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Algebraic Signal Processing Theory:
Cooley-Tukey Type Algorithms for Real DFTs
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Abstract—In this paper we systematically derive a large
class of fast general-radix algorithms for various types ofreal
discrete Fourier transforms (real DFTSs) including the disaete
Hartley transform (DHT) based on the algebraic signal pro-
cessing theory. This means that instead of manipulating the
transform definition, we derive algorithms by manipulating the
polynomial algebras underlying the transforms using one geeral

method. The same method yields the well-known Cooley-Tukey

fast Fourier transform (FFT) as well as general radix discree
cosine and sine transform algorithms. The algebraic approeh
makes the derivation concise, unifies and classifies many sting
algorithms, yields new variants, enables structural optinization,
and naturally produces a human-readable structural algorthm
representation based on the Kronecker product formalism. Vé
show, for the first time, that the general-radix Cooley-Tukey and

the lesser known Bruun algorithms are instances of the same

generic algorithm. Further, we show that this generic algoithm
can be instantiated for all four types of the real DFT and the
DHT.

Index Terms— Discrete Fourier transform, fast algorithm,
polynomial algebra, Chinese remainder theorem

I. INTRODUCTION

Markus PuUscheSenior Member, IEEE

(FFTs) the situation is different as shown by excellent ook
on both FFT theory and structural FFT representation using
the Kronecker product formalism [30]-[32].

One commonly used algorithm for the real DFT utilizes a
half-size complex DFT and a post-processing step [33]. We
provide the exact form in (72) in the Appendix. However,
it is only applicable to even transform sizes, and the post-
processing step has to traverse the entire dataset, which ca
be very expensive on modern machines with deep memory
hierarchies and multiple processor cores. Thus, findingctlir
(i.e., without a conversion) real FFTs is still a relevanblpr
lem.

Most real FFTs are derived by lengthy manipulations of
the transform definition using trigonometric identitieshi§
method has produced many important algorithms; however,
it does not explain the existence of the algorithms, pravide
no insight into the structure and degrees of freedom, and
leaves the question open whether all algorithms have been
found. Notable exceptions include the derivation of Wiraar
type real FFTs using the Chinese remainder theorem and
other techniques [13], [14], the derivation of DHT algonith

It is well-known that the discrete Fourier transform (DFTpy projecting FFTs using finite field algebra [15], and the
of a real signal is conjugate-symmetric. Hence, as one mdgrivation of real Bruun FFTs [5], [19].
expect, the required computation can be reduced by roughlyContributions of this paper. In this paper we complete our
a factor of two. As for the DFT, there is a large number géreliminary work in [34] and derive real FFTagebraically.
publications on fast algorithms for this “real DFT” (RDFT)This means that we first associate with each real DFT a
and its variants, such as the discrete Hartley transformTDHpolynomial algebra as explained in [35] to obtain a uniform
and others [1]-[27]. Knowing the entire space of availablgescription. Then we derive fast algorithms by maniputatin

algorithms is not just of academic interest but crucial feal+
world implementations: many applications spend the bulk
their runtime computing DFTSs, different computing platfee

the polynomial algebra, instead of the transform itselfngs
ohe general method or theorem. This method produces a large
class of general-radix algorithms that we call Cooley-fuke

usually require different algorithms, and the complexify aype since the same method produces the (complex) Cooley-
modern processors imposes many structural and other eequitukey FFT as well as general radix discrete cosine and sine

ments on an algorithm in order to run efficiently [28], [29].

transform (DCT and DST) algorithms [36]. Our method is an

Unfortunately, it is extraordinarily difficult to obtain anextension of the techniques used in [30]. The occurrence and
overview on the available real fast Fourier transforms. Arelevance of polynomial algebras for complex and real DFTs

guably, this has two reasons. First, there is a lack of theaty
explains the algorithms and simplifies their derivatiorc@el,

the typical representation of algorithms as nested sunomsiti

and for other transforms in signal processing is clarifiedhzy
algebraic signal processing theory introduced in [35]][37
Our method makes the algorithm derivation concise, trans-

involving complicated cosine and sine expressions is hapdrent, and naturally produces the algorithms in the form of
to parse by a human. For complex fast Fourier transforrauctured matrix factorizations that visualize the dinue of
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the algorithms. Our method identifies degrees of freedom and
unifies many well known algorithms in the literature. For
example, Bergland’s [1] and Bruun’s [5] real DFT algorithms
and Bracewell’s DHT algorithm [38], are instantiations of
our general method. Further, we use the polynomial algebra
framework to structurally optimize algorithms and derigad
hence explain, many known identities between real DFTs. We
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provide a detailed literature review in Section VI. Here,® is the direct sum of vector spaces with elementwise
We also made an effort to fully specify all occurringoperation. If we choose basésc, d in the three polynomial

algorithms and identities in a form suitable as a reference falgebras, them\ can be expressed as a matrix. This matrix is

implementation developers. obtained by mapping every element pfvith A, expressing
The method in this paper does not produce all existing reéain the concatenationU d of the bases andd, and writing

FFTs; e.g., prime-factor [39], [40] and Rader-type [41]2]/4 the results into the columns of the matrix.

algorithms are excluded. As an example, we consider again the polynomial) =
Organization. Section Il introduces polynomial algebrasg? — 1 = (z — 1)(x + 1) and the CRT decomposition

explains their connection to transforms, and characterize

complex and real DFTs in this framework. In Section Il A Cla]/(x* = 1) = Clal/(x — 1) © Cla]/(x + 1).

we explain our general method to produce Cooley-Tukeys bases, we choode= (1,z), ¢ = (1), d = (1). A(1) =

type algorithms using polynomial algebras. The method {$, 1) with the same coordinate vectordnid = (1,1). Further,
then applied to the real DFTs in Section IV. We show firg§ecause oft = 1 mod (x—1) andz = —1 mod (z + 1),

a unified algorithm description and then show two cIassw(x) = (z,z) = (1,—1) with the same coordinate vector.
of instantiations. The structural optimization and idees Thus, A in matrix form is the so-called butterfly matrix
between real DFTs are explained and derived in Section V.

Section VI analyzes the derived algorithms and gives aléetai F, = F 1} . (1)

literature review. We conclude in Section VII. 1 -1
Polynomial transforms. Assumep(z) € C[z] is separable,

[l. POLYNOMIAL ALGEBRAS AND TRANSFORMS i.e., it has pairwise distinct zeras = (o, ..., a,—1). Then

In this section we introduce polynomial algebras and emplat|he CRT decomposeS|z]/p(x) completely into itsspectrum

how they are associated to transforms. Then we identify this - Clx]/p(x) — Clz]/(x — o) @ ... D Cla]/(x — an_1),
connection for various versions of complex and real DFTSs. s(z) = (s(a0), .- ., s(an—1)).
Later we exploit this algebraic interpretation of real DR®s R )

derive their Cooley-Tukey type algorithms. _ Here we used that(z) = s(ax) mod (z — o). If we choose
We also introduce the matrix notation that we will use t@ basish = (py, ..., p,_1) in Clz]/p(z) and bases; = (1)

describe fast transform algorithms. in eachC|z]/(z — ), then the corresponding matrix is given

For further background on the mathematics in this secti
and polynomial algebras in particular, we refer to [43]. Poo = [Pl(ak)]ogk,kn
and is called thepolynomial transformfor A = Clx]/p(z)
with basisb.

Polynomial algebra. An algebra .4 is a vector space If, in general, we chooskg = (3;) as spectral basis, then the
that also provides a multiplication of its elements. Exagspl matrix corresponding to the decomposition (2) is #ualed
include the sets of complex or real numbé&rr R, and the polynomial transform
sets of complex or real polynomial§z] or R[z].

A. Polynomial Algebras and Transforms

The key structure in this paper is tp®lynomial algebra diago<e<n(1/Be)Ps.a-
Given a fixed polynomiap(z) of degreedeg(p) = n, We e jointly refer to polynomial transforms, scaled or not, as
define a polynomial algebra as the set Fourier transforms.
DFT as a polynomial transform. For example, the DFT
Cla)/p(x) = {s() | deg(s) < deg(p)} ./ g

of sizen (viewed as a matrix [31], [32]) is the polynomial
of polynomials of degree smaller than with addition and transform for A = C[z]/(z" — 1) with basisb = t, =

multiplication modulop. Viewed as a vector spacgfz]/p(z) (1, 2,...,2"""). Namely,z" —1 = [, (z—wy/,) where
hence has dimensiom. we use the notation

As a simple example we considdr= C[z]/(z*—1), which w. — o2
has dimension 2. A possible basistis= (1,z). In A, for T ’

exampleg - (z+1) = 2> 4z = z+1 mod (2> — 1), obtained  which implies thatw, /,, is a primitive nth root of unity and
by replacingz? with 1. wk = wy,.. With this notation,
Chinese remainder theorem (CRT).Assumep(z) =

q(z)r(z) factorizes into two coprime (no common factors)  Poa = [wi/n}wk o {wlffn]K, _ =DFT,.
polynomialsq and r. Then the Chinese remainder theorem S ) J"W?
(CRT) for polynomials is the linear mappihg Other types of DFTs were introduced in [44], [45], named
type 1-4 in [4] (type 1 is the standard DFT), and described
A: Clz]/p(x) — Clz]/q(x) ® Clz]/r(x), algebraically in [35]. Namely, type 3 is obtained by chogsin
s(z) ~— (s(z) modg(x),s(z) modr(z)). A = Clz]/(z™ 4+ 1) as algebra with the same basjsto get
_ [, (ke 1/2) _
IMore precisely, isomorphism of algebras. Po.a = {wl/n :|0§k7gn = DFT-3,.
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The DFTs of type 2 and 4 are scaled polynomial transfornisnsform, or simply Fourier transform. Note that if all toof

as shown by p are real, then every real Fourier transform is also a complex
. k)2 one. This is the case for the DCTs and DSTs [37].
DFT-2, = diagy<y<, (w;),,) DF Ty, Real DFTs as polynomial transforms. We consider
DFT-4, = diag0<k<n(w§];:1/2)/2) DFT-3,, . R[z]/(2™+£1), which underlie the real DFTs as expected [35].

To simplify notation, we set
For example, for theDFT-2,, this implies that(wl’/'jlﬂ) is
chosen as basis in the spectral comport&nd /(z — w’f/n),
0<k<n.

