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Abstract— In [1], we presented the algebraic signal processing
theory, an axiomatic and general framework for linear signal
processing. The basic concept in this theory is the signal model
defined as the triple (A, M, Φ), where A is a chosen algebra
of filters, M an associatedA-module of signals, andΦ is a
generalization of thez-transform. Each signal model has its own
associated set of basic SP concepts including filtering, spectrum,
and Fourier transform. Examples include infinite and finite
discrete time where these notions take their well-known forms.
In this paper, we use the algebraic theory to develop infinite and
finite space signal models. These models are based on asymmetric
space shift operator, which is distinct from the standard time
shift. We present thespace signal processing concepts of filtering
or convolution, “z-transform,” spectrum, and Fourier transform.
For finite length space signals, we obtain 16 variants of space
models, which have the 16 discrete cosine and sine transforms
(DCTs/DSTs) as Fourier transforms. Using this novel derivation,
we provide missing signal processing concepts associated with
the DCTs/DSTs, establish them as precise analogs to the DFT,
get deep insight into their origin, and enable the easy derivation
of many of their properties including their fast algorithms.

Index Terms— Signal model, Fourier transform, boundary
condition, signal extension, shift, algebra, module, representation
theory, convolution, Chebyshev polynomials, discrete cosine and
sine transform, DCT, DST

I. I NTRODUCTION

Standard linear signal processing (SP) considers signals
indexed by time (discrete or continuous) and time-invariant
systems or filters. Associated with SP is the time shift operator,
abstractly defined (in discrete form) as

q ⋄ tn = tn+1. (1)

The formulas for linear convolution and the discrete-time
Fourier transform for infinite length signals or for circular
convolution and the discrete Fourier transform (DFT) for finite
length signals can be derived from this definition of the shift.

In this paper we show that an alternative linear SP frame-
work can be derived from a different definition of the shift
operator. This shift operatesundirectedor symmetricallyin
contrast to the directed operation of the time shift in (1). For
this reason we call it thespace shift; it is abstractly defined as

q ⋄ tn = 1
2 (tn−1 + tn+1). (2)

Accordingly, we derive for infinite and finite length signalsthe
appropriate space SP notions including filtering or convolu-
tion, “z-transforms,” spectrum, Fourier transforms, frequency
response, and others. In the finite case, we explain the need
for boundary conditions and identify 16 “natural” choices that
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have the 16 discrete cosine and sine transforms (DCTs/DSTs)
as Fourier transforms. This establishes the DCTs/DST as exact
analogs of the DFT, a satisfying alternative to the original
derivation of the DCTs and DSTs as approximations to the
Karhunen-Lòeve transform of a stationary process [2], [3].
The complete set of DCTs/DSTs was defined in [4] without
derivation or motivation. In this paper, we jointly refer tothe
DCTs and DST as discrete trigonometric transforms (DTTs)
even though this class is actually larger (e.g, it contains the
real DFT and discrete Hartley transform).

We note that in other areas such as dynamic systems it is
common to consider different notions of shift [5].

We developspaceSP as an instantiation of the algebraic
signal processing theory (ASP), a general and axiomatic theory
of (linear) SP presented in [1], [6]. The central object in ASP
is the signal model, defined as a triple(A,M,Φ), whereA
is the filter space (an algebra),M the signal space (anA-
module), andΦ generalizes the concept ofz-transform. Many
signal models are in principle possible, each with its own
SP notions including filtering, spectrum, or Fourier transform.
ASP establishes that for finite signals and shift-invariant
models,A and M are polynomial algebrasC[x]/p(x), i.e.,
spaces of polynomials with multiplication modulo a fixed
polynomial. For example, for the finite time model, which has
the DFT as Fourier transform, both take the formA = M =
C[x]/(xn − 1).

In [1] we explained how to derive signal models from a
definition of the shift. Application to the time shift (1) yielded
the well-known infinite and finite time signal models. In this
paper, we derive signal models from the space shift (2). We
identify and define theC-transform as the appropriate “z-
transform” and, for finite space signals, show that the 16 DTTs
are the appropriate space Fourier transforms. As expected,the
finite space signals models underlying the DTTs are again
built from polynomial algebras. One application of the ASP
interpretation of the DTTs is the easy derivation of many of
their properties and and their fast algorithms [7