
TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 1

Algebraic Signal Processing Theory:
Cooley-Tukey Type Algorithms for Real DFTs

Yevgen Voronenko,Member, IEEE,and Markus Püschel,Senior Member, IEEE

Abstract— In this paper we systematically derive a large
class of fast general-radix algorithms for various types ofreal
discrete Fourier transforms (real DFTs) including the discrete
Hartley transform (DHT) based on the algebraic signal pro-
cessing theory. This means that instead of manipulating the
transform definition, we derive algorithms by manipulating the
polynomial algebras underlying the transforms using one general
method. The same method yields the well-known Cooley-Tukey
fast Fourier transform (FFT) as well as general radix discrete
cosine and sine transform algorithms. The algebraic approach
makes the derivation concise, unifies and classifies many existing
algorithms, yields new variants, enables structural optimization,
and naturally produces a human-readable structural algorithm
representation based on the Kronecker product formalism. We
show, for the first time, that the general-radix Cooley-Tukey and
the lesser known Bruun algorithms are instances of the same
generic algorithm. Further, we show that this generic algorithm
can be instantiated for all four types of the real DFT and the
DHT.

Index Terms— Discrete Fourier transform, fast algorithm,
polynomial algebra, Chinese remainder theorem

I. I NTRODUCTION

It is well-known that the discrete Fourier transform (DFT)
of a real signal is conjugate-symmetric. Hence, as one may
expect, the required computation can be reduced by roughly
a factor of two. As for the DFT, there is a large number of
publications on fast algorithms for this “real DFT” (RDFT)
and its variants, such as the discrete Hartley transform (DHT)
and others [1]–[27]. Knowing the entire space of available
algorithms is not just of academic interest but crucial for real-
world implementations: many applications spend the bulk of
their runtime computing DFTs, different computing platforms
usually require different algorithms, and the complexity of
modern processors imposes many structural and other require-
ments on an algorithm in order to run efficiently [28], [29].

Unfortunately, it is extraordinarily difficult to obtain an
overview on the available real fast Fourier transforms. Ar-
guably, this has two reasons. First, there is a lack of theorythat
explains the algorithms and simplifies their derivation. Second,
the typical representation of algorithms as nested summations
involving complicated cosine and sine expressions is hard
to parse by a human. For complex fast Fourier transforms

Manuscript received December 24, 2007; revised June 24, 2008. The
associate editor coordinating the review of this manuscript and approv-
ing it for publication was Dr. Soontorn Oraintara. This workwas sup-
ported by NSF through awards 0310941, 0325687, and 0634967 and by
DARPA through the Department of Interior Grant NBCH1050009. The
authors are with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213. E-mail:
{yvoronen,pueschel}@ece.cmu.edu.

(FFTs) the situation is different as shown by excellent books
on both FFT theory and structural FFT representation using
the Kronecker product formalism [30]–[32].

One commonly used algorithm for the real DFT utilizes a
half-size complex DFT and a post-processing step [33]. We
provide the exact form in (72) in the Appendix. However,
it is only applicable to even transform sizes, and the post-
processing step has to traverse the entire dataset, which can
be very expensive on modern machines with deep memory
hierarchies and multiple processor cores. Thus, finding direct
(i.e., without a conversion) real FFTs is still a relevant prob-
lem.

Most real FFTs are derived by lengthy manipulations of
the transform definition using trigonometric identities. This
method has produced many important algorithms; however,
it does not explain the existence of the algorithms, provides
no insight into the structure and degrees of freedom, and
leaves the question open whether all algorithms have been
found. Notable exceptions include the derivation of Winograd
type real FFTs using the Chinese remainder theorem and
other techniques [13], [14], the derivation of DHT algorithms
by projecting FFTs using finite field algebra [15], and the
derivation of real Bruun FFTs [5], [19].

Contributions of this paper. In this paper we complete our
preliminary work in [34] and derive real FFTsalgebraically.
This means that we first associate with each real DFT a
polynomial algebra as explained in [35] to obtain a uniform
description. Then we derive fast algorithms by manipulating
the polynomial algebra, instead of the transform itself, using
one general method or theorem. This method produces a large
class of general-radix algorithms that we call Cooley-Tukey
type since the same method produces the (complex) Cooley-
Tukey FFT as well as general radix discrete cosine and sine
transform (DCT and DST) algorithms [36]. Our method is an
extension of the techniques used in [30]. The occurrence and
relevance of polynomial algebras for complex and real DFTs
and for other transforms in signal processing is clarified bythe
algebraic signal processing theory introduced in [35], [37].

Our method makes the algorithm derivation concise, trans-
parent, and naturally produces the algorithms in the form of
structured matrix factorizations that visualize the structure of
the algorithms. Our method identifies degrees of freedom and
unifies many well known algorithms in the literature. For
example, Bergland’s [1] and Bruun’s [5] real DFT algorithms,
and Bracewell’s DHT algorithm [38], are instantiations of
our general method. Further, we use the polynomial algebra
framework to structurally optimize algorithms and derive,and
hence explain, many known identities between real DFTs. We

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 2

provide a detailed literature review in Section VI.
We also made an effort to fully specify all occurring

algorithms and identities in a form suitable as a reference for
implementation developers.

The method in this paper does not produce all existing real
FFTs; e.g., prime-factor [39], [40] and Rader-type [41], [42]
algorithms are excluded.

Organization. Section II introduces polynomial algebras,
explains their connection to transforms, and characterizes
complex and real DFTs in this framework. In Section III
we explain our general method to produce Cooley-Tukey
type algorithms using polynomial algebras. The method is
then applied to the real DFTs in Section IV. We show first
a unified algorithm description and then show two classes
of instantiations. The structural optimization and identities
between real DFTs are explained and derived in Section V.
Section VI analyzes the derived algorithms and gives a detailed
literature review. We conclude in Section VII.

II. POLYNOMIAL ALGEBRAS AND TRANSFORMS

In this section we introduce polynomial algebras and explain
how they are associated to transforms. Then we identify this
connection for various versions of complex and real DFTs.
Later we exploit this algebraic interpretation of real DFTsto
derive their Cooley-Tukey type algorithms.

We also introduce the matrix notation that we will use to
describe fast transform algorithms.

For further background on the mathematics in this section
and polynomial algebras in particular, we refer to [43].

A. Polynomial Algebras and Transforms

Polynomial algebra. An algebraA is a vector space
that also provides a multiplication of its elements. Examples
include the sets of complex or real numbersC or R, and the
sets of complex or real polynomialsC[x] or R[x].

The key structure in this paper is thepolynomial algebra.
Given a fixed polynomialp(x) of degreedeg(p) = n, we
define a polynomial algebra as the set

C[x]/p(x) = {s(x) | deg(s) < deg(p)}

of polynomials of degree smaller thann with addition and
multiplication modulop. Viewed as a vector space,C[x]/p(x)
hence has dimensionn.

As a simple example we considerA = C[x]/(x2−1), which
has dimension 2. A possible basis isb = (1, x). In A, for
example,x · (x+1) = x2 +x ≡ x+1 mod (x2−1), obtained
by replacingx2 with 1.

Chinese remainder theorem (CRT). Assume p(x) =
q(x)r(x) factorizes into two coprime (no common factors)
polynomialsq and r. Then the Chinese remainder theorem
(CRT) for polynomials is the linear mapping1

∆ : C[x]/p(x) → C[x]/q(x)⊕ C[x]/r(x),

s(x) 7→ (s(x) mod q(x), s(x) mod r(x)).

1More precisely, isomorphism of algebras.

Here,⊕ is the direct sum of vector spaces with elementwise
operation. If we choose basesb, c, d in the three polynomial
algebras, then∆ can be expressed as a matrix. This matrix is
obtained by mapping every element ofb with ∆, expressing
it in the concatenationc∪ d of the basesc andd, and writing
the results into the columns of the matrix.

As an example, we consider again the polynomialp(x) =
x2 − 1 = (x− 1)(x + 1) and the CRT decomposition

∆ : C[x]/(x2 − 1)→ C[x]/(x − 1)⊕ C[x]/(x + 1).

As bases, we chooseb = (1, x), c = (1), d = (1). ∆(1) =
(1, 1) with the same coordinate vector inc∪d = (1, 1). Further,
because ofx ≡ 1 mod (x − 1) and x ≡ −1 mod (x + 1),
∆(x) = (x, x) ≡ (1,−1) with the same coordinate vector.
Thus,∆ in matrix form is the so-called butterfly matrix

F2 =

[

1 1
1 −1

]

. (1)

Polynomial transforms. Assumep(x) ∈ C[x] is separable,
i.e., it has pairwise distinct zerosα = (α0, . . . , αn−1). Then
the CRT decomposesC[x]/p(x) completely into itsspectrum:

∆ : C[x]/p(x) → C[x]/(x− α0)⊕ . . .⊕ C[x]/(x − αn−1),

s(x) 7→ (s(α0), . . . , s(αn−1)).
(2)

Here we used thats(x) ≡ s(αk) mod (x−αk). If we choose
a basisb = (p0, . . . , pn−1) in C[x]/p(x) and basesbi = (1)
in eachC[x]/(x−αi), then the corresponding matrix is given
by

Pb,α = [pℓ(αk)]0≤k,ℓ<n

and is called thepolynomial transformfor A = C[x]/p(x)
with basisb.

If, in general, we choosebi = (βi) as spectral basis, then the
matrix corresponding to the decomposition (2) is thescaled
polynomial transform

diag0≤ℓ<n(1/βℓ)Pb,α.

We jointly refer to polynomial transforms, scaled or not, as
Fourier transforms.

DFT as a polynomial transform. For example, the DFT
of size n (viewed as a matrix [31], [32]) is the polynomial
transform forA = C[x]/(xn − 1) with basis b = tn =
(1, x, . . . , xn−1). Namely,xn−1 =

∏

0≤k<n(x−wk/n) where
we use the notation

wr = e−2πjr,

which implies thatw1/n is a primitiventh root of unity and
wk

r = wkr . With this notation,

Pb,α =
[

wℓ
k/n

]

0≤k,ℓ<n
=
[

wkℓ
1/n

]

0≤i,jn
= DFTn .

Other types of DFTs were introduced in [44], [45], named
type 1–4 in [4] (type 1 is the standard DFT), and described
algebraically in [35]. Namely, type 3 is obtained by choosing
A = C[x]/(xn + 1) as algebra with the same basistn to get

Pb,α =
[

w
(k+1/2)ℓ
1/n

]

0≤k,ℓn
= DFT-3n .

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 3

The DFTs of type 2 and 4 are scaled polynomial transforms
as shown by

DFT-2n = diag0≤k<n(w
k/2
1/n)DFTn,

DFT-4n = diag0≤k<n(w
(k+1/2)/2
1/n)DFT-3n .

For example, for theDFT-2n this implies that(w−k/2
1/n) is

chosen as basis in the spectral componentC[x]/(x − wk
1/n),

0 ≤ k < n.
Discussion.The interpretation of the DFT as polynomial

transform has long been known and been used to derive and
understand its fast algorithms [30], [46]. Recently, in the
context of the algebraic signal processing theory (ASP) [35],
[37], [47], we have shown that this interpretation is also natural
from a signal processing point of view. Namely, associated
with the DFT isA as filter algebra,M = A as signalA-
module, andΦ : (s0, . . . , sn−1) 7→

∑

0≤ℓn sℓx
ℓ as finite

z-transform. The polynomialxn − 1 captures the periodic
boundary condition associated with the DFT, and filtering is
the multiplication of polynomialsh(x) ∈ A and s(x) ∈ M
moduloxn−1 (which is equivalent to the circular convolution
of the coefficients).

(A,M, Φ) is an example of asignal modelin ASP, the
basic concept on which ASP is axiomatically built. Among
other things, ASP shows that a signal model supports shift-
invariance ifA is commutative. In the finite-dimensional case
this naturally leads to polynomial algebras, which explains
their appearance in SP. For example, we have shown that most
trigonometric transforms are associated with signal models
built from polynomial algebras [35], [37]. This signal models
associated with the 16 discrete cosine and sine transforms do
not support time but space signal processing [37].

The main insight that ASP provides for this paper is that
knowing the signal model, i.e., polynomial algebra, associated
with a transform makes the algorithm derivation straightfor-
ward and transparent.

B. Real Polynomial Algebras and Transforms

To relate various versions of real DFTs to polynomial
algebras, we have to generalize (2) as explained in [35].

Real polynomial transforms. We assume thatp(x) is real,
which guarantees that its roots are either real or form complex
conjugate pairs. Then, instead of decomposingC[x]/p(x)
over C as in (2), we decomposeR[x]/p(x) over R using
the complete real factorizationp(x) =

∏

0≤k<m fk(x). The
polynomialsfk have either degree one (in the case of a real
root of p) or two (in the case of a pair of conjugate complex
roots of p). Consequently, the CRT yields thereal spectral
decomposition

∆ : R[x]/p(x) → R[x]/f1(x) ⊕ . . .⊕ R[x]/fm(x),

s(x) 7→ (s(x) mod f1(x), . . . , s(x) mod fm(x)).
(3)

To express∆ as a matrix, we choose again a basisb in
R[x]/p(x) and bases in the spectral components. For the latter,
there is now a larger set of choices. We call each transform
obtained this way a real polynomial transform, or real Fourier

transform, or simply Fourier transform. Note that if all roots of
p are real, then every real Fourier transform is also a complex
one. This is the case for the DCTs and DSTs [37].