Discussion. The interpretation of the DFT as polynomialand introduce the polynomials (for< r < 1)
transform has long been known and been used to derive and " N on "
understand its fast algorithms [30], [46]. Recently, in the P2n,r (%) = (2" —w)(@" —w—p) = 2™ = 2¢,2" + 1. (4)
context of the algebraic signal processing theory (ASP),[3%sing this notation, we have the following completeal
[37], [47], we have shown that this interpretation is alstura@  factorizations:
from a signal processing point of view. Namely, associated
with the DFT is A as filter algebrapM = A as signald- 2" —1=(z—1)(z+1) H P2,(i+1)/n(T), 1 €ven

¢r = cos(2mr), sy = sin(27r),

cas =c¢-+S8,, CMS =c, — S,.

module, and® :  (So,...,Sn—1) — D g<pm Sez’ as finite 0<i<n/2-1
z-transform Thfa_ polynom_ial:v" -1 captures the p_erio_dic_ " —1=(z—1) H Pa.(ir1)/n (), n odd
boundary condition associated with the DFT, and filtering is 0<i<n/2
the multiplication of polynomialsi(z) € A and s(x) € M Ny N
moduloz” —1 (which is equivalent to the circular convolution © 1= H Pa,(i+1/2)/n(2), n even
of the coefficients). 0<i<n/2

(A, M, ®) is an example of asignal modelin ASP, the 2" +1= H P2,(i+1/2)/n () - (2 4+ 1), n odd
basic concept on which ASP is axiomatically built. Among 0<i<n/2
other things, ASP shows that a signal model supports Sh'}'gtg'm(:c) _ H Pa(isry/m (). (5)

invariance if A is commutative. In the finite-dimensional case
this naturally leads to polynomial algebras, which exmain ) o ) )
their appearance in SP. For example, we have shown that mosthe first four factorl_z_anons yield the following complete
trigonometric transforms are associated with signal moddfal algebra decompositions &[]/ (2" —1) (for n even and
built from polynomial algebras [35], [37]. This signal mdgle 0dd respectively):

associated with the 16 discrete cosine and sine transfooms %[x]/(x ~1)@R[z]/(z+1) @ @
not support time but space signal processing [37].

0<i<n

R[x]/]?z(iﬂ)/m
0<i<n/2—1

The main insight that ASP provides for this paper is that (6)
knowing the signal model, i.e., polynomial algebra, asseci
with a transform makes the algorithm derivation straightfo Rlz]/(z = 1) ® @ R{2]/pa.(i+1)/n: ()
ward and transparent. 0<i<n/2

and the following decompositions &[z]/(z™+1) (for n even

B. Real Polynomial Algebras and Transforms and odd, respectively):

To relate various versions of real DFTs to polynomial @ R[z]/p2,(i+1/2) /> (8)
algebras, we have to generalize (2) as explained in [35]. 0<i<n/2
Real polynomial transforms. We assume thai(z) is real, @ R[] /pa.(i41/2)/m & Rlz]/(@ + 1). 9)

which guarantees that its roots are either real or form cerpl
conjugate pairs. Then, instead of decomposig]/p(z) o . N
the complete real factorizatiop(z) = [[,<;.,, fe(z). The R[z]/pan(z) as
polynomials f;, have either degree one (in the case of a real _

root of p) or two (in the case of a pair of conjugate complex @ R[z]/pa.ir)/m (), (10)

0<i<n/2

roots of p). Consequently, the CRT yields theal spectral osi<n
decomposition and defines the skew real DFTs used later.
As we explain next, real DFTs are associated with=
A: Rlz]/p(z) — Rlz]/fi(z) @ ... ©R[z]/ fm(2), R[z]/(z" & 1) with basist, = (1,,...,2""!) and different
s(x) — (s(xz) mod fi(x),...,s(x) mod f,,(z)). choices of spectral bases. The most important cases aé list

(3) in Table I, which also introduces names for the chosen bases
To expressA as a matrix, we choose again a bagisn and a unified notation for real DFTs. The decomposition
R[z]/p(x) and bases in the spectral components. For the latteroperties are explained later but already listed here for
there is now a larger set of choices. We call each transfomompleteness. The exact form of these transforms can be foun
obtained this way a real polynomial transform, or real Fewriin Table XIII in the appendix.
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TABLE |
REAL DFTS: (2) ASSOCIATED POLYNOMIAL ALGEBRAS; (b) NOTATION
FOR BASES (C) NOTATION FOR SPECTRAL BASES

This notation means that below the first two rows, we have
ann/2 — 1 x n matrix, each entry of which is 2 x 1 block
containing a cosine and a negative sine of the same angle as

(a) shown.
Transform Algebra  Basisb  Spectral  Unified For a real input signal of length, it computes the real and
basisf  notation imaginary parts (interleaved) of the complex spectrum civhi
is conjugate symmetric. The second row of (11) computes the
RDFT " —1 t e Fn(t—e) . )
RDFsz o1 o1/ ,7-'”(1&—»31/2) highest frequency spectral component and is only present fo
RDFT_3” 1t . g”(t_m) evenn. It is known, and expected, that using the RDFT instead
RDFT-4,, 1t o1/2 Gu(t—el/2) of the DFT saves roughly half of the operations.
Algebraically, the RDFT is a real Fourier transform for the
DHT -1t h Fn(t—h) o . i
DHTE 1 12 f” (6 h1/2) decompositions (6) or (7) with respect to the spectral basis
DHT-3. 1t b gn(t—>h) called e in Table I(c). Namely,e means that the list1) is
DHT_4: 1t B1/2 gz(tth/z) chosen as basis in the one-dimensional spectral components
R[z]/(z + 1) and the list
BRDFT,, " —1 t s Fn(t—s)
BRDFT-2, z" —1 t s1/2 Fn(t—s1/2) ear = (1, ¢;/sr —1/8, - ).
BRDFT-3, " +1 t s Gn(t—s) ) ) ) ] )
BRDFT-4,, " 41 ¢ s1/2 Gn(t—s'/2) in the two-dimensional componeri&z]/p2 - (x). This choice
yieldsz = ¢y -1— 54, (¢ /5 —1/s,.-x) mod py . and hence
k IDFT - b Son,r(b— : e
skew rea pzn.r () f 2n,r (6= f) (¢er, —ser) as coordinate vector as required by (11) (where
(b) r =k/n).
Polynomials Decomposition property The RDFT of type 3 [9], [35] is obtained analogously from
o 1= @)k 1 (8) and (9) as shown in Table I(a)
2 1 A _ (@™ + 1 As for theDF'T we have to modify the basis in the spectral
Ponr = 227 — 2er2" 4 1 Pakm.r = P2k r(@™) components to obtain the RDFTs of types 2 and 4 [9], [35].
5 T | Al alaeh o ' _t,' . The spectral components @FT-2 and DFT-4 are of the
ases In polynomia” a'genras ecomposition property form Clz]/(z — w,) and have baseéwr_lm). To obtain the
tn = (L,x,...,2""1) tem = tr(@™) x tm RDFT equivalent, we observe that@z]/(z —w,), wy /> =
smo= (=020 1 a2y g = s (3™ * b z~1/2, i.e., the spectral basis is shifted by !/2. Hence, we
e = (1, £2=2) compute the bases of the correspond®ig]/p2,,- analogously.
T e B . We compute:—1/2 in R[xz]/ps,.. First, we notice that—'/2 =
€en,r = 82,7‘(55 )* tn €2km,r = e2er(x )* tm ’
’ ’ z~1-21/2, and compute ™! = 2¢, —z. Next we solvey? =
hop = (7cm:l~;+w cas,‘fw) 5 ) ) ) )
; T2 2y . for y in the algebra, which yields two possible solutions-
hon.r = he(z™) * tn hokm.r = B (T™) * tm i;jz. We setz!/2 = ;j—fz to obtain the desired transform
(c) matrices. Hence
Type R[]/ £ 1 R[x] /p2,r(x) o2 1 12 14+ 2¢ —x _ S3r/2 — xsr/g' (12)
e (1) e2r = (1, c&_ﬂ) 207«/2 Sy
(1) ho, = (=52t —cag'é:w)l The basis ofR[z]/p2,, is nowz~1/2 . e, .. The final result,
s M s2,r = (26 —2,1) = (@77, 1) after replacingz—'/2 using (12), is shown in Table I(c). The
el/2 (1) a2y, = (P22 /2 S/ /2 complete spectral basis is denoted with?.
B2 (1) aM2hg, = (*cm%f/;ﬂcm%/z’ fcaSsT/Qzﬂcasr/z) DHTSs. Choosing the basia instead ofe and h!/? instead
(a,0)* = (a, —b) °r o of e'/2 [see Table I(c)] in the spectral components yields the

well-known discrete Hartley transforms (DHTSs) of types 1-
4. “The” DHT is type 1 and due to [38], [48]; the other
) ) ) o types were introduced in [27]. Note that , consists of the
Most important for signal processing applications are th&ference and the sum of the two elementsegf. Similarly,

standard RDFT (type 1) and the discrete Hartley transfor/2 congists of the difference and the negative sum of the
(DHT), also of type 1. 2,r o

Standard RDFTs. The standard real DFT (type 1) jstWo elements ot/ ) .
defined by the matrix BRDFTs. It seems that the most natural choice of basis in

the two-dimensional spectral componentgisz). However,

1 ... 1 1 the associated real DFT is not considered in the literature.
RDFT. — e (11) Bruun’s FFT [5] uses (implicitly, since no polynomial algab
" [ Cké/n:| are used) a close variant by choosing = (z71,1) = (2¢,—
T5ke/n] 1 <ken/2,0<t<n x,1). This choice hence yields four types of BRDFTs as we

2Note that the definitions of the RDFT in the literature mayfadifoy a 3This slightly inconsistent definition of'/2 makes the DHTs of types 2
permutation of the rows compared to (11) as explained later. and 3 mutual transposes up to a permutation, see (63)—(7®&dtion VI.
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TABLE Il

C. Matrix Notation
RELATIONSHIP BETWEEN REAL AND COMPLEXDFTS FOR EVENn.

In the remainder of the paper we derive fast algorithms rep-

DHT, = (L2 (Ine-1® |} *%])) RDF Ty, resented as factorizations of the transform matrix as prtsdu
DHT-2, = (L& (Lo 1®|_] j])) RDFT-2,, of structured sparse matrices. The notation follows [31].
DHT-3, = (Lys®|! 7%]) RDFT-3,, Basic matrices.We denote the: x n identity matrix with
DHTA. - (I 117y RDFT-4 I,,. If the columns ofI,, are reversed, we gek,. The2 x 2

N L *1]) C<'+1>/_ v butterfly matrix £» was defined in (1) and 2 x 2 rotation by
RDFTy = (I2& (Inj2-1 ®i [sam/n o])BRDFTnv angle2rr is defined as
_ = [ea+r/2y/m L :
RDFT-3, (Inj2 ®i [S(M/z)/n 0])BRDFT 3n. R -
_ 1 T g el

