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ABSTRACT

We derive the Haar filter bank for 1-D space signals, based on our re-
cently introduced framework for 1-D space signal processing, termed
this way since it is built on a symmetric space shift operation in con-
trast to the directed time shift operation. The framework includes
the proper notions of signal and filter spaces, “z-transform,” convo-
lution, and Fourier transform, each of which is different from their
time equivalents. In this paper, we extend this framework byderiving
the proper notions of a Haar filter bank for space signal processing,
and show that it has a similar yet different form compared to the time
case. Our derivation also sheds light on the nature of filter banks and
makes a case for viewing them as projections on subspaces rather
than as based on filters.

Index Terms— Wavelet transforms, Haar transforms, spectral
analysis, Fourier transforms, algebra

1. INTRODUCTION

In the design and analysis of filter banks, 1-D infinite discrete signals
are usually assumed to betime signals. That is, they are implicitly
placed on an infinite line of equidistant time points. Furthermore,
this line is directed, since there is an inherent understanding of direc-
tion in time, from “past” to “future”: Fig. 1(a) visualizes this directed
time model. It gives a natural meaning to crucial signal processing
concepts including time delay and advance, linear convolution, and
Fourier transform.

Many tools have been developed to analyze time signals. For
example, thez-transform allows us to work with signals as Laurent
series inx = z−1. The spectrum of a signal is given by the discrete-
time Fourier transform (DTFT), which in this case amounts tothe
evaluation of thez-transform of a signal on the unit circleejω, ω ∈
(−π, π]. Finally, the decomposition of a signal into components that
correspond to different levels of detail (by considering only specific
frequencies present in the signal) is performed by appropriate filter
banks. These concepts are summarized in Table 1.
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Fig. 1. Visualization of signal models.

1-D space signal processing.A similar, albeit less well-known,
approach to signal processing places signals on an undirected line
of points, infinite only at one side of the origin [1, 2, 3]. There is
no concept of direction, provided proper boundary conditions are
specified. Such signals are called1-D infinite space signals, where
“space” is used to emphasize the lack of inherent direction.Fig. 1(b)
visualizes one of the signal models for undirected space signals.
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The associated notion of the “z-transform” is now theC-transform,
whereC ∈ {T, U, V,W } is one of four possible sequences of Cheby-
shev polynomials. The corresponding Fourier transform, called the
discrete-space Fourier transform, evaluates theC-transform atcos(ω),
ω ∈ [0, π].

Contribution of this paper. One concept is missing, however:
the definition and structure of a filter bank for space signals. The
purpose of this paper is to expand the theory of 1-D infinite space
signals with a proper definition of the decomposition of signals into
frequency components, as well as the design of appropriate filter
banks. As concrete example, we develop the proper notions ofHaar
filter banks for infinite space signals. We explain how the decompo-
sition is performed through projections onto signal subspaces, and
demonstrate that it can be implemented with properly designed time-
varying filter banks.

Organization. Section 2 introduces 1-D space signal processing
and compares it with the well-known 1-D time signal processing.
Section 3 shows one possible derivation of the standard Haarfilter
bank for time signals. The same procedure is then used to derive the
equivalent filter banks for 1-D space signals in Section 4. Section 5
summarizes the results presented in this paper.

2. BACKGROUND

We provide the algebraic background on signal processing asdevel-
oped in the algebraic signal processing theory (ASP) [1] — a gener-
alization of the linear signal processing (SP) as well as an axiomatic
approach to SP based on the concept of a signal model defined be-
low. Different signal models correspond to different notions of sig-
nal and filter spaces,z-transform, shift, Fourier transform, and other
SP concepts. We focus our discussion on 1-D time signals and the
nonstandard 1-D space signals.

We then briefly discuss an algebraic interpretation of the concept
of the signal decomposition into components, and the implementa-
tion of this decomposition with filter banks by projecting a signal
onto subspaces of signals that represent different frequency bands.
We illustrate this concept with the concrete derivation of Haar filter
banks for space signals.

Algebra (filter space). A vector spaceA that also allows for
multiplication of its elements with each other, and supports the dis-
tributive law, is called analgebra. Examples include the sets of com-
plex numbersC and complex polynomials in one variableC[x]. In
SP, the filter space is usually assumed to be an algebra (examples are
below). Hence, we denote elements ofA with h.