Real DFTs as polynomial transforms. We consider
R[x]/(xn±1), which underlie the real DFTs as expected [35].
To simplify notation, we set

cr = cos(2πr), sr = sin(2πr),

casr = cr + sr, cmsr = cr − sr.

and introduce the polynomials (for0 < r < 1)

p2n,r(x) = (xn − wr)(x
n − w−r) = x2n − 2crx

n + 1. (4)

Using this notation, we have the following completereal
factorizations:

xn − 1 = (x− 1)(x + 1)
∏

0≤i<n/2−1

p2,(i+1)/n(x), n even,

xn − 1 = (x− 1)
∏

0≤i<n/2

p2,(i+1)/n(x), n odd,

xn + 1 =
∏

0≤i<n/2

p2,(i+1/2)/n(x), n even,

xn + 1 =
∏

0≤i<n/2

p2,(i+1/2)/n(x) · (x + 1), n odd,

p2n,r(x) =
∏

0≤i<n

p2,(i+r)/n(x). (5)

The first four factorizations yield the following complete
real algebra decompositions ofR[x]/(xn−1) (for n even and
odd, respectively):

R[x]/(x− 1)⊕ R[x]/(x + 1)⊕
⊕

0≤i<n/2−1

R[x]/p2,(i+1)/n,

(6)

R[x]/(x− 1)⊕
⊕

0≤i<n/2

R[x]/p2,(i+1)/n, (7)

and the following decompositions ofR[x]/(xn+1) (for n even
and odd, respectively):

⊕

0≤i<n/2

R[x]/p2,(i+1/2)/n, (8)

⊕

0≤i<n/2

R[x]/p2,(i+1/2)/n ⊕ R[x]/(x + 1). (9)

The factorization (5) yields the decomposition of
R[x]/p2n,r(x) as

⊕

0≤i<n

R[x]/p2,(i+r)/n(x), (10)

and defines the skew real DFTs used later.
As we explain next, real DFTs are associated withA =

R[x]/(xn ± 1) with basistn = (1, x, . . . , xn−1) and different
choices of spectral bases. The most important cases are listed
in Table I, which also introduces names for the chosen bases
and a unified notation for real DFTs. The decomposition
properties are explained later but already listed here for
completeness. The exact form of these transforms can be found
in Table XIII in the appendix.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 4

TABLE I

REAL DFTS: (a) ASSOCIATED POLYNOMIAL ALGEBRAS; (b) NOTATION

FOR BASES; (c) NOTATION FOR SPECTRAL BASES.

(a)

Transform Algebra Basis b Spectral Unified
basis f notation

RDFTn xn − 1 t e Fn(t→e)

RDFT-2n xn − 1 t e1/2 Fn(t→e1/2)

RDFT-3n xn + 1 t e Gn(t→e)

RDFT-4n xn + 1 t e1/2 Gn(t→e1/2)

DHTn xn − 1 t h Fn(t→h)

DHT-2n xn − 1 t h1/2 Fn(t→h1/2)

DHT-3n xn + 1 t h Gn(t→h)

DHT-4n xn + 1 t h1/2 Gn(t→h1/2)

BRDFTn xn − 1 t s Fn(t→s)

BRDFT-2n xn − 1 t s1/2 Fn(t→s1/2)

BRDFT-3n xn + 1 t s Gn(t→s)

BRDFT-4n xn + 1 t s1/2 Gn(t→s1/2)

skew realDFT p2n,r(x) b f S2n,r(b→f)

(b)

Polynomials Decomposition property

xn − 1 xkm − 1 = (xm)k − 1

xn + 1 xkm + 1 = (xm)k + 1

p2n,r = x2n − 2crxn + 1 p2km,r = p2k,r(xm)

Bases in polynomial algebras Decomposition property

tn = (1, x, . . . , xn−1) tkm = tk(xm) ⋆ tm

sn = (x−⌊n/2⌋, . . . , 1, . . . , x⌈n/2⌉−1) skm = sk(xm) ⋆ tm

e2,r =
`

1, cr−x
sr

´

e2n,r = e2,r(xn) ⋆ tn e2km,r = e2k,r(xm) ⋆ tm

h2,r =
`−cmsr+x

2sr
, casr−x

2sr

´

h2n,r = hr(xn) ⋆ tn h2km,r = h2k,r(xm) ⋆ tm

(c)

Type R[x]/x ± 1 R[x]/p2,r(x)

e (1) e2,r =
`

1, cr−x
sr

´

h (1) h2,r =
`−cmsr+x

2sr
, casr−x

2sr

´

s (1) s2,r = (2cr − x, 1) = (x−1, 1)

e1/2 (1) x−1/2e2,r =
` s3r/2−xsr/2

sr
,

c3r/2−xcr/2

sr

´

h1/2 (1) x−1/2h∗
2,r =

`−cms3r/2+xcmsr/2

2sr
,
−cas3r/2+xcasr/2

2sr

´

(a, b)∗ = (a,−b)

Most important for signal processing applications are the
standard RDFT (type 1) and the discrete Hartley transform
(DHT), also of type 1.

Standard RDFTs. The standard real DFT (type 1) is
defined2 by the matrix

RDFTn =









1 1 . . . 1 1
1 −1 . . . 1 −1
[

ckℓ/n

−skℓ/n

]

1≤k<n/2, 0≤ℓ<n









. (11)

2Note that the definitions of the RDFT in the literature may differ by a
permutation of the rows compared to (11) as explained later.

This notation means that below the first two rows, we have
an n/2− 1× n matrix, each entry of which is a2 × 1 block
containing a cosine and a negative sine of the same angle as
shown.

For a real input signal of lengthn, it computes the real and
imaginary parts (interleaved) of the complex spectrum, which
is conjugate symmetric. The second row of (11) computes the
highest frequency spectral component and is only present for
evenn. It is known, and expected, that using the RDFT instead
of the DFT saves roughly half of the operations.

Algebraically, the RDFT is a real Fourier transform for the
decompositions (6) or (7) with respect to the spectral basis
called e in Table I(c). Namely,e means that the list(1) is
chosen as basis in the one-dimensional spectral components
R[x]/(x± 1) and the list

e2,r = (1, cr/sr − 1/sr · x).

in the two-dimensional componentsR[x]/p2,r(x). This choice
yieldsxℓ ≡ cℓr ·1−sℓr ·(cr/sr−1/sr ·x) mod p2,r and hence
(cℓr,−sℓr) as coordinate vector as required by (11) (where
r = k/n).

The RDFT of type 3 [9], [35] is obtained analogously from
(8) and (9) as shown in Table I(a)

As for theDFT we have to modify the basis in the spectral
components to obtain the RDFTs of types 2 and 4 [9], [35].
The spectral components ofDFT-2 and DFT-4 are of the
form C[x]/(x − wr) and have bases(w−1/2

r). To obtain the
RDFT equivalent, we observe that inC[x]/(x−wr), w

−1/2
r ≡

x−1/2, i.e., the spectral basis is shifted byx−1/2. Hence, we
compute the bases of the correspondingR[x]/p2,r analogously.
We computex−1/2 in R[x]/p2,r. First, we notice thatx−1/2 =
x−1 ·x1/2, and computex−1 = 2cr−x. Next we solvey2 = x
for y in the algebra, which yields two possible solutionsy =
± 1+x

2cu/2
. We setx1/2 = 1+x

2cu/2
to obtain the desired transform

matrices. Hence

x−1/2 = x−1 · x1/2 =
1 + 2cr − x

2cr/2
=

s3r/2 − xsr/2

sr
. (12)

The basis ofR[x]/p2,r is now x−1/2 · e2,r. The final result,
after replacingx−1/2 using (12), is shown in Table I(c). The
complete spectral basis is denoted withe1/2.

DHTs. Choosing the basish instead ofe andh1/2 instead
of e1/2 [see Table I(c)] in the spectral components yields the
well-known discrete Hartley transforms (DHTs) of types 1–
4. “The” DHT is type 1 and due to [38], [48]; the other
types were introduced in [27]. Note thath2,r consists of the
difference and the sum of the two elements ofe2,r. Similarly,
h

1/2
2,r consists of the difference and the negative sum of the

two elements ofe1/2
2,r .3

BRDFTs. It seems that the most natural choice of basis in
the two-dimensional spectral components is(1, x). However,
the associated real DFT is not considered in the literature.
Bruun’s FFT [5] uses (implicitly, since no polynomial algebras
are used) a close variant by choosings2,r = (x−1, 1) ≡ (2cr−
x, 1). This choice hence yields four types of BRDFTs as we

3This slightly inconsistent definition ofh1/2 makes the DHTs of types 2
and 3 mutual transposes up to a permutation, see (63)–(70) inSection VI.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 5

TABLE II

RELATIONSHIP BETWEEN REAL AND COMPLEXDFTS FOR EVENn.

DHTn =
`

I2 ⊕ (In/2−1 ⊗
h

1 −1
1 1

i

)
´

RDFTn,

DHT-2n =
`

I2 ⊕ (In/2−1 ⊗
h

1 −1
−1 −1

i

)
´

RDFT-2n,

DHT-3n =
`

In/2 ⊗
h

1 −1
1 1

i

´

RDFT-3n,

DHT-4n =
`

In/2 ⊗
h

1 −1
−1 −1

i

´

RDFT-4n,

RDFTn =
`

I2 ⊕ (In/2−1 ⊗i

h

c(i+1)/n 1

s(i+1)/n 0

i

´

BRDFTn,

RDFT-3n =
`

In/2 ⊗i

h

c(i+1/2)/n 1

s(i+1/2)/n 0

i

´

BRDFT-3n.

DFTn = Un

“

I2 ⊕
“

I(n−2)/2 ⊗
h

1 j
1 −j

i””

RDFTn,

DFT-2n = Un

“

ˆ

1
j

˜

⊕
“

I(n−2)/2 ⊗
h

1 j
−1 j

i””

RDFT-2n,

DFT-3n = Vn

“

In/2 ⊗
h

1 j
1 −j

i ”

RDFT-3n,

DFT-4n = Vn

“

In/2 ⊗
h

1 j
−1 j

i ”

RDFT-4n .

call them. OnlyBRDFT andBRDFT-3 will prove useful in
the algorithm derivation later.

Skew real DFTs.Table I(a) also introducesskewreal DFTs
associated with (10). These will arise as building blocks inthe
real DFT algorithms.

Relationships.Since the RDFTs, DHTs, and BRDFTs only
differ in the choice of spectral basis, they can be convertedinto
each other using a base change in the spectrum. It takes the
form of a block-diagonal matrix; the block sizes correspond
to the dimensions of the spectral components. For example,
for evenn, and t ∈ {1, 2, 3, 4}, it takes the form of the first
six equations in Table II. (the notation is explained in the next
section)

Further, the DFT can be computed by first decomposing
C[x]/(xn−1) overR using any real DFT and then completely
by decomposing the two-dimensional components. For even
n we obtain this way the last four equations in Table II.U
andV are permutations that also occur in the spectral format
conversion below. They are defined in (16) and (17) below.

Format. We use for all real DFTs the same ordering of
the spectrum corresponding to (8) and (9), i.e., the one-
dimensional spectral components are first, and the two-
dimensional components are kept together. Other ways of
ordering hence require a permutation of the rows of the trans-
form matrices. Our ordering corresponds to thePerm format
of the RDFT in the Intel IPP library [49]. This is different from
FFTW [50] which pads one-dimensional spectral components
with an extra 0, and is the equivalent ofCCS format in IPP.

For the RDFTs, our ordering is common (e.g., already
used in [1]). For the DHTs it is different from the original
“standard” definitions in [38] and [27]. The relationship isas
follows

Standard-DHT-tn = Un DHT-tn, t ∈ {1, 2}, (13)

Standard-DHT-tn = Vn DHT-tn, t ∈ {3, 4}. (14)

The permutationsU andV are defined below in (16) and (17).

We provide the explicit form of the RDFTs, DHTs, and
BRDFTs as used in this paper in Table XIII in the appendix.

C. Matrix Notation

In the remainder of the paper we derive fast algorithms rep-
resented as factorizations of the transform matrix as products
of structured sparse matrices. The notation follows [31].

Basic matrices.We denote then× n identity matrix with
In. If the columns ofIn are reversed, we getJn. The 2 × 2
butterfly matrixF2 was defined in (1) and a2× 2 rotation by
angle2πr is defined as

R2πr =

[

cr −sr

sr cr

]

.

Further,diag0≤i<n(αi) is the diagonal matrix with diagonal
entriesαi and we define

Dn = diag0≤i<n((−1)i). (15)

Finally, Ln
m, n = km, is the stride permutation matrix, which

has 1s at positions(jk + i, im + j), and 0s elsewhere.
Matrix operators. Further, ifA = [ai,j] andB are matrices,

then the direct sum and the tensor or Kronecker product are
respectively defined as

A⊕B =

[

A
B

]

, A⊗B = [ai,jB].

SinceIk ⊗A = A⊕ . . .⊕A, we will write the direct sum of
different k × k matricesAi, 0 ≤ i < k, as

Ik ⊗i Ai = A0 ⊕ . . .⊕Ak−1.

The spectral reordering permutationsU and V in Table II
can now be expressed as

Un =

{

(I(n+2)/2 ⊕ J(n−2)/2)L
n
2 , n even,

(I(n+1)/2 ⊕ J(n−1)/2)(I1 ⊕ Ln−1
2), n odd.

(16)

Vn =

{

(In/2 ⊕ Jn/2)L
n
2 , n even,

(I(n−1)/2 ⊕ J(n+1)/2)(L
n−1
2 ⊕ I1), n odd.

(17)

III. FAST ALGORITHMS: THEORY

The connection to polynomial algebras can be used to derive
fast algorithms for the associated transforms using a general
method that builds on but extends the early work [30]. In
short, we derive general-radix Cooley-Tukey algorithms by
performing the decompositions (2) or (3)in stepsbased on
a decomposition ofp if one exists. We have already shown
that this method yields the standard Cooley-Tukey FFT for the
DFT and a large class of general-radix algorithms (including
many novel ones) for the 16 DCTs and DSTs [36], [51].