DFT, = Un(L® (In_g2® [} 2 )) RDFT,, r -

DFT-2, = Un([';]® (I22® [ 1}]) ) RDFT-2.,  Further,diagy<,.,(c;) is the diagonal matrix with diagonal
DFT-3, = Vu(ly2® }7; RDFT-3,, entriesa; and we define

_ 15 . ;
DET-n = Va(ln® [ _1]] ) RDFT-4,. D, = diagoc;p ((-1)")- (15)

Finally, L, n = km, is the stride permutation matrix, which
) ~ has 1s at position§jk + i,im + j), and Os elsewhere.
call them. OnlyBRDFT and BRDFT-3 will prove useful in  watrix operators. Further, ifA = [a; ;] andB are matrices,
the algorithm derivation later. then the direct sum and the tensor or Kronecker product are
Skew real DFTs.Table I(a) also introduceskewreal DFTs respectively defined as
associated with (10). These will arise as building blockthin
real DFT algorithms. A®B= [A B] , A®B=la;;B].
Relationships.Since the RDFTs, DHTs, and BRDFTs only
differ in the choice of spectral basis, they can be convertied Sincel; ® A =A@ ... 3 A, we will write the direct sum of
each other using a base change in the spectrum. It takes differentk x k matricesA;, 0 <i <k, as
form of a block-diagonal matrix; the block sizes correspond _
to the dimensions of the spectral components. For example, le@idi=A0® .. & Ap-1.
for evenn, andt € {1,2, 3,4}, it takes the form of the first The spectral reordering permutatiotisand V' in Table I
six equations in Table Il. (the notation is explained in tle&tn can now be expressed as

section)
Further, the DFT can be computed by first decomposing/,, = {(I("”)/Q ® Jn-22) L%, - n even (16)
C[z]/(2™—1) overR using any real DFT and then completely Tnt1)/2 © Jin—1)/2)(In & Ly~"), n odd
by dec%rtnpoo[ir]og the t\t/\r/]o-cilimte?sional cotmpooen_:_s.b::oL;l evenV (Lnjz ® Jpy2) L3, n even a7
we obtain this way the last four equations in Tablel. n = ne
" y q (I(n—l)/2 &) J(n+1)/2)(L2 L I;), nodd

andV are permutations that also occur in the spectral format
conversion below. They are defined in (16) and (17) below.
Format. We use for all real DFTs the same ordering of ) ) )
the spectrum corresponding to (8) and (9), i.e., the one-The coonectlon to polynoml_al algebras can be osed to derive
dimensional spectral components are first, and the twigst algorithms f_or the associated transforms using a géner
dimensional components are kept together. Other ways Bgthod that builds on but extends the early work [30]. In
ordering hence require a permutation of the rows of the trari10rt, we derive general-radix Cooley-Tukey algorithms by
form matrices. Our ordering corresponds to er mformat Performing the decompositions (2) or (B) stepsbased on
of the RDFT in the Intel IPP library [49]. This is differenpim & deécomposition o if one exists. We have already shown
FFTW [50] which pads one-dimensional spectral componerifi@t this method yields the standard Cooley-Tukey FFT fer th
with an extra 0, and is the equivalent 8€S format in IPP. DFT and a large class of general-radix algorithms (inclgdin
For the RDFTs, our ordering is common (e.g., alreadg)any ’?OVG' ones) fof the 16 DC.TS and DSTS [36], [51]. .
used in [1]). For the DHTSs it is different from the original In this paper, we first generalize the method to work with

sstandard” definiti in 1381 and [271. Th lationshipa real decompositions aod then apply it to the various real DFT
standard” definitions in [38] and [27] € relationshipas Together with [36], this shows that one method spawns most

IIl. FAST ALGORITHMS: THEORY

follows X . .
known algorithms for trigopnometric transforms.
Notation. To state the general method we first introduce the
StandardbHT-t,, = U, DHT-t,,, ¢ € {1,2}, (13)  product of bases of polynomials. Let= (po, .. ., pi_1) and
StandardDHT-t,, = V,, DHT-t,,, t € {3,4}. (14) ¢ = (qo,---,9m—1) be two lists of polynomials. Then their
productis the list of lengthkm
The permutation&’ andV are defined below in (16) and (17). bxc = (Poqos---sPodm-1,

We provide the explicit form of the RDFTs, DHTs, and ... ...
BRDFTs as used in this paper in Table XIlI in the appendix. Dk—1G0s - - -, Pk—1q¢m—1)-
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Further, ifb is as above, and(x) is any polynomial, then we Complex fast Fourier transform
denote with Clz]/p(x) = Clz]/q(r(z))

q(r
b(r(@)) = (po(r(@)), - P (r(2))) N

the same list but withr(x) inserted forz.
Method. We first need the following lemma, a variation

P Clal/(r(x) - 8:)

T
of a theorem we already used in [51] to derive DCT/DST ¢
algorithms.
g P(@iM;)=P(IQiM;)
Lemma 1letq(x) be separable and letz) = [[,<,;, ¢:(). @ Clz]/(z — o)

Further, letc ande;, 0 < i < k, be bases foC[z]/q(x) and

Clz]/q:(x), respectively, and let, with respect to these bases, )

M be the matrix associated with the CRT decomposition Real fast Fourier transform
Clal/q(z) » € Clal/ai(x). R[z]/p(z) = Rlz]/q(r(x))

0<i<k M®I

k

If r(z) is an arbitrary polynomial of degree andd a basis
for C[z]/r(x), then M ® I,,, is the matrix associated with @R[x]/qi(r(x))

Clal/q(r(x)) = P Clal/ai(r(@)), '
0<i<k AM%')

with respect to the basés= c(r(x))*d andb; = e;(r(x))*d.
The above holds i€ is replaced byR and all polynomials @R[x]/fk(x)
are real.

Proof: M is obtained by reducmgg(x) cc mOd.U|0 Fig. 1. Algebraic derivation of Cooley-Tukey type algorith for complex
the ¢;(z), 0 < ¢ < k, and expressing the results in thewnd real Fourier transform®. Proper bases (not shown) are chosen for the
basese; of C[x]/q;(x). The resulting vector is théth col- decompositions to work. In both cases, the resulting algoritakes the form
umn of M. If ¢(x) = ¢¢; modg;(z) has the coordinate T = P(&iMi) (I ® M).
vector vy; with respect to the basis;, then c¢,(r(z))d; =
ce,i(r(x))d; modg;(r(z)) and has the coordinate vector )
0,...,0,1,0,...,0)T (the 1 is in positionj, 0 < j < m) @and we call itCooley-Tukey type _
with respect to the basis;(r(z)) * d. The matrix that has Example: Cooley-Tukey FFT.We use Lemma 1 to derive
these vectors as columns g ® I,,, as desired. m the Cooley-Tukey FFT. The polynomial algebra 10FT,, is

Our general method for deriving fast algorithms for comple%[z]/(z" — 1) with standard basis,,. Assumingn = km,
and real Fourier transforms is sketched in Fig. 1 and také®na" —1 = (z™)" — 1 decomposes. Applying the CRT in
slightly different forms in both cases. The key propertytth&teps yields
we require is thap(z) = q(r(x)) decomposes. We assume

deg(p) = n = km, deg(q) = k, deg(r) = m, and that suitable Cla]/(z" — 1) = Clz]/((z™)* — 1)

bases have been chosen. _ - @ Cla]/(x™ — wi/p,) (22)
In the complex cas&€|x]/p(x) = Clz]/q(r(z)), we first 0<i<k

use the CRT with respect to the decomposition of the outer

polynomial ¢(y) = [[,(y — Bi). According to Lemma 1, - O@M@ Clz]/(z = w(jktiy/n) (23)

the associated matrix i3/ @ I,,, where M is a Fourier Srekbss<m

transform for C[y]/¢(y). The smaller polynomial algebras — P Clal/(z - wipn). (24)

Clz]/(r(z) — ;) are then decomposed by the properx m 0<i<n
Fourier transformsM;. A final permutationP reorders the
summands into the required form.

In the real caseR[x]/p(x) = R|z]/q(r(z)), we proceed
analogously. The difference is thais now decomposed over
R asq(y) = [, ¢i(y), where theg; have degree one or two.
Again, the smaller algebra®|x]/q;(r(x)) are decomposed
by their proper real Fourier transformd;, which now have
dimensionsm x m or 2m x 2m. The resulting spectrum is . ¢
permuted withP into the proper order. DFTm (i/k) = [w(jriy mlo<ie<n

In both cases, the resulting algorithm takes the form = DFT,, - diago< s m(Wie/n)- (25)

We read off the matrices for each decomposition step. First,
we observe that, = tp(z™) * t,, [see Table I(b)]. Thus,
Lemma 1 is applicable: step (22) correspond@éd Ty, ®1,,)

and t,, is the basis in eacltC[z]/(z™ — w;/). The latter
polynomial algebras are completely decomposed in step (23)
by the polynomial transforms (calleskew DFT}

T—p @Mi (M ® I, (18) The final step (24) is just the stride permutation applied to
i the one-dimensional algebras.
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TABLE Il
STEPWISE DECOMPOSITION ORR[z] /(2™ — 1), n = km AND k EVEN, AND THE CORRESPONDING MATRIX FACTORIZATION OFRDF T, .

Stepwise algebra decomposition:

R[z]/((z™)* ~ 1)

— |R[z]/(z™ - 1) ® |Rlz]/(z™ +1) @ @ R[x}/me,i/k:| (19)
o<i<k
— |R[z]/(z - 1) @ R[z]/(z+1) & ( @ R[x]/p2,i/7n>:| ® ED R[I}/p2,(i+1/2)/m:| @ ED @ R[SU]/P&(MH)/”} (20)
0<i< 0<i< 0<i< k 0<j<m
— Rz]/(z - 1) & R[z]/(z + 1) & < @ R[I]/Pzi/km) (21)
o<i<hm

Corresponding matrix factorization: RDFTy,, = Pkm ( RDFTy, @ RDFT-3m & (I /2-1 ®: B5m82m7(i+1)/k(e—>e))) (RDFTk ®Im).

m

In summary we get Note, that to implement this algorithm, one also needs fast

n , algorithms for the occurrin®@DFT-3,,, and Sz, (i4-1) /(e —

DET, = L7, (I ©; DFTp(i/k)) (DF Ty, @1;n) e). We will obtain these algorithms using the same algebraic
= L} (I ® DFT,,)D,, (DFT\ ®1,,), (26) method in the next section. Without the algebraic framework

- v the di f the di %w appearance of the skew real DFTs is unexpected, which
whereDy, is diagonal, namely the direct sum of the diagon xplains why the algorithm derivation has been more difficul

matrices in (25). The algorithm is the decimation-in-freqay than for the complex DFT
Cooley-Tukey FFT, its transpose is the decimation-in-time '

version. This also motivates why we call all algorithms OTV COOLEY-TUKEY TYPE ALGORITHMS FORREAL DFTS
the form (18)Cooley-Tukey type )

Example: Cooley-Tukey type algorithms for RDFT. Us- In Fhis section we derive general—_radix CooIey-Tukey_type
ing Table I(a), RDFT, = F,(t — ¢) is associated with _algo_nthms_ for the_z real DFTs _followm_g the me_thod ou_tllned
R[z]/(z" — 1) with standard basis, = (1,z,...,2""!); the in Fig. 1 in Section lll. We first derive generic QIgonth_ms
spectral basis is of type. We assume that the size— km jointly for the transforms in Table I(a). Then we instantiat

factors such that™ — 1 decomposes and consider the cadBem first in a “natural” way and then in a way that improves
where bothk andm are even. the operations count, generalizing Bruun's FFT [5].

