the DCT and DST of type 3 are almost orthogonal since

8The name reflects that the hexagonal lattice tessellates the plane into
equilateral triangles.

their visualizations in Fig. 7 are undirected except for the
boundary. Using the same argument, we derive a unitary
version of the DTT, focusing on type 1.

The adjacency matrix of the visualization in Fig. 12 is, by
construction,φ(x) + φ(y). Also by construction, the graph
is undirected, except for the boundary. The goal is to find
an n2 × n2-matrix Dn2 , such thatD−1

n2 (φ(x) + φ(y))Dn2 is
symmetric. Then,DTTn×n Dn2 is unitary up to possibly a
scaling of the rows. The solution (provided without proof) is

Dn2 = Rn2 · En2 . (34)

Here, Rn2 is an orthogonal matrix that applies the rotation
1√
2

DFT2 to each pair of input elements with indices(in +

j, (n − j)n + (n − i)), 1 ≤ i, j < n, i + j 6= n. There are
exactly

(
n−1

2

)
such pairs.

En2 = diag(L) is diagonal. The listL is given by the
concatenation

⋃n−1

i=0
Li, where eachLi has lengthn. Further,

L0 = 1

n
(1,

√
3, . . . ,

√
3), and, fori = 1, . . . , n−1,

Li =
2

n

(√
3/2,

√
3, . . . ,

√
3

︸ ︷︷ ︸

n−i

, 1, . . . , 1
︸ ︷︷ ︸

i−1

)
.

No further rescaling of the rows is necessary, i. e., the matrix
DTTn×n Dn2 is unitary. In particular,

DTT−1
n×n = Dn2 DTTHn×n,

sinceDn2 is real and symmetric;(·)H denotes the transpose-
conjugate of a matrix.

Diagonalization properties. The general theory
(Section II-C) establishes that the matrices diagonalized
by DTTn×n are precisely the matricesφ(h(x, y)) =
h(φ(x), φ(y)), h ∈ A. In particular, the adjacency matrix of
the visualization (Fig. 12) is diagonalized.

C. Discussion

Signal model versus actual data.The DTT processes an
n × n array, just like the 2-D DFT, any 2-D DCT, or any
2-D transform considered in [10]. In particular, this means
that the DTT could be applied to data given on a rectangular
lattice. The decision which transformation actually to choose
is up to the user and motivates our notion of a signalmodel,
which is implicitly imposed by the transform chosen and best
understood by its visualization as graph (Fig. 1). Applyinga
model (via the generalizedz-transformΦ) means associating
the given discrete data with the nodes of the graph, which
implicitly imposes distance relations including the presence
of a direction or not. The DTT, and its associated signal
model, is designed for images (undirected model) in which
each pixel has six neighbors at equal distance and hence should
be the replacement for the 2-D DCT if the application at hand
satisfies this assumption.

Underlying continuous signal model and sampling.In
standard time (i.e., directed) SP, for every discrete signal model
there is an underlying continuous model and the models are
connected by sampling with an associated sampling theorem.
For undirected models, the corresponding theory does not exist
to our knowledge. For the DCT, we have recently identified the
underlying continuous model and the proper sampling theorem
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(a) Sampling points determined by (32)
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(c) Triangle and sampling points in (b)
mapped to an equilateral triangle

Fig. 13. TheDTTn×n samples the spectrum in Fig. 11(c) as illustrated here forn = 8.

as part of the algebraic theory [20]. As the discrete model (12)
underlying the DCT, also the associated continuous model has
a notion of filtering different from the standard convolution.

The derivation of sampling theorems associated with the
DTT is still ongoing work. However, it is interesting to note
that our derivation of the the discrete models for 1-D time
(in [4]), 1-D space (Section III), and 2-D hexagonal space
(Section V) is bottom-up and does not require a continuous
model as starting point.

Connection to Gauss-Markov random fields.In [3], we
established the equivalence (under certain conditions) between
shift-invariant finite signal models (in the algebraic theory)
and stochastic models given by Gauss-Markov random fields
(GMRFs) with proper boundary conditions. In particular, this
established the same equivalence between the algebraic no-
tion of Fourier transform and the Karhunen-Loève transforms
(KLTs) for these fields. The discussion focused on 1-D models
(Section II-B) but is readily extended to the 2-D models here.
An extensive treatment exceeds the scope of this paper; we
only give an example. Consider the non-causal first-order
GMRF defined on the index set0 ≤ k, ℓ < n by

sk,ℓ = a(sk+1,ℓ + sk,ℓ−1 + sk−1,ℓ+1)

+ b(sk,ℓ+1 + sk−1,ℓ + sk+1,ℓ−1) + νk,ℓ,

where thesi,j are random variables,a, b real constants, and
νk,ℓ zero-mean Gaussian noise. Then the unitary DTT, i. e.,
the 2-D transform given byDTTn×n Dn2 , is a KLT for
these fields if proper boundary conditions, determined by the
model (31), are chosen.