Module (signal space).Given an algebraA, a (left)A-module
is a vector spaceM that admits a (left) multiplication of elements
s ∈ M by elementsh ∈ A—hs ∈ M—such that the distributive
law holds. In SP, the signal space is usually assumed to be anA-
module, whereA is the associated filter space, and the operation of
A onM is filtering. We uses to denote elements ofM.

Signal model.Signals do not arise as elements of modules, but
(in the discrete case) as sequences of numberss = (sn)n∈I ∈ V



1-D infinite time 1-D infinite space

“z-transform” s 7→ s =
∑

k∈Z
skx

k s 7→ s =
∑

k∈N
skCk

Fourier transform ω 7→ s(eiw) ω 7→ s(cosw)

Filter bank
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Table 1. Basic concepts of 1-D infinite time and 1-D infinite space signal processing theory.

over some index domain, whereV is a vector space. The purpose of
thesignal modelis to assign a notion of filtering toV . Formally, a
signal modelfor a vector spaceV is a triple(A,M,Φ), whereA is
a chosen filter algebra,M an associated signalA-module, andΦ is
a bijective mapping fromV to M. Φ generalizes the concept of a
z-transform as we will see below.

ASP is axiomatically built on the concept of the signal model.
Once a signal model is defined, other concepts, such as convolution,
spectrum, and Fourier transform, are automatically definedbut take
different forms for different models.

We illustrate this abstract discussion with examples: the infinite
discrete-time SP, and the nonstandard infinite discrete-space SP. The
goal of this paper is to derive the equivalent of Haar filter banks for
the latter.

1-D time signal model. The signal model commonly adopted
for infinite discrete time SP is for finite-energy sequencesV =
ℓ2(Z). It is given by (we setx = z−1)

A = {
∑

n∈Z
hnx

n | h = (. . . , h−1, h0, h1, . . . ) ∈ ℓ1(Z)},

M = {
∑

n∈Z
snx

n | s = (. . . , s−1, s0, s1, . . . ) ∈ ℓ2(Z)},

Φ : ℓ2(Z) → M, s 7→ s =
∑

n∈Z
snx

n.

(1)

Φ is the standardz-transform. This signal model is atime model
because of the directed operation of the shift operatorx ∈ A on the
basis elementsxn of M: x · xn = xn+1. This operation is captured
in the visualization of the model in Fig. 1(a). In fact,pn = xn is the
unique solution of the recurrence

pn+1 = xpn, (2)

with p0 = 1. The basis inA consists ofk-fold time shifts{xk}k∈Z.
The associated Fourier transform is the discrete-time Fourier

transform (DTFT) which maps elementss = s(x) ∈ M to func-
tions on the unit circleejω, ω ∈ (−π, π]:

F : s = s(x) 7→ s(eiω) =
∑

n∈Z

sne
iωn

.

Accordingly, the frequency response of a filterh =
∑

k∈Z
hkx

k is
given byh(eiω) =

∑

k∈Z
hke

iωk.
1-D space signal model.In [2, 1] we defined infinite discrete

space models, which are derived from a different notion of shift oper-
ation, namely a symmetric shiftx·pn(x) = 1

2
(pn−1(x)+pn+1(x)),

which yields the recurrence

pn+1 = 2xpn(x) − pn−1(x), (3)

with p0 = 1 for normalization. The solution to this recurrence is
exactly the Chebyshev polynomials,1pn = Cn and there are choices
depending on the choice ofp1 = C1. We consider the four cases
C ∈ {T, U, V,W } overviewed in Table 2. Note that in each case
the sequence of polynomials has a symmetry; hence the resulting
signal model will be only for right-sided signals.

The k-fold space shift is in each case given byTk(x), since
TkCn = 1

2
(Cn−k + Cn+k).

As a result we obtain the following four signal models forV =
ℓ2(N),C ∈ {T, U, V,W }:

A = {h =
∑

k≥0 hkTk(x) | h ∈ ℓ1(N)},

M = {s =
∑

n≥0 snCn(x) | s∈ ℓ2(N)},

Φ : ℓ2(N) → M, s 7→
∑

n≥0 snCn(x).