Similarly to the complex DFT, we start with a stepwise
algebra decomposition similar to (22)-(24), but now all déA. Generic Real DFT Algorithms
composition steps are over the real numbers; hence the steps Table I(a) we introduced a unified notation for real DFTs.
take the different form shown in Table III. It shows that they can be grouped into three tyfes;, S
The first step decompos@y]/(y" — 1) overR as shown corresponding to the three occurring polynomial algebFas.
in (6) and insertsc™ for y. The result is (19) in Table Ill. difference is in the choice of basis(usually b = t) in the
Sincet,, = ti(z™)xt.,, the associated matrix BDFT; ®1,,  algebra and the basjsin the spectrum. This notation, together
using Lemma 1, and the bases #gin R[z]/(+™ 4 1) and with our derivation method, enables us to derive the algorit

€2,i/k * tm = €am.i/k IN R[] /Doy iy (7). jointly for each of these groups with generic choices of base
The second step (20) decomposes the summands in (19yhe algorithms derivation follows closely Fig. 1 and is
completely. The first two are decomposed BY,(t —e) = completely analogous to the special case of RDFT already

RDFT andg,,(t—e) = RDFT-3, respectively, as shown in considered in Table Ill. Hence we will be brief. The resutin
(6) and (8). For the two-dimensional summands we need thorithms are summarized in Table IV.
skew real DFTSS,,, (;+1)/x(e—e€) introduced in Table I(a). Case 1: F,(b — f). The polynomial algebra isd =
Finally, (21) reorders the summands into the required ordRfz|/(z™ — 1) with basisb and spectral basig. We assume
using a suitable permutatidd*™. Note that when going from n = km, which implies the polynomial decompositiarf —
(20) to (21),r = (kj +i)/n in (20) is renormalized té/km 1 = (z™)* — 1. For evenk, we obtain the polynomial algebra
which is always smaller than 1/2. This is done by mapping tlteecomposition and the corresponding fast algorithm ajread
valuesr > 1/2 to 1 — r. For example, 3/4 would be changedhown in Table Ill. However, here we consider any basisth
to 1/4. This does not affegt, , or the polynomial algebra the compatible decomposition property (ifg,,= bg (™ )*t,,)
(becauseps , = p2,1—,, but does affect the definition of theand any spectral basjs
spectral basis in Table I. Accounting for the change intmedu  We sketch the stepwise algebra decomposition in Fig. 2.
a sparse base change matBxin the final factorizationB is First, the coarse decomposition gf in (19) decomposes
defined in later in Table VI.. it into m- and 2m-dimensional algebras (we only shdn-
The resulting Cooley-Tukey type algorithm is shown imlimensional in Fig. 2). This step has a degree of freedom,
Table III. namely the spectral basis of the coarse decomposition. We
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TABLE IV
ALGORITHMS FOR GENERIC REALDFTS WITH GENERIC INTERMEDIATE BASISc. WE SAY THAT THE ALGORITHMS ARE OF TYPEb — ¢ — f. THE
OCCURRING PERMUTATIONS ARE SHOWN INTABLE V.

Real DFTs, type 1 and 2: AlgebraR[xz] /™ — 1 with basis b and spectral basisf:

Fim(b— 1) = PE™ (Fn(t—1) & Gnlt— ) & (Ij2-1 @1 BluSam 416 (€= 1) ) - (Fi(b—¢) @ I,k even 27)
Fim(b—f) = PE™ (Fan(t—1) & (Iik2) 8 BlySam, 01y 6(e— 1) ) - (Fi(b—c) ® L), k odd (28)
Real DFTs, type 3 and 4: AlgebraR[xz] /™ + 1 with basis b and spectral basisf:
Grm(b—f) = Q™ (Ik ®i Bgfm52m,(i+1/2)/k(c—>f)) : (Gr(b—c) ® Im), keven (29)
Grm(b— ) = Q& ((11/2) @i BlSom 1172 /5(c—= ) @ Gm(t— 1)) - (Gr(b—¢) @ Im), k odd (30)
Skew real DFTs: Algebra R[x]/pn,» with basis b and spectral basisf:
Sk, (b= f) = L™ (I @i Sam (i) s(e— ) - (Sanr(b—€) @ Im) (31)

TABLE V
PERMUTATIONS UNDERLYING THE PERMUTATION MATRICES INTABLE |V. EACH PERMUTATION IS COMPRISED OF SEVERAL PIECEWISE INDEX
MAPPINGS, WHICH MAP INPUT VECTOR INDICES TO OUTPUT VECTOR INDICESGIVEN AN INDEX MAPPING p — q THE CORREPOSNDING PERMUTATION

MATRIX HAS 1S IN POSITIONS(q,p) AND 0S ELSEWHERE NOTE, THAT ALL PIECEWISE INDEX MAPPINGS ARE STRIDES

Permutation matrix k m Index mappings (input vector — output vector) Bounds
pkm even  even mj + 2i + (0,1) — kj + 2ki + (0,1) 0<5<1 0<i<m/2
2mj + 2i + (0, 1) — refla, (25 + 2ki) + (0, 1) 1<j<k/2 0<i<m
Pkm even  odd (0,2m — 1) = (0,1)
14+ mj+ 2+ (0,1) — kj + 2ki + (0,1) 0<j<1 0<i<|m/2]
2mg + 2i + (0,1) > reflap, (25 4 2ki) + (0,1) 1<j<k/2 0<i<m
Pkm odd  even 2i + (0,1) +— 2ki + (0,1) 0<i<m/2
—m +2mj + 2i + (0, 1) — refla, (25 + 2ki) + (0, 1) 1<j<|k/2] 0<i<m
Pkm odd  odd 00
142+ (0,1) — 1+ 2ki+ (0,1) 0<i< |m/2]
—m +2mgj +2i + (0,1) = 1 4 reflo, (25 + 2ki) + (0,1) 1<j< [k/2] 0<i<m
Qkm even  any 2myj + 2i + (0,1) — reflan—1(25 + 2ki) + (0,1) 0<j<k/2 0<i<m
QEkm odd any 2mgj + 2i + (0,1) > reflap,_1(25 + 2ki) + (0,1)  0<j< [k/2] 0<i<m
km —m +2i + (0,1) — k + 2ki + (0,1) 0<i<|m/2]
km — km (if m is odd)
N EE i<mn, N Er i <n,
reflzn (i) = {2n —i, else reflzn—1() = {2n —1—4, else
algebraA decomposition matrix basish denote it withe. Poss_,lble choices for include the same as
for f and are shown in Table I(b). All these choicescdfave
R[z]/(z™)* — 1 bi(x™) *t,,  the decomposition propertys(x™) * ty, = Com.
Using Lemma 1, (19) is performed b¥.(b—¢) ® I,,, and
Fr(b—c) @ I, the basis in the first twen-dimensional summands in (19) is
t., and the basis in the algebrBS$z]/pam, «(x) IS o« (™) *
P Rlz)/p2. (=) Uecznl@™) 5 tm = com ...
Next, the complete decomposition in (20) is performed by
D Som.(com— 1) Fom(t— f) andG,, (t— f) for the first two summands in (19)
(not shown in Fig. 2) and bﬁgm82m7(i+1)/k(c—> f) for the
@R[l‘]/pg,*(x) U fo,x remaining summands. The matix was explained at the end

Fig. 2. Graphical representation of a generic fast algoritar R[z] /(x+™ —
1). For simplicity we omit the exact form of the parametein polynomials
p and their bases, and useinstead. We also omit.- and one-dimensional
algebra summands that occur, and only sh@m- and two-dimensional
summands.

of Section llI.

The final step (21) is simply a reordering of the spectral
components using a suitable permutation that is indepénden
of the choice of bases. We omit the straightforward derivati
and only show the result in Table V.
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For odd k the decomposition has to be slightly adjusted For two-power sizes, recursive application of the algo-
since the second summands in (19)—(21) are not present. rithms in Table VI yields an operations Countg):leogQ(n) +
The resulting algorithm applies to all real DFTs of type D(n), which is known to be suboptimal. Inspection shows that
and 2 and is shown in (27) and (28) in Table IV. the bulk of the computation is performed by the transforms
Case 2:G,(b— f). The algorithm derivation fog,,(b—  Sa,(b—b), whereb = e or = h. Hence, the overall cost will
f) with underlying polynomial algebr&[z]/(z" + 1) is be dominated by the size 4 base cases for these transforms,
analogous to Case 1 above but based on the decompositiohich require 2 multiplications and 4 additions.
(8) and (9). There are at least two ways of reducing the operations count
As before, the basis choices considered in this paper &e2nlog,(n) + O(n). The first converts the skew real DFTs
shown in Table I(b)b = ¢ and f € {e, h,s,e'/? h'/2}. The Sak,(b— b) into skew complex DFTs (of half size) and is
resulting algorithms are for real DFTs of type 3 and 4 anekplained in Section V-A. The second is explained next: it
shown in Table IV. chooses different bases in the decomposition generaleng
Note that for evem, 2" +1 = p,, 1/4(x), andg, (b— f) and idea by Bruun [5], which was later extended in [19], [20].
Sn,1/4(b— f) (discussed next) coincide up to a permutation

and sign change of spectral components. C. Bruun-Cooley-Tukey Type Real FFTs
Case 3:8San,,(b— f). The decomposition of the algebra L . . . . L
2 . . : The basic idea behind the algorithms in this section is to
R[x]/pan,-(x) in (10) underlyingSa, (b — f) is derived e (1 dG. (¢ ith alaorith f
analogously to the previous cases, using the decomposit?é)ﬁnpu eFn( T—r:f)bali fnt(h_> f) Wlt t‘f" gori thms Od ypeb
property ofp,, , in Table I(b). The basis choices considered,  © J. The bulk of the computation is then done by

in thi for th laeb h d 2k, (s — s) whose size 4 base C<’.;1§@77‘(s—>5?, glsq known
|{n€ hi z?/er;Ll/er} ese algebras arec {e,h,s} and f € as the “Bruun FFT butterfly,” requires 2 multiplications ahd

additions, 2 less than before.

