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ABSTRACT

We derive the Haar filter bank for 1-D space signals, basedioree
cently introduced framework for 1-D space signal procesggrmed
this way since it is built on a symmetric space shift operatiocon-

trast to the directed time shift operation. The framewortudes
the proper notions of signal and filter spacestransform,” convo-
lution, and Fourier transform, each of which is differerdrfr their
time equivalents. In this paper, we extend this frameworédaying

the proper notions of a Haar filter bank for space signal msiog,
and show that it has a similar yet different form comparedhéxime
case. Our derivation also sheds light on the nature of fihekb and

makes a case for viewing them as projections on subspades rat

than as based on filters.

The associated notion of the-transform” is now the”'-transform,
whereC' € {T, U, V, W} is one of four possible sequences of Cheby-
shev polynomials. The corresponding Fourier transforrtedahe
discrete-space Fourier transform, evaluategtieansform atos(w),
w € [0, 7).

Contribution of this paper. One concept is missing, however:
the definition and structure of a filter bank for space signdlke
purpose of this paper is to expand the theory of 1-D infinit&csp
signals with a proper definition of the decomposition of aigrinto
frequency components, as well as the design of approprite fi
banks. As concrete example, we develop the proper notioHsaf
filter banks for infinite space signals. We explain how theodemo-
sition is performed through projections onto signal subspaand
demonstrate that it can be implemented with properly desigime-

Index Terms— Wavelet transforms, Haar transforms, spectralvarying filter banks.

analysis, Fourier transforms, algebra

1. INTRODUCTION

In the design and analysis of filter banks, 1-D infinite disesignals
are usually assumed to liene signals That is, they are implicitly
placed on an infinite line of equidistant time points. Funthere,

this line is directed, since there is an inherent understgnaf direc-

tionin time, from “past” to “future”: Fig. 1(a) visualizehis directed
time model. It gives a natural meaning to crucial signal pssing
concepts including time delay and advance, linear coniasiyaind

Fourier transform.

Organization. Section 2 introduces 1-D space signal processing
and compares it with the well-known 1-D time signal procegsi
Section 3 shows one possible derivation of the standard filtear
bank for time signals. The same procedure is then used teedie
equivalent filter banks for 1-D space signals in Section 4ti6e 5
summarizes the results presented in this paper.

2. BACKGROUND

We provide the algebraic background on signal processirig\as-
oped in the algebraic signal processing theory (ASP) [1] —erzeg
alization of the linear signal processing (SP) as well asxéomaatic

Many tools have been developed to an:ftlyzg time signals. Faspproach to SP based on the concept of a signal model defined be
example, the:-transform allows us to work with signals as Laurent jow. Different signal models correspond to different noicf sig-
series int = 2~ !. The spectrum of a signal is given by the discrete-nal and filter spacesg-transform, shift, Fourier transform, and other

time Fourier transform (DTFT), which in this case amountshie
evaluation of the:-transform of a signal on the unit circté8“, w €

(—m, w]. Finally, the decomposition of a signal into components tha

correspond to different levels of detail (by considerindyapecific
frequencies present in the signal) is performed by appatefilter
banks. These concepts are summarized in Table 1.
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Fig. 1. Visualization of signhal models.

1-D space signal processingA similar, albeit less well-known,
approach to signal processing places signals on an urelfirdice
of points, infinite only at one side of the origin [1, 2, 3]. Thas
no concept of direction, provided proper boundary condgiare
specified. Such signals are callgeD infinite space signalsvhere
“space” is used to emphasize the lack of inherent direcfm. 1(b)
visualizes one of the signal models for undirected spaceatsg
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SP concepts. We focus our discussion on 1-D time signalshand t
nonstandard 1-D space signals.

We then briefly discuss an algebraic interpretation of threept
of the signal decomposition into components, and the implea:
tion of this decomposition with filter banks by projecting igral
onto subspaces of signals that represent different frexyuleands.
We illustrate this concept with the concrete derivation efHfilter
banks for space signals.

Algebra (filter space). A vector spaceA that also allows for
multiplication of its elements with each other, and supptine dis-
tributive law, is called amlgebra Examples include the sets of com-
plex numbersC and complex polynomials in one varialigz]. In
SP, the filter space is usually assumed to be an algebra (teesarp
below). Hence, we denote elementsofvith h.

