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Abstract—We develop the framework for signal processing on a Since the array in Fig. 1(c) is nonseparable the DTT is not a
spatial, or undirected, 2-D hexagonal lattice for both an infinite Kronecker product of 1-D transforms.

and a finite array of signal samples. This framework includes We develop the signal processing on a spatial hexagonal

the proper notions of z-transform, boundary conditions, filter- latti licati d natural extensi fh ieb
ing or convolution, spectrum, frequency response, and Fourier attice as an application and natural extension of the aige

transform. In the finite case, the Fourier transform is called Signal processing theory—a general approach to linear lsigna
discrete triangle transform (DTT). Like the hexagonal lattice, processing introduced in [3], [4], [5]. In particular, wetno-

this transform is nonseparable. The derivation of the framework duced in [3] a bottom-up procedure to derive signal process-
makes it a natural extension of the algebraic signal processing ing frameworks, called signal models, from basic princple

theory that we recently introduced. Namely, we construct the . o .
proper signal models, given by polynomial algebras, bottom- namely from a suitable definition of the shift operator. We

up from a suitable definition of hexagonal space shifts using a Will apply this procedure to suitably chosen hexagonal spac
procedure provided by the algebraic theory. These signal models, shifts to derive for the hexagonal lattice the sensible ct®i
in turn, then provide all the basic signal processing concepts. The of boundary conditions and signal extension, the propgonot
framework  developed in this paper is related to Mersereau's .t 45gqciated 2-transform,” filtering or convolution, as well as
early work on hexagonal lattices in the same way as the discrete t f ' Fourier t f ’ ddits d
cosine and sine transforms are related to the discrete Fourier Speq rum, requen?y rESponse_'_ ourer trans ormz andags
transform—a fact that will be made rigorous in this paper. onalization properties. In the finite case, the Fourierstam
Index Terms—Discrete triangle transform, polynomial algebra, IS Exactllly t.he D-I;T’ tOf Whtlr?h we dlfn\{e m’o Va?anltsa vati
Chebyshev polynomials in two variables, nonseparable, discrete .qua y "_npor ant as the r¢3“ S IS the aclua _er',va 1on,
cosine transform, representation theory, convolution, specum  Which we will show to parallel in many ways the derivation of
the signal models underlying the DCTs/DSTs [5]. Examples
of parallels include the best choices of boundary condition
I. INTRODUCTION and the occurrence of Chebyshev polynomials in one and two
It is well-known that applying a 2-D discrete Fourier trans\-/ariables’ res.pectively. For.this reason, and to make tpgrpa
form (DFT) to ann x n set of signal values implicitly places as self—(;ontalned as possible, we first spepd some time on
: i ) L introducing the relevant parts of the algebraic signal psse
it on a square array with cyclic boundary conditions and .a . . . : .
periodic signal extension. Further, the array is directechoise ing theory mclud_mg the_ derivation of the signal procegsin
of the availability of shifts in both dimensions (see Figa})( fraTthWg::'(Taz_lsso(;:lafsds(:\gg;;hfeagcgjolaenC-ITI?jiérS.FFT tvoe al-
Similarly, and less well-known, for the 2-D discrete cosamal P y y yp

sine transforms (DCTs and DSTSs), the signal is again placggnthms that puts it in the same complexny class as .|ts
o . Separable counterparts [6]. These algorithms are alsveadkri
on a square array, but this time the boundary conditions ar ; .
. : . . using the algebraic theory, namely through a 2-D extension
symmetric or antisymmetric (depending on the type of DCT % the methods used in [7] to derive DFT, DCT, and DST
DST) [1] and the array is undirected (see Fig. 1(b)). Inteij, ' '

this property makes these transforms more suitable foragpat %??g't&rzsbrésiitf gzgg/rersmn of [6] will serve as secondt pa
S|gnaI§, l.e., signals without inherent direction, !lkeages. Related work. Signal processing, in particular the proper

. In this paper, we develop _the framework fo_r signal PrOCeSRs ms of spectral analysis, on an infinite and finite hexagona
ing on an undirected or spat|a_l hexagonal lattice exten(;im_g_ lattice has been studied to great detail in the seminal paper
preliminary work [2]. We consider both the case of an |nf|n|t8]c Mersereau [9] as application of his general theory of
hexagonal lattice and of a finite array shown in Fig. 1(c). | ulti-dimensional signal processing [10]. However, thédas
particular, for the latter, we introduce the proper 2-D sgc considered by Mersereau are directed-, ie., are, of the type

transform, which we call discrete triangle transform (D'TT)shown in Fig. 1(a) in contrast to Fig. 1(b) and (c). In other
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!in signal processing, the term "space” is often used for ametof  pling from Cartesian to hexagonal coordinates was corsitler
2-D processing; we use the term to distinguish undirectedn fdirected

signal processing. This distinction is made rigorous by tigelzaic signal in [12]. Splines folr hexagonal lattices were i”tfoqucecﬁ‘liﬁ_][
processing theory introduced later. A more extensive treatment of hexagonal lattices in image
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(a) 2-D DFT (b) 2-D DCT/DST (c) DTT

Fig. 1.  Visualizations of the signal models underlying (a¢ D DFT (cyclic boundary conditions are omitted); (b) th® 2DCTs/DSTs (symmet-
ric/antisymmetric boundary conditions are omitted); and ) DTTs (boundary conditions are omitted) introduced in gaper.

processing and applications can be found in [14] and [15): Basic Concepts
[14] discusses in detail halftoning techniques for rectdaudy The algebraic signal processing theory is a general frame-

and hexagonally sampled images; [15] includes an up @k for linear signal processing (henceforth simply called
date overview on the field of hexagonal image processiRgp) e  signals are assumed to be elements of vectorsspace
including applications and investigates in detail theat#hce o filters operate on signals as linear mappings. The ¢rucia

to standard rectangular image processing. Regardingrapeipservation underlying the theory is that the structure fn S
analysis, both books built on the work of Mersereau, i.eopad goes beyond vector spaces as explained next.

directed signal models. , _ Filter space = algebra.An algebra is a vector space that
The only reference aiming to derive a DCT equivalent fqg 450 a ring, ie., it permits the multiplication of elerten

hexagonal lattices appears to be [16]. However, the papg{y the distributivity law holds. If we define in the space of
is very short and provides little insights in the presenteg. ¢ (or SISO systems) multiplication as concatenatiban

transform, which is different from the ones derived here. {fq fier space becomes an algebra. For example, in infinite
appears that [16] does not take all the six neighbor conmesti jiscrete time SP, this algebra (in thedomain) is given b
of a lattice point into account as we do by choosing the proper

notions of shifts. Also, the actual transform is only a pdrt o 4 _ {h= Z B2 |
our contribution, which is a complete basic framework for nez
spatial hexagonal signal processing. _ 1
Organization. The first three sections after this introduction h=(shos o by ) € E(2)) (D)
provide background. In Section Il we give a brief overview oiNote that we use bold-faced symbols likdo denote coordi-
the algebraic signal processing theory in the general cade aate representations, i.e., sequences of scalars fromatte b
then, to greater detail, in the special case of shift-imrri field (assumed to b&). The corresponding element of an
finite signal models, which require polynomial algebras adgebra (or module below) is written unbolded like
underlying structure. In Sections Il and IV we sketch the Signal space = moduleThe signal space in SP is a vector
derivation of the signal models for a spatial 1-D latticeeThspace. Since filters operate as linear mappings on this space
derivation is structured to parallel the correspondingvdéion it obtains additional structure, namely those of.4mmodule,
of the 2-D hexagonal spatial signal models in Section Written as.M. In the infinite discrete time case, the module
(infinite case) and Section VI (finite case). Section VII seow(also in thez-domain) commonly assumed is
a small application example. Finally, we offer conclusidms
Section VIII. M={s=> s,27"|
nez
Il. ALGEBRAIC SIGNAL PROCESSINGTHEORY s=(...,5_1,50,51,...) € L2(Z)}. (2)

The derivation of the signal processing framework for the 2-

D spatial hexagonal lattice uses and makes it a natural part OSignaI model. Discrete signals arise in applications as
s ; . sequences of numbers (e.g., after sampling) not as elements
the algebraic signal processing theory [3]. In this backg 9 (e.g pling)

section, we first introduce the general theory and, in paidi of modules. These sequences naturally form a vector space
th n, t of a signal modelg which is ceztral i,n this trT:aorl-mwever, to have a notion of filtering and thus the associated

€ concept ot a sig . ' . . . r?/otion of Fourier analysis, an algebra and a module have to be
and the foundation for different ways of doing linear signa

processing. Then we discuss to greater detail the spedal Céhosen or assigned. This is the purpose ofsigeal model,
of shift-invariant signal models in 1-D and 2-D. The Iattereflnecj as a tripléA, M, @), where A is an algebraM is

ides the underpinning for sianal processing on theiaoa" A-module of the same dimension &s and® is a one-to-
E(ra?(\gggial IatL:ice pinning 'ghatl p N9 1B ne mapping fron’ to M. As an example, the signal model

For details that exceed the scope of this paper, we refer th%eplacingél with ¢2 in (1) destroys the algebra structure: the concatena-
reader to [3]. tion of two ¢2 filters is in general not ak? filter.
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Fig. 3. Visualization of the finite discrete time model (5) foniah the DFT
is the Fourier transform.