In this paper, we first generalize the method to work with
real decompositions and then apply it to the various real DFTs.
Together with [36], this shows that one method spawns most
known algorithms for trigonometric transforms.

Notation. To state the general method we first introduce the
product of bases of polynomials. Letb = (p0, . . . , pk−1) and
c = (q0, . . . , qm−1) be two lists of polynomials. Then their
product is the list of lengthkm

b ⋆ c = (p0q0, . . . , p0qm−1,
.
pk−1q0, . . . , pk−1qm−1).

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 6

Further, if b is as above, andr(x) is any polynomial, then we
denote with

b(r(x)) = (p0(r(x)), . . . , pk−1(r(x)))

the same list but withr(x) inserted forx.
Method. We first need the following lemma, a variation

of a theorem we already used in [51] to derive DCT/DST
algorithms.

Lemma 1Let q(x) be separable and letq(x) =
∏

0≤i<k qi(x).
Further, letc and ei, 0 ≤ i < k, be bases forC[x]/q(x) and
C[x]/qi(x), respectively, and let, with respect to these bases,
M be the matrix associated with the CRT decomposition

C[x]/q(x)→
⊕

0≤i<k

C[x]/qi(x).

If r(x) is an arbitrary polynomial of degreem andd a basis
for C[x]/r(x), thenM ⊗ Im is the matrix associated with

C[x]/q(r(x))→
⊕

0≤i<k

C[x]/qi(r(x)),

with respect to the basesb = c(r(x))⋆d andbi = ei(r(x))⋆d.
The above holds ifC is replaced byR and all polynomials

are real.

Proof: M is obtained by reducingcℓ(x) ∈ c modulo
the qi(x), 0 ≤ i < k, and expressing the results in the
basesei of C[x]/qi(x). The resulting vector is theℓth col-
umn of M . If cℓ(x) ≡ cℓ,i mod qi(x) has the coordinate
vector vℓ,i with respect to the basisei, then cℓ(r(x))dj ≡
cℓ,i(r(x))dj mod qi(r(x)) and has the coordinate vectorv ⊗
(0, . . . , 0, 1, 0, . . . , 0)T (the 1 is in positionj, 0 ≤ j < m)
with respect to the basisei(r(x)) ⋆ d. The matrix that has
these vectors as columns isM ⊗ Im, as desired.

Our general method for deriving fast algorithms for complex
and real Fourier transforms is sketched in Fig. 1 and takes
slightly different forms in both cases. The key property that
we require is thatp(x) = q(r(x)) decomposes. We assume
deg(p) = n = km, deg(q) = k, deg(r) = m, and that suitable
bases have been chosen.

In the complex caseC[x]/p(x) = C[x]/q(r(x)), we first
use the CRT with respect to the decomposition of the outer
polynomial q(y) =

∏

i(y − βi). According to Lemma 1,
the associated matrix isM ⊗ Im, where M is a Fourier
transform for C[y]/q(y). The smaller polynomial algebras
C[x]/(r(x) − βi) are then decomposed by the properm×m
Fourier transformsMi. A final permutationP reorders the
summands into the required form.

In the real caseR[x]/p(x) = R[x]/q(r(x)), we proceed
analogously. The difference is thatq is now decomposed over
R as q(y) =

∏

i qi(y), where theqi have degree one or two.
Again, the smaller algebrasR[x]/qi(r(x)) are decomposed
by their proper real Fourier transformsMi, which now have
dimensionsm × m or 2m × 2m. The resulting spectrum is
permuted withP into the proper order.

In both cases, the resulting algorithm takes the form

T = P

(

⊕

i

Mi

)

(M ⊗ Im) (18)

Complex fast Fourier transform

C[x]/p(x) = C[x]/q(r(x))

M⊗I

))SSSSSSSSSSSSSSS

T

��

⊕

i

C[x]/(r(x) − βi)

P (⊕iMi)=P (I⊗iMi)
vvlllllllllllll

⊕

k

C[x]/(x − αk)

Real fast Fourier transform

R[x]/p(x) = R[x]/q(r(x))

M⊗I

))SSSSSSSSSSSSSS

T

��

⊕

i

R[x]/qi(r(x))

P (⊕iMi)
vvmmmmmmmmmmmm

⊕

k

R[x]/fk(x)

Fig. 1. Algebraic derivation of Cooley-Tukey type algorithms for complex
and real Fourier transformsT . Proper bases (not shown) are chosen for the
decompositions to work. In both cases, the resulting algorithm takes the form
T = P (⊕iMi)(I ⊗ M).

and we call itCooley-Tukey type.
Example: Cooley-Tukey FFT.We use Lemma 1 to derive

the Cooley-Tukey FFT. The polynomial algebra forDFTn is
C[x]/(xn − 1) with standard basistn. Assumingn = km,
thenxn − 1 = (xm)k − 1 decomposes. Applying the CRT in
steps yields

C[x]/(xn − 1) = C[x]/((xm)k − 1)

→
⊕

0≤i<k

C[x]/(xm − wi/k) (22)

→
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x − w(jk+i)/n) (23)

→
⊕

0≤i<n

C[x]/(x− wi/n). (24)

We read off the matrices for each decomposition step. First,
we observe thattn = tk(xm) ⋆ tm [see Table I(b)]. Thus,
Lemma 1 is applicable: step (22) corresponds to(DFTk ⊗Im)
and tm is the basis in eachC[x]/(xm − wi/k). The latter
polynomial algebras are completely decomposed in step (23)
by the polynomial transforms (calledskew DFTs)

DFTm(i/k) = [wℓ
(jk+i)/n]0≤j,ℓ<n

= DFTn · diag0≤ℓ<m(wiℓ/n). (25)

The final step (24) is just the stride permutation applied to
the one-dimensional algebras.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 7

TABLE III

STEPWISE DECOMPOSITION OFR[x]/(xn − 1), n = km AND k EVEN, AND THE CORRESPONDING MATRIX FACTORIZATION OFRDFTn .

Stepwise algebra decomposition:

R[x]/((xm)k − 1)

→
"

R[x]/(xm − 1)

#

⊕
"

R[x]/(xm + 1)

#

⊕
"

M

0<i< k
2

R[x]/p2m,i/k

#

(19)

→
"

R[x]/(x − 1) ⊕ R[x]/(x + 1) ⊕

M

0<i< m
2

R[x]/p2,i/m

!#

⊕
"

M

0≤i< m
2

R[x]/p2,(i+1/2)/m

#

⊕
"

M

0<i< k
2

M

0<j<m

R[x]/p2,(kj+i)/n

#

(20)

→ R[x]/(x − 1) ⊕ R[x]/(x + 1) ⊕

M

0<i< km
2

R[x]/p2,i/km

!

(21)

Corresponding matrix factorization: RDFTkm = P km
m

“

RDFTm ⊕RDFT-3m ⊕
`

Ik/2−1 ⊗i Be
2mS2m,(i+1)/k(e→e)

´

”“

RDFTk ⊗Im

”

.

In summary we get

DFTn = Ln
m

(

Ik ⊗i DFTm(i/k)
)

(DFTk ⊗Im)

= Ln
m(Ik ⊗DFTm)Dn

m(DFTk ⊗Im), (26)

whereDn
m is diagonal, namely the direct sum of the diagonal

matrices in (25). The algorithm is the decimation-in-frequency
Cooley-Tukey FFT, its transpose is the decimation-in-time
version. This also motivates why we call all algorithms of
the form (18)Cooley-Tukey type.

Example: Cooley-Tukey type algorithms for RDFT. Us-
ing Table I(a), RDFTn = Fn(t → e) is associated with
R[x]/(xn − 1) with standard basistn = (1, x, . . . , xn−1); the
spectral basis is of typee. We assume that the sizen = km
factors such thatxn − 1 decomposes and consider the case
where bothk andm are even.

Similarly to the complex DFT, we start with a stepwise
algebra decomposition similar to (22)–(24), but now all de-
composition steps are over the real numbers; hence the steps
take the different form shown in Table III.

The first step decomposesR[y]/(yk − 1) over R as shown
in (6) and insertsxm for y. The result is (19) in Table III.
Sincetn = tk(xm)⋆tm, the associated matrix isRDFTk ⊗Im

using Lemma 1, and the bases aretm in R[x]/(xm ± 1) and
e2,i/k ⋆ tm = e2m,i/k in R[x]/p2m,i/k(x).

The second step (20) decomposes the summands in (19)
completely. The first two are decomposed byFm(t→ e) =
RDFT andGm(t→e) = RDFT-3, respectively, as shown in
(6) and (8). For the two-dimensional summands we need the
skew real DFTsS2m,(i+1)/k(e→e) introduced in Table I(a).

Finally, (21) reorders the summands into the required order
using a suitable permutationP km

m . Note that when going from
(20) to (21),r = (kj + i)/n in (20) is renormalized toi/km
which is always smaller than 1/2. This is done by mapping the
valuesr > 1/2 to 1− r. For example, 3/4 would be changed
to 1/4. This does not affectp2,r or the polynomial algebra
(becausep2,r = p2,1−r, but does affect the definition of the
spectral basis in Table I. Accounting for the change introduces
a sparse base change matrixB in the final factorization.B is
defined in later in Table VI..

The resulting Cooley-Tukey type algorithm is shown in
Table III.

Note, that to implement this algorithm, one also needs fast
algorithms for the occurringRDFT-3m andS2m,(i+1)/k(e→
e). We will obtain these algorithms using the same algebraic
method in the next section. Without the algebraic framework,
the appearance of the skew real DFTs is unexpected, which
explains why the algorithm derivation has been more difficult
than for the complex DFT.

IV. COOLEY-TUKEY TYPE ALGORITHMS FORREAL DFTS

In this section we derive general-radix Cooley-Tukey type
algorithms for the real DFTs following the method outlined
in Fig. 1 in Section III. We first derive generic algorithms
jointly for the transforms in Table I(a). Then we instantiate
them first in a “natural” way and then in a way that improves
the operations count, generalizing Bruun’s FFT [5].

A. Generic Real DFT Algorithms

In Table I(a) we introduced a unified notation for real DFTs.
It shows that they can be grouped into three typesF ,G,S
corresponding to the three occurring polynomial algebras.The
difference is in the choice of basisb (usually b = t) in the
algebra and the basisf in the spectrum. This notation, together
with our derivation method, enables us to derive the algorithms
jointly for each of these groups with generic choices of bases.

The algorithms derivation follows closely Fig. 1 and is
completely analogous to the special case of RDFT already
considered in Table III. Hence we will be brief. The resulting
algorithms are summarized in Table IV.

Case 1: Fn(b → f). The polynomial algebra isA =
R[x]/(xn − 1) with basisb and spectral basisf . We assume
n = km, which implies the polynomial decompositionxn −
1 = (xm)k− 1. For evenk, we obtain the polynomial algebra
decomposition and the corresponding fast algorithm already
shown in Table III. However, here we consider any basisb with
the compatible decomposition property (i.e.,bn = bk(xm)⋆tm)
and any spectral basisf .

We sketch the stepwise algebra decomposition in Fig. 2.
First, the coarse decomposition ofA in (19) decomposes

it into m- and 2m-dimensional algebras (we only show2m-
dimensional in Fig. 2). This step has a degree of freedom,
namely the spectral basis of the coarse decomposition. We

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 8

TABLE IV

ALGORITHMS FOR GENERIC REALDFTS WITH GENERIC INTERMEDIATE BASISc. WE SAY THAT THE ALGORITHMS ARE OF TYPEb → c → f . THE

OCCURRING PERMUTATIONS ARE SHOWN INTABLE V.

Real DFTs, type 1 and 2: AlgebraR[x]/xn − 1 with basis b and spectral basisf :

Fkm(b→f) = P km
m ·

“

Fm(t→f) ⊕ Gm(t→f) ⊕
“

Ik/2−1 ⊗i Bf
2mS2m,(i+1)/k(c→f)

””

· (Fk(b→c) ⊗ Im), k even (27)

Fkm(b→f) = P km
m ·

“

Fm(t→f) ⊕
“

I⌊k/2⌋ ⊗i Bf
2mS2m,(i+1)/k(c→f)

””

· (Fk(b→c) ⊗ Im), k odd (28)

Real DFTs, type 3 and 4: AlgebraR[x]/xn + 1 with basis b and spectral basisf :

Gkm(b→f) = Qkm
m ·

“

Ik ⊗i Bf
2mS2m,(i+1/2)/k(c→f)

”

· (Gk(b→c) ⊗ Im), k even (29)

Gkm(b→f) = Qkm
m ·

““

I⌊k/2⌋ ⊗i Bf
2mS2m,(i+1/2)/k(c→f)

”

⊕ Gm(t→f)
”

· (Gk(b→c) ⊗ Im), k odd (30)

Skew real DFTs: Algebra R[x]/pn,r with basis b and spectral basisf :

S2km,r(b→f) = L2km
m ·

`

Ik ⊗i S2m,(i+r)/k(c→f)
´

·
“

S2k,r(b→c) ⊗ Im

”

(31)

TABLE V

PERMUTATIONS UNDERLYING THE PERMUTATION MATRICES INTABLE IV. EACH PERMUTATION IS COMPRISED OF SEVERAL PIECEWISE INDEX

MAPPINGS, WHICH MAP INPUT VECTOR INDICES TO OUTPUT VECTOR INDICES. GIVEN AN INDEX MAPPING p 7→ q THE CORREPOSNDING PERMUTATION

MATRIX HAS 1S IN POSITIONS(q, p) AND 0S ELSEWHERE. NOTE, THAT ALL PIECEWISE INDEX MAPPINGS ARE STRIDES.