Module (signal space).Given an algebra4, a (left) . A-module
is a vector spacé that admits a (left) multiplication of elements
s € M by elementsh € A—hs € M—such that the distributive
law holds. In SP, the signal space is usually assumed to hé-an
module, whereA is the associated filter space, and the operation of
A on M is filtering. We uses to denote elements o¥1.

Signal model. Signals do not arise as elements of modules, but
(in the discrete case) as sequences of numbers(sn)ner € V



1-D infinite time

1-D infinite space

“z-transform”

Sk s =3y sn2"

S § = ZkeNska

Fourier transform  w + s(e™) w — s(cosw)
Filter bank o @ .7
5@ = @

Table 1. Basic concepts of 1-D infinite time and 1-D infinite spacenalgprocessing theory.

over some index domain, wheréis a vector space. The purpose of
the signal modeis to assign a notion of filtering to". Formally, a
signal modefor a vector spac®’ is a triple(A, M, @), whereA is

a chosen filter algebrayt an associated signal-module, andb is

a bijective mapping fronV to M. ® generalizes the concept of a
z-transform as we will see below.

ASP is axiomatically built on the concept of the signal model
Once a signal model is defined, other concepts, such as coiogl
spectrum, and Fourier transform, are automatically defmedake
different forms for different models.

We illustrate this abstract discussion with examples: tffiaiie
discrete-time SP, and the nonstandard infinite discredeesBP. The
goal of this paper is to derive the equivalent of Haar filtanksafor
the latter.

1-D time signal model. The signal model commonly adopted
for infinite discrete time SP is for finite-energy sequentes=
£2(Z). Itis given by (we set = z71)

A={> cphnz” |h=(..;h_1,ho,h1,...) € 7)Y,

M = {ZnGZS”‘rn | S= (...7871780781,...) S (2(2)},
d:A(Z) =M, s—s=3

1)
nez SnT"

® is the standard-transform. This signal model is taime model
because of the directed operation of the shift operater.A on the
basis elements™ of M: z - 2™ = 2™, This operation is captured
in the visualization of the model in Fig. 1(a). In fapt, = =" is the
unique solution of the recurrence

@)

with po = 1. The basis in4 consists ofk-fold time shifts{xk}kez.

The associated Fourier transform is the discrete-time i€our
transform (DTFT) which maps elemenis= s(z) € M to func-
tions on the unit circle’, w € (-, 7]:

F:s=s(x)— s(e™) = Z spe™".

nez

Pn+1 = TPn,

Accordingly, the frequency response of a filtee= >, _, hrx® is
given byh(e™) =37, ., hie™".

1-D space signal model.In [2, 1] we defined infinite discrete
space models, which are derived from a different notion i sher-
ation, namely a symmetric shift p,, (z) = % (pn—1(2) +pni1(z)),
which yields the recurrence

(©)

with po = 1 for normalization. The solution to this recurrence is
exactly the Chebyshev polynomidls, = C,, and there are choices
depending on the choice ofi = C1. We consider the four cases
C € {T,U,V,W} overviewed in Table 2. Note that in each case
the sequence of polynomials has a symmetry; hence theinggsult
signal model will be only for right-sided signals.

Prt1 = 22pn () — pr—1(z),

The k-fold space shift is in each case given By(z), since
ch = %(Cnfk + Cn+k)

As a result we obtain the following four signal models T6r=
(N),C e{T,U,V,W}

A= {h = Zkzo hka(l’) | he ZI(N)},
M={s=3,505:Cn(z)|sE 2(N)}, 4)
®: 2(N) = M, s > >0 5nCn ().

We call @ the C-transform but will replaceC by eitherT, U, V,
or W, when appropriate, and accordingly refer tofhe U-, V-, or
W -transform.

The symmetric shift yields the visualization in Fig. 1(b)orF
C =V, we haveV_; = Vjp, which explains the looping edge at the
left boundary.

The associated Fourier transform is the discrete-spaceefou
transform that maps elemenis= s(z) € M to functions on the
interval[—1, 1], parameterized byos w, w € [0, 7.