(4)

We call Φ the C-transform but will replaceC by eitherT,U, V ,
orW , when appropriate, and accordingly refer to theT -, U -, V -, or
W -transform.

The symmetric shift yields the visualization in Fig. 1(b). For
C = V , we haveV−1 = V0, which explains the looping edge at the
left boundary.

The associated Fourier transform is the discrete-space Fourier
transform that maps elementss = s(x) ∈ M to functions on the
interval [−1, 1], parameterized bycosω, ω ∈ [0, π].

F : s = s(x) 7→ s(cosω) =
∑

n∈N

snCn(cosω).

The frequency response of a filterh =
∑

k≥0 hkTk(x) is given by
h(cosω) =

∑

k∈N
hkTk(cosω). Both can be evaluated easily using

the closed form ofCn shown in Table 2.
Signal decomposition and projections.Filter banks are used

to decompose a signal into components of different level of detail.
Each such component contains only a certain band of frequencies
present in the input signal, and it is common to view such a decom-
position as being performed with bandpass filtering [4, 5]. For exam-
ple, a usual 2-channel filter bank uses low-pass and high-pass filters
in combination with up- and downsamplers to produce the “coarse”
and “detailed” components.

To achieve our goal of deriving filter banks for space signals, we
have to choose a different interpretation.

Namely, we view filter banks as performing projections of sig-
nals onto subspaces of low-frequency and high-frequency signals [6].
In the time case, the scalar product that is used for computation of
the projections can be expressed through convolution, and is hence
implemented directly with filtering. While it seems intuitive, this is
not the case for other signal models, such as the space signalmodel,
since they have different associated notions of convolution, while
the notions of scalar product and projection remain the same. In
Section 4 this will become clear, when we construct the Haar fil-
ter banks for space signals by computing projections of signals onto
properly designed subspaces.

1Chebyshev polynomialsCk are the polynomials that satisfy the two-
term recurrenceCk+1 = 2xCk − Ck−1. Hence, the whole sequence of
polynomials is determined byC0 andC1. By settingx = cos θ, Cheby-
shev polynomials can also be expressed in their trigonometric closed form as
functions ofθ. These and other properties are shown in Table 2.



C0, C1 Closed form forCn Symmetry Cn(1) Cn(−1)

T 1, x cos (nθ) T−n = Tn 1 (−1)n

U 1, 2x sin (n+1)θ
sin θ

U−n = −Un−2 n+ 1 (−1)n(n+ 1)

V 1, 2x− 1
cos (n+ 1

2
)θ

cos θ

2

V−n = Vn−1 1 (−1)n(2n+ 1)

W 1, 2x+ 1
sin (n+ 1

2
)θ

sin θ

2

W−n = −Wn−1 2n+ 1 (−1)n

Table 2. Chebyshev polynomials, symmetry, and values used for the derivation of space Haar filter banks.

3. 1-D TIME HAAR FILTER BANKS

We derive the standard Haar filter banks for the time signal model
(1) by identifying suitable subspaces and associated projections. We
use the same steps in the next section to derive Haar filter banks for
the space signal model (4).

We consider the signal model (1), where, for a signals =
∑

k
skx

k

∈ M, we want to compute its “coarse” approximations′ and “de-
tailed” complements′′ . We do so by projecting the signals onto
subspacesMl andMh that consist of low-frequency and high-fre-
quency signals, respectively. We show thatMl ⊕Mh = M, hence
such a decomposition is a complete representation of signals inM.

Subspace construction.We impose the following structure on
the subspaces: the basis ofMl is φ = {φn}n∈Z = {anx

2n +
bnx

2n+1}n∈Z; and the basis ofMh is ψ = {ψn}n∈Z = {cnx
2n +

dnx
2n+1}n∈Z. To satisfy the low- and high-frequency conditions,

we require the spectrum of basis functionsφn andψn to disappear,
correspondingly, at the highest (ω = π) and lowest (ω = 0) frequen-
cies:

{

φn(eπi) = ane
2nπi + bne

(2n+1)πi = 0

ψn(e0i) = cne
2n0i + dne

(2n+1)0i = 0
. (5)

The resulting conditions on the coefficients arean = bn andcn =
−dn. Hence, the required bases are

φ = {anx
2n + anx

2n+1}n∈Z, (6)

ψ = {cnx
2n − cnx

2n+1}n∈Z. (7)

It immediately follows that the above bases span the whole signal
spaceM = 〈φ, ψ〉 and that the respective subspaces have trivial
intersectionMl ∩Mh = {0}. Thus,M = Ml ⊕Mh.