The algorithm is obtained by using = s in the general
algorithms from Table IV. The choice of intermediate basis
gs fixed, regardless of the transform we are computing. This
I::;Hgorithm will then contain the BRDFTs defined in Table 1(a),
which themselves are expanded in the same way, i.e., via a

Summary. All algorithms are summarized in Table IV. We
started with a transform that maps bases f (even though
the algebras are different), and the algorithm derivatssdian
intermediate basis (arising from the choice of spectral basi
in the coarse decomposition). Hence we say the algorith
in Table IV are of typeb — ¢ — f; b and f define the )
L ' . t — s — s algorithm.
initial transform, whereas the choice afis a degree of All these algorithms are shown in Table VIl including the
freedom. From the decompositions in Table IV it is clear th%tase cases ngeded for tWO-DOWEr SIZes 9
the algorithms are)(nlog(n)) for “sufficiently composite” P
sizesn. The question is what choice yields the lowest exact
operations count. V. ALGORITHM OPTIMIZATIONS

Below we instantiate the algorithms for two choicescof  In this section we derive three further optimizations appli
The first we call “natural” since it breaks down real DFTs int@able to the algorithms in Section 1V:

real DFTs of a similar type. The second we call “Bruun type” 1) the conversion of skew real DFTs into skew DFTs for

since they generalize Bruun's FFT [5]. savings in the operations count;
2) the regularization of the structure of type 1-2 real DFT
B. Natural Cooley-Tukey Type Real FFTs algorithms; and

) _ 3) the arithmetic-free conversions between real DFTs.
For a given transfornf, (b— f) it seems natural to ChooseAs before, all optimizations are derived using the polyralmi
the intermediate basis in the algorithms in Table IV such ' P 9 poly

that the coarse decomposition is performed by a transformacggebra framework,_ apply.to the generic re_al DFT algorithms
o . - 1/2 o and can hence be instantiated for all algorithms shown so far
similar type. This means= e for f € {e,e'/#} andc = h for

f € {h, h1/2}. Hence, the algorithms are of typs- ¢ — f in particular, for the RDFT, DHT, and BRDFT algorithms.

andb — h — f. We instantiate Table IV for these choices
in Table VI including the base cases needed to compute the Converting Skew RDFTs Into Skew DFTs

transforms for two-power sizes. Together with Table V and \we mentioned before that the algorithms in Section IV-
size-2 and 4 base cases these equations provide selfiethta have the disadvantage that the occurring skew real DFTs
algorithms specifications for all 4 types of RDFTs and DHTS,, (b — b), b € {e, h}, are too expensive when computed
for 2-power sizes. To compute other composite sizes, omly thsing (36). Here, we show that they can be converted into the

small prime size base cases are missing for RDFTs, and sizgew DFTs in (25), which turns out to save operations. The
2p base cases for skew transforms. The former can be obtaiR@@version is based on the following lemma.

using arithmetic free conversions in Section V-C combined

with Rader-type algorithms for the RDFT and DHT of typg emma 2The following mapping is an isomorphism [43] of

1, for example, using [42] for the RDFT or an adaptation gf.algebras, i.e., in particular, a bijective linear mapping
[41] for the DHT. The latter can be obtained by converting

Sonr(b—b) into half-sized skew complex DFTs as explained ~ ¢2n : R[z]/panr(z) —  Cla]/(a" —w;), (42)
in Section V-A. s(z) —  s(z) mod (z™ — w,).
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TABLE VI
NATURAL COOLEY-TUKEY TYPE ALGORITHMS (TYPEb — e — f AND b — h — f) FOR REALDFTS OF SIZEn = km AND SIZE 2 BASE CASES EACH
EQUATION HAS FOUR CASES FOR EXAMPLE, THE FIRST CHOICE IN(32) RESTATESTABLE lIl.

Algorithms:
RDFT,, RDFT,, RDFT-3,, BS%Szm,(m)/k(6—>63/2 RDFT},
RDFT-2,|  ,n | |RDFT-2,,| . |RDFT-4,, U BS, Som i1y k(e —el/?) RDFT),
DHT, | P DHT,, <) DHT-3,, D | Ikj2-1 ®i BE Sy iy (heh) DHT,, ®Im |, keven (32)
DHT-2,, DHT-2,, DHT-4,,, 2, 2D/ e DHT,,
B3, Som, (i41)/k(h—h'/?)
RDFT, RDFT,, 35%52m,(i+1)/k(6*6)1/2 RDFT,
RDFT—2n o n RDFT—2m . BS SQm,(i+1)/k(e_>e ) RDFTk
DHT, | = Pm' || DHT,, |& |2 @l g™ o 0 DHT, | © Tm |- kodd (33)
DHT-2,, DHT-2,,, 2, 2D/ s DHT,,
B2m 8277l;(i+1)/k(h_)h )
RDFT-3, BS%Szm,uﬂ/z)/k(e*ei/z RDFT-3;,
e . — -
RDET-4n| _ on | p oo | Bom Som,(i+1/2)/k(e—el/?) RDET-35| o/ | 4 even (34)
DHT-3, m Bh S . h—h DHT-3,
3m S2m,(i+1/2)/k(h—h)
DHT-4, 2 12 DHT-3,,
B3 Soam,(i+1/2)/k(h—h'/2)
RDFT-3,, Bgm252m7(i+1/2>/k(e_’63/2 RDFT-3,, RDFT-3,
RDFT-4,|  n B, Sam(iv1/2) k(e —€l/?) RDFT-4,, RDFT-3;
DHT.3, | = @m | | Llk/2] @i B s bk DHT.3, . DHT.3, | ® Im |, kodd (35)
om S2m,(i+1/2)/k(R—h)
DHT-4, 2 12 DHT-4,, DHT-3y,
B3, " Som,(i+1/2)/k(h—h!/?)
SZn,r(e_’e)/ ‘S‘Zm(l'Jrr)/lﬂ(e—’ez/2 Sop,r(e—e)
SZn 'r(e_’el 2) 2n SZm (i+7‘)/k(e—>e ) SZk r(e_’e)

’ =L | Iy @ : ’ ® Im 36
Son,r(h—h) P S (i) /6 (h— h) Sok.r(h—h) (36)
Sanr(h—h1/2) Sam (47 7k (h—h1/2) St (h=h)

Base cases:
e 61/2
B2m = Im & Dm, B2m =Im & —Dm,
1/2
Bam = Iafm/21 ® (Imy2) © J2), Bim = Iafm/2) ® (Im/2) ® J2),
RDFTy = Fy, DHT2 = F3,

RDFT-2; = Fy, DHT-2; = Fb,

RDFT-3; = Dy = diag(1, —1), DHT-3; = Fy,

RDFT-45 = ¥2 [7} j] , DHT-45 = /21>,

RDFT-34 = diag(l, —1,1, 1)(F2 ® 12)(12 D Rl/s)L§7 DHT-34 = (12 D JQ)(FQ ® I2)(F2 &) \/51)2)[/37

RDFT-44 = (D2 @ D2.J2)(Fa2 ® I2)(R1 /16 @ R3/16)L3, DHT-44 = diag(1,1,1, —1)(F2 ® I2)(R_1/16 ® R1/16)L3,

Sur(e—e) = (Fa ®I2)(I2 ® R_,)2) L3, Sa,r(h—h) = Dy(Fo ® I2)(I2 & R, j2) D4 L3,
Sur(e—e/?) = (I & DaJa)(Fa ® I2)(R_p /4 ® R_3,4) L3, Sa,r(h—h1/?) = (I2 & —=DaJ2)(Fa ® I2)(Ry /4 @ Ry 4) DaLs.
Proof: By the CRT,¢,,, is a homomorphism of algebras. B ban C n
It remains to show that it is also bijective. SirRér]/pay, () [z]/pan,» [z]/(z" — wy)
andClz]/(z™ — w,) have the same dimensi@n asR-vector Sanr (5of) DFT(r) or
spaces, it suffices to show tha4,, is injective. i DFT-2(r)
@an(s(x)) = 0 implies thatz™ — w, dividess(z). Sinces © o

is real, 2, divides s and hences(z) = 0 mod pa,, -(x) as @ R[]/ Pan, (i4r)/n ————— @ Clz]/(x — witry/n)
desired. B 0<i<n 0<i<n

Using Lemma 2 we establish the diagram in Fig. 3, which _ _
expresses that Fig. 3. Translating skew real DFTs into skew complex DFTs.

in this diagram are real transforms that are obtained from
DFT(r) or DFT-2(r) (defined later) as explained next.
Complex transforms, when performed by a computer, oper-
The choice of DFT depends ofi; the exact equations areate on real data organized, for example, using the inteztkav
computed next. complex format (alternating real and imaginary parts of the
First, we note that this diagram represeméal linear complex entries). Since the complex multiplicati@n-ib) (x+

mappings betweereal algebras. HencBFT(r) or DFT-2(r) iy) is equivalent to the real multiplicatiop] ‘3} [y], every

Sounlb—1)= | @D &5 [DFT(T) orDFT—Z(T)] bam.