Permutation matrix k m Index mappings (input vector 7→ output vector) Bounds

P km
m even even mj + 2i + (0, 1) 7→ kj + 2ki + (0, 1) 0 ≤ j ≤ 1 0 ≤ i < m/2

2mj + 2i + (0, 1) 7→ refl2n(2j + 2ki) + (0, 1) 1 ≤ j < k/2 0 ≤ i < m

P km
m even odd (0, 2m − 1) 7→ (0, 1)

1 + mj + 2i + (0, 1) 7→ kj + 2ki + (0, 1) 0 ≤ j ≤ 1 0 ≤ i < ⌊m/2⌋
2mj + 2i + (0, 1) 7→ refl2n(2j + 2ki) + (0, 1) 1 ≤ j < k/2 0 ≤ i < m

P km
m odd even 2i + (0, 1) 7→ 2ki + (0, 1) 0 ≤ i < m/2

−m + 2mj + 2i + (0, 1) 7→ refl2n(2j + 2ki) + (0, 1) 1 ≤ j < ⌊k/2⌋ 0 ≤ i < m

P km
m odd odd 0 7→ 0

1 + 2i + (0, 1) 7→ 1 + 2ki + (0, 1) 0 ≤ i < ⌊m/2⌋
−m + 2mj + 2i + (0, 1) 7→ 1 + refl2n(2j + 2ki) + (0, 1) 1 ≤ j < ⌊k/2⌋ 0 ≤ i < m

Qkm
m even any 2mj + 2i + (0, 1) 7→ refl2n−1(2j + 2ki) + (0, 1) 0 ≤ j < k/2 0 ≤ i < m

Qkm
m odd any 2mj + 2i + (0, 1) 7→ refl2n−1(2j + 2ki) + (0, 1) 0 ≤ j < ⌊k/2⌋ 0 ≤ i < m

km − m + 2i + (0, 1) 7→ k + 2ki + (0, 1) 0 ≤ i < ⌊m/2⌋
km 7→ km (if m is odd)

refl2n(i) =

(

i, i < n,

2n − i, else
, refl2n−1(i) =

(

i, i < n,

2n − 1 − i, else

algebraA decomposition matrix basisb

R[x]/(xm)k − 1 bk(xm) ⋆ tm








y

Fk(b→c)⊗ Im









y

⊕

R[x]/p2,∗(x
m)

⋃

c2,∗(x
m) ⋆ tm









y

⊕

S2m,∗(c2m→f)









y

⊕

R[x]/p2,∗(x)
⋃

f2,∗

Fig. 2. Graphical representation of a generic fast algorithm for R[x]/(xkm−
1). For simplicity we omit the exact form of the parameterr in polynomials
p and their bases, and use∗ instead. We also omitm- and one-dimensional
algebra summands that occur, and only show2m- and two-dimensional
summands.

denote it withc. Possible choices forc include the same as
for f and are shown in Table I(b). All these choices ofc have
the decomposition propertyc2(x

m) ⋆ tm = c2m.

Using Lemma 1, (19) is performed byFk(b→c)⊗ Im and
the basis in the first twom-dimensional summands in (19) is
tm and the basis in the algebrasR[x]/p2m,∗(x) is c2,∗(x

m) ⋆
tm = c2m,∗.

Next, the complete decomposition in (20) is performed by
Fm(t→f) andGm(t→f) for the first two summands in (19)
(not shown in Fig. 2) and byBf

2mS2m,(i+1)/k(c→f) for the
remaining summands. The matrixB was explained at the end
of Section III.

The final step (21) is simply a reordering of the spectral
components using a suitable permutation that is independent
of the choice of bases. We omit the straightforward derivation
and only show the result in Table V.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 9

For odd k the decomposition has to be slightly adjusted
since the second summands in (19)–(21) are not present.

The resulting algorithm applies to all real DFTs of type 1
and 2 and is shown in (27) and (28) in Table IV.

Case 2:Gn(b→f). The algorithm derivation forGn(b→
f) with underlying polynomial algebraR[x]/(xn + 1) is
analogous to Case 1 above but based on the decompositions
(8) and (9).

As before, the basis choices considered in this paper are
shown in Table I(b):b = t andf ∈ {e, h, s, e1/2, h1/2}. The
resulting algorithms are for real DFTs of type 3 and 4 and
shown in Table IV.

Note that for evenn, xn+1 = pn,1/4(x), andGn(b→f) and
Sn,1/4(b→ f) (discussed next) coincide up to a permutation
and sign change of spectral components.

Case 3:S2n,r(b→f). The decomposition of the algebra
R[x]/p2n,r(x) in (10) underlyingS2n,r(b → f) is derived
analogously to the previous cases, using the decomposition
property ofp2n,r in Table I(b). The basis choices considered
in this paper for these algebras areb ∈ {e, h, s} and f ∈
{e, h, s, e1/2, h1/2}.

Summary. All algorithms are summarized in Table IV. We
started with a transform that maps basesb→ f (even though
the algebras are different), and the algorithm derivation used an
intermediate basisc (arising from the choice of spectral basis
in the coarse decomposition). Hence we say the algorithms
in Table IV are of typeb → c → f ; b and f define the
initial transform, whereas the choice ofc is a degree of
freedom. From the decompositions in Table IV it is clear that
the algorithms areO(n log(n)) for “sufficiently composite”
sizesn. The question is what choice yields the lowest exact
operations count.

Below we instantiate the algorithms for two choices ofc.
The first we call “natural” since it breaks down real DFTs into
real DFTs of a similar type. The second we call “Bruun type”
since they generalize Bruun’s FFT [5].

B. Natural Cooley-Tukey Type Real FFTs

For a given transformFn(b→f) it seems natural to choose
the intermediate basisc in the algorithms in Table IV such
that the coarse decomposition is performed by a transform of
similar type. This meansc = e for f ∈ {e, e1/2} andc = h for
f ∈ {h, h1/2}. Hence, the algorithms are of typesb→ e→ f
and b → h → f . We instantiate Table IV for these choices
in Table VI including the base cases needed to compute the
transforms for two-power sizes. Together with Table V and
size-2 and 4 base cases these equations provide self-contained
algorithms specifications for all 4 types of RDFTs and DHTs
for 2-power sizes. To compute other composite sizes, only the
small prime sizep base cases are missing for RDFTs, and size
2p base cases for skew transforms. The former can be obtained
using arithmetic free conversions in Section V-C combined
with Rader-type algorithms for the RDFT and DHT of type
1, for example, using [42] for the RDFT or an adaptation of
[41] for the DHT. The latter can be obtained by converting
S2k,r(b→b) into half-sized skew complex DFTs as explained
in Section V-A.

For two-power sizesn, recursive application of the algo-
rithms in Table VI yields an operations count of5

2n log2(n)+
O(n), which is known to be suboptimal. Inspection shows that
the bulk of the computation is performed by the transforms
S2k,r(b→b), whereb = e or = h. Hence, the overall cost will
be dominated by the size 4 base cases for these transforms,
which require 2 multiplications and 4 additions.

There are at least two ways of reducing the operations count
to 2n log2(n) + O(n). The first converts the skew real DFTs
S2k,r(b→ b) into skew complex DFTs (of half size) and is
explained in Section V-A. The second is explained next: it
chooses different bases in the decomposition generalizingan
idea by Bruun [5], which was later extended in [19], [20].

C. Bruun-Cooley-Tukey Type Real FFTs

The basic idea behind the algorithms in this section is to
computeFn(t→ f) and Gn(t→ f) with algorithms of type
t → s → f . The bulk of the computation is then done by
S2k,r(s→s) whose size 4 base caseS4,r(s→s), also known
as the “Bruun FFT butterfly,” requires 2 multiplications and2
additions, 2 less than before.

The algorithm is obtained by usingc = s in the general
algorithms from Table IV. The choice of intermediate basis
is fixed, regardless of the transform we are computing. This
algorithm will then contain the BRDFTs defined in Table I(a),
which themselves are expanded in the same way, i.e., via a
t→ s→ s algorithm.

All these algorithms are shown in Table VII including the
base cases needed for two-power sizesn.

V. A LGORITHM OPTIMIZATIONS

In this section we derive three further optimizations appli-
cable to the algorithms in Section IV:

1) the conversion of skew real DFTs into skew DFTs for
savings in the operations count;

2) the regularization of the structure of type 1–2 real DFT
algorithms; and

3) the arithmetic-free conversions between real DFTs.

As before, all optimizations are derived using the polynomial
algebra framework, apply to the generic real DFT algorithms,
and can hence be instantiated for all algorithms shown so far,
in particular, for the RDFT, DHT, and BRDFT algorithms.

A. Converting Skew RDFTs Into Skew DFTs

We mentioned before that the algorithms in Section IV-
B have the disadvantage that the occurring skew real DFTs
S2k,r(b→ b), b ∈ {e, h}, are too expensive when computed
using (36). Here, we show that they can be converted into the
skew DFTs in (25), which turns out to save operations. The
conversion is based on the following lemma.

Lemma 2The following mapping is an isomorphism [43] of
R-algebras, i.e., in particular, a bijective linear mapping:

φ2n : R[x]/p2n,r(x) → C[x]/(xn − wr),
s(x) 7→ s(x) mod (xn − wr).

(42)

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 10

TABLE VI

NATURAL COOLEY-TUKEY TYPE ALGORITHMS (TYPEb → e → f AND b → h → f) FOR REAL DFTS OF SIZEn = km AND SIZE 2 BASE CASES. EACH

EQUATION HAS FOUR CASES. FOR EXAMPLE, THE FIRST CHOICE IN(32) RESTATESTABLE III.

Algorithms:

˛

˛

˛

˛

˛

˛

˛

RDFTn

RDFT-2n

DHTn

DHT-2n

˛

˛

˛

˛

˛

˛

˛

= P n
m·

0

B

B

B

B

@

˛

˛

˛

˛

˛

˛

˛

RDFTm

RDFT-2m

DHTm

DHT-2m

˛

˛

˛

˛

˛

˛

˛

⊕

˛

˛

˛

˛

˛

˛

˛

RDFT-3m

RDFT-4m

DHT-3m

DHT-4m

˛

˛

˛

˛

˛

˛

˛

⊕

0

B

B

B

B

@

Ik/2−1 ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1)/k(e→e)

Be1/2

2m S2m,(i+1)/k(e→e1/2)

Bh
2m S2m,(i+1)/k(h→h)

Bh1/2

2m S2m,(i+1)/k(h→h1/2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

A

1

C

C

C

C

A

·

0

B

@

˛

˛

˛

˛

˛

˛

˛

RDFTk

RDFTk

DHTk
DHTk

˛

˛

˛

˛

˛

˛

˛

⊗ Im

1

C

A
, k even (32)

˛

˛

˛

˛

˛

˛

˛

RDFTn

RDFT-2n

DHTn

DHT-2n

˛

˛

˛

˛

˛

˛

˛

= P n
m·

0

B

B

B

B

@

˛

˛

˛

˛

˛

˛

˛

RDFTm

RDFT-2m

DHTm

DHT-2m

˛

˛

˛

˛

˛

˛

˛

⊕

0

B

B

B

B

@

I⌊k/2⌋ ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1)/k(e→e)

Be1/2

2m S2m,(i+1)/k(e→e1/2)

Bh
2m S2m,(i+1)/k(h→h)

Bh1/2

2m S2m,(i+1)/k(h→h1/2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

A

1

C

C

C

C

A

·

0

B

@

˛

˛

˛

˛

˛

˛

˛

RDFTk
RDFTk

DHTk

DHTk

˛

˛

˛

˛

˛

˛

˛

⊗ Im

1

C

A
, k odd (33)

˛

˛

˛

˛

˛

˛

˛

RDFT-3n

RDFT-4n

DHT-3n

DHT-4n

˛

˛

˛

˛

˛

˛

˛

= Qn
m·

0

B

B

B

B

@

Ik ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1/2)/k(e→e)

Be1/2

2m S2m,(i+1/2)/k(e→e1/2)

Bh
2m S2m,(i+1/2)/k(h→h)

Bh1/2

2m S2m,(i+1/2)/k(h→h1/2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

A

·

0

B

@

˛

˛

˛

˛

˛

˛

˛

RDFT-3k

RDFT-3k

DHT-3k
DHT-3k

˛

˛

˛

˛

˛

˛

˛

⊗ Im

1

C

A
, k even (34)

˛

˛

˛

˛

˛

˛

˛

RDFT-3n

RDFT-4n

DHT-3n

DHT-4n

˛

˛

˛

˛

˛

˛

˛

= Qn
m·

0

B

B

B

B

@

0

B

B

B

B

@

I⌊k/2⌋ ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1/2)/k(e→e)

Be1/2

2m S2m,(i+1/2)/k(e→e1/2)

Bh
2m S2m,(i+1/2)/k(h→h)

Bh1/2

2m S2m,(i+1/2)/k(h→h1/2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

A

⊕

˛

˛

˛

˛

˛

˛

˛

RDFT-3m

RDFT-4m

DHT-3m

DHT-4m

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

A

·

0

B

@

˛

˛

˛

˛

˛

˛

˛

RDFT-3k

RDFT-3k
DHT-3k

DHT-3k

˛

˛

˛

˛

˛

˛

˛

⊗ Im

1

C

A
, k odd (35)

˛

˛

˛

˛

˛

˛

˛

˛

S2n,r(e→e)
S2n,r(e→e1/2)
S2n,r(h→h)
S2n,r(h→h1/2)

˛

˛

˛

˛

˛

˛

˛

˛

= L2n
m ·

0

B

B

@

Ik ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

S2m,(i+r)/k(e→e)

S2m,(i+r)/k(e→e1/2)

S2m,(i+r)/k(h→h)

S2m,(i+r)/k(h→h1/2)

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

A

·

0

B

@

˛

˛

˛

˛

˛

˛

˛

S2k,r(e→e)
S2k,r(e→e)
S2k,r(h→h)
S2k,r(h→h)

˛

˛

˛

˛

˛

˛

˛

⊗ Im

1

C

A
(36)

Base cases:

Be
2m = Im ⊕ Dm, Be1/2

2m = Im ⊕−Dm,

Bh
2m = I2⌈m/2⌉ ⊕ (I⌊m/2⌋ ⊗ J2), Bh1/2

2m = I2⌈m/2⌉ ⊕ (I⌊m/2⌋ ⊗ J2),

RDFT2 = F2, DHT2 = F2,

RDFT-22 = F2, DHT-22 = F2,

RDFT-32 = D2 = diag(1,−1), DHT-32 = F2,

RDFT-42 =
√

2
2

h

1 −1
−1 −1

i

, DHT-42 =
√

2I2,

RDFT-34 = diag(1,−1, 1, 1)(F2 ⊗ I2)(I2 ⊕ R1/8)L4
2, DHT-34 = (I2 ⊕ J2)(F2 ⊗ I2)(F2 ⊕

√
2D2)L4

2,

RDFT-44 = (D2 ⊕ D2J2)(F2 ⊗ I2)(R1/16 ⊕ R3/16)L4
2, DHT-44 = diag(1, 1, 1,−1)(F2 ⊗ I2)(R−1/16 ⊕ R1/16)L4

2,

S4,r(e→e) = (F2 ⊗ I2)(I2 ⊕ R−r/2)L
4
2, S4,r(h→h) = D4(F2 ⊗ I2)(I2 ⊕ Rr/2)D4L4

2,

S4,r(e→e1/2) = (I2 ⊕ D2J2)(F2 ⊗ I2)(R−r/4 ⊕ R−3r/4)L4
2, S4,r(h→h1/2) = (I2 ⊕−D2J2)(F2 ⊗ I2)(Rr/4 ⊕ R3r/4)D4L4

2.