On the signal extension found.We asserted above that
the signal models (31) have no monomial signal extension.
This seems to be an inherent property of the hexagonal lattice:
each node has six neighbors; in particular, each node at the
boundary of Fig. 12 has two edged going outwards in contrast
to one edge for the separable models (Figs. 1(a) and (b)).

Summary of signal models.Table I summarizes all finite
2-D signal models considered in this paper. In each case, there

Fig. 14. 200 × 200 image of some leaves used for the experiment.

is a corresponding infinite model. The last column contains the
new models for the spatial hexagonal lattice.

VII. A PPLICATION TO AN IMAGE

In this section we give an example for applying the 2-D
DCT and the DTT to an image. The goal is to show basic
similarities and differences. A detailed quantitative study is
future work. In both cases we use the unitary version of the
transform, i.e., the total energy is preserved.

For the experiment we use the200 × 200 gray-scale8-bit
image of some leaves shown in Fig. 14.

First, we assume the space model for the finite 2-DT -
transform (i.e., we impose the structure in Fig. 1(b)) and hence
apply the 2-D DCT to compute the spectrum. The magnitude
spectrum is displayed in Fig. 15(a). This spectrum regularly
samples the continuous spectrum associated with the infinite
2-D T -transform (the gray area in Fig. 11(b)). The bottom left
corner in Fig. 15(a) represents the low frequencies.

Second, we assume the space model given by the finite
2-D hexagonalT -transform (i.e., we impose the structure in
Fig. 1(c), which inherently distorts the image) and hence
compute the spectrum using the DTT. The magnitude spectrum
is shown in Fig. 15(b) and corresponds to Fig. 13(a). To
properly display the spectrum we map all coefficients to the
triangle in Fig. 15(c), which corresponds to Fig. 13(c). Thelow
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TABLE I
2-D SIGNAL MODELS DISCUSSED IN THIS PAPER. THE LAST COLUMN CONTAINS THE NEW MODEL DERIVED FOR2-D HEXAGONAL SPACE. ONLY THE

FINITE MODELS ARE SHOWN(THE COMMON WORD “ FINITE” IN THE ROW FORΦ IS OMITTED) AND ONLY TWO OUT OF THE SIXTEEN FINITE SPACE

MODELS, NAMELY THOSE WHICH HAVE A 2-D HEXAGONAL COUNTERPART.

2-D time (separable) 2-D space (separable) 2-D hexagonal space

A = M C[x, y]/〈xn − 1, yn − 1〉 C[x, y]/〈Tn(x), Tn(y)〉 C[x, y]/〈Tn,0(x, y), T0,n(x, y)〉

Φ 2-D z-transform 2-DT ,U -transform 2-D hexagonalT ,U -transform

F DFT⊗DFT DCT⊗DCT, DST⊗DST type 3 DTT type 1 and 2

Visualization Fig. 1(a) Fig. 1(b) Fig. 12
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(a) 2-D DCT spectrum
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(b) 2-D DTT spectrum (raw data)
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(c) 2-D DTT spectrum

Fig. 15. Magnitude spectra of the image in Fig. 14 with respectto the finite 2-D space model and the finite 2-D hexagonal space model.

frequencies are in the upper left corner. The common intensity
scale for all plots in Fig. 15 is on the far left. We note that a
few values much higher than 60 occur in all spectra.

We observe the energy compaction around the low frequen-
cies for both transforms. The triangle appears somewhat darker
since the same energy is displayed on less space. The line
crossing the spectrum of the DTT is not due to the image but
seems to be an inherent property of the transform.

VIII. C ONCLUSIONS

We derived a novel SP framework for the 2-D spatial
hexagonal lattice. The derivation is based on the algebraic
theory of signal processing and, we believe, provides an
example of the usefulness of this theory. Namely, it not only
yields the proper spectral transform DTT, but the full set
of associated basic SP concepts including convolution, “z-
transform,” transform properties, and fast algorithms [6], [8].
Further, the theory shows the precise analogy to the DCTs and
DSTs, which is of theoretical interest, but also immediately
makes the DTT a candidate for hexagonal image processing
applications such as robotics vision, deep-space imaging,or
biomedical imaging.

Finally, we note that the relationship between Chebyshev
polynomials in two variables and polynomial algebras and the
hexagonal lattice is not standard in mathematics and provides
insights that are not contained in the classic mathematical
literature (such as [19], [21]).
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APPENDIX A
CHEBYSHEV POLYNOMIALS IN ONE VARIABLE

Chebyshev polynomials, and the more general class of
orthogonal polynomials, have many interesting propertiesand
play an important role in different areas of mathematics, in-
cluding statistics, approximation theory, and graph theory. An
excellent introduction to the theory of orthogonal polynomials
can be found for example in the book of Chihara [22]. In this
section we give the main properties of Chebyshev polynomials
that we will use in this paper.