0<i<n
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TABLE VII
BRUUN-COOLEY-TUKEY-TYPE ALGORITHMS(TYPEb — 8§ — f) FOR REALDFTS AND BASE CASES
Algorithms:
RDFT,, RDFT,, RDFT-3,, Bgly}282m,(i+1)/k(3—>e)
RDFT-2, RDFT-2,n| | RDFT-4;, B,y Som,(it1)/k(s—€'/?)
DHT, |= P}- DHTy, | @ | DHT-3;n | @ | Ix/2-1®: |BE Som,(i+1)/k(s—h) -(BRDFTy ® Im), keven (37)
DHT-2, DHT-2., DHT-4,, B2 g /2
BRDFT,, BRDFT,, BRDFT-3,, 2m S2m,(i+1)/k (5= )
B3, Som,(i+1)/k(s—5)
Bs S ; s—e
RDFT,, RDFT,, i e (/)
RDFT-2, RDFT-2,, BS. Som,(i+1)/k(s— €'/ ?)
DI?{P"IFTS = Py DI?{HTT; @ | Ik/2) ®: BQm Som,(it1)/k(s—h) . (BRDFT,, ® I,,), kodd  (38)
BRDFT, BRDFT,, 2m S2m7<2+1>/k(s“h1/2)
m 827n,(z+1)/k(5_)5)
RDFT-3, B, Samr1/2)/k(5—e)
RDFT-4, B, Sam,(i+1/2)/k(s—€/?)
DHT-3, |= Qn | Ix ®: Bl Som,(i41/2)/k(s—h) . (BRDFT-3;, ® I,,), keven (39)
DHT—4n nt 28 h1/2
BRDFT-3, B3, 2my(i+1/2)/k(8_) )
m S2m,(i+1/2)/k(5—$)
BE Sy s .
RDFT-3,, 2 2m»(1+1/2>/k(5—’63/2 RDFT-3,,
RDFT-4, BS,. Som,(i+1/2)/k(s—€/?) RDFT-4,,
DHT-3, | = Q& | | Iin/2) ® B2m 32m7(2+1/2)/k(sqh) @ | DHT-3,, . (BRDFT-3; ® In), k odd (40)
DHT-4,, 2 1/2 DHT-4,
BRDFT-3, By, 2m,(i+1/2)/k (s h /%) BRDFT-3,,
B3, Som,(i+1/2)/k(8—8)
Szn,r(s—>6) SZm,(iJrr)/k:(s_)e)
S2n,'f(s_’61/2) S2m,(i+r)/k:(8_)e )
Son,r(s—h) = L%{L- I, ®; Sme(H,ﬂ)/k(s%h) . (Sgkyr(s—>s)®lm) (41)
Son,r(s—h1/?) Som, (i4r)/k(s—h1/?)
52“«,"‘(5_)5) SZm,(i+r)/k(s—>s)
Base cases:
Bﬁm = Iva
BRDFT, = F, BRDFT-3; = I,
1 0 -1 0 0 1 0 -1
01 o0 1 -1 0 1 0
BRDFT-34 = (F2 ® I2) 0 0o 0 _\/5 s 8477‘(8—)8) = (Fr ® I2) 257-/2 0 0 0 s
0 0 V2 0 0 0 0 2¢/9

Sir(s—e)= (R @ 1) ([& ] @ diagle,/n5,2)F2) L3, Sip(s—e/?) = (@ Dada)(Fa @ 1) ([S4 0 e [ 20, ) 14,

cms. /o cas. cms;,. /4 Ccas, cms. /4 cass,.
Sa,r(s—h) = (F2 ® I2) ([%r;\: %] [cas,//j cms,ﬁ]) L% 34,7~(s—>h1/2) = (D2 ® J2)(F2 ® I2) ([ca%T//: cms,?i] D [casn//: cm?g,r//i]) L%-

TABLE VI
CONVERSION FROM SKEW REALDFTS TO SKEWDFTS USINGLEMMA 2.

Skew RDFTs occurring in natural Cooley-Tukey type algorithms (Table VI):

Son,r(e—e) = DFT,, diag; w

ri/n

L, Son,r(e—e/?) = DFT-2, diag; w, (;11/2)/n L2, (43)

San,r(h—h) = DFT, diag; w,.;;, L2", San,r(h—h'/?) = Dy, DFT-2,, diag; W, (i1 1,2)/nL2". (44)

Skew RDFTs occurring in Bruun-Cooley-Tukey type algorithms (Table VII):

Sanr(s—e) =DFTy (In@; [0 70 ) I3, Sanp(s—e!/?) =DFT2, (L@ [0/ 0oy, @s)

—Sri/n—r “Sri/n n

“Sr(i+1/2)/n—r “Sr(i+1/2)/n

nET CaS.i/n—r CaS-j/n PET O cas. (4 n—r C8S.(; n
Son.r(s—h) =DFT, (In ®i [Cms;r//nﬁ Cmi;//ﬂ]) L2",  Ssnr(s—h'/?) = Do, DFT2, (In ®; [ S (i4+1/2)/ S (i41/2)/ ]) L2, (46)

CMS.(i4+1/2)/n—r CMS-(i4+1/2)/n
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complex matrix-vector multiplicatiod/z € C" is equivalent There is no equivalent technique for odgdi.e., for (7) and
to Mz’ € R?", where we definell by replacing every entry (9).
a-+ibof M with [¢ ~?], andz’ is z in the interleaved complex ~ We will denote the transform associated with (49) as
format. R.(b— f), whereb is the chosen basis in the algebyaijs
Algebraically, if M is a polynomial transform fo€[z] /p(x) the chosen spectral basis, amds necessarily even. Table IX
viewed as a complex vector space with basjsand spectral shows the new transforms we define.
bases (1), thed/ is the corresponding matrix with respect to
the real vector space basid, j, z, jz,..., 2"~ jz"~1) and
spectral baseél, j).
\_Nlth this mformatlcin_, we can comppte the m,atrlx I’(Epr(:"senzl'ransform Algebra  Basis b Spectral basisf Unified notation
tations of ¢, and¢; ~ in the above diagram with respect to

TABLE IX
REGULARIZED REAL DFTSs.

the different choices of and f. ggg?ﬂ ;Z :1 i N gzgﬁjf})
In the case ob € {e, h} and spectral basi§ € {¢,h} we  UBRDFT, 2"-1 ¢ s R (t—s)

convertSs, (b — f) into DFT,,(r), and the base changes
consist of a permutation/") and in some cases extra sign

changes. The results are shown in Table VIII, whBié&T (r) To complete the real decomposition of (4®jz]/ (22 — 1)
is factored as must be decomposed using a butterfly matrix, and thus
DFT“(T) = [w(kﬂ—r)l/n} 0<k,l<n fn(b—>f) g (F2 D In,Q)Rn(b—*f)
= DFTy, diago<;<p (Wri/n). (47) " The idea is now to us®y(t — ¢), ¢ € {e, h,s}, instead

Note, that incidentallySs, (e — €) = San,.(h — h), of Fi(t — c) in the first, coarse decomposition step. The
because a simplification was possible to thg,.(h — h) consequence is that in (19) the first two summands stay fused.
factorization. This fact was (indirectly) discovered i}, [@hen More precisely, the decomposition now takes the reguldrize
the authors derived a split-radix Hartley transform algori form
with improved operation count. -

In the case off € {e!/2, h'/?}, the corresponding DFT is Rlz]/((=™)" = 1)

type 2,DFT-2,,, whose skew equivalent takes the form m
g | ~ R/ @ -] e | D R[x]/pzm,i/k] (50)
DFT-2,(r) = [w(k+r)(l+1/2)/n}ogk,l<n 0<i<k/2
= DFT-2, diagy<; <, (Wr111/2)/n)- (48)
- 0§-< .( /2)/ — |Rz]/(z - 1) ®R[z]/(z+ 1) & @ R[:T]/pzyi/zm
The base changes are again arithmetic free. O<i<m
Finally, in the case ob = s, ¢4, is no longer trivial, and

takes the form @ @ @ R[] /pa.jsijkym| (BL)

bon = <In ® Er (1)}) Linv 0<i<k/2 0<j<m

' = Rfz]/(z-1)®R[z]/(z+1) & @ R[2]/p2,i/km

but it can be fused with the block diagontihg; (w;(i+1/2)/n) 0<i<km/2
from (48) to save multiplications, leading to the final résul (52)

shown in Table VIII.
Identities (43)—(44) from Table VIII for computing the
skew real DFTs reduce the operations count compared
(36). Identities (45)—(46) do not reduce the operationsnto
compared to (41), but can be used as base cases.

In step (50) all summands now have the same dimer&ion
Step (51) completely decomposes the polynomial algebras of
difension2m over R. A suitable permutation in (52) then
Yeorders the one- and two-dimensional polynomial algebras
into the required order.

The resulting algorithms are given in Table X. They are the

B. Regularized Algorithms regularized variants of the algorithms in Tables VI and \di f
It is often more important for an algorithm to have a reguladyenn,.

structure than a minimal operations count to enable paral-
lelization, vectorization, or efficient hardware implertegtion.

The real DFTs are inherently more irregular than the DF?'
since their spectral components have dimensions one or twdJsing a variable change in the algebralf » is odd, and
as shown in (6)—(9) with the exception of (8). we sety = —x, we have the following

In (6), this problem can be alleviated by not performing n n n

complete real decomposition but leaviig — 1)(z + 1) = a]R[I]/(I + 1) =R-l/((=9)" + 1) =R[-y]/(-y" + 1)
22 — 1 “fused.” This idea yields the “regularized” version of =R[-y]/(y" — 1) = R[yl/(y" — 1).

(6): The above implies that for odd the transforms of type 3
Rlz]/(z" — 1) — Rz]/(z®> —= 1) @ @ R[x]/p2,i/m- (49) can be converted to transforms of type 1 and vice versa,
0<i<n/2 using simple base changes and a permutation of spectral

Arithmetic-free conversions
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TABLE X
REGULARIZED ALGORITHMS.

Regularized version of(27) in Table IV:

Fn(d—f)| _ Fom (t—f) f

Ru(b— )| = Py Popy, RQZ(t—U‘) @ Iy2-1 ®i By, Som, (i4+1)/k(c— f) (Rk(b—’c)®fm>, k even (53)
Ly ® 1), m even o
o2m = {(12 o (Lg“l ® I»)), m odd P is given in Table V

Regularized version of(32) in Table VI:

BS S ; e—e
RDFT,, RDF T3, B, Sm (i1) /1 )1 p URDFT},
RDFT-2,, RDFT-22,, Bim Sam,(i+1)/k(e—e'7) URDFT,
URDFT,|  ,n , |URDFT2n, | B, Sam,(i+1)/k(e—e) URDFTy
DHT, |=Fm | Pom | DHT,,, |® | Ik/2-1®i ma o ) UDHT,, | ® Im |, keven (54)
DHT-2,, DHT-25,1, 2, 2 A/ 1o UDHT},
UDHT,, UDHTam, B3 Sam,(i+1)/k(h—h/) UDHT},
B, Sam,(i+1)/k(h—h)
Regularized version of(37) in Table VII:
BE  Som i
RDFT,, RDFTa,, i@2 27n,(2+1)/k(5—>6)1/2
RDFT-2, RDFT-2,, BS . Sam,(i+1)/k(s =€/ ?)
DHT,, |=Pp | Py | DHTon & | Lijooy @ Bl Somiv) k(s—h) (UBRDFT;, ® In). k even (55)
DHT-2, DHT-22,, Wiz o ) 1/2
UBRDFT,, UBRDFTa,, B Szm,(i+1)/k(s—h1%)
B3, Som,(i+1)/k(5—8)
Base cases:
URDFTy = diag(1,1,1,—1)(Fa ® I), UDHTy = (I & F2)(Fa ® I), UBRDFTy = (Fh ® I).