F: s=s(x)— s(cosw) = Z S$nCh(cosw).
neN

The frequency response of a filter= ", ., h+Tk(z) is given by
h(cosw) = 3, oy huTk(cosw). Both can be evaluated easily using
the closed form of”,, shown in Table 2.

Signal decomposition and projections.Filter banks are used
to decompose a signal into components of different leveledaitl
Each such component contains only a certain band of freigenc
present in the input signal, and it is common to view such aufec
position as being performed with bandpass filtering [4, BF. éxam-
ple, a usual 2-channel filter bank uses low-pass and highfpess
in combination with up- and downsamplers to produce thersga
and “detailed” components.

To achieve our goal of deriving filter banks for space signhaés
have to choose a different interpretation.

Namely, we view filter banks as performing projections of sig
nals onto subspaces of low-frequency and high-frequeigoats [6].

In the time case, the scalar product that is used for comipnotaf
the projections can be expressed through convolution, @hérice
implemented directly with filtering. While it seems intwij, this is
not the case for other signal models, such as the space sigizl,
since they have different associated notions of convaiytighile
the notions of scalar product and projection remain the same
Section 4 this will become clear, when we construct the Haar fi
ter banks for space signals by computing projections ofsggonto
properly designed subspaces.

1Chebyshev polynomialg’;, are the polynomials that satisfy the two-
term recurrence&”y, 11 = 2xC), — Ci,_;. Hence, the whole sequence of
polynomials is determined b¢y and C;. By settingz = cos 6, Cheby-
shev polynomials can also be expressed in their trigondcngosed form as
functions off. These and other properties are shown in Table 2.



Co, C1 Closed form forC,,  Symmetry Cn(l)  Ch(-1)
T 1,z cos (nd) T n=Tn 1 (="
U 1,2z “<+;11)9 Unn=-Ups n+1 (=1)"(n+1)
VL2102l Vi = Vo 1 (—1)"(2n + 1)
sin (n+4)0 _ n
wWoo1,2z+1 Z2nt)l = —Wa1 2n+1 (=1)

sin 3

Table 2. Chebyshev polynomials, symmetry, and values used forgheadion of space Haar filter banks.

3. 1-D TIME HAAR FILTER BANKS

We derive the standard Haar filter banks for the time signaleho
(1) by identifying suitable subspaces and associated ¢tiojes. We
use the same steps in the next section to derive Haar filtdsskfan
the space signal model (4).

We consider the signal model (1), where, for a signal >, spa®
€ M, we want to compute its “coarse” approximatighand “de-
tailed” complements” . We do so by projecting the signalonto
subspaceg\1; and M, that consist of low-frequency and high-fre-
quency signals, respectively. We show thd{ & M;, = M, hence
such a decomposition is a complete representation of Sigmal1.

Subspace construction.We impose the following structure on
the subspaces: the basis.®; is ¢ = {¢n}nez = {an2®" +
bnz?"T1},.cz; and the basis oM, is ¥ = {tn }nez = {cnz®™ +
dnz® '}, cz. To satisfy the low- and high-frequency conditions,
we require the spectrum of basis functiatys and+),, to disappear,
correspondingly, at the highest & 7) and lowestg = 0) frequen-
cies:

¢n(e7-ri) — ane2n‘m’ + bne(2n+1)7-ri =0
wn(em‘) _ Cne2n0i + dne(2n+1)0i -0

©)

The resulting conditions on the coefficients are= b,, andc,, =
—d,. Hence, the required bases are

¢ (6)
(8 @)

It immediately follows that the above bases span the whgeasi

{ana® + anz® M }uez,

{enz® — caz®™ ez

spaceM = (¢,) and that the respective subspaces have trivial

intersectionM; N M, = {0}. Thus, M = M; & M.
Computation of the projections. To compute the projections
of the signals onto M; and M,,, we:

1. Find dual base$ = {¢,} andy) = {{n};
2. Compute scalar products, ¢,.) and(s, i, );

3. Construct projections’ = 3" (s, ¢n)¢pn € M; ands” =
Zn <'57 1/1n>¢n € M.

Dual bases. In addition to the usual biorthogonality require-
ments ong and ¢, ¥ and+), we require¢ U ¢ and¢ U ¢ to be
biorthogonal, since U v is a basis ofM. Altogether, the bases and
their dual counterparts must satisfy the following corutisi:

<¢k7d§m> = <wk:7z}m> = 6k7m

{<¢k,wm> = (G tom) = 0

Equations (6)-(7) and conditions (8) yield the dual bases

®)

1 2n
—X
2¢cn

2n 1
+ 2an,

1 x2n+1.