Definition through recurrence. We call every sequence
C = (Cn(x) | n ∈ Z) of polynomials that satisfies the three-
term recurrence

Cn+1 = 2xCn − Cn−1 (35)

a sequence ofChebyshev polynomials (C stands for Cheby-
shev). In (35),Cn+1 andCn−1 can be swapped, which means
the recurrence can be run in both directions. Hence, the entire
sequenceC is uniquely determined by any two consecu-
tive polynomials, usually the initial polynomialsC0, C1 (see
Fig. 16). In this paper, we requireC0 = 1 and thatC1 is
of degree 1. Consequently,Cn, n ≥ 0 is of degreen. This
implies that only theCn, n ≥ 0 are linearly independent.

First and second kind. The most important—and com-
monly known—are the Chebyshev polynomials of the first and
second kind, denoted withC = T and C = U , respectively.
Table II shows the two sequences aroundn = 0.

The Chebyshev polynomialsTn can be written in a param-
eterized form, called power form, as

Tn =
1

2
(un + u−n), x =

1

2
(u + u−1). (36)

For x ∈ [−1, 1], we can substituteu = ejθ and get the
trigonometric form

Tn = cos nθ, cos θ = x. (37)

TABLE II
CHEBYSHEV POLYNOMIALS OF THE FIRST AND SECOND KIND FOR SMALL

VALUES OF n.

n = −3 −2 −1 0 1 2 3

C = T 4x3 − 3x 2x2 − 1 x 1 x 2x2 − 1 4x3 − 3x

U −2x −1 0 1 2x 4x2 − 1 8x3 − 4x

Both parameterizations exhibit thesymmetry property

T−n = Tn. (38)

The form (37) can be used to readily derive the zeros ofTn.
Similar properties hold for the Chebyshev polynomials of

the second, third, and fourth kind, denoted byUn, Vn,Wn, re-
spectively, that arise from different initial polynomialsC0, C1.
They are summarized in Table III.

There are also numerous relationships between Chebyshev
polynomials of different kinds. We will use only

Tn =
1

2
(Un − Un−2). (39)

In addition, we will need the following property that is
shared by all sequences of Chebyshev polynomials including
T andU (see [22]).

Lemma 2 Let C = (Cn | n ∈ Z) be a sequence of Chebyshev
polynomials. Then

Tk · Cn =
1

2
(Cn+k + Cn−k).

APPENDIX B
CHEBYSHEV POLYNOMIALS IN TWO VARIABLES

The Chebyshev polynomials in two variables are far lesser
known than their univariate counterparts. Several different
definitions exist in the literature; we use the one in [19] with
minor modifications. The presentation is different from [19]
and chosen to parallel Appendix A.

By abuse of notation, we will use, as for one variable, the
lettersC, T, U to denote general Chebyshev polynomials, and
those of first and second kind respectively.

The presentation is chosen to parallel as much as possible
Appendix A and to motivate why they provide the underpin-
ning of the hexagonal space model derived in this paper.

Definition through recurrence. The general Chebyshev
polynomials in two variables are an array of polynomials
C = (Cm,n(x, y) | m,n ∈ Z) best visualized as arranged
in a hexagonal 2-D array indexed withm andn as shown in
Fig. 17. The reason for the hexagonal structure is in the two
defining recurrence equations:

Cm+1,n = 3xCm,n − Cm,n−1 − Cm−1,n+1, (40)

Cm,n+1 = 3yCm,n − Cm−1,n − Cm+1,n−1. (41)

In both equations we can, as in the one variable case, swap
polynomials to run the recurrence in different directions.
The four polynomials in (40) areCm,n and three of its
six neighbors: right, upper left, lower left. The other three
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TABLE III
TWO SERIES OFCHEBYSHEV POLYNOMIALS. THE RANGE FOR THE ZEROS IS0 ≤ k < n. IN THE TRIGONOMETRIC FORMcos θ = x AND IN THE POWER

FORM x = (u + u−1)/2.

polynomial n = 0, 1 trigonometric form power form symmetry zeros

Tn 1, x cos(nθ) un+u−n

2
T−n = Tn cos

(k+ 1
2
)π

n

Un 1, 2x
sin(n+1)θ

sin θ
un+1

−u−(n+1)

u−u−1 U−n =−Un−2 cos
(k+1)π

n+1

TABLE IV
TWO SERIES OFCHEBYSHEV POLYNOMIALS IN TWO VARIABLES. IN THE POWER FORMx = (u + v + (uv)−1)/3, y = (u−1 + v−1 + uv)/3 AND

c±m,n(u, v) = unv−m ± u−mvn ± un+mvm + umvn+m + u−n−mv−n ± u−nv−n−m .