Computation of the projections. To compute the projections
of the signals ontoMl andMh, we:

1. Find dual bases̃φ = {φ̃n} andψ̃ = {ψ̃n};

2. Compute scalar products〈s, φ̃n〉 and〈s, ψ̃n〉;

3. Construct projectionss′ =
∑

n
〈s, φ̃n〉φn ∈ Ml ands′′ =

∑

n
〈s, ψ̃n〉ψn ∈ Mh.

Dual bases. In addition to the usual biorthogonality require-
ments onφ and φ̃, ψ and ψ̃, we requireφ ∪ ψ and φ̃ ∪ ψ̃ to be
biorthogonal, sinceφ∪ψ is a basis ofM. Altogether, the bases and
their dual counterparts must satisfy the following conditions:

{

〈φk, φ̃m〉 = 〈ψk, ψ̃m〉 = δk−m

〈φk, ψ̃m〉 = 〈φ̃k, ψm〉 = 0
. (8)

Equations (6)-(7) and conditions (8) yield the dual bases

φ̃n =
1

2an

x
2n +

1

2an

x
2n+1

, ψ̃n =
1

2cn
x

2n −
1

2cn
x

2n+1
.

Projections. It follows that the projections ofs on subspaces
Ml andMh are

s
′ =

∑

n

(
1

2an

s2n +
1

2an

s2n+1)φn, (9)

s
′′ =

∑

n

(
1

2cn
s2n −

1

2cn
s2n+1)ψn. (10)

Implementation. From (9)-(10), it follows that the projections
can be implemented with the well-known Haar filter bank (Fig.3
shows the so-called polyphase version of the Haar filter bank).
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Fig. 2. Haar filter bank for 1-D time signals (withan = cn = 1).

4. 1-D SPACE HAAR FILTER BANK

We now follow the same procedure as for the time model to con-
struct the Haar filter bank for the space signal models in (4).For the
detailed derivation, we focus on the caseC = V and signal space
M = {

∑

k skVk}, whereVk are the Chebyshev polynomials of the
third kind. Filter banks for signal spaces that correspond to other
Chebyshev polynomials are constructed analogously; the complete
list of bases and example filter banks are provided in Table 3.

As in Section 3, for any signals =
∑

k skVk ∈ M, we com-
pute its “coarse” approximations′ and “detailed” complements′′ by
projecting the signals onto the low-frequency and high-frequency
signal subspacesMl andMh. We also requireMl ⊕Mh = M to
make the decomposition a complete representation of signals inM.

Subspace construction.We impose the following structure on
the subspaces: the basis ofMl is φ = {φn}n∈N = {anV2n +
bnV2n+1}n∈N and the basis ofMh is ψ = {ψn}n∈N = {cnV2n +
dnV2n+1}n∈N. The requirements that the spectra of basis functions
φn andψn disappear at the highest (ω = π) and lowest (ω = 0)
frequencies for space signals translate into equations

{

anV2n(cos π) + bnV2n+1(cos π) = 0

cnV2n(cos 0) + dnV2n+1(cos 0) = 0
. (11)

Using the corresponding values from Table 2, we compute the result-
ing conditions on the coefficients:bn = 4n+1

4n+3
an anddn = −cn.