Proof: By the CRT,φ2n is a homomorphism of algebras.
It remains to show that it is also bijective. SinceR[x]/p2n,r(x)
andC[x]/(xn−wr) have the same dimension2n asR-vector
spaces, it suffices to show thatφ2n is injective.

φ2n(s(x)) = 0 implies thatxn − wr dividess(x). Sinces
is real,p2n,r divides s and hences(x) ≡ 0 mod p2n,r(x) as
desired.

Using Lemma 2 we establish the diagram in Fig. 3, which
expresses that

S2n,r(b→f) =





⊕

0≤i<n

φ−1
2





[

DFT(r) or DFT-2(r)
]

φ2n.

The choice of DFT depends onf ; the exact equations are
computed next.

First, we note that this diagram representsreal linear
mappings betweenreal algebras. HenceDFT(r) or DFT-2(r)

R[x]/p2n,r
φ2n

−−−−−−−−−−→ C[x]/(xn − wr)








y

S2n,r(b→f)









y

DFT(r) or

DFT-2(r)

⊕

0≤i<n

R[x]/p2n,(i+r)/n

L

φ−1
2←−−−−−−−−

⊕

0≤i<n

C[x]/(x− w(i+r)/n)

Fig. 3. Translating skew real DFTs into skew complex DFTs.

in this diagram are real transforms that are obtained from
DFT(r) or DFT-2(r) (defined later) as explained next.

Complex transforms, when performed by a computer, oper-
ate on real data organized, for example, using the interleaved
complex format (alternating real and imaginary parts of the
complex entries). Since the complex multiplication(a+ib)(x+
iy) is equivalent to the real multiplication

[

a −b
b a

]

[x
y], every

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 11

TABLE VII

BRUUN-COOLEY-TUKEY-TYPE ALGORITHMS (TYPE b → s → f) FOR REAL DFTS AND BASE CASES.

Algorithms:

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFTn

RDFT-2n

DHTn

DHT-2n

BRDFTn

˛

˛

˛

˛

˛

˛

˛

˛

˛

= P n
m·

0

B

B

B

B

B

B

@

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFTm

RDFT-2m

DHTm

DHT-2m

BRDFTm

˛

˛

˛

˛

˛

˛

˛

˛

˛

⊕

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFT-3m

RDFT-4m

DHT-3m

DHT-4m

BRDFT-3m

˛

˛

˛

˛

˛

˛

˛

˛

˛

⊕

0

B

B

B

B

B

B

@

Ik/2−1 ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1)/k(s→e)

Be1/2

2m S2m,(i+1)/k(s→e1/2)

Bh
2m S2m,(i+1)/k(s→h)

Bh1/2

2m S2m,(i+1)/k(s→h1/2)

Bs
2m S2m,(i+1)/k(s→s)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

C

C

A

1

C

C

C

C

C

C

A

· (BRDFTk ⊗ Im), k even (37)

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFTn

RDFT-2n

DHTn

DHT-2n

BRDFTn

˛

˛

˛

˛

˛

˛

˛

˛

˛

= P n
m·

0

B

B

B

B

B

B

@

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFTm

RDFT-2m

DHTm

DHT-2m

BRDFTm

˛

˛

˛

˛

˛

˛

˛

˛

˛

⊕

0

B

B

B

B

B

B

@

I⌊k/2⌋ ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1)/k(s→e)

Be1/2

2m S2m,(i+1)/k(s→e1/2)

Bh
2m S2m,(i+1)/k(s→h)

Bh1/2

2m S2m,(i+1)/k(s→h1/2)

Bs
2m S2m,(i+1)/k(s→s)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

C

C

A

1

C

C

C

C

C

C

A

· (BRDFTk ⊗ Im), k odd (38)

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFT-3n

RDFT-4n

DHT-3n

DHT-4n

BRDFT-3n

˛

˛

˛

˛

˛

˛

˛

˛

˛

= Qn
m·

0

B

B

B

B

B

B

@

Ik ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1/2)/k(s→e)

Be1/2

2m S2m,(i+1/2)/k(s→e1/2)

Bh
2m S2m,(i+1/2)/k(s→h)

Bh1/2

2m S2m,(i+1/2)/k(s→h1/2)

Bs
2m S2m,(i+1/2)/k(s→s)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

C

C

A

· (BRDFT-3k ⊗ Im), k even (39)

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFT-3n

RDFT-4n

DHT-3n

DHT-4n

BRDFT-3n

˛

˛

˛

˛

˛

˛

˛

˛

˛

= Qn
m·

0

B

B

B

B

B

B

@

0

B

B

B

B

B

B

@

I⌊k/2⌋ ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1/2)/k(s→e)

Be1/2

2m S2m,(i+1/2)/k(s→e1/2)

Bh
2m S2m,(i+1/2)/k(s→h)

Bh1/2

2m S2m,(i+1/2)/k(s→h1/2)

Bs
2m S2m,(i+1/2)/k(s→s)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

C

C

A

⊕

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFT-3m

RDFT-4m

DHT-3m

DHT-4m

BRDFT-3m

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

C

C

A

· (BRDFT-3k ⊗ Im), k odd (40)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

S2n,r(s→e)

S2n,r(s→e1/2)
S2n,r(s→h)
S2n,r(s→h1/2)
S2n,r(s→s)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

= L2n
m ·

0

B

B

B

B

@

Ik ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

S2m,(i+r)/k(s→e)

S2m,(i+r)/k(s→e1/2)

S2m,(i+r)/k(s→h)

S2m,(i+r)/k(s→h1/2)

S2m,(i+r)/k(s→s)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

A

·
`

S2k,r(s→s) ⊗ Im
´

(41)

Base cases:

Bs
2m = I2m,

BRDFT2 = F2, BRDFT-32 = I2,

BRDFT-34 = (F2 ⊗ I2)

0

B

B

@

1 0 −1 0
0 1 0 1
0 0 0 −

√
2

0 0
√

2 0

1

C

C

A

, S4,r(s→s) = (F2 ⊗ I2)

0

B

@

0 1 0 −1
−1 0 1 0

2cr/2 0 0 0
0 0 0 2cr/2

1

C

A
,

S4,r(s→e) = (F2 ⊗ I2)
“h

cr 1
sr 0

i

⊕ diag(cr/2, sr/2)F2

”

L4
2, S4,r(s→e1/2) = (I2 ⊕ D2J2)(F2 ⊗ I2)

“h

c3r/4 cr/4
s3r/4 s−r/4

i

⊕
h

cr/4 c3r/4
sr/4 s−3r/4

i”

L4
2,

S4,r(s→h) = (F2 ⊗ I2)
“h

cmsr 1
casr 1

i

⊕
h cmsr/2 casr/2

casr/2 cmsr/2

i”

L4
2, S4,r(s→h1/2) = (D2 ⊕ J2)(F2 ⊗ I2)

“h cms3r/4 casr/4
cas3r/4 cmsr/4

i

⊕
h cmsr/4 cas3r/4

casr/4 cms3r/4

i”

L4
2.

TABLE VIII

CONVERSION FROM SKEW REALDFTS TO SKEWDFTS USINGLEMMA 2.

Skew RDFTs occurring in natural Cooley-Tukey type algorithms (Table VI):

S2n,r(e→e) = DFTn diagi wri/nL2n
n , S2n,r(e→e1/2) = DFT-2n diagi wr(i+1/2)/nL2n

n , (43)

S2n,r(h→h) = DFTn diagi wri/nL2n
n , S2n,r(h→h1/2) = D2nDFT-2n diagi wr(i+1/2)/nL2n

n . (44)

Skew RDFTs occurring in Bruun-Cooley-Tukey type algorithms (Table VII):

S2n,r(s→e) = DFTn

“

In ⊗i

h

cri/n−r cri/n

−sri/n−r −sri/n

i”

L2n
n , S2n,r(s→e1/2) = DFT-2n

“

In ⊗i

h

cr(i+1/2)/n−r cr(i+1/2)/n

−sr(i+1/2)/n−r −sr(i+1/2)/n

i”

L2n
n , (45)

S2n,r(s→h) = DFTn

“

In ⊗i

h casri/n−r casri/n
cmsri/n−r cmsri/n

i”

L2n
n , S2n,r(s→h1/2) = D2nDFT-2n

“

In ⊗i

h casr(i+1/2)/n−r casr(i+1/2)/n
cmsr(i+1/2)/n−r cmsr(i+1/2)/n

i”

L2n
n . (46)

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 12

complex matrix-vector multiplicationMx ∈ Cn is equivalent
to Mx′ ∈ R2n, where we defineM by replacing every entry
a+ib of M with

[

a −b
b a

]

, andx′ is x in the interleaved complex
format.

Algebraically, ifM is a polynomial transform forC[x]/p(x)
viewed as a complex vector space with basistn and spectral
bases (1), thenM is the corresponding matrix with respect to
the real vector space basis(1, j, x, jx, . . . , xn−1, jxn−1) and
spectral bases(1, j).

With this information, we can compute the matrix represen-
tations ofφ2n andφ−1

2 in the above diagram with respect to
the different choices ofb andf .

In the case ofb ∈ {e, h} and spectral basisf ∈ {e, h} we
convertS2n,r(b → f) into DFTn(r), and the base changes
consist of a permutation (L2n

n) and in some cases extra sign
changes. The results are shown in Table VIII, whereDFT(r)
is factored as

DFTn(r) =
[

w(k+r)l/n

]

0≤k,l<n

= DFTn diag0≤l<n(wrl/n). (47)

Note, that incidentallyS2n,r(e → e) = S2n,r(h → h),
because a simplification was possible to theS2n,r(h → h)
factorization. This fact was (indirectly) discovered in [8], when
the authors derived a split-radix Hartley transform algorithm
with improved operation count.

In the case off ∈ {e1/2, h1/2}, the corresponding DFT is
type 2,DFT-2n, whose skew equivalent takes the form

DFT-2n(r) =
[

w(k+r)(l+1/2)/n

]

0≤k,l<n

= DFT-2n diag0≤l<n(wr(l+1/2)/n). (48)

The base changes are again arithmetic free.
Finally, in the case ofb = s, φ2n is no longer trivial, and

takes the form

φ2n =

(

In ⊗

[

cr 1
sr 0

])

L2n
n ,

but it can be fused with the block diagonaldiagl(wr(l+1/2)/n)
from (48) to save multiplications, leading to the final result
shown in Table VIII.

Identities (43)–(44) from Table VIII for computing the
skew real DFTs reduce the operations count compared to
(36). Identities (45)–(46) do not reduce the operations count
compared to (41), but can be used as base cases.

B. Regularized Algorithms

It is often more important for an algorithm to have a regular
structure than a minimal operations count to enable paral-
lelization, vectorization, or efficient hardware implementation.
The real DFTs are inherently more irregular than the DFT
since their spectral components have dimensions one or two
as shown in (6)–(9) with the exception of (8).

In (6), this problem can be alleviated by not performing a
complete real decomposition but leaving(x − 1)(x + 1) =
x2 − 1 “fused.” This idea yields the “regularized” version of
(6):

R[x]/(xn−1)→ R[x]/(x2−1)⊕
⊕

0<i<n/2

R[x]/p2,i/n. (49)

There is no equivalent technique for oddn, i.e., for (7) and
(9).

We will denote the transform associated with (49) as
Rn(b→ f), whereb is the chosen basis in the algebra,f is
the chosen spectral basis, andn is necessarily even. Table IX
shows the new transforms we define.

TABLE IX

REGULARIZED REAL DFTS.

Transform Algebra Basis b Spectral basisf Unified notation

URDFTn xn − 1 t e Rn(t→e)
UDHTn xn − 1 t h Rn(t→h)
UBRDFTn xn − 1 t s Rn(t→s)

To complete the real decomposition of (49),R[x]/(x2 − 1)
must be decomposed using a butterfly matrix, and thus

Fn(b→f) = (F2 ⊕ In−2)Rn(b→f).