2n+1 T
z ) wn - - %
n

Projections. It follows that the projections of on subspaces
M, and M, are

’ 1 1
s = Z(gszn-FESan)ﬁﬁm 9

n
n

1 1 1
S = Z (ES%L - Z52n+1)’¢1n« (10)

n

Implementation. From (9)-(10), it follows that the projections
can be implemented with the well-known Haar filter bank (Hg.
shows the so-called polyphase version of the Haar filter pank
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Fig. 2. Haar filter bank for 1-D time signals (with, = ¢, = 1).
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4. 1-D SPACE HAAR FILTER BANK

We now follow the same procedure as for the time model to con-
struct the Haar filter bank for the space signal models inFdj.the
detailed derivation, we focus on the caSe= V' and signal space
M = {>", sxVi}, whereV} are the Chebyshev polynomials of the
third kind. Filter banks for signal spaces that correspandther
Chebyshev polynomials are constructed analogously; theplaie
list of bases and example filter banks are provided in Table 3.
As in Section 3, for any signal = >, sy Vi € M, we com-
pute its “coarse” approximatiosf and “detailed” complement’ by
projecting the signab onto the low-frequency and high-frequency
signal subspaces1; and M,,. We also require\; M, = M to
make the decomposition a complete representation of sigmau.
Subspace construction.We impose the following structure on
the subspaces: the basis ®; is ¢ = {dn}neny = {anVon +
bnVan+t1 tnen and the basis aMy, is ¢ = {¢n fnen = {cnVan +
dnVan+1}nen. The requirements that the spectra of basis functions
¢n ande, disappear at the highest (= =) and lowest ¢ = 0)
frequencies for space signals translate into equations
anVan(cos ) + bpVanti(cosm) =0 11)
cnVan (cos0) + dnVant1(cos0) =0

Using the corresponding values from Table 2, we computesthdt-
ing conditions on the coefficients,, = {**1a, andd, = —cn.
Hence, the bases fo¥1; and M, are

in+1
§Z5 = {an%n + 4n—_’_3an‘/2n+l}n€N7 (12)
Vv = {C7LV27L - Cn‘/2n+l}n€N« (13)
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Table 3. Bases for subspacesl; and M, and associated Haar filter banks (with = 1 andc,, = 1) for the four space signal models in (4).

Note that the basis functions, and+,, are independent of each included in Table 3. Observe that as— oo, the index-dependent
other. Moreover, the original bas{d/, },.en can be expressed in filter coefficients converge to the index-independent coieffits of

terms of ¢, and+,: assuminga, = 1 andc, = 1, Vo, =  thetime Haar filter bank.
bk, Ay, andVa, i = b, — Sy, Thus 6 Uy
is a basis for the signal spagd. SinceM; N M;, = {0}, itimme- 5. CONCLUSIONS

diately follows thatM = M; & M,,.
Computation of the projections. To compute the projections We derived Haar filter banks for 1-D space signal models. fEsislt
of the signals onto M; and M, we follow the same procedure as shows that meaningful SP frameworks can be built on notidns o
in Section 3: construct dual basgsnd+, and then compute scalar filtering and Fourier transform different from the standtinde SP.
products(s, ¢») and(s, 1) to find the projection coefficients. In doing so, it also provides a deeper understanding of therea
Dual bases.From egs.(12)-(13) and (8) we derive the dual basesf filter banks; namely, to make our derivation possible wedael
to view filter banks as subspace projections rather than sedban

on = _4n+3 om MVMJr17 filters. Finally, this paper is a first step in expanding thgehtaic
(8n +4)an (8n +4)an signal processing theory to include filter banks.
b in +1 4n + 3 v
n = o Ven — o~ Vont1.
(8n +4)cn (8n +4)cn 6. REFERENCES
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