polynomial (m, n) =(0, 2), (0, 1), (1, 1) power form symmetry

(0, 0), (1, 0), (2, 0)

Tm,n 3y2 − 2x, y, (3xy − 1)/2 1
6
c+m,n(u, v) T−m,n = Tm,n−m

1, x, 3x2 − 2y Tm,−n = Tm−n,n

Um,n 9y2 − 3x, 3y, 9xy − 1 c−m+1,n+1(u, v)/c−1,1(u, v) U−m,n = −Um−2,n−m+1

1, 3x, 9x2 − 3y Um,−n = −Um−n+1,n−2

· · · · · · · · · · · ·

◦ ◦ ◦ ◦
C0,−1 C1,−1 C2,−1 C3,−1

◦ • • • ◦
C−1,0 C0,0 C1,0 C2,0 C3,0

◦ • • ◦
C−1,1 C0,1 C1,1 C2,1

◦ ◦ • ◦ ◦
C−2,2 C−1,2 C0,2 C1,2 C2,2

· · · · · · · · · · · ·

Fig. 17. The entire 2-D array of Chebyshev polynomials in two variables is
uniquely determined by the initial conditionsC0,0, C1,0, C2,0, C0,1, C1,1,
C0,2 (solid bullets) via (40) and (41).

neighbors are in (41). The obtained structure is equivalentto
the two hexagonal space shifts in Fig. 8.

The entire arrayC is uniquely determined by the six initial
polynomials shown in Fig. 17. Again, we requireC0 = 1. For
the other five initial polynomialsCi,j we require that a)Ci,j
has total9 degreei + j; b) only one summandcxayb of Ci,j
hasa + b = i + j anda = i, b = j.

With these conditions for the six initial polynomials we have
the following lemma on the array of allCm,n.

Lemma 3 Every polynomialCm,n has total degreem + n.
Further, only one summandcxayb hasa + b = m + n and
for this summanda = m and b = n. As a consequence, the
polynomials{Cm,n | m,n ≥ 0} are a basis ofC[x, y].

As in the one variable case, this lemma implies that every
polynomial Cm,n with m < 0 or n < 0 is a linear com-
bination of Chebyshev polynomials in the positive quadrant.

9The total degree ofp(x, y) is the largesta + b over all summandscxayb

of p.

This determines the symmetry properties ofC, and in the
signal processing context the associated boundary condition
and signal extension.

First and second kind. The Chebyshev polynomials (in
two variables) of the first and second kind are defined through
the initial conditions shown in Table IV. The same table shows
the power forms in both cases, au, v-parameterization with

x =
1

3
(u + v + (uv)−1), y =

1

3
(u−1 + v−1 + uv). (42)

Substituting u = ejφ, v = ejψ yields the trigonometric
form, which cannot be further simplified, unlike as in the one
variable case.

We did not find, nor were we able to derive, suitable
Chebyshev polynomials of the third and fourth kind in two
variables.

The equivalent of (39) is the property

Tn,0 =
1

3
(Un,0 − Un−2,1 + Un−3,0), (43)

which can be confirmed using the respective power forms.
The following lemma is the equivalent of Lemma 2. We

omit the proof, which is by induction and straightforward.

Lemma 4 Let C = (Cm,n | m,n ∈ Z) be an array of
Chebyshev polynomials in two variables. Then

Tk,ℓ · Cm,n =
1

6
(Cm−k−ℓ,n+k + Cm−k,n+k+ℓ + Cm+k,n+ℓ

+ Cm+k+ℓ,n−ℓ + Cm+ℓ,n−k−ℓ + Cm−ℓ,n−k)

Further properties and notation. The following properties
and notation makes it simpler to compute with Chebyshev
polynomials in two variables. Ifp(x, y) ∈ C[x, y], then we
denote with p(y, x) the same polynomial with exchanged
variables.

For Cm,n(x, y), exchangingx andy is equivalent to replac-
ing u, v by u−1, v−1 in the power form (Table IV). Evaluation
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shows that forC = T,U ,

Cm,n(x, y) = Cn,m(x, y).

SettingCm,0 = Cm (not to be confused with the Chebyshev
polynomials in one variable), this impliesC0,n = Cn. Using
again the power forms we can now establish

Tm,n =
1

2
(3TmTn − Tm−n),

Um,n = UmUn − Um−1Un−1.

Further, the power forms ofTn and Tn have only three
summands:

Tn = Tn,0 =
1

3
(un + vn + (uv)−n), (44)

Tn = T0,n =
1

3
(u−n + v−n + (uv)n). (45)
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