Fig. 2. Visualization of the infinite discrete time model (3).

adopted in infinite discrete time SP is given Byin (1), M

in (2), and@ is the z-transform for V. = C™ by choosing a basi$ = (po,...,pn—1) and

P S:(~-.,S_1,So,81,.‘.)HS:ZSnzin. (©) setting

net A= M = Clz]/p(x), .
It is a model for finite-energy sequences V = (*(Z). B: C" M, s 5=5(2) = Ygpoy sep(T). )
We call a modefregular if A = M. The model (3) is not -
regular. In (4), ® is the “z-transform” andzx is the shift (operator)

Once a model is chosen, filtering, Fourier analysis, androttBat generatesd. Signals and filters in this model both are
concepts are automatically defined through the well-delo Polynomials: s(z) € M and h(z) < A. Filtering is the
representation theory of algebras [3]. multiplication modulop(x)

In discrete models, the shift operator@@nerate the alge- o
bras.A.2 For example, (1) is generated by'. A signal model hs = hiz)s(z) modp(z).
is shift-invariant if and only if 4 is commutative. Weisualize As an example,

a model by letting the shift operator(s) operate on the basis

b of M implicitly chosen through® (e.g.,b = (27 ™),ez In A=M=Clz]/(z" =1), P:S+—> Z sex’  (5)
(3)) and by representing this operation as a graph. For eleamp 0<t<n

the discrete time model defined above is visualized in Fig.
(z~' is replaced byr). Note that the graph is directed, which i
intuitive, as it visualizes a time model. We will later enober
space models that have undirected visualizations.

o%fines a signal model. Filtering is multiplication of pobyn
Smials # and s moduloz™ — 1, which is equivalent to circular
convolution of the coefficient vectods and s [17]. For this
reason, we calib the finite z-transform [4].

Filtering in coordinates. Every filter h = h(z) is a linear

B. Finite Shift-Invariant Signal Models in 1-D mapping, and thus can be represented by a matfixwith

) ) . respect to the basisimplicitly defined in the model (4). This
In the previous section we have asserted that a shift invagisfines a mapping

ant signal model(A, M, ®) necessarily has a commutative

algebra A. If, in addition, the model is discrete and finite, p: A—=C"",  hw— My

i.e., for a finite number of samples, thet is a polynomial ) ] ) .

algebra [3]. Thus, polynomial algebras provide the underlying/» 1S the coordinate version of the filtér

structure for many signal processﬁng applications. Theowy h(x)s(x) mod p(z) < Mps.

many examples were developed in [3].
As necessary background for this paper, we introduce nowy is a homomorphism (of algebras), .8(h(x)) = h(o(x))

polynomial algebras and the necessary properties of sigfa all polynomialsg.

models built from them. We focus the discussion on the com-|n our example (5), the matrices(h) are precisely all

plex base fieldC. Other base fields are handled analogouslyirculant matrices. Thus, as well-known, circular convioi

Further, we start with the 1-D case, in which exactly ong equivalent to multiplying by a circulant matrix.

shift is available. The 2-D case (with two shifts) is dis@ts  shift matrix and visualization. Specifically, we calk)(z)

afterwards. As running example in this section, we use tiige shift matrix. The graph that hag(z) as adjacency matrix
signal model associated with the DFT. is called thevisualization of the model (4). It visualizes the
Polynomial algebras (one variable)Let p(x) € C[z] be a operation of the shift on the basis and, in a sense, the atruct
polynomial. A polynomial algebra (in one variable) is thé seémposed on a vectas by the signal model. The signal values
are associated with the nodes of the graph.
Cla]/p(x) = {s(z) € Clz] | deg(s) < deg(p)}- In our example (5)¢(z) is the circular shift matrix because

Clearly,C[z]/p(x) is a vector space, but it is also an algebra o :_xH_l mod (2" —1). The associated graph is the circle
we define the multiplication of polynomials modulo the fixe@noWn in Fig. 3. The graph, as its infinite counterpart in Big.
polynomial p(z). In the following, we require thap(z) has is directed. For this reason, we call (5) a finiteme model [4]._
pairwise distinct zeros denoted with= (ao, ..., a,—1). Note thatp(z) = 2" —1 =0 or Ikn = 1 encodes the cyclic
Signals models built from polynomial algebras.Assume Poundary condition. Reducing alf*, k € Z, moduloz™ — 1

C[]/p(x) is given. Then we can build a regular signal modafields the periodic signal extension associated with trosleh
Spectrum and Fourier transform. The spectral decompo-

3This means that every element.his a polynomial or series in the shift sitipn of the Signal spacg in the model (4) is given. by the
operator(s). Chinese remainder theorem (CRT). It decompaosésinto a



direct sum of one-dimensionad-modules, the spectrum of Polynomial algebras (two variables). Let p(x,y),
M: q(z,y) € Clz,y] be two polynomials in two variables. For

) simplicity, we require that both polynomials have the same
A: Clal/p(z) — Clal/(z —a0) & ... & Cla]/(z — an-), total degreé n and that the leading term, i.e., the term of
s = s(x) = (s(@), .-, 8(an-1)). highest degree, of(z, ) is 2™ and the leading term af(z, )
is ™. The polynomial algebra in two variables corresponding

A is the Fourier transform for the model (4) afqs) is the 0 p(z,y) andq(z, ) is writien as

spectrum of the signal.
With respect to the basisof M and the base&r®) = (1) A = Clz,y]/(p(z,y),q(z,y)).
in each of theClz]/(z — ag), A is represented by a matrix

the so-callecpolynomial transform As in the univariate cased is a vector space, but also an

algebra if we define multiplication modulgz, y) andq(x, y).
Po.o = [pe(ar)]o<k,e<n- This is done by performing division with remainder as far as

) possible with respect tp(z,y) andg(x, ).
As A, we also callP,,, a Fourier transform for the model (4).  The dimension of4 is n2: a possible choice of basis fot

The algebraic theory establishes that the transform istiVe s (,iyi | ; j = 0,...,n— 1}. We require in addition that the

(with the a}bove assumptions). - seta = {(u,v) € C? | p(p,v) = q(u,v) = 0} of common

Computing the Fourier transform for a signabecomes in zeros has the maximum possible cardinatify
coordinates the matrix-vector multiplication Signal model built from polynomial algebras.We set4 =
A(s) & Pyas. M = Clz, y]/(p(z,y),q(z,y)). Letb = (po,...,pn2_1) be a

basis of M. Then we can define a signal model through
Choosing different bas€g,) in the spectrum yields theealed

polynomial transform O:C" =M, s—s=szy)= Y sy (6)

0<l<n?
diag(1/fo, .- -+ 1/Bn-1)Pe,a- Filter and signals both are polynomials in two variables:

We call any polynomial transform (scaled or not) a Fouriel?(;r’]g)' s = s(z,y). Filtering is the multiplicatiorh,s modulo

transform for the model (4) and denote it wifh p g . . o
In our example (5), the zeros of* — 1 are given by Flltc_ermg in coordinates. Every filterh = h(z,y) |S§I|ngar
a=(W,...,w" 1), wn = exp(—27j/n). Thus, the spectral mapping, and thus can be represented by a matfixwith
decomgbsitiz)nnis T ' respect to the basis This defines a mapping
A C"QXHQ, h— My,
A Clal/p(e) — Clal/(z - w0) & ... 0 Clel/(@ — ), oAz oA

0) s(wr=1)) i.e., M}, is the coordinate version of the filter with respect to
n)y e S\Wp : the basish. Filtering in coordinates thus becomes

The polynomial transform is precisely the DFT:
POl precisely h(z,y)s(z,y) mod (p(z,y), q(z,y)) & Mys.