The idea is now to useRk(t→ c), c ∈ {e, h, s}, instead
of Fk(t → c) in the first, coarse decomposition step. The
consequence is that in (19) the first two summands stay fused.
More precisely, the decomposition now takes the regularized
form

R[x]/((xm)k − 1)

→

[

R[x]/(x2m − 1)

]

⊕

[

⊕

0<i<k/2

R[x]/p2m,i/k

]

(50)

→

[

R[x]/(x − 1)⊕ R[x]/(x + 1)⊕
⊕

0<i<m

R[x]/p2,i/2m

]

⊕





⊕

0<i<k/2

⊕

0<j<m

R[x]/p2,(j+i/k)/m



 (51)

→ R[x]/(x− 1)⊕ R[x]/(x + 1)⊕
⊕

0<i<km/2

R[x]/p2,i/km

(52)

In step (50) all summands now have the same dimension2m.
Step (51) completely decomposes the polynomial algebras of
dimension2m over R. A suitable permutation in (52) then
reorders the one- and two-dimensional polynomial algebras
into the required order.

The resulting algorithms are given in Table X. They are the
regularized variants of the algorithms in Tables VI and VII for
evenn.

C. Arithmetic-free conversions

Using a variable change in the algebra.If n is odd, and
we sety = −x, we have the following

R[x]/(xn + 1) = R[−y]/((−y)n + 1) = R[−y]/(−yn + 1)

= R[−y]/(yn − 1) ∼= R[y]/(yn − 1).

The above implies that for oddn the transforms of type 3
can be converted to transforms of type 1 and vice versa,
using simple base changes and a permutation of spectral

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 13

TABLE X

REGULARIZED ALGORITHMS.

Regularized version of(27) in Table IV:
˛

˛

˛

˛

Fn(b→f)
Rn(b→f)

˛

˛

˛

˛

= P n
m

„

P ′
2m

˛

˛

˛

˛

F2m(t→f)
R2m(t→f)

˛

˛

˛

˛

⊕ Ik/2−1 ⊗i Bf
2mS2m,(i+1)/k(c→f)

«

“

Rk(b→c) ⊗ Im

”

, k even, (53)

P ′
2m =

(

(Lm
2 ⊗ I2), m even,

(I2 ⊕ (Lm−1
2 ⊗ I2)), m odd.

P is given in Table V

Regularized version of(32) in Table VI:

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFTn

RDFT-2n

URDFTn

DHTn

DHT-2n

UDHTn

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

= P n
m

0

B

B

B

B

B

B

B

B

B

@

P ′
2m

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFT2m

RDFT-22m

URDFT2m

DHT2m

DHT-22m

UDHT2m

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

⊕

0

B

B

B

B

B

B

B

B

B

@

Ik/2−1 ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1)/k(e→e)

Be1/2

2m S2m,(i+1)/k(e→e1/2)

Be
2m S2m,(i+1)/k(e→e)

Bh
2m S2m,(i+1)/k(h→h)

Bh1/2

2m S2m,(i+1)/k(h→h1/2)

Bh
2m S2m,(i+1)/k(h→h)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

C

C

C

C

C

A

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

@

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

URDFTk

URDFTk
URDFTk

UDHTk

UDHTk

UDHTk

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

⊗ Im

1

C

C

C

C

C

A

, k even, (54)

Regularized version of(37) in Table VII:

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFTn

RDFT-2n

DHTn

DHT-2n

UBRDFTn

˛

˛

˛

˛

˛

˛

˛

˛

˛

= P n
m

0

B

B

B

B

B

B

@

P ′
2m

˛

˛

˛

˛

˛

˛

˛

˛

˛

RDFT2m

RDFT-22m

DHT2m

DHT-22m

UBRDFT2m

˛

˛

˛

˛

˛

˛

˛

˛

˛

⊕

0

B

B

B

B

B

B

@

Ik/2−1 ⊗i

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Be
2m S2m,(i+1)/k(s→e)

Be1/2

2m S2m,(i+1)/k(s→e1/2)

Bh
2m S2m,(i+1)/k(s→h)

Bh1/2

2m S2m,(i+1)/k(s→h1/2)

Bs
2m S2m,(i+1)/k(s→s)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1

C

C

C

C

C

C

A

1

C

C

C

C

C

C

A

(UBRDFTk ⊗ Im) . k even. (55)

Base cases:

URDFT4 = diag(1, 1, 1,−1)(F2 ⊗ I2), UDHT4 = (I2 ⊕ F2)(F2 ⊗ I2), UBRDFT4 = (F2 ⊗ I2).

components. For the transforms in Table I(a),b = tn, and
we have:

Gn(t→f) = P · Fn(t(−x)→f(−x))

= P · Fn(t→f(−x)) ·Dn

= P ·B · Fn(t→f) ·Dn.

AboveDn is a diagonal matrix with±1s defined in (15), and
is the base change fromtn to tn(−x), B is the base change
from f to f(−x) in each spectral component whose precise
form depends on the choice off , andP is the permutation of
the spectral components, which does not depend onf .

To compute the permutation we check how the spectral com-
ponents ofR[x]/(xn − 1) are mapped under the substitution:

R[x]/((−x) − 1) = R[x]/(x + 1),

R[x]/p2n,r(−x) = R[x]/x2 + 2xcr + 1

= R[x]/x2 − 2xcr+1/2 + 1

= R[x]/p2n,r+1/2(x) = R[x]/p2n,1/2−r.

Since we assume the ordering by ascendingr, andr < 1/2, the
above mapping implies that the order is simply reversed. The
first one-dimensional spectral component becomesR[x]/(x +
1) and is moved to the end. Thus we have:

Gn(b→f) =

[

J⌊n/2⌋ ⊗ I2

1

]

·B · Fn(b→f) ·Dn. (56)

We now instantiate (56) by computingB for f ∈
{e, h, e1/2, h1/2, s}. The result is shown in (57)–(59) in Ta-
ble XI. In the equations we fuseB with the final permutation
into a single matrix.

Using the basis properties.It is easily shown that for any
polynomialq

Fn(t→b) = Fn(qt→qb).

For oddn, we can use this property to convert transforms of
type 2 (with spectral bases{e1/2, h1/2} = x−1/2{e, h∗}; see
Table I(c)) into transforms of type 1 (with spectral basese and
h).

The basic idea is to setq = x(n+1)/2 = ±x1/2 in
R[x]/(xn−1), which holds for oddn. Due to non-uniqueness
of x1/2 also in the spectral componentsR[x]/p2,r, we have
q ≡ ±x1/2 mod p2,r, with the sign depending onr.

Given a spectral basisf = x−1/2c (wherec ∈ {e, h∗}) and
q = x(n+1)/2 we have:

Fn(t→x−1/2c) = Fn(qt→qx−1/2c)

= Fn(x(n+1)/2t→±c) = Fn(t→±c)B.
(62)

Above, by abuse of notation, we denote with±c the modified
basisc in which the sign of each spectral component depends
onr. It is + if x(n+1)/2 ≡ +x1/2 mod p2,r, and− otherwise.
B is the base change from the shifted basisx(n+1)/2tn to tn.

We instantiate (62) forf = {e1/2, h1/2} in (60)–(61) in
Table (XI). These equations can be combined with (57)–(58),
making it possible to convert any type of DHT or RDFT of
odd size into any other type for free.

VI. A LGORITHM ANALYSIS AND DISCUSSION

Table XII gives the arithmetic cost for the algorithms
shown in this paper. In the remainder, we first identify three

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 14

TABLE XI

ARITHMETIC FREE CONVERSIONS BETWEENRDFTS FOR ODDn. THE PROPERTIES BELOW CAN BE COMBINED TO YIELD FREE CONVERSIONS BETWEEN

ANY OF TYPE 1–4 TRANSFORMS OF SAME KIND.

Identities based on(56):

RDFT-3n =
h

J⌊n/2⌋⊗diag(1,−1)

1

i

RDFTn D, RDFT-4n =
h

−Jn−1
1

i

RDFT-2n D, (57)

DHT-3n = Jn DHTn D, DHT-4n =
h

J⌊n/2⌋⊗diag(1,−1)

1

i

DHT-2n D, (58)

BRDFT-3n =
h

J⌊n/2⌋⊗diag(1,−1)

−1

i

BRDFTnD. (59)

Identities based on(62):

DHT-2n = (I1 ⊕− diag0≤i<n−1(−1)i+⌊ i
2 ⌋)DHTn

h

I⌈n/2⌉

I⌊n/2⌋

i

, (60)

RDFT-2n = (I1 ⊕ diag0≤i<n−1 −(−1)⌊ i
2 ⌋)RDFTn

h

I⌈n/2⌉

I⌊n/2⌋

i

. (61)

good choices among them. Note that the best choice strongly
depends on the implementation platform. Then we review pub-
lished real DFT algorithms and relate them to the algorithms
in this paper where possible. Finally, we briefly discuss inverse
real DFTs and convolution.

A. Good Choices of Algorithms

Many possible real DFT algorithms are provided in this pa-
per. We identify three choices with desirable features discussed
next.

The regularized natural algorithm uses (54) together
with the natural skew transform algorithm (36) to obtain the
simplest overall structure. For the 2-power size, the arithmetic
cost is 5

2n log2 n + O(n). The recursive formulation can
be easily converted to an iterative algorithm amenable to
hardware implementation.

The regularized natural algorithm with improved skew
transform algorithm uses (54) with (43)–(44) to improve
the arithmetic cost. The minimal cost of2n log2 n + O(n) is
achieved form = n/4 in (54), but the maximal cost remains
the same.

This algorithm is the main choice for automatic RDFT
program and library generation in Spiral [29], [52].

The regularized Bruun algorithm is obtained with (55)
combined with the Bruun skew transform algorithm (41). This
combination also yields a cost of2n log2 n+O(n) independent
of the radix (albeit with a different multiply/add balance),
and at the same time can be easily unfolded into an iterative
algorithm (as in option 1 above). In the iterative version, two
times less multiplications and two times less multiplicative
constants are needed due to simpler base case. However, it is
less numerically stable than other choices [17], [24].

In its iterative radix-4 version (which can be obtained in
exactly the same way as for standard real Cooley-Tukey FFT)
it requires only 2 multiplications per stage, whereas the natural
RDFT algorithm needs 4 multiplications per stage.

Note that algorithms with17
9 n log2(n) + O(n) operations

exist [11] obtained from a properly chosen2n log2(n)+O(n)
algorithm by propagating and canceling constants without
changing the computation structure. This method is orthogonal

to ours, which identifies the different computation structures
possible.

Also note that choices other than the above may be com-
petitive. For example, the library FFTW [28] uses a non-
regularized RDFT algorithm as explained in the following
subsection.

B. Related Algorithms In The Literature

RDFT. The first RDFT algorithm was derived in 1968 by
Bergland in [1]. Bergland’s algorithm is an iterative equivalent
of the combination of (54) withm = 2 and (36). The follow-up
paper [2] gives a radix-8 version, which is the same algorithm
with m = 4. The arithmetic cost of these algorithms is
5
2n log2 n + O(n), and does not depend on the split (i.e.,
the choice of factorizationn = km). The tensor product
formulation of the radix-4 variant of Bergland’s algorithmis
given in [32].

One can obtain the matrix form of the iterative RDFT al-
gorithm for any radix, by fixingm, and successively applying
(54) to the right-hand side of itself and using the property
(I ⊗ AB) = (I ⊗ A)(I ⊗ B) to obtain the stages of the
iterative algorithm operating on fuller length-n vectors.

To reduce the arithmetic cost, a “split-radix” version of the
algorithm was proposed in [7], [23]. It reduces the cost to
2n log2 n + O(n). The algorithm in [7] is the combination of
(32) for k = 2 and (43). The algorithm in [23] has no exact
equivalent in this paper.

Bergland’s original paper explains how one could obtain a
general radix algorithm, but does not show any details. We
found the fully specified general radix RDFT algorithm in
other sources. Namely, from the source of the FFTW software
library [28] and also in [9].

FFTW uses for composite RDFT sizes (32), (33), and
(43). The occurringRDFT-3 transforms are not recursively
expanded, but use automatically generated small size base case
routines.

[10] gives a general-radix Cooley-Tukey type algorithm us-
ing a mixture of tensor product formulas and summations. Un-
fortunately, some matrices in the paper appear underspecified
and are hard to reconstruct. The algorithm is a combination
of (32), (43), and the seventh identity in Table II.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 15

TABLE XII

ARITHMETIC COST ACHIEVABLE FOR THE REALDFTS WITH THE ALGORITHMS IN THIS PAPER. WE OMIT THE O(n) TERM.

Transform Algorithm Minimum # ops (adds + mults) Maximum # op s (adds + mults)

RDFT-tn Natural (3
2
n log2 n, n log2 n) (3

2
n log2 n, n log2 n)

Natural w/ improved skew (4
3
n log2 n, 2

3
n log2 n) (3

2
n log2 n, n log2 n)

Bruun (3
2
n log2 n, 1

2
n log2 n) (3

2
n log2 n, 1

2
n log2 n)

DHT-tn Natural (3
2
n log2 n, n log2 n) (3

2
n log2 n, n log2 n)

Natural w/ improved skew (4
3
n log2 n, 2

3
n log2 n) (3

2
n log2 n, n log2 n)

Bruun (3
2
n log2 n, 1

2
n log2 n) (3

2
n log2 n, 1

2
n log2 n)

The generalized RDFTs (of type 2,3,4) are presented in [9],
where the authors discuss their connection to cosine and sine
transforms.

Our natural general radix algorithms from Table VI seem to
be known only forRDFT. The natural regularized variant (54)
is novel, and eliminates the need forRDFT-3 (or RDFT-4).
As explained before, the arithmetic cost of these variants
depends on the radix and is between5

2n log2 n + O(n) and
2n log2 n + O(n).