components. For the transforms in Table I(&)= t,, and Using the basis propertieslt is easily shown that for any

we have: polynomialg
Gn(t—f) =P Fu(t(—2)—= f(-2)) Fu(t—b) = Fn(qgt—qb).
=P -Fu(t—f(-2))  Dn For oddn, we can use this property to convert transforms of
=P -B-F,(t—f)-D,. type 2 (with spectral baseg'/?, h'/?} = x=/2{e, h*}; see

Above D,, is a diagonal matrix witht-1s defined in (15), and Table I(c)) into transforms of type 1 (with spectral basesd

is the base change from to ¢,,(—xz), B is the base change
from f to f(—z) in each spectral component whose preci
form depends on the choice ff andP is the permutation of of z1/2 also in the spectral componerikz]/ps.,, we have
the spectral components, WhICh does not depend.on g= +21/2 mod ps.,, with the sign depending on

To compute the permutation we check how the spect_ral COM-Given a spectral basig = ~1/2¢ (wherec € {e, h*}) and
ponents ofR[x]/(z™ — 1) are mapped under the substltuuon(:J

= z("*t1/2 we have:
Rlz]/((-2) -1) =R
Rz]/ponr(—z) =R

The basic idea is to sey = z(*t1/2 = +21/2 in
Sl@[:c]/(:v" —1), which holds for odd:. Due to non-uniqueness

.T/(.T'i_]—)a fn(t—>x_l/26):fn(qt—>q$_l/20)

]
z]/2* 4 2zc, + 1 = Fo(a" /2 L te) = Fo(t—+6)B.
al/x? = 2we, 10 + 1 (62)
] /p2nr41/2(2) = Rlz]/pan,1/2-r- Above, by abuse of notation, we denote witlx the modified
Since we assume the ordering by ascendirandr < 1/2, the basisc ?n Which the sign of each spectral component d_epends
above mapping implies that the order is simply reversed. TRBT- Itis + if 2("tD/2 = 421/2 mod p,,,, and— otherwise.
first one-dimensional spectral component becofpg/(x + 5 IS the base change from the shifted basis™)/?t,, 10 t,,.

1) and is moved to the end. Thus we have: We instantiate (62) forf = {e'/?,a'/?} in (60)~(61) in
Table (XI). These equations can be combined with (57)—(58),

Gn(b—f) = [ Ilns2) © 12} ‘B -Fp(b—f)-D,. (56) making it possible to convert any type of DHT or RDFT of
1 odd size into any other type for free.

[
[

B[
B[

We now instantiate (56) by computing3 for f €

{e,h,e!/2 h1/2 s}. The result is shown in (57)-(59) in Ta- VI. ALGORITHM ANALYSIS AND DISCUSSION

ble XI. In the equations we fusB with the final permutation  Table XII gives the arithmetic cost for the algorithms
into a single matrix. shown in this paper. In the remainder, we first identify three
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TABLE XI
ARITHMETIC FREE CONVERSIONS BETWEENRDFTS FOR ODDn. THE PROPERTIES BELOW CAN BE COMBINED TO YIELD FREE CONVERSIGNBETWEEN
ANY OF TYPE 1-4 TRANSFORMS OF SAME KIND

Identities based on(56):

RDFT-3, = [1 Tin/2) ®diag<1’*1>] RDFT, D, RDFT-4, = [1 *""*1] RDFT-2, D, (57)
DHT-3,, = J,, DHT,, D, DHT-4, = [1 Tin/2) ®diag(1’*”] DHT-2, D, (58)
BRDFT-3, = [71 Iin/2) ®diag“’*1)] BRDFT,,D. (59)

Identities based on(62):

DHT-2, = (I, ® — diagy<;,,_ (~1)*FL2]) DHT, [1 Trn/21 ] , (60)

Ln/2]

RDFT-2, = (I & diagy< <, —(~1)L2]) RDFT, | /], (61)

Iiny2)

good choices among them. Note that the best choice strontdyours, which identifies the different computation struesu

depends on the implementation platform. Then we review pubessible.

lished real DFT algorithms and relate them to the algorithmsAlso note that choices other than the above may be com-

in this paper where possible. Finally, we briefly discus&ise petitive. For example, the library FFTW [28] uses a non-

real DFTs and convolution. regularized RDFT algorithm as explained in the following
subsection.

A. Good Choices of Algorithms B. Related Algorithms In The Literature

Many possible real DFT algorithms are provided in this pa- gpeT, The first RDFT algorithm was derived in 1968 by
per. We identify three choices with desirable featureswuised Bergland in [1]. Bergland’s algorithm is an iterative ecalant
next. of the combination of (54) with: = 2 and (36). The follow-up

‘The regularized natural algorithm uses (54) together paper [2] gives a radix-8 version, which is the same algorith
with the natural skew transform algorithm (36) to obtain th&iin ,, — 4. The arithmetic cost of these algorithms is

simplest overall structure. For the 2-power size, the arétic Snlogyn + O(n), and does not depend on the split (i.e.,
cost is 5nlogyn + O(n). The recursive formulation canihe choice of factorizatiom = km). The tensor product
be easily converted to an iterative algorithm amenable {grmylation of the radix-4 variant of Bergland’s algorithis
hardware implementation. given in [32].

The regularized natural algorithm with improved skew ~ One can obtain the matrix form of the iterative RDFT al-
transform algorithm uses (54) with (43)—(44) to improve gorithm for any radix, by fixingn, and successively applying
the arithmetic cost. The minimal cost Bfilog, 7+ O(n) is  (54) to the right-hand side of itself and using the property
achieved form = n/4 in (54), but the maximal cost remains(; @ AB) = (I ® A)(I ® B) to obtain the stages of the

the same. _ _ _ _ iterative algorithm operating on fuller lengthvectors.
This algorithm is the main choice for automatic RDFT To reduce the arithmetic cost, a “split-radix” version oé th
program and library generation in Spiral [29], [52]. algorithm was proposed in [7], [23]. It reduces the cost to

The regularized Bruun algorithm is obtained with (55) 2nlog,n + O(n). The algorithm in [7] is the combination of
combined with the Bruun skew transform algorithm (41). Thig2) for k = 2 and (43). The algorithm in [23] has no exact
combination also yields a cost &f log, n4-O(n) independent equivalent in this paper.
of the radix (albeit with a different multiply/add balance) Bergland’s original paper explains how one could obtain a
and at the same time can be easily unfolded into an iteratiyeneral radix algorithm, but does not show any details. We
algorithm (as in option 1 above). In the iterative versiompt found the fully specified general radix RDFT algorithm in
times less multiplications and two times less multiplieati other sources. Namely, from the source of the FFTW software
constants are needed due to simpler base case. However, libigiry [28] and also in [9].
less numerically stable than other choices [17], [24]. FFTW uses for composite RDFT sizes (32), (33), and

In its iterative radix-4 version (which can be obtained i43). The occurringRDFT-3 transforms are not recursively
exactly the same way as for standard real Cooley-Tukey FF8Ypanded, but use automatically generated small size base ¢
it requires only 2 multiplications per stage, whereas thtenah routines.

RDFT algorithm needs 4 multiplications per stage. [10] gives a general-radix Cooley-Tukey type algorithm us-

Note that algorithms With%nlogz (n) + O(n) operations ing a mixture of tensor product formulas and summations. Un-
exist [11] obtained from a properly chosénlog,(n)+O(n) fortunately, some matrices in the paper appear underspecifi
algorithm by propagating and canceling constants withoahd are hard to reconstruct. The algorithm is a combination
changing the computation structure. This method is orthayo of (32), (43), and the seventh identity in Table II.
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TABLE Xl
ARITHMETIC COST ACHIEVABLE FOR THE REALDFTS WITH THE ALGORITHMS IN THIS PAPER WE OMIT THE O(n) TERM.

Transform Algorithm Minimum # ops (adds + mults) Maximum # ops (adds + mults)

RDFT-t,  Natural
Natural w/ improved skew
Bruun

nlogyn, nlogyn (%nlogQ n, nlogyn

4

nlogy n, %nloan (%nlogQ n, nlogyn

3
3nlog2 n,%nlog2n (%nlogQ n,%nloan

DHT-ty, Natural
Natural w/ improved skew
Bruun

nlogyn, mlogy,n (%nlogQ n, nlogyn

nlogy n, %nlog2n (%nlogQ n, nlogyn

(3 ) )
(3 ) )
(3 ) )
(3 ) )
(3 ) )
(%nlogQ n,%nlogQ n) (%nlogQ n,%nlogQ n)

The generalized RDFTSs (of type 2,3,4) are presented in [®fpe similar to [4].
where the authors discuss their connection to cosine a®d sinThe glgorithms in [6] are the equivalents of our free conver-

transforms. sions between DHTs of types 1,2,3,4 given in (58) and (61)
Our natural general radix algorithms from Table VI seem {&ind combinations thereof). Interestingly, the same cmives

be known only foRDFT. The natural regularized variant (54)(57), (60) and (59) between generalized RDFTs appear to be

is novel, and eliminates the need RDFT-3 (or RDFT-4). novel. A similar property also holds for complex DFTs, but

As explained before, the arithmetic cost of these varianffe don't show the equations in this paper.

depends on the radix and is betwegnlog,n + O(n) and In [21] and [25] we find comparisons between DHT and

2nlog;n + O(n). , ! RDFT algorithms. In this paper we answer the question of
B Am?ng other RD,FT glgonthms we find the SO'Ca”the true difference between DHT and RDFT algorithms based
quick RDFT al_go_nthm N _[12]’ which useDCT-1 and on the algebraic interpretation in [35]. We show that the
DST-1 using a similar technique as [4]. algorithms are based on the same principle, have precisely

[16] also uses the CRT as this paper, but facidrs-1 over  he same dataflow structure, and only minor differences only
Q, which leads to other, less structured algorithms for nen-2yist in the small size base cases.

power sizes. Winograd also uses the CRT to derive opt|malBruun type algorithms for DHT and RDFT. The 1978

ith t to th ber of -rational multiplica )
(with respect to the number of non-rational multiplicatpn Rgper [5] by Bruun introduced the so-called Bruun FFT. The

DFT algorithms that, however, have an increased number th th tion bet the DET and a filter bank
additions and irregular structure [53], [54]. In the langea author uses the connection between the . and a fitter ban
th a very special set of filters, namely for< ¢ < n, {(z"—

of this paper, the DFT is first decomposed by decomposﬁ‘@ —w)h @ = 1. The special structure of the zeros

Clz]/(«™—1) overQ, then the resulting blocks are considered /(@ i . . ) .
as convolutions and decomposed further using a techni (bfethe Illtertsh IS Igli?l'd _T% buf!:g thte so-_cagégtltterbtree wh|ch |
different from this paper. Heideman [13] provides the exzﬂé mputes the - e THer tree 1S built by successively