_ ke _
Po.a = [wn Jo<k,e<n = DF Ty . ¢ is a homomorphism (of algebras), i.ep(h(x,y)) =
This further motivates the notions of finitetransform and /(¢(2),¢(y)) for all polynomialsh.
finite time model introduced before. Shift matrices and visualization. In difference to the 1-D
Diagonalization properties. The algebraic theory assertscaSe, we now have two shift matrices, namelfy:) and¢(y),

that the matrices diagonalized by any Fourier transfof -8 o associated graphs with the same set of nodes. We
i.e., (scaled) polynomial transform, are precisely therives Visualize the model (6) by superimposing these graphs, i.e.

s=s(z) — (s(w

#(h), h € A. Specifically, by the graph that hag(z) + ¢(y) as adjacency matrix.
Spectrum and Fourier transform. In the 2-D case the
Fo(h)F~' = diag(h(a), - - ., h(eu—-1)). CRT again gives the spectral decomposition of the signal

spaceM in the model (6). By assumption the polynomials
p(x,y) and ¢(z,y) have n? distinct common zerosx =
10, 10), - -5 (Hn2_1,Vn2_1)). Now, the CRT decomposes
= Clz,y]/(p(z,v),q(x,y)) into a direct sum of? one-
dimensional4-modules, the spectrum o¥1:

The collection of theh(ay) is the frequency response of the
filter h.

Applied to our example, this establishes that the DF
diagonalizes all circulant matrices, a well-known fact.

C. Finite Shift-Invariant Sgnal Models in 2-D A: M — @0§i<n2 Cla, y/ (@ — piry — vi), @)

Extending the theory of the previous section to 2-D signal * = s(,y) = (s(po, o), -+ 8(kn2 -1, Vn2-1))-
models is in most parts straightforward. The main diffeeenc ,
. . . . . The total degree op
is that in 2-D two shifts are available, which means wg,,
have to work with polynomial algebras in two variablegy. Sstrictly speaking the algebra is defined by computing moduépideal

Consequently, we now also need to compute modulo erated by(z, y) andg(x, y), see [18]. In general, an ideal may have more
han two generators, but not in this paper. Also, the simpéedy algorithm

least) two P(?'yn()_mial$’_(x» y), q(z,y) to make the polynomial ot performing division with remainder with respect tdz,y) and q(z, y)
algebras finite-dimensional. works in our situation; in general a &sner basis is required [18].

(x,y) is the largest + b over all summandsz®y®
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A is the Fourier transform for the model (6) afs) is the
spectrum of the signal. Choosing the basis in M and (1)

in each spectral componenk is represented by the matrix ,
Fig. 4. The space shiff o tp,.

,Ph@ = [P(&(/lka:)}ogk,éoﬂa

1 1
which we call a 2-D polynomial transform and also a Fourier ° 2 . 2 >o
transform. Invertibility is guaranteed under by the algébr ln—k 128 btk
theory under the above assumptions. Fig. 5. Thek-fold space shifigy © tn.

As in the 1-D case choosing different bases in the spectrum
yields ascaled polynomial transform#.

Diagonalization properties. The Fourier transfornf diag- ~ We introduce the procedure in this section by sketching the
onalizes precisely the matricegh), whereh = h(z,y) € A.  derivation of 1-D space models, which eventually leads & th
Specifically, DCTs and DSTs as associated Fourier transforms. The same

Fo(h)F~1 = diag(h(p0, 10); - - hfn2 1, Vn2—1))- derivation will later yield the signal models for the sphtia

hexagonal lattice and also highlight the analogy betweén 1-
The collection of theh(u,vy) is the frequency response ofDCTs and the new transforms to be introduced later.
the filter h. The detailed version of the derivation can be found in [5],
The separable caseThere is a simple way to constructwhich also contains all the proofs.
a 2-D signal model from a 1-D signal model, M, ®) as
explained in [5]. Consider the 1-D signal model f@f in

o . A. Derivati
(4), which implicitly fixes the basi$ = (po,...,pn_1) and erivation ,
A= M = Clz]/p(). The derivation of the discrete 1-D space model (as the
The correspondingseparable 2-D model is obtained by derivation of the other 1-D models in [3]) follows three step
setting definition of the shift, linear extension, and realization.
Definition of the shift. To define a suitable shift operator
AxA = MxM=C[z]/p(r) @ Cly]/p(y) ¢, we first need a set ofpace marks (t,)ncz, the shift can
= Clz,y]/(p(z),py)) operate on. These marks will later be associated with the

discrete signal values. We denote the shift operation aditr
with ©. The well-known time shift would be defined as
b : CV" o M x M, qoty, = tny1; the below derivation would yield thetransform
. . and DTFT in the infinite case, and the finitetransform and
s s =s(zy) = Z sk.ePk(T)pe(y)- DFT in the finite case
0<k,f<n ’

) ) Since we want an undirected model, the shift has to operate
The model is usually adopted for a squaren array of signal symmetrically. The simplest choice is

valuegs € C™*™; we emphasize this by writin@”*" instead 1
of C™ . qotn - 7(tn—1 + t"+1), (8)

A Fourier transform for this model is simply the Kro- 2
necker product ofP, , with itself. The visualization of the which we call the (1-D) space shift. It is visualized in Fig. 4
model is the direct product of the 1-D visualization (the Next, we need &-fold space shify. A suitable definition
graph) with itself. The adjacency matrix of this graph i$s 1
o(z) ® 1, + 1, ®¢(y). Examples are shown in Figs. 1(a) and i Otn = = (tpk + tpak)- 9)
(b) (without the boundary conditions). 2

The signal models derived in this paper are nonseparabll.is visualized in Fig. 5. Every space mark is reachable from
t, with exactly onek-fold space shiftk > 0.

II. I NFINITE 1-D SPACE MODELS From the definition it follows thaty, = Ti(q) is the

So far, we have introduced the general framework (provid%imySheV polynomial of the first kind and degree This

. . . i comes clear from the power form ©f; see Table Ill in
by the algebraic theory of signal processing) for shi nt Appendix A, which we invite the reader to read at this point.

signal processing, focusing on the finite case. This framewo Linear extension. We first linearly extend the operation of
will also provide the underpinning for the spatial hexagona | sntn} and then to
n n

: . ; . ¢ to the entire vector spacét = {>_ _,
lattice. However, the question is how to derive the appedpri T ne X
signal model to apply the theory. the operator domaid = {>_, -, hxTk(q)}. M will become

. - . our signal module, ant the associated filter algebra. Note
In [4] we introduced a procedure for deriving signal modelt%a,“4 contains only right-sided sequences sifes, — T}
from basic principles and used it to derive the well-know y ng q -k

infinite and finite time models discussed before, but also gorause this h.OIdS fag, in (.9))' .
A - . . Through the linear extension, filtering ferce M andh € A
derive infinite and finitespace models. Space, in the algebraic

theory, means that the model is undirected versus the el'ctecltS now abstractly defined as

signal models associated with time. This will become cleare Z hiTr(q) © Z Sptn = Z Z his;(Ti(q) ot;). (10)
below. k>0 nez n€Zitj=n

and



Since the sums are infinite we have to take care of convergence P

issues. This will be done next as part of the realization. . . ° o * - - -
Realization. The realization replaces the abstract shift and To T I T3 Ty

space marks with concrete objects. We do this by setfirg

[ ) [ ] [ ) ] @ o o o
x ando = - (the ordinary multiplication). The space marks Uy U, U, Us U,
are .nOW determined as polynomialsafNamely, (8) is now Fig. 6. Visualization of the infinite space models given by €téransform
equivalent to for C € {T,U}. For each internal edge, the arrows go in both directions and

are thus omitted. Also, the common edge scaling faty® is omitted.
tn+1 = 2xtn - tn—ly

which is precisely the recursion for the general Chebysh%v Properties
polynomials (see (35) in Appendix A). Thus, '
Visualization. The visualization of the above models are
tn = Cp(z). obtained by letting the shift operate on the basis. For the
T- and U-transform we obtain the two graphs in Fig. 6 (the
After normalizingCy = 1, there is a degree of freedom incommon factor ofl/2 is omitted). Note that the graphs are
how to chooseC; as a polynomial of degree I}, and ¢; undirected, which motivates the notion of space model.
together then determine all,, n € Z. Sincedeg(C,) = n For theT-transform, the extra arrow froiy to 7 repre-
for n > 0, {C,, | n > 0} is a basis of all polynomial€[z]. sents the left b.c_; = T;. Similarly, for the U-transform