Among other RDFT algorithms we find the so-called
“quick” RDFT algorithm in [12], which usesDCT-1 and
DST-1 using a similar technique as [4].

[16] also uses the CRT as this paper, but factorsxn−1 over
Q, which leads to other, less structured algorithms for non-2-
power sizes. Winograd also uses the CRT to derive optimal
(with respect to the number of non-rational multiplications)
DFT algorithms that, however, have an increased number of
additions and irregular structure [53], [54]. In the language
of this paper, the DFT is first decomposed by decomposing
C[x]/(xn−1) overQ, then the resulting blocks are considered
as convolutions and decomposed further using a technique
different from this paper. Heideman [13] provides the exact
multiplicative complexity for a real DFT of two-power size
gives concrete optimal (in this sense) real DFT algorithms in
[13], [14], [55].

DHT. The DHT is often regarded as a transform different
from the RDFT; hence there is a different set of papers
discussing its fast algorithms.

In spirit closest to our work is [15], which derives DHT
algorithms by projecting DFT algorithms using the theory
of field extensions similar to work on ADFTs in [56]. The
technique is not applicable to the RDFT and different from
ours.

All of our general radix algorithms for DHTs of four types
are novel. This includes the natural algorithms in Table VI,
the Bruun type algorithms in Table VII, and the regularized
variants of both in Table IX. However, we did find some
special cases in the literature.

A split-radix DHT algorithm is given by [22] and [8]. The
former has slightly suboptimal arithmetic cost and the latter
improves the cost and is the combination of (32) withk = 2
and (44).

Reference [27] defines all types of DHTs (called W trans-
forms) and gives algorithms for even sizes for all 4 types. Each
transform is split into a DCT/DST pair of the corresponding

type similar to [4].

The algorithms in [6] are the equivalents of our free conver-
sions between DHTs of types 1,2,3,4 given in (58) and (61)
(and combinations thereof). Interestingly, the same conversions
(57), (60) and (59) between generalized RDFTs appear to be
novel. A similar property also holds for complex DFTs, but
we don’t show the equations in this paper.

In [21] and [25] we find comparisons between DHT and
RDFT algorithms. In this paper we answer the question of
the true difference between DHT and RDFT algorithms based
on the algebraic interpretation in [35]. We show that the
algorithms are based on the same principle, have precisely
the same dataflow structure, and only minor differences only
exist in the small size base cases.

Bruun type algorithms for DHT and RDFT. The 1978
paper [5] by Bruun introduced the so-called Bruun FFT. The
author uses the connection between the DFT and a filter bank
with a very special set of filters, namely for0 ≤ i < n, {(xn−
1)/(x − wi/n)}, x = z−1. The special structure of the zeros
of the filters is used to build the so-calledfilter tree, which
computes the DFT. The filter tree is built by successively
factoring the polynomialxn − 1. One factorization leads to
the familiar radix-2 Cooley-Tukey algorithm as also shown
in [30], whereas another factorization (over the real numbers)
leads to a new FFT, which exclusively uses multiplications by
real constants, except for the final stage. Therefore, omitting
the last stage yields an RDFT algorithm. The paper shows a
decimation-in-time radix-2 algorithm only. The algorithm is
the special case of (55) and (41) withk = 2 applied to the
RDFT.

The same idea is explored further in [3]. The authors derive
the decimation-in-frequency algorithm, but for the DHT. The
algorithm is the special case of thetransposeof (55) and (41)
with k = 2 applied to the DHT. This is the only reference we
found discussing a Bruun type algorithm for DHT.

Later, Murakami explained Bruun’s algorithm in a more rig-
orous framework using the CRT and generalized the algorithm
to arbitrary radix [18]–[20]. Murakami derives the algorithm
for an arbitraryevensize. His algorithm is (55) applied to
RDFT or BRDFT combined with (41).

In this paper we showed that Cooley-Tukey type and Bruun
type algorithms are actually instances of the same algorithm
(e.g., Table IV) but with different choices of the intermediate
basisc.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 16

C. Inverse Transforms and Convolutions

Inverse transforms. So far in this paper we showed the
algorithms, given as matrix factorizations, for the forward
transforms. Algorithms for the inverse transforms are readily
obtained in two different ways: by formally inverting the
matrix factorizations, or by formally transposing the ma-
trix formulas and using the orthogonality properties of the
transforms. Both methods use the following inversion and
transposition identities that can be recursively applied to any
algorithm in this paper:

(A ·B)−1 = B−1 · A−1, (A · B)⊤ = B⊤ · A⊤,

(A⊗B)−1 = (A−1 ⊗B−1), (A⊗ B)⊤ = (A⊤ ⊗B⊤),

(I ⊗i Ai)
−1 = (I ⊗i A−1

i), (I ⊗i Ai)
⊤ = (I ⊗i A⊤

i),

(A⊕B)−1 = (A−1 ⊕B−1), (A⊕ B)⊤ = (A⊤ ⊕B⊤),

(Jn)−1 = J⊤
n = Jn,

(Lkm
m)−1 = (Lkm

m)⊤ = Lkm
k ,

(Ra)−1 = R⊤
a = R−a.

Inversion of an algorithm is straightforward using this
method. Transposition requires the use of the following ex-
plicit formulas for the inverse transforms (shown for evenn):

RDFT−1
n = 1/n · RDFT⊤

n (I2 ⊕ 2In−2) (63)

RDFT-2−1
n = 1/n · RDFT-2⊤n (I2 ⊕ 2In−2) (64)

RDFT-3−1
n = 1/n · RDFT-3⊤n (2In) (65)

RDFT-4−1
n = 1/n · RDFT-4⊤n (2In) (66)

DHT−1
n = 1/n ·DHT⊤

n = 1/n · Un DHTn Un, (67)

DHT-2−1
n = 1/n ·DHT-2⊤n = 1/n · Vn DHT-3n Un, (68)

DHT-3−1
n = 1/n ·DHT-3⊤n = 1/n · Un DHT-2n Vn, (69)

DHT-4−1
n = 1/n ·DHT-4⊤n = 1/n · Vn DHT-4n Vn. (70)

Note that often the scaling factor1/n is omitted in actual
implementations. The permutationsU andV appear in DHT
inverses due to our use of non-standard ordering, as explained
in Section II and (13) and (14).

Since natural algorithms contain orthogonal building blocks
only, inverting or transposing the algorithm will lead to almost
the same result. However, Bruun type algorithms have non-
orthogonal building blocks. Therefore, we can obtaintwo
different inverse transform algorithm variants, first by inverting
and second by transposing. Similarly, we can obtain another
variant of the forward transform, by inverting and then trans-
posing, as was already done in [36] to obtain new variants of
the DCT/DST algorithms.

We also note that up to a permutation,DHT andDHT-4 are
self-inverse, and theDHT-2/DHT-3 pair are mutual inverses.
This means that inverting or transposing a DHT algorithm
leads to a new DHT algorithm variant, and for the Bruun
type algorithms inverting and then transposing leads to a third
variant.

Linear and circular convolution The circular convolu-
tion of real vectors, which corresponds to multiplication in
R[x]/(xn − 1), can be computed using any of theFn(t→f)

(and their inverse) transforms. This includesRDFT, RDFT-2,
DHT, DHT-2, BRDFT, andBRDFT-2.

Skew circular convolution, which corresponds to multi-
plication in R[x]/(xn + 1), can be computed using any of
the Gn(f → f) (and their inverse) transforms. This includes
RDFT-3, RDFT-4, DHT-3, DHT-4, andBRDFT-3.

Computing linear convolution is usually done by partition-
ing it into blocks and embedding each block in a larger circular
or skew circular convolution. Thus, linear convolution canbe
computed using any of the transforms from Table I(a). Apart
from the common choice of type-1 transforms, using type-3
transforms is also a good choice, since they possess a more
regular structure as can be seen from (29). Another interesting
case is reported in [26]. IfRDFT-3 is used together with
a conversion to complex DFT using (43) we obtain areal
convolution algorithm, which uses acomplexDFT of half the
size. With BRDFT or BRDFT-3 one can use the cheaper
Bruun butterfliesS4,∗(s→ s) (shown in Table VII). The use
of BRDFT for computing the linear convolution was proposed
in [19], [20].

VII. C ONCLUSION

This paper, together with [36], shows that using the frame-
work of polynomial algebras general-radix algorithms for all
1-D trigonometric transforms can be obtained using only one
generic method. Since this method also yields the Cooley-
Tukey FFT, we refer to all these algorithms as “Cooley-Tukey
type.” We believe that these papers are a big step towards
consolidating the area of transform algorithms. Namely, the
polynomial algebra framework enables the concise derivation,
classification, and structural representation of the obtained
algorithms. Further, it also explains the many relationships that
hold between transforms. However, some work is still left to
algebraically capture the full class of existing algorithms for
trigonometric transforms.

The appearance of polynomial algebras in signal processing
is not coincidental: in the algebraic signal processing theory
(ASP) started in [35] we explain that they provide the structure
for finite, shift-invariant signal processing and explain the
exact forms they take for the commonly used 1-D transforms.
Hence, in ASP the theory of transform algorithms (as shown in
this paper) becomes a natural part of signal processing theory
itself.

APPENDIX

Transform matrices. Table XIII shows the exact forms of
the DFTs and real DFTs as used in this paper. We remind the
reader that there is a degree of freedom in choosing the order
of the output as explained in Section II-B.

Computing real DFT via half-size complex DFT. Two
RDFTs of sizen can be computed with a single complex
DFT of sizen, this property can be further used to compute
one RDFT of size2n using one complex DFT of sizen [33].

We now derive these two properties using our matrix
framework. First, from Table II,

RDFTn =
(

I2 ⊕
(

In/2−1 ⊗
1
2

[

1 1
−j j

])

)

U−1
n DFTn

= Yn DFTn .

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 17

TABLE XIII

COMPLEX AND REAL DFTS.

In the table1n, 1′n are1 × n matrices,1′′n is a 2 × n matrix, andf is a quotient of sines, as defined below. All transform matrices aren × n, and
0 ≤ ℓ < n. For the complex DFTs,0 ≤ k < n, for the real DFTs (in each case the two rows are for even and odd n, respectively),0 ≤ k < ⌊(n − 1)/2⌋.

1n =
h

1 1 . . . 1 1
i

, 1′n =
h

1 −1 . . . 1 −1
i

, 1′′n =
h

1⊤n 1′⊤n

i⊤
, fa,b = sab/sa.

DFTn =
ˆ

wkℓ/n

˜

DFT-2n =
h

wk(ℓ+ 1
2
)/n

i

DFT-3n =
h

w(k+ 1
2
)ℓ/n

i

DFT-4n =
h

w(k+ 1
2
)(ℓ+ 1

2
)/n

i

RDFTn =

2

6

6

6

4

1′′n
2

4

ckℓ/n

−skℓ/n

3

5

3

7

7

7

5

RDFT-2n =

2

6

6

6

4

1′′n
2

4

ck(ℓ+ 1
2
)/n

−sk(ℓ+ 1
2
)/n

3

5

3

7

7

7

5

RDFT-3n =

2

4

c(k+ 1
2
)ℓ/n

−s(k+ 1
2
)ℓ/n

3

5 RDFT-4n =

2

4

c(k+ 1
2
)(ℓ+ 1

2
)/n

−s(k+ 1
2
)(ℓ+ 1

2
)/n

3

5

RDFTn =

2

6

6

6

4

1n
2

4

ckℓ/n

−skℓ/n

3

5

3

7

7

7

5

RDFT-2n =

2

6

6

6

4

1n
2

4

ck(ℓ+ 1
2
)/n

−sk(ℓ+ 1
2
)/n

3

5

3

7

7

7

5

RDFT-3n =

2

6

6

6

4

2

4

c(k+ 1
2
)ℓ/n

−s(k+ 1
2
)ℓ/n

3

5

1′n

3

7

7

7

5

RDFT-4n =

2

6

6

6

4

2

4

c(k+ 1
2
)(ℓ+ 1

2
)/n

−s(k+ 1
2
)(ℓ+ 1

2
)/n

3

5

1′n

3

7

7

7

5

DHTn =

2

6

6

6

4

1′′n
2

4

caskℓ/n

cmskℓ/n

3

5

3

7

7

7

5

DHT-2n =

2

6

6

6

4

1′′n
2

4

cask(ℓ+ 1
2
)/n

−cmsk(ℓ+ 1
2
)/n

3

5

3

7

7

7

5

DHT-3n =

2

4

cas(k+ 1
2
)ℓ/n

cms(k+ 1
2
)ℓ/n

3

5 DHT-4n =

2

4

cas(k+ 1
2
)(ℓ+ 1

2
)/n

−cms(k+ 1
2
)(ℓ+ 1

2
)/n

3

5

DHTn =

2

6

6

6

4

1n
2

4

caskℓ/n

cmskℓ/n

3

5

3

7

7

7

5

DHT-2n =

2

6

6

6

4

1n
2

4

cask(ℓ+ 1
2
)/n

−cmsk(ℓ+ 1
2
)/n

3

5

3

7

7

7

5

DHT-3n =

2

6

6

6

4

2

4

cas(k+ 1
2
)ℓ/n

cms(k+ 1
2
)ℓ/n

3

5

1′n

3

7

7

7

5

DHT-4n =

2

6

6

6

4

2

4

cas(k+ 1
2
)(ℓ+ 1

2
)/n

−cms(k+ 1
2
)(ℓ+ 1

2
)/n

3

5

1′n

3

7

7

7

5

BRDFTn =

2

6

6

6

4

1′′n
2

4

−fk/n,ℓ

fk/n,ℓ+1

3

5

3

7

7

7

5

BRDFT-2n =

2

6

6

6

4

1′′n
2

4

−fk/n,ℓ− 1
2

fk/n,ℓ+ 1
2

3

5

3

7

7

7

5

BRDFT-3n =

2

4

−f(k+ 1
2
)/n,ℓ

f(k+ 1
2
)/n,ℓ+1

3

5 BRDFT-4n =

2

4

−f(k+ 1
2
)/n,ℓ− 1

2

f(k+ 1
2
)/n,ℓ+ 1

2

3

5

BRDFTn =

2

6

6

6

4

1n
2

4

−fk/n,ℓ

fk/n,ℓ+1

3

5

3

7

7

7

5

BRDFT-2n =

2

6

6

6

4

1n
2

4

−fk/n,ℓ− 1
2

fk/n,ℓ+ 1
2

3

5

3

7

7

7

5

BRDFT-3n =

2

6

6

6

4

2

4

−f(k+ 1
2
)/n,ℓ

f(k+ 1
2
)/n,ℓ+1

3

5

1′n

3

7

7

7

5

BRDFT-4n =

2

6

6

6

4

2

4

−f(k+ 1
2
)/n,ℓ− 1

2

f(k+ 1
2
)/n,ℓ+ 1

2

3

5

1′n

3

7

7

7

5

The above is an equation that involves complex matrices,
to obtain a purely real equation we apply(·) (defined in
Section V-A) to both sides, and get

RDFTn⊗I2 = Yn ·DFTn, (71)

Yn =
(

I4 ⊕
(

In/2−1 ⊗
1
2

[

I2 I2
D2J2 −D2J2

])

)

(U−1
n ⊗ I2).