. o Y
multiplicative complexity for a real DFT of two-power size actoring the polynomiak L. One factorization leads to

gives concrete optimal (in this sense) real DFT algorithms }he familiar radix-2 Cooley-Tukey_aIgorlthm as also shown
[13], [14], [55] In [30], whereas another factorization (over the real nursibe

DHT. The DHT is often regarded as a transform differenl?ads to a new FFT, which exclusively uses multiplicatiops b

] . . real constants, except for the final stage. Therefore, mmitt
]:jri(;r(?ustziigRitZFf;’sthaeiggﬁtrfrr]nesre 's a different set of PaPeRe last stage yields an RDFT algorithm. The paper shows a
- Lo . . decimation-in-time radi algorithm only. The algorithm is
In spirit closest to our work is [15], which derives DHT 'mation-in-t ! gon y gor! !

algorithms by projecting DFT algorithms using the theorthe special case of (55) and (41) with= 2 applied to the

of field extensions similar to work on ADFTs in [56]. The}éDFT'

technique is not applicable to the RDFT and different from The same idea is explored further in [3]. The authors derive
ours. the decimation-in-frequency algorithm, but for the DHT.eTh

All of our general radix algorithms for DHTs of four typesalgorithm is the special case of th@nsposeof (55) and (41)

are novel. This includes the natural algorithms in Table VYY'th k = 2 apP"ed to the DHT. This IS the only reference we

the Bruun type algorithms in Table VII, and the regularizetpnd discussing a Bruun type algorithm for DHT.

variants of both in Table IX. However, we did find some Later, Murakami explained Bruun’s algorithm in a more rig-

special cases in the literature. orous framework using the CRT and generalized the algorithm
A split-radix DHT algorithm is given by [22] and [8]. The to arbitrary radix [18]-[20]. Murakami derives the algabrit

former has slightly suboptimal arithmetic cost and theefattfor an arbitraryevensize. His algorithm is (55) applied to

improves the cost and is the combination of (32) with= 2 RDFT or BRDFT combined with (41).

and (44). In this paper we showed that Cooley-Tukey type and Bruun
Reference [27] defines all types of DHTs (called W trangype algorithms are actually instances of the same alguorith

forms) and gives algorithms for even sizes for all 4 typeshEa(e.g., Table 1V) but with different choices of the intermaigi

transform is split into a DCT/DST pair of the correspondingasisc.
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C. Inverse Transforms and Convolutions (and their inverse) transforms. This include@BFT, RDFT-2,
HT, DHT-2, BRDFT, and BRDFT-2.

Skew circular convolution, which corresponds to multi-
plication in R[z]/(z" + 1), can be computed using any of
the G,.(f — f) (and their inverse) transforms. This includes
RDFT 3, RDFT-4, DHT-3, DHT-4, and BRDFT-3.
Computing linear convolution is usually done by partition-
g itinto blocks and embedding each block in a larger cacul
or skew circular convolution. Thus, linear convolution dae
computed using any of the transforms from Table I(a). Apart
from the common choice of type-1 transforms, using type-3

Inverse transforms. So far in this paper we showed the"
algorithms, given as matrix factorizations, for the fordar
transforms. Algorithms for the inverse transforms are ifgad
obtained in two different ways: by formally inverting the
matrix factorizations, or by formally transposing the ma
trix formulas and using the orthogonality properties of the
transforms. Both methods use the following inversion an
transposition identities that can be recursively appl@ény
algorithm in this paper:

(A-B)™' = CATY (A-B)T =BT . AT, transforms is also a good choice, since they possess a more
1 T AT T regular structure as can be seen from (29). Another intagest
(A4®B)" L (A ® B, (A®B)T = ®€ ) case is reported in [26]. IRDFT-3 is used together with
(T A) =T @ A1), (I ®i Ai) = ®iA4;), a conversion to complex DFT using (43) we obtairreal
(Ao B)™* (A e B, (A®@B)" = (A" @B"), convolution algorithm, which uses@mplexDFT of half the
(J)"t = —J,, size. With BRDFT or BRDFT-3 one can use the cheaper
K 1 km ko Bruun butterfliesSy . (s — s) (shown in Table VII). The use
(L")~ (L )T =Ly of BRDF'T for computing the linear convolution was proposed
(R))™' =R} =R_,. in [19], [20].
Inversion of an algorithm is straightforward using this VII. CONCLUSION

m.et.hod. Transposition requires the use of the following ex- This paper, together with [36], shows that using the frame-
plicit formulas for the inverse transforms (shown for even work of polynomial algebras general-radix algorithms ftir a
1-D trigonometric transforms can be obtained using only one

_1 = . T . . . .

RDFT," = 1/n-RDFT, (I & 2I,—2) (63) generic method. Since this method also yields the Cooley-
RDFT-2,' = 1/n-RDFT-2, (I ® 2I,_») (64) Tukey FFT, we refer to all these algorithms as “Cooley-Tukey
RDFT-3.! = 1/n-RDFT—31(21n) (65) type.” We believe that these papers are a big step towards
RDFT-4-" = 1/n RDFT—4Z(2In) (66) consolidating the area of transform algorithms. Namelg, th

polynomial algebra framework enables the concise deadmati
DHT;! = 1/n-DHT = 1/n - U, DHT, Uy, (67) classification, and structural representation of the oleti
1 T algorithms. Further, it also explains the many relatiopstihat

DHT-2," =1/n-DHT-2, =1/n-V, DHT-3, Un, (68) pog petween transforms. However, some work is still left to

DHT-3,'=1/n" DHT-3I =1/n-U, DHT-2, V,, (69) algebraically capture the full class of existing algorithfor

DHT-4;' = 1/n-DHT-4] = 1/n -V, DHT-4, V,,. (70) trigonometric transforms. _ o .

The appearance of polynomial algebras in signal processing
Note that often the scaling factdr/n is omitted in actual is not coincidental: in the algebraic signal processingiie
implementations. The permutatiobsandV appear in DHT (ASP) started in [35] we explain that they provide the sinoet
inverses due to our use of non-standard ordering, as egglaifior finite, shift-invariant signal processing and explatre t
in Section Il and (13) and (14). exact forms they take for the commonly used 1-D transforms.

Since natural algorithms contain orthogonal building kkoc Hence, in ASP the theory of transform algorithms (as shown in
only, inverting or transposing the algorithm will lead tonaist this paper) becomes a natural part of signal processingytheo
the same result. However, Bruun type algorithms have noiself.
orthogonal building blocks. Therefore, we can obt&ivo
different inverse transform algorithm variants, first byerting
and second by transposing. Similarly, we can obtain anotherTransform matrices. Table XIIl shows the exact forms of
variant of the forward transform, by inverting and then g-anthe DFTs and real DFTs as used in this paper. We remind the
posing, as was already done in [36] to obtain new variants &fader that there is a degree of freedom in choosing the order
the DCT/DST algorithms. of the output as explained in Section II-B.

We also note that up to a permutati®iIT andDHT-4 are ~ Computing real DFT via half-size complex DFT. Two
self-inverse, and thBHT-2/DHT-3 pair are mutual inverses. RDFTs of sizen can be computed with a single complex
This means that inverting or transposing a DHT algorithfFT of sizen, this property can be further used to compute
leads to a new DHT algorithm variant, and for the BruuRN€ RDFT of siz&n using one complex DFT of size [33].

type algorithms inverting and then transposing leads tdrd th We now derive these two properties using our matrix
variant. framework. First, from Table I,

APPENDIX

Linear and circular convolution The circular convolu- RDFT,, = (12 & (Inja1®3 [ ]))U DFT,,
tion of real vectors, which corresponds to multiplication i

R[z]/(z™ — 1), can be computed using any of tt&,(t— f) =Y, DFT,.
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TABLE XIlI
COMPLEX AND REAL DFTSs.

In the tablel,, 1/, arel x n matrices,1// is a2 x n matrix, andf is a quotient of sines, as defined below. All transform megiaren x n, and
0 < ¢ < n. For the complex DFTY) < k < n, for the real DFTs (in each case the two rows are for even addnodespectively)0 < k < [(n — 1)/2].

-
ln = [1 1 ... 1 1] , 1, = [1 -1 ... 1 —1] , 1= [1; 1’1] , fab = Sab/5a-
DFT,, = [wie/n) DFT-2, = [wy(ps 1, ] DFT-3, = [w 1,/,] DET-dn = [ 404 4 /)
] o] - -
- - - - Cr 1 Clp+l 1y /0y
RDFTn = | | cpe/n RDFT-2n = | | C(e41y/n RDFT-3, = [ (“F2)¢/" } RDFT-4, = | 4200/ }
—s Lye/n —s Lyw+iy/n
| =ske/m] | [~ Suces 2y | L “(k+3)¢/ L “(k+3)(+3)/
S o [ O+ )e/n ] [ Cht5)(e+5)/n ]
RDFTn = | | cpesn RDFT-2n = | | C4p4 1/ RDFT-3n = | | =5, 1)/n RDFT-4n = | | =54 1)(04 1)/n
| [~ Ske/n] | L __Sk(z+%)/n_ | L lln L lln
o] ] - -
r B r B ca: 1 ca: 1 1
DHTn = casd/n DHT—2n = ca§(z+%)/n DHT_3n — S(k+2)l/n:| DHT—4n — S(k+§)(l+§)/” :|
CMSk+1ye/n MRt Ly(e+ L) /m
| [CMSee/n ] | LS4y /n] | LS MRk+3)e/ L~ Mk+ 1) et-4)/
) 1n ) i 1n ) |:Cas(k+%)l/n:| |: cas(k+%)(l+%)/n :|
DHT, = | | casy/n DHT-2,, = CaS,(e4+1)/n DHT-3,, = Cm%m%)un DHT-4,, = _Cm§k+%)(e+%)/n
[ LSMSke/n | ] L L CMSee+2)/n] I 1, I 1,
. Y - -
r 7 r 7 - Ly/, st _1
BRDFTy, = | | ~fijne | | BRDFT-20 = | [ =fu/no1 BRDFT-3, = | ~(Ft2)/mt BRDFT-4, = | ~(kt2)/mi=2
7 ' f k+iy/ne f k+ 1 ¢+ 1
L _fk:/n,[+l_ ] L L fk/n,l+% 4] Skt A
R - Tty /mae Ikt 3y/mie-4
BRDFTy = | | = fu/ne | | BRDFT-20 = | | =fi/n o 1 BRDFT-3n = | | fys 1) ner] | BROFT-4n = | | foi1) i1
L _fk/n,l+1_ ] L L fk:/n,l+% ] L 1,’,1 L 1,’,1
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