Since everyC_,,, m > 0 is also a polynomial of degree atU-1 = 0 implies the absence of this arrow.

mostm, it can be written as Spectrum and Fourier transform. The infinite space
models in (12) have an associated notion of spectrum, Fourie
m = Z $¢Cy, (11) transform, and frequency response [5]. We will not show them
0<0<m here due to space limitations and to focus on the finite case

discussed next.
where s, € C. In other words, the left half of the sequence

n < 0 depends on the right half > 0. As a consequencéy

can contain only right-sided sequences,.., s,C, and (11)

encodes the left signal extension associated with To obtain finite space models associated with the infinite
Since we have a degree of freedom in choogihgwe force ones in (12) is only a small step. Since these models should

the simplest possible signal extension, catazhomial signal also be shift-invariant we know already that their underly-

extension. This means that in (11), the sum has at most dng structure will be provided by polynomial algebras. The

summand for alln > 0. As shown in [5], there are exactly fourquestion is how to construct them. In particular, the crucia

series of Chebyshev polynomials that yield a monomial signguestion is how to choosg(x) in (4), which determines the

extension, denoted witle’ = T,U,V,W. They are called, filter algebra and the signal module, the notion of filteriaggd

respectively, the Chebyshev polynomials of the first, sdcorthe spectrum. It turns out that the choicepdf) is equivalent

third, and fourth kind; the first two kinds are explained irio the design of proper boundary conditions.

Appendix A. ForC = T, (11) becomesl,, = T,,, i.e.,

the signal extension is whole—_point symmetric; _ﬁr: U, A Derivation

U_,, = —U,,_2 holds, which is whole-point antisymmetric

and impliesU_; = 0. We want to build a model for discrete finite signas=
Filtering as in (10) (for right-sided signals) converges ifo:---$n—1) € C". Following the same steps as in the finite

h € (1(N) ands € £2(N). case seems to lead to a signal space consisting of polyromial

of degree less than represented as

IV. DERIVATION OF FINITE 1-D SPACEMODELS

Infinite 1-D space models.In summary, we obtained four

infinite space signal model$A, M, ®) for V = (*(N), s = s(z) = Z 50:Co(x). (13)

collectively described by - 0<t<n

A={h=Y -, mTi(x) | he (N}, As discussed _b_efore, the choic_e of determines the Ieﬁ
M= fs = = Co(2) | € 2(N)} (12) boundary condition and the Ieft_S|gnaI extenspn. Fogr_M|
{s Z"ZO Snbonl® ’ of C' lead to a monomial extension. However, in the finite case
P: VoM, s onCnla), we also have to take care of the right boundary.

Right boundary. The problem with (13) is that these
whereC' € {T,U,V,W}. @ is called theC-transform, or if polynomials are not closed under the shift operation, since
the choice is SpeCifiedT-, U', V', W -transform. Note that mu|t|p|y|ng byx increases the degree_ Specifica”y,
the filters are represented as series in #Held space shifts
Ty, independent of the choice @f. Filtering in this model 2C, | = 1(0,,,_2 +C)
is the multiplicationhs, whereh € A ands € M. The 2
corresponding operation on the coordinate vectorand s has degree:. This can be fixed by introducing dght b.c.
(not shown here) is the associated notion of convolution. that expresse§’,, as a linear combination ofy,...,C,_1
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Fig. 7. Visualizations of the finite space models for which B&T, type
3 (above) and the DST, type 3 (below) are Fourier transforngaid the
common edge scaling factdr/2 is omitted.

[ ) [ ] [ )
t_1,-1 to,—1 t1,-1

tmfl,nJrl c e tm,nJrl
. . ° [ ]
and effectively reduces the degree again: 3, L3
3 3

C, = Z 6:Ce & p(x) =C, — Z BeCy = 0. tnn @ —>o e+ tymp

0<t<n 0<i<n /% tm+1,n tmfl,n %
Mathematically, this means that the signal space beconges th °
m,n—1 tm+1,n71

polynomial algebraM = Clz]/p(z). So we get the desired
structure and understand that the choice» @$ equivalent to Fig. 8. A hexagonal array of space marks and two hexagonaksgfitts
the right b.c., which in turn determines the entire righthgig 7 tmm 817 tm.n operating on it

extension by reducing’,, £ > n modulo p.

Again, we are interested in the simplest, i.e., monomial . . .
signal extension. It turns out that for each of the four casic Jnitary version. TheDCT-3,, andDST-3, diagonalize the

of C there are four possible right b.c., leading to a total gtdiacency matrices of the two graphs (i.e., the shift mesjic

16 finite space models corresponding to 16 DCTs/DSTs B Fig- 7. respectively. Since these are almost symmetric
associated Fourier transforms. (since the graphs are undirected except for the boundény), t

We consider two cases. F6f = T, the b.c.T,, = 0 implies transforms are almost unitary. Indeed, as it is well-known,
: ‘ suitable scaling factors make the transforms unitary amsh ev

the right signal extensio®;, , = —1,,—x. ForC = U, 2T,, = . 1o THanrs ' :
U, — U,_» implies the b.cU, = U,_» and the right signal orthogonal. Their derivation is explained, e.g., in [5].
extensionU, 4 = Up_j—o. Separable extension to 2-DThe separable extension of the

Finite 1-D space modelsWe only state the above two outl-D Space models to 2-D is straightforward using the theory i
of sixteen finite space models since they have correspondigction I1-C. Fig. 1(b) visualizes the models obtained ftt

2-D hexagonal space models derived later. boundary conditions).
The two signal models are simultaneously defined by
A=M=Clz]/T,,, P: s— Z seCo,  (14) V. INFINITE 2-D HEXAGONAL SPACE MODEL
Osé<n A. Derivation
where C € {T,U}. We call & a finite T-transform orU-

The derivation of a signal model for the 2-D hexagonal
spatial lattice is completely analogous to the derivatibthe
-D space models in Section IlI-A. The reader may want to
frequently go back to that section to get a better intuition
for the proceedings here. The crucial starting point for the
derivation of the hexagonal space model is the proper choice
) of two shifts.
B. Properties Definition of the shifts. First, we define a 2-D array
Visualization. In (14) for C =T, the left b.c. iss_; = s1, of space markgt,, »,)m.nez, assumed to be arranged on a
sinceC = T'. The right b.c. iss,, = 0, sinceT,, = 0 in M. hexagonal® lattice as shown in Fig. 8 (left). Since we derive
The operation of the shift yields the visualization in Fig. & 2-D model, we need two shift operatarsg. Every space
(top). mark has six neighbors, so each shift should contain three. A
In (14) forC = U, the b.c.’s are reversed. Thebasis inM  proper definition is
assertss_; =0, sinceU_; =0, andU,, — U,_o = 0 implies

transform.

In both cases, the elements.df(the filters) are expressed a
h =73 g<pen Ty, i.€., as combination of-fold space shifts.
Filtering in both cases is the multiplication of polynonsial
moduloT;,,. The difference is in the choice of basis. M.

Sn = Sp—2. The visualization is shown in Fig. 7 (bottom). Gotmn = l(tmﬂ n bt +tm1ns1), (15)
Fourier transform. We consider (14) fo€' = T. The zeros ' 3 ’ ’ 7

of T,, are given in Table Il in Appendix A a&; = cos(k + qotmn = l(tm.n—&-l +tm—t1mn +tmiin-1). (16)

1/2)w/n, 0 < k < n. The (polynomial) Fourier transform is 3

thus given by the DCT, type 3: They are visualized in Fig. 8 (right). Overlaying these tshifn

_ _ . _ ) the hexagonal lattice yields each edge in each directiois Th
F = Poa = [Telcos(k +1/2)m/m)osk,e<n = DCT-3n. will later make the model undirected, i.e., spatial, as rdesi
Similarly, (14) forC = U has the DST, type 3 as associated

Fourier transform (a scaled polynomial transform in thisea  ®Every point has at equal distance six neighbors, which fornexagon.
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R Rtk of o to A and M:

Z hk,éTk,Z(q7a)0 Z Sm,ntm,n =

tm—k—e,n+k

tm+k,n+£ k,£>0 m,ne”Z
g . _
> S hinsie(Ti(q,7) otie). (21)
..'é m,n€”Zi+j=m,k+0=n
g \ Convergence issues and boundaries will be handled next.
':. Realization. For the realization, we sef = z,q = v,
bt kttn—t and ¢ = - (multiplication). The space marks, , are now

determined as polynomials in two variables. Namely, (1%) an
(16) are precisely equivalent to the two recurrences for the
general Chebyshev polynomials in two variables (see (480) an

® tmttn—k—t (41) in Appendix B). Thus,
Fig. 9. The(k, ¢)-fold hexagonal space shii, ¢; the common edge weight
of 1/6 is omitted. In particulargi o0 = g, go,1 = ¢. tmn = Crn(T,7).