Note, that above we used the identityA = A ⊗ I2 for a
real matrixA. (71) expresses the fact that two RDFTs can be
computed using one complex DFT (on the single interleaved
sequence) and a post-processing step in the form of the matrix
Yn. To obtain an algorithm for a single RDFT, we combine
(71) and (32) withk = n andm = 2 to get

RDFT2n = P 2n
2 (RDFT2⊕RDFT-32

⊕
(

In/2−1 ⊗i S4,(i+1)/n(e→e)
)

)YnDFTn

and the final form after inserting the base cases from Table VI:

RDFT2n = P 2n
2

(

F2 ⊕D2

⊕
(

In/2−1 ⊗i (F2 ⊗ I2)(I2 ⊕R−(i+1)/2n)L4
2

)

)

· Yn ·DFTn. (72)

REFERENCES

[1] G. D. Bergland, “Numerical analysis: A fast Fourier transform algorithm
for real-valued series,”Commun. ACM, vol. 11, no. 10, pp. 703–710,
1968.

[2] ——, “A radix-eight fast Fourier transform subroutine for real-valued
series,”IEEE Trans. on Audio and Electroacoustics, vol. 17, no. 2, pp.
138–144, 1969.

[3] D. A. Bini and E. Bozzo, “Fast discrete transform by meansof eigen-
polynomials,” Computers & Mathematics (with Applications), vol. 26,
no. 9, pp. 35–52, 1993.

[4] V. Britanak and K. R. Rao, “The fast generalized discreteFourier
transforms: A unified approach to the discrete sinusoidal transforms
computation,”Signal Processing, vol. 79, no. 2, pp. 135–150, 1999.

[5] G. Bruun, “z-transform DFT filters and FFTs,”IEEE Trans. ASSP,
vol. 26, no. 1, pp. 56–63, 1978.

[6] S. C. Chan and K. L. Ho, “Fast algorithms for computing thediscrete
W transforms,” inProc. IEEE Region 10 Conference on Computer and
Communication Systems (TENCON 90), vol. 1, 1990, pp. 183–185.

[7] P. Duhamel, “Implementation of ”split-radix” FFT algorithms for com-
plex, real, and real-symmetric data,”IEEE Trans. ASSP, vol. 34, no. 2,
pp. 285–295, 1986.

[8] P. Duhamel and M. Vetterli, “Improved Fourier and Hartley trans-
form algorithms: Application to cyclic convolution of realdata,” IEEE
Trans. ASSP, vol. 35, no. 6, pp. 818–824, 1987.

[9] O. K. Ersoy and N.-C. Hu, “A unified approach to the fast computation
of all discrete trigonometric transforms,” inProc. ICASSP, vol. 12, 1987,
pp. 1843–1846.

[10] N.-C. Hu and O. K. Ersoy, “Fast computation of real discrete Fourier
transform for any number of data points,”IEEE Trans. on Circuits and
Systems, vol. 38, no. 11, pp. 1280–1292, 1991.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 18

[11] S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer
arithmetic operations,”IEEE Trans. Signal Processing, vol. 55, no. 1,
pp. 111–119, 2007.

[12] H. Guo, G. A. Sitton, and C. S. Burrus, “The quick Fouriertransform: An
FFT based on symmetries,”IEEE Trans. on Signal Processing, vol. 46,
no. 2, pp. 335–341, 1998.

[13] M. T. Heideman and C. S. Burrus, “On the number of multiplications
necessary to compute a length-2n DFT,” IEEE Trans. ASSP, vol. 34,
no. 1, pp. 91–95, 1986.

[14] M. T. Heideman,Multiplicative complexity, convolution, and the DFT.
Springer-Verlag, 1988.

[15] J. Hong, M. Vetterli, and P. Duhamel, “Basefield transforms with the
convolution property,”Proceedings of the IEEE, vol. 82, no. 3, pp. 400–
412, 1994.

[16] J.-B. Martens, “Discrete Fourier transform algorithms for real valued
sequences,”IEEE Trans. ASSP, vol. 32, no. 2, pp. 390–396, 1984.

[17] S. Mittal, M. Z. A. Khan, and M. B. Srinivas, “A comparative study
of different FFT architectures for software defined radio,”in SAMOS,
2007, pp. 375–384.

[18] H. Murakami, “Prime-length real-valued polynomial residue division
algorithms,” IEEE Trans. on Signal Processing, vol. 50, no. 11, pp.
2777–2788, 2002.

[19] ——, “Real-valued decimation-in-time and decimation-in-frequency al-
gorithms,” IEEE Trans. Circuits and Systems II: Analog and Digital
Signal Processing, vol. 41, no. 12, pp. 808–816, 1994.

[20] ——, “Real-valued fast discrete Fourier transform and cyclic convo-
lution algorithms of highly composite even length,” inProc. ICASSP,
vol. 3, 1996, pp. 1311–1314.

[21] M. Popović and D.Šević, “A new look at the comparison of the fast
Hartley and Fourier transforms,”IEEE Trans. on Signal Processing,
vol. 42, no. 8, pp. 2178–2182, 1994.

[22] H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman, “On
computing the discrete Hartley transform,”IEEE Trans. ASSP, vol. 33,
no. 4, pp. 1231–1238, 1985.

[23] H. V. Sorensen, D. L. Jones, M. T. Heideman, and C. S. Burrus, “Real-
valued fast Fourier transform algorithms,”IEEE Trans. ASSP, vol. 35,
no. 6, pp. 849–863, 1987.

[24] R. Storn, “Some results in fixed point error analysis of the Bruun-FTT
algorithm,” IEEE Trans. on Signal Processing, vol. 41, no. 7, pp. 2371–
2375, 1993.

[25] P. R. Uniyal, “Transforming real-valued sequences: fast Fourier versus
fast Hartley transform algorithms,”IEEE Trans. on Signal Processing,
vol. 42, no. 11, pp. 3249–3254, 1994.

[26] J. L. Vernet, “Real signals fast Fourier transform: Storage capacity and
step number reduction by means of an odd discrete Fourier transform,”
Proceedings of the IEEE, vol. 59, no. 10, pp. 1531–1532, 1971.

[27] Z. Wang, “Fast algorithms for the discrete W transform and for the
discrete Fourier transform,”IEEE Trans. ASSP, vol. 32, no. 4, pp. 803–
816, 1984.

[28] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,
special issue on ”Program Generation, Optimization.

[29] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,”Proceedings of the IEEE, vol. 93, no. 2, pp. 232–275, 2005,
special issue on ”Program Generation, Optimization.

[30] H. J. Nussbaumer,Fast Fourier Transformation and Convolution Algo-
rithms, 2nd ed. Springer, 1982.

[31] C. Van Loan,Computational Framework of the Fast Fourier Transform.
SIAM, 1992.

[32] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier
Transforms and Convolution, 2nd ed. Springer, 1997.

[33] W. H. Press, B. P. Flannery, T. S. A., and V. W. T.,Numerical Recipes
in C: The Art of Scientific Computing, 2nd ed. Cambridge University
Press, 1992.

[34] Y. Voronenko and M. Püschel, “Algebraic derivation ofgeneral radix
Cooley-Tukey algorithms for the real discrete Fourier transform,” in
Proc. ICASSP, vol. 3, 2006, pp. 876–879.

[35] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory:
Foundation and 1-D time,”IEEE Trans. on Signal Processing, vol. 56,
no. 8, pp. 3572–3585, 2008.

[36] ——, “Algebraic signal processing theory: Cooley-Tukey type algo-
rithms for DCTs and DSTs,”IEEE Trans. on Signal Processing, vol. 56,
no. 4, pp. 1502–1521, 2008.

[37] ——, “Algebraic signal processing theory: 1-D space,”IEEE Trans. on
Signal Processing, vol. 56, no. 8, pp. 3586–3599, 2008.

[38] R. N. Bracewell, “The fast Hartley transform,”Proceedings of the IEEE,
vol. 72, 1984.

[39] I. J. Good, “The interaction algorithm and practical Fourier analysis,”
Journal Royal Statist. Soc., vol. B20, pp. 361–375, 1958.

[40] M. Heideman, C. Burrus, and H. Johnson, “Prime factor FFT algorithms
for real-valued series,” inProc. ICASSP, vol. 9, no. 1, 1984, pp. 492–
495.

[41] C. M. Rader, “Discrete Fourier transforms when the number of data
samples is prime,”Proceedings of the IEEE, vol. 56, pp. 1107–1108,
1968.

[42] S. Chu and C. S. Burrus, “A prime factor FTT algorithm using distributed
arithmetic,” IEEE Trans. ASSP, vol. 30, no. 2, pp. 217–227, 1982.

[43] P. A. Fuhrman,A Polynomial Approach to Linear Algebra. New York:
Springer Verlag, 1996.

[44] G. Bongiovanni, P. Corsini, and G. Frosini, “One-dimensional and two-
dimensional generalized discrete Fourier transform,”IEEE Trans. ASSP,
vol. 24, no. 2, pp. 97–99, 1976.

[45] G. Bonnerot and M. Bellanger, “Odd-time odd-frequencydiscrete fourier
transform for symmetric real-valued series,”Proceedings of the IEEE,
vol. 64, pp. 392–393, 1976.

[46] L. Auslander, E. Feig, and S. Winograd, “Abelian semi-simple algebras
and algorithms for the discrete Fourier transform,”Advances in Applied
Mathematics, vol. 5, pp. 31–55, 1984.

[47] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory,”
[Online]. Available: http://arxiv.org/abs/cs.IT/0612077.

[48] R. N. Bracewell, “Discrete Hartley transform,”J. Optical Society Amer-
ica, vol. 73, no. 12, pp. 1832–1835, 1983.

[49] “Intel Integrated Performance Primitives 5.3.” [Online]. Available:
http://intel.com/software/products/ipp

[50] “FFTW 3.1.2.” [Online]. Available: http://fftw.org
[51] M. Püschel, “Cooley-Tukey FFT like algorithms for theDCT,” in

Proc. ICASSP, vol. 2, 2003, pp. 501–504.
[52] Y. Voronenko, “Library generation for linear transforms,” Ph.D. disserta-

tion, Electrical and Computer Engineering, Carnegie Mellon University,
2008.

[53] S. Winograd, “On computing the discrete Fourier transform,” Mathe-
matics of Computation, vol. 32, pp. 175–199, 1978.

[54] ——, “On the multiplicative complexity of the discrete Fourier trans-
form,” Advances in Mathematics, vol. 32, pp. 83–117, 1979.

[55] P. Duhamel, “Algorithms meeting the lower bounds on themultiplicative
complexity of length-2n DFTs and their connection with practical
algorithms,” IEEE Trans. ASSP, vol. 38, no. 9, pp. 1504–1511, 1990.

[56] T. Beth, Verfahren der Schnellen Fouriertransformation [Fast Fourier
Transform Methods]. Teubner, 1984.

Yevgen Voronenko (S’03–M’08) is a Project Sci-
entist at the Electrical and Computer Engineering
Department at Carnegie Mellon University (CMU).
He received a B.S. degree in Computer Science
from Drexel University in 2003, and his Ph.D.
from CMU in 2008, where he was awarded the
A.G. Milnes outstanding Ph.D. dissertation award.
His research interests include scientific computing,
software engineering, programming languages, and
compiler design.

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009 19

Markus Püschel (M’99–SM’05) is an Associate
Research Professor of Electrical and Computer Engi-
neering at Carnegie Mellon University (CMU). He
received his Diploma (M.Sc.) in Mathematics and
his Doctorate (Ph.D.) in Computer Science, in 1995
and 1998, respectively, both from the University of
Karlsruhe, Germany. From 1998-1999 he was a Post-
doctoral Researcher at Mathematics and Computer
Science, Drexel University, Philadelphia. Since 2000
he has been with CMU. He is an Associate Editor
for the IEEE Transactions on Signal Processing,

and was an Associate Editor for theIEEE Signal Processing Letters, a
Guest Editor of theJournal of Symbolic Computation, and theProceedings
of the IEEE. He holds the title of Privatdozent of Applied Informatics at
the Department of Computer Science, University of Technology, Vienna,
Austria and was awarded (with J. Moura) the CMU College of Engineering
Outstanding Research Award. His research interests include signal processing
theory/software/hardware, scientific computing, compilers, applied mathemat-
ics and algebra.