Hence, the bases forMl andMh are

φ = {anV2n +
4n+ 1

4n+ 3
anV2n+1}n∈N, (12)

ψ = {cnV2n − cnV2n+1}n∈N. (13)
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ψn cnT2n − cnT2n+1

φ̃n
1

2an
T2n + 1

2an
T2n+1

ψ̃n
1

2cn
T2n − 1

2cn
T2n+1

U φn anU2n + 2n+1
2n+2

anU2n+1

D A
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S'

2↓

2↓
2

1

12n

1n

+

+

2

1

12n

1n

+

+
−

1 1

22n

12n

+

+

22n

12n

+

+
−

2↑

2↑

ψn cnU2n − 2n+1
2n+2

cnU2n+1

φ̃n
1

2an
U2n + n+1

(2n+1)an
U2n+1

ψ̃n
1

2cn
U2n − n+1

(2n+1)cn
U2n+1

V φn anV2n + 4n+1
4n+3

anV2n+1

D A

S Ŝ

S"

S'

2↓

2↓
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34n

+

+

48n

14n

+

+

48n

34n

+

+
−

1 1

34n

14n

+

+

48n

34n

+

+

1−

2↑

2↑

ψn cnV2n − cnV2n+1

φ̃n
4n+3

(8n+4)an
V2n + 4n+3

(8n+4)an
V2n+1

ψ̃n
4n+1

(8n+4)cn
V2n − 4n+3

(8n+4)cn
V2n+1

W φn anW2n + anW2n+1

D A

S Ŝ

S"

S'

2↓

2↓
48n

14n

+

+

48n

34n

+

+
−

1 1

34n

14n

+

+
−

48n

34n

+

+

48n

34n

+

+
1

2↑

2↑

ψn cnW2n − 4n+1
4n+3

cnW2n+1

φ̃n
4n+1

(8n+4)an
W2n + 4n+3

(8n+4)an
W2n+1

ψ̃n
4n+3

(8n+4)cn
W2n − 4n+3

(8n+4)cn
W2n+1

Table 3. Bases for subspacesMl andMh and associated Haar filter banks (withan = 1 andcn = 1) for the four space signal models in (4).

Note that the basis functionsφk andψn are independent of each
other. Moreover, the original basis{Vn}n∈N can be expressed in
terms ofφn and ψn: assumingan = 1 and cn = 1, V2n =
4n+3
8n+4

φn + 4n+1
8n+4

ψn andV2n+1 = 4n+3
8n+4

φn − 4n+3
8n+4

ψn. Thus,φ∪ψ
is a basis for the signal spaceM. SinceMl ∩Mh = {0}, it imme-
diately follows thatM = Ml ⊕Mh.

Computation of the projections. To compute the projections
of the signals ontoMl andMh, we follow the same procedure as
in Section 3: construct dual basesφ̃ andψ̃, and then compute scalar
products〈s, φ̃n〉 and〈s, ψ̃n〉 to find the projection coefficients.

Dual bases.From eqs.(12)-(13) and (8) we derive the dual bases

φ̃n =
4n+ 3

(8n+ 4)an

V2n +
4n+ 3

(8n+ 4)an

V2n+1,

ψ̃n =
4n+ 1

(8n+ 4)cn
V2n −

4n+ 3

(8n+ 4)cn
V2n+1.

Projections. It follows that the projections of the signals onto
subspacesMl andMh are

s
′ =

∑

n

(
4n+ 3

(8n+ 4)an

s2n +
4n+ 3

(8n+ 4)an

s2n+1)φn, (14)

s
′′ =

∑

n

(
4n+ 1

(8n+ 4)cn
s2n −

4n+ 3

(8n+ 4)cn
s2n+1)ψn. (15)

Implementation. The projections (14)-(15) can be implemented
with the time-varying filter bank shown in Table 3.

Filter banks for other 1-D space signal models.Derivation
of the subspacesMl andMh and computation of projections for
other signal spacesM = {

∑

k
skCk}, whereCk denote Chebyshev

polynomial of any of the four kinds, is analogous to the derivation we
just saw. Bases forMl andMh, their corresponding dual bases, and
example filter banks (for parameter valuesan = 1 andcn = 1) are

included in Table 3. Observe that asn → ∞, the index-dependent
filter coefficients converge to the index-independent coefficients of
the time Haar filter bank.

5. CONCLUSIONS

We derived Haar filter banks for 1-D space signal models. Thisresult
shows that meaningful SP frameworks can be built on notions of
filtering and Fourier transform different from the standardtime SP.
In doing so, it also provides a deeper understanding of the nature
of filter banks; namely, to make our derivation possible we needed
to view filter banks as subspace projections rather than as based on
filters. Finally, this paper is a first step in expanding the algebraic
signal processing theory to include filter banks.
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