Appendix A asserts that six initial conditions are needed
to determine the entire arrafC,, , | m,n € Z), namely
C()’() = 1,0(),1, C(]727017(),01717027(). As in the 1-D case, the
question is which choices yield a simple, ideally monomial
1 signal extension? In the 1-D case we proved that there are ex-
kb O tmn = E(tm”“v”” Flmtkitn—t T bnttn—k-t actly four choices [5]. Here, the situation is more comitica
+tm—tn—k + tm—k—tntk + tm—kntrre) (17) We do not have an exhaustive characterization, but give only
two choices ofC,, ,,, which provide a monomial extension.

Next, we need &k, ¢)-fold shift g, ,. The proper definition
is

and is visualized in Fig. 9. In particular, Namely, as one may expect, the Chebyshev polynomials of
1 the first and second kind in two variables (see Appendix B):
W0 ©tmn = g(tm%-,n + tmn—k + tm—kn+k), (18) 7 andU. The monomial extension in both cases follows from
the symmetry properties in Table 1V, Appendix B.
90,6 0tmn = g(tm,nJr@ +tm—tn + tmren—e). (19) For C = T, that table establishes symmetry with respect

to both z-axis (formed by all space marks o) and y-axis

N hat f intinthe h I . ) .
ote that for any space matk, , every point in the hexagona (formed by all space marks ;) in the hexagonal lattice. Using

lattice is reachable with exactl -fold shi > 0. X : .
attice is reachable with exactly orié, ¢)-fold shift, k, ¢ > 0 this symmetry, event,, , with m < 0 orn < 0is aT,,

Further,q = ¢1 0 andg = go.1. . P . . ;
Here, the Chebyshev polynomials in two variables (of tl“\ﬁé"th m,n' >0 as already explained in (20). In particular, we

first kind) come into play the first time. We invite the readero e the left and bottom boundary conditions

to read Appendix B at this point. T 10=Tie1 (left boundary), (22)
o o . Tk,—1 =Tk-1,1 (bottom boundary). (23)
Lemma 1 The (k, ¢)-fold shift is a polynomial ing, g. Specif-
ically, Similarly, for C = U, Table IV establishes antisymmetry
Qe = Tit(q,7), with respect to the two axes given by the space magks,

andt_; 4, respectively. The left and bottom boundary is thus
whereT}, , denotes the Chebyshev polynomial of the first kingiven byU_ 1= Upj,_1 = 0.
in two variables. This discussion establishes that the hexagonal space model
) will be for 2-D signals on the positive quadrabf x N
Prqof: The ass_ertlon folloyvs from the power form @, only. Convergence of filtering as in (21) for these signals is
shown in Table 1V in Appendix B. ®  guaranteed ih € (}(N x N) ands € £2(N x N).
Linear extension. As in the 1-D case, we extend the™ | ie op hexagonal space modelsin summary, we

shift operationo linearly first to the entire vector SPaCeypiain two infinite hexagonal space modéld, M, ®) for

M = {3 nez Smantmn} and then to the operator domainy, _ y2(y « ). They are jointly defined by

A= {Zk,£>0 hi¢Tke(q,9)}; k,¢ are non-negative, since the

symmetry properties df}, , (see Appendix B) show that each 4 — {h =3 so0 M The(z,y) | h e (N xN)},

Ty, is equal to aly  with k',¢" > 0. Specifically, for M={s= 27 s (z) | s€ (N x N)}
- - m,n>0 °m,n~mn )

k,g >0, Ty _¢r=Tp, and
7 ’ Q:V— M7 S Zm,,n>0 Sm’ncm,n<x7 y)7
Thur >k Teee k>1( - (24)
Tope = {Te vy C<kTPTET { k<t (20)  whereC ¢ {T,U}. We call® the 2-D hexagonal’-transform
' or, if specified,T- or U-transform. Note that independent of
M will become the signal space antlthe associated alge- C, the filters are represented as seriegjr, the (k, ¢)-fold
bra of filters. Filtering is defined through the linear exiens space shifts.

To—tk



. large square in the representation, which is displayededhsh
B for this reason.

Fig. 11(c) was obtained by slightly adapting [19], which
A studies the dual situation to this paper, namely, in SP terms
2-D continuous signals that are defined on a triangle and
symmetrically extended to the entire plane.

AVAVAVAVE

VI. FINITE HEXAGONAL SPACE MODEL

> The derivation of the finite hexagonal space model is

(a) Visualization forC = T analogous to the derivation of the 1-D space model in Sec-
tion IV. This means, the problem is in designing the boundary
conditions and thus the proper polynomial algebra. Theigéne
theory in Section 1I-C then provides all basic SP conceptk an
in particular, the associated Fourier transform.

A. Derivation

We build a model for anmn x n array of signal values
(Sk.0)o<ke<n € C™*".7 Following the derivation steps in
Section V leads to a signal space consisting of polynomials i
two variables, represented as

s=s(z,y) = Z sk,0Croe(,y), (25)

0<k,b<n

(b) Visualization forC = U

Fig. 10. Visualizations of the two infinite spatial hexagbsignal models

givenf in (2#]2 (@) 2-D heﬁagonaf-trr]ar;sform: and (b) 2-(? hexagonal-  whereC' = T or C' = U to ensure a monomial left and bottom

t . t factor tted. . : . ) .

ransform. The common edge weight factorlgfs is omitte signal extension. Since the array is now finite, we also have
to take care of the rights(> n) and upper { > n) boundary.

Filtering in this model is the multiplicatiorhs of series ~ Right and upper boundary. Applying anz- or y-shift to

he A sc M, and can be evaluated using (21) and (17). THe SPace mark’,_, . at the right boundary or a space mark
corresponding operation on the coordinate sequehcsds Ck.n—1 @t the upper boundary leaves the array. For example,
is the associated notion of convolution.

1
anfl,Z = g(cn,l + Cnfl,éfl + Cn72,5+1);

B. Properties Ch ¢ is outside the array. In other words, the set of polynomials
Visualization. In (24) we have to distinguish the caggs= N (25) is not closed under shifting. To remedy this problem,
T andC = U. If C = T then the left and bottom b.c.’s arewe introduce right and upper boundary conditions, which in
given by (22) and (23). The operation of the two shifts yield&irn define right and upper signal extensions. Again, we aim
the visualization in Fig. 10(a). for the simplest signal extension. However, in this case a
Due to the antisymmetry with respect to the coordinate axg¥nomial signal extension seems to be not achievable, only a
we getlU;, 1 = U_1 o = O forall k, ¢ € Z. Thus, the operation 2-monomial extension. This means that evefy, with v > n
of the two shifts yields the visualization in Fig. 10(b). orv > n is a linear combination of at most two inside
Spectrum and Fourier transform. The spectrum and the array. _ .
Fourier transform for the models (24) are obtained simyjlarl Due to the more complicated structure of the model, unlike
as for the infinite 1-D space models [5], namely by expanding the 1-D case, we do not claim an exhaustive list of
5= 8mmCm.n(z,y) using the power form of’ and setting reasonable possible signal extensions. Rather, we prdoide
u = e/t andv = e/*2. The frequency response of a filtereach of the two infinite models in (24) one choice, thus
h is obtained in the same way. The spectrum is period@btaining two finite models.
in w; and w, but has additional six-fold symmetry, which We considerC' = 7" and claim that
reduces the domain to the triangle in Fig. 11(c) with symioetr
. T =M=C Tho,Ton 26
b.c.’s. For contrast, Fig. 11(a) and (b) visualize the spect A=M [ 91/ {Tn.0, To.n) (26)
of the 2-D z-transform (periodic in both dimensions) andsields the desired extension. First, we compute the righkt an
the 2-D T-transform (symmetric in both dimensions on theipper boundaryZ,, o = 0 implies that
smaller domain shown, since the spectrum possesses a four-

1
fold symmetry). 0 = TorTho= g(Tn,k +Tn k0 + Tngk,—k)
In other words, in Fig. 11(b) the torus (square with periodic 9 1
b.c.’s) in Fig. 11 is partitioned into four squares as sholmn. = ng,k + ngfk,Ou

Fig. 11(c) the torus is partitioned into six triangles asvemo
Note that four of these triangles cross the boundary of th€Extending the discussion ta x n arrays is straightforward.
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C 7

0 0
0 J 2 o Y 2
(a) 2-D z-transform (b) 2-D T-transform (c) 2-D hexagonall-transform

Fig. 11. Visualization of the spectral domains (gray aredhefinfinite 2-D time, space, and hexagonal space models i@the2 plane. The symmetries, or
boundary conditions, are apparent throyghy) parameterizations: (g?«1, e7“2) (periodic); (b)(cos(w1), cos(w2)) (Symmetric); (c)%(ef“’l +elw2
e Iwitws) o—jw1 4 e—iwa 4 gi(witw2)) (symmetric). Thel-transforms’ parameterizations yield antisymmetric b.c.’¢ipand (c).

where we used (18) and (20). The same computation can be  ____________________________
performed starting witffg , = 0. We get

The= —% n—c,0 (right boundary), 27)
Tim = —%To,,b_k (upper boundary). (28)

The left and bottom boundaries are the same as in the infinite
model (22) and (23).

To get the right signal extension, we multiply (27) By o
using again (18) and use the symmetry properties in (20).
Similarly, we multiply (28) byT},, to get the upper signal
extension. The result is

Toike=—Tn-ko+k — Th—k—t,k,

Temte = —Thren—t = Ten—k—e- Fig. 12. Visualization of the finite 2-D hexagonal space mddelwhich

_ DTT, type 1, is a Fourier transform (the case= 5 is shown). For all
in I'[:f?er Sre_\/iOUlesz:ea:es.e'l:[fTee esfeflg;f glge;rffaérir:qctj g?i?lso(ﬁéaggid (dask?epd) lines a common edge scal(ing factor/&f (—1/2) is)omitted.
conditions and signal extension obtained analogous toeabov
Namely,Tn,o =0 imp“eSUn_’() = Un_gylfUn_?,’O (USing (43)
in Appendix B). Multiplying this equation witfT, , yields the be computed using (17) and (27) and (28) for the modulo
right boundaryU,, ,. The upper boundary is obtained similarlyreduction. The effect on the coordinate sequertesmds is
starting withZy ,, = 0. The result is the associated notion of convolution.

Un,(’, = Un—2,f+1 - Un—3—€,0 (rlght boundaW), (29) X
Ukn = Uky1,n—2 — Upn—s—k  (upper boundary).  (30) B. Properties

Visualization. To visualize the two finite models, we com-
pute the shift matriceg(z) and¢(y) by lettingz andy operate
on the respective basis d#1. The graph withy(z) + ¢(y) as

Finite 2-D hexagonal space modeldNe derived two finite
signal models fol/ = C™*". They are jointly defined by

A=M=Clz,yl/(Tao, Ton), adjacency matrix is the visualization of the finite model and
P 70 ’ (31) is shown in Fig. 12 fom = 5. The inner structure and the left
P8 D o<k e<n Skt Chits and bottom are the same as in the infinite case (see Fig. 10).

whereC =T or C = U. We call ® the finite 2-D hexagonal The right and upper boundary reflect (27) and (28).
C-transform (orT- or U-transform). Both models are regular. Spectrum and Fourier transform. The spectrum is deter-
The basis in4 consists, independent @f, of the (k, ¢)-fold mined by the solutions of}, o = 7y, = 0. To do so, we
space shiftsly, ». use the power forms (44) and (45). Setting in these equations
Filtering in this model is the multiplicatiorhs of poly- a = ™ andb = v™, we first solve fora andb; the nth roots
nomialsh € A ands € M modulo T, , and T, ,. It can are then the resulting and v and can be inserted into (42)
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for the result. The desired? pairs of (u,v) are their visualizations in Fig. 7 are undirected except for the
boundary. Using the same argument, we derive a unitary

. N 7 1+37 )
(w5, v;) = (Wn,wsn ™), 04, <, (32)  version of the DTT, focusing on type 1.
which determine the zerog:; j,v; ;) via (42). The spectral The ad_jacency matrix of the visualization _in Fig. 12 is, by
decomposition ofM is now a special case of (7). construction,¢(z) + ¢(y). Also by construction, the graph

The Fourier transforms for the two models are accordingl§ undirected, except for the boundary. The goal is to find
given byn? x n? matrices, which we call theiscrete triangle  @n n” x n°-matrix D,,2, such thatD > (¢(x) + ¢(y))Dp2 is

transforms (DTT)8. For theT-transform it is given by symmetric. ThenDTT,,«,, Dy2 is unitary up to possibly a
scaling of the rows. The solution (provided without proc) i

sn = [Th,e(Ti 5 Yij)o<i j<n,0<k b< (33) Dis— Ros . (34)

we call it the DTT of type 1. The double indek, j) is _ _ . _
the row index, andk, ¢) is the column index of the matrix, Hlere, Rp2 1s an orth(_)gongl matrix that aPP"e_S the .rotat|on
both ordered lexicographically. The exact form is obtainedz DFT? to each palr of mpgt elem(.ants. with indices: +

by inserting (32) into the power form df},, (Table IV in 7 (7 _3)7}1+ (n—4)), 1 <4,j <mn i+ j#n There are
Appendix B): the entry at positiof, ), (k, ¢) is then given €xactly (") such pairs.

by E,» = diag(L) is diagonal. The listL is given by the
concatenatiomjf;o1 L;, where eachl; has lengthm. Further,
%(wgszfﬂjf@ + wé’)icljf?)éwrk + w§)51+321+3€j+2 LO _ %(17 \/g, el \/g)' and, fori = 1’ o ,TL*].,
+(.U§f;+3k]+3£]+k+z+u}3_skl_3£1_3k]_k+W3_skl_3k]_3£J_k_Z).

Li= g(\/§/2,\/§,...,\/§,1,...,1).
The DTT is invertible by construction (see Section II-C)dan " n—i i1
even “almost” orthogonal as explained below.

The smallest example is = 2. We haveTy o, = 1,7y, =
y,TL() = $7T1,1 = %(31’1} — 1); the zeros Otrzyo = TO’Q =0,

No further rescaling of the rows is necessary, i. e., theimatr
DTT, «x, D,z is unitary. In particular,

i.e., 3z2 — 2y = 3y® — 2x = 0, are given by (in this order) DTT,}, = D,: DTT},,,,
(2,2),(0,0), (2ws, 203), (203, 2ws). sinceD,,» is real and symmetric(-)* denotes the transpose-
_ . conjugate of a matrix.
Thus,DTTsx is thed x 4 matrix Diagonalization ~ properties. The general theory
1 2 2 1 (Section II-C) establishes that the matrices diagonalized
o0 by DTT,., are precisely the matrices)(h(z,y)) =
DT Ty s — L0 0—3 h(o(x), o(y)), h € A. In particular, the adjacency matrix of
. 1 203 2w3 ¢ the visualization (Fig. 12) is diagonalized.
L fws 508§

o . o C. Discussion
Similarly, we can define a DTT of type 2 by replacifigwith

U in (33). Signal model versus actual dataThe DTT processes an

It is well-known that the 2-D DFT samples the continuoug X n array, just I|k_e the 2.'D DFT, any 2.'D DCT’_ or any
-D transform considered in [10]. In particular, this means

spectrum associated with the 2-Btransform in Fig. 11(a) that the DTT could be applied to data given on a rectangular

at lattice points(ay,8¢) = (2nk/n,27l/n), 0 < k£ < n. : . ) :
Similarly, the DTT (type 1) samples the continuous SloectruIna;'tnce. The decision which transformation actually to ab®

associated with the 2-D hexagorigitransform in Fig. 11(c). 'S up tp t_he user gnd motivates our notion of a signafiel,

. L . which is implicitly imposed by the transform chosen and best
The details are shown in Fig. 13. Namely, (32) determm%snderstood by its visualization as graph (Fig. 1). Applyin
the sampling points in Fig. 13(a) spread over the entire y grap g. 2). Applymng

torus in Fig. 11(a), i.e., over all six copies of the triaraul model (via the generalizegttransform®) means associating

spectral domain in Fig. 11(c). To obtain the actual samplinthe given discrete data with the nodes of the graph, which

we map all points into the triangle (Fig. 13(b)) using afﬁngﬂphcnly imposes distance relations including the prese

mappings according to the symmetric b.cs in Fig. 11((%‘ a direction or not. The DTT, and its associated signal

The samoling points form a honevcomb pattern. which |sOde|' is designed for images (undirected model) in which
piing point: A honeycomb p . : ?ach pixel has six neighbors at equal distance and hencilshou
best seen by mapping (again in an affine way) the triangle . L
. I . the replacement for the 2-D DCT if the application at hand
to an equilateral one as shown in Fig. 13(c). For practlcaF

. : . Satisfies this assumption.
applications Fig. 13(c) seems to be a natural choice becaus%nderl ina continuous sianal model and samolina.in
the sampling points are evenly distributed. We will show ying 9 ping.

small application example later in Section VII. gtanda}rd time (i.e., (Eilrected).SP, for every discrete $igaalel
. ) ; . there is an underlying continuous model and the models are
Unitary version and inverse. In Section IV-B we asserted

.~ connected by sampling with an associated sampling theorem.
that the DCT and DST of type 3 are almost orthogonal SINEr undirected models, the corresponding theory does st ex

8The name reflects that the hexagonal lattice tessellates It fnto to our kT‘OW'edqe- For the DCT, we have recently id_entiﬁed the
equilateral triangles. underlying continuous model and the proper sampling thmore
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(a) Sampling points determined by (32) (b) Sampling points mapped into the triangle  (c) Triangle and sampling points in (b)
mapped to an equilateral triangle

Fig. 13. TheDTT,,«, samples the spectrum in Fig. 11(c) as illustrated here:fer 8.

as part of the algebraic theory [20]. As the discrete mod2) (1
underlying the DCT, also the associated continuous modgel ha
a notion of filtering different from the standard convolutio

The derivation of sampling theorems associated with the
DTT is still ongoing work. However, it is interesting to note
that our derivation of the the discrete models for 1-D time
(in [4]), 1-D space (Section Ill), and 2-D hexagonal space
(Section V) is bottom-up and does not require a continuous
model as starting point.

Connection to Gauss-Markov random fields.In [3], we
established the equivalence (under certain conditiornsydsn
shift-invariant finite signal models (in the algebraic thgo
and stochastic models given by Gauss-Markov random fields; ¢orresponding infinite model. The last column contaies t

(GMRFs) with proper boundary conditions. In particulaisth o models for the spatial hexagonal lattice.
established the same equivalence between the algebraic no-

tion of Fourier transform and the Karhunenéwe transforms
(KLTs) for these fields. The discussion focused on 1-D models
(Section 1I-B) but is readily extended to the 2-D models here In this section we give an example for applying the 2-D
An extensive treatment exceeds the scope of this paper; BET and the DTT to an image. The goal is to show basic
only give an example. Consider the non-causal first-ordeimilarities and differences. A detailed quantitativedstus

Fig. 14. 200 x 200 image of some leaves used for the experiment.

VII. APPLICATION TO AN IMAGE

GMRF defined on the index sét< k,/ < n by future work. In both cases we use the unitary version of the
transform, i.e., the total energy is preserved.
Sk, = a(Skt1,0+ Sko—1+ Sk—1,0+1) For the experiment we use tl0 x 200 gray-scales-bit
4+ b(Skp1 + k1.6 + Ski10-1) + Ukt image of some leaves shown in Fig. 14.

First, we assume the space model for the finite 2°D
where thes; ; are random variables;, b real constants, and transform (i.e., we impose the structure in Fig. 1(b)) anaicee
v, zero-mean Gaussian noise. Then the unitary DTT, i.@pply the 2-D DCT to compute the spectrum. The magnitude
the 2-D transform given bYDTT, ., D,2, is a KLT for spectrum is displayed in Fig. 15(a). This spectrum regylarl
these fields if proper boundary conditions, determined ley teamples the continuous spectrum associated with the @finit
model (31), are chosen. 2-D T-transform (the gray area in Fig. 11(b)). The bottom left

On the signal extension found.We asserted above thatcorner in Fig. 15(a) represents the low frequencies.
the signal models (31) have no monomial signal extension.Second, we assume the space model given by the finite
This seems to be an inherent property of the hexagonaldattie-D hexagonall-transform (i.e., we impose the structure in
each node has six neighbors; in particular, each node at #g. 1(c), which inherently distorts the image) and hence
boundary of Fig. 12 has two edged going outwards in contrasimpute the spectrum using the DTT. The magnitude spectrum
to one edge for the separable models (Figs. 1(a) and (b)).is shown in Fig. 15(b) and corresponds to Fig. 13(a). To

Summary of signal models.Table | summarizes all finite properly display the spectrum we map all coefficients to the
2-D signal models considered in this paper. In each case th&iangle in Fig. 15(c), which corresponds to Fig. 13(c). Thwe
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TABLE |
2-D SIGNAL MODELS DISCUSSED IN THIS PAPERTHE LAST COLUMN CONTAINS THE NEW MODEL DERIVED FOR2-D HEXAGONAL SPACE. ONLY THE
FINITE MODELS ARE SHOWN(THE COMMON WORD“FINITE” IN THE ROW FOR® IS OMITTED) AND ONLY TWO OUT OF THE SIXTEEN FINITE SPACE
MODELS, NAMELY THOSE WHICH HAVE A 2-D HEXAGONAL COUNTERPART.

2-D time (separable) 2-D space (separable) 2-D hexagoneéspa
A=M  Clz,yl/z" - Ly" - 1) Cla, yl/(Tn(2), Tn(y)) Clz, yl/{Tn,0(z,y), To,n (2, y))
P 2-D z-transform 2-DT",U-transform 2-D hexagondl’,U-transform
F DFT ® DFT DCT®DCT,DST ® DST type 3 DTT type 1 and 2
Visualization Fig. 1(a) Fig. 1(b) Fig. 12

200

180 60

160+ °
50
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120}

30

20

10

150 200 200

(a) 2-D DCT spectrum (b) 2-D DTT spectrum (raw data) (c) 2-D DTT spectrum

Fig. 15. Magnitude spectra of the image in Fig. 14 with respedhe finite 2-D space model and the finite 2-D hexagonal spaakeimo

frequencies are in the upper left corner. The common irtiensi ACKNOWLEDGMENT
scale for all plots in Fig. 15 is on the far left. We note that a ) ) ) )
few values much higher than 60 occur in all spectra. The authors would like to thank Aliaksei Sandryhaila for

We observe the energy compaction around the low frequehne—Iplng with the image experiment.
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TABLE I

© © b e © © CHEBYSHEV POLYNOMIALS OF THE FIRST AND SECOND KIND FOR SMALL
C, C_1 o Cy Cs VALUES OF 1.
Fig. 16. The entire two-sided sequence of Chebyshev polyalensi uniquely
determined by the initial condition§y and Cy (solid bullets) via (35). n=-3 -2 -1 0 1 2 3
C=T 423-3z 222-1 2 1 =z 222-1 42°-32
U —2x -1 0 1 2x 4z?>—-1 823 —4x

(23]

[14]
[15]

[16]
[17]
[18]

[19]

D. Van de Ville, T. Blu, M. Unser, W. Philips, I. Lemahiewnd
Rik Van deWalle, “Hex-splines: A novel spline family for heganal
lattices,” IEEE Transactions on Image Processing, vol. 13, no. 6, pp.
758-772, 2004.

R. Ulichney, Digital Halftoning, MIT Press, 1987.

L. Middleton and J. Sivaswamyjexagonal Image Processing, Springer,
2005.

H.-S. Wu, “Hexagonal discrete cosine transform for imagpding,”
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H. J. Nussbaumer, Fast Fourier Transformation and Convolution
Algorithms, Springer, 2nd edition, 1982.

D. Cox, J. Little, and D. O’Shea,ldeals, Varieties, and Algorithms,
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T. Koornwinder, “Orthogonal polynomials in two varigsl which
are eigenfunctions of two algebraically independent phdifferential
operators (part Ill),"Indag. Math., vol. 36, pp. 357-369, 1974.

Both parameterizations exhibit trggmmetry property

T, =T, (38)

The form (37) can be used to readily derive the zero%of
Similar properties hold for the Chebyshev polynomials of
the second, third, and fourth kind, denoted®y, V,,, W,,, re-
spectively, that arise from different initial polynomials, C;.
They are summarized in Table III.
There are also numerous relationships between Chebyshev

[20] J. Kovacevic and M. &schel, “Sampling theorem associated with th : ; ; -

discrete cosine transform,” iRroc. ICASSP, 2006. %Olynomlals of different kinds. We will use only
[21] R. Eier and R. Lidl, “A class of orthogonal polynomialsirvariables,” 1

Math. Ann., vol. 260, pp. 93-99, 1982. T,==(U, —U,—2). (39)
[22] T. S. ChiharaAn Introduction to Orthogonal Polynomials, Gordon and 2

Breach, 1978. In addition, we will need the following property that is

shared by all sequences of Chebyshev polynomials including

APPENDIXA
T andU (see [22)).

CHEBYSHEV POLYNOMIALS IN ONE VARIABLE

Chebyshev polynomials, and the more general class
orthogonal polynomials, have many interesting propedied
play an important role in different areas of mathematics, i

I?émma 2 LetC = (C,, | n € Z) be a sequence of Chebyshev

I;ijolynomials. Then

cluding statistics, approximation theory, and graph thean T .C. — 1 C C
excellent introduction to the theory of orthogonal polynals kot 2( nk F Cnek):
can be found for example in the book of Chihara [22]. In this

APPENDIXB

section we give the main properties of Chebyshev polynanial
that we will use in this paper. CHEBYSHEV POLYNOMIALS IN TWO VARIABLES
Definition through recurrence. We call every sequence The Chebyshev polynomials in two variables are far lesser
C = (Cn(z) | n € Z) of polynomials that satisfies the threexnown than their univariate counterparts. Several differe
term recurrence definitions exist in the literature; we use the one in [19]hwit
Chy1 = 23Cy — Cry (35) minor modifications. The presentation is different from][19
i and chosen to parallel Appendix A.
a sequence o€hebyshev polynomials (C' stands for Cheby- gy ahuse of notation, we will use, as for one variable, the

shev). In (35)Cy+1 andC, -, can be swapped, which meangeitersc, 7, U to denote general Chebyshev polynomials, and
the recurrence can be run in both directions. Hence, theeent,gse of first and second kind respectively.

sequenceC’ is uniquely determined by any two CONSeCU- The presentation is chosen to parallel as much as possible
tive polynomials, usually the initial polynomialSo, C'1 (s€€  appendix A and to motivate why they provide the underpin-
Fig. 16). In this paper, we requir€, = 1 and thatCi IS ping of the hexagonal space model derived in this paper.

of degree 1. Consequentlfi,, n > 0 is of degreen. This  pefinition through recurrence. The general Chebyshev

imp!ies that only theCn., n >0 are Iine.arly independent. polynomials in two variables are an array of polynomials
First and second kind. The most important—and com-~ _ (Con(z,y) | m,n € 7) best visualized as arranged

monly known—are the Chebyshev polynomials of the first ang a_hexagonal 2-D array indexed with andn as shown in

second kind, denoted with’ = 7" and ' = U, respectively. iy 17 The reason for the hexagonal structure is in the two
Table Il shows the two sequences aroune- 0. defining recurrence equations:

The Chebyshev polynomialg, can be written in a param-

eterized form, called power form, as 3xChn —

3yCm,n -

(40)
(41)

Cm,n—l - Cm—l,n+1;
Cmfl,n -

Cm+1,n

Cm7n+1 — Cerl,nfl-

1 1
Tnzé(u”qtu*”), x = §(u+u*1). (36)
In both equations we can, as in the one variable case, swap
polynomials to run the recurrence in different directions.
The four polynomials in (40) are”,,, and three of its

(37) six neighbors: right, upper left, lower left. The other thre

For z € [-1,1], we can substitute: = ¢/ and get the
trigonometric form

T, =cosnf, cosfh = .
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TABLE Il
TWO SERIES OFCHEBYSHEV POLYNOMIALS. THE RANGE FOR THE ZEROS I$) < k < m. IN THE TRIGONOMETRIC FORMcos § = x AND IN THE POWER
FORMz = (u+u~1)/2.

polynomial n = 0,1 trigonometric form power form symmetry zeros
n, ., —n k+1
Tn 1,z cos(nf) u +2“ T =Ty, cos HTZ)W
i +1_,—(n+1
Un L2e SRl ST Uin=Unp cos BT
TABLE IV

TWO SERIES OFCHEBYSHEV POLYNOMIALS IN TWO VARIABLES. IN THE POWER FORMz = (u + v + (uv) 1) /3, y = (v~ + v~ 4+ uv)/3 AND
c?,:l,n(u,v) = Uy ™ £ T M £yt My oy T T My T gy Ty TR

polynomial (m,n) =(0,2),(0,1),(1,1) power form symmetry
(0,0),(1,0),(2,0)

Trmyn 3y? — 2x,vy, (3zy — 1)/2 %c;;,n(u,v) T-mmn=Tmn-m
1,x,3z% — 2y Tm,—n =Tm—nmn

Unm,n 9y2? — 3z, 3y, 9zy — 1 c;l+17n+1(u,v)/cl_71(u,v) U_mn = —Um—2,n—m+1
1,3x,9x% — 3y Un,—n = —Umn—ntin—2

This determines the symmetry properties @f and in the

° o ° ° ° signal processing context the associated boundary conditi
Coao Co1p Co2 Cia (oo and signal extension.
o . o o First and second kind. The Chebyshev polynomials (in
C11 Cox Cia  Ca two variables) of the first and second kind are defined through
the initial conditions shown in Table IV. The same table show
© ° ° ° © the power forms in both casesuav-parameterization with
C_10 Coo Cio ©Czpo Csp ) )
o o o o x:§(u+v+(uv)_1), Y= g(u_l—i-v_l—&-uv). (42)

Co—1 Ci1 Cyq1 Cs_ . .
ot b 2t S Substitutingu = /%, v = e/¥ yields the trigonometric

"""""" form, which cannot be further simplified, unlike as in the one
Fig. 17. The entire 2-D array of Chebyshev polynomials in tadables is variable case.

uniquely determined by the initial conditiorsy,0, C1,0, C2,0, Co,1, C1,1, We did not find, nor were we able to derive, suitable
Co.2 (solid bullets) via (40) and (41). Chebyshev polynomials of the third and fourth kind in two
variables.

neighbors are in (41). The obtained structure is equivalent The equivalent of (39) is the property

the two hexagonal space shifts in Fig. 8. 1

The entire array” is uniquely determined by the six initial Tno = §(U"’0 ~ Un-21 4 Un-30); (43)
polynomials shown in Fig. 17. Again, we requif§ = 1. For which can be confirmed using the respective power forms.
the other five initial polynomial€”; ; we require that ay; ; The following lemma is the equivalent of Lemma 2. We
has total degreei + j; b) only one summandz®y® of C; ;  omit the proof, which is by induction and straightforward.
hasa+b=i+j anda =1i,b =j.

With these conditions for the six initial polynomials we baviemma 4 Let C = (C,,, | m,n € Z) be an array of

the following lemma on the array of afl'y, . Chebyshev polynomials in two variables. Then
Lemma 3 Every polynomialC,, ,, has total degreen + n. Tit-Crum = %(Cmfkffywrk + Crm—kntkte + Contkonte

Further, only one summand:®y® hasa + b = m + n and
for this summand: = m andb = n. As a consequence, the

polynomials{C » [ m,n > 0} are a basis of[z, y]. Further properties and notation. The following properties

nd notation makes it simpler to compute with Chebyshev
&)Iynomials in two variables. Ip(z,y) € Clz,y|, then we
nQenote withp(y, ) the same polynomial with exchanged
variables.

9The total degree op(x, y) is the largest + b over all summandsz®y® For Cn (2, y), ex.changingc andy is equivalent to repl?-C'
of p. ing u, v by u~t, v~ in the power form (Table IV). Evaluation

+ Crtkitren—t + Coten—tk—t + Con—p.n—k)

As in the one variable case, this lemma implies that eve
polynomial Cy, ,, with m < 0 or n < 0 is a linear com-
bination of Chebyshev polynomials in the positive quadra



shows that forC' = T, U,

6m,n(x,y) = Cn,m(xa Y).
SettingC, 0 = Cp, (N0t to be confused with the Chebyshev
polynomials in one variable), this impli&s, ,, = C',. Using
again the power forms we can now establish
1
2 — —
Um,n =UnUp—Up_1Un_1.

Tm,n - (3Tan - Tmfn)a

Further, the power forms of,, and T,, have only three
summands:

1
Tp=Tno= g(u” + 0" + (uv)™M), (44)

1
T,=Ton= g(u_" + 07"+ (uv)™). (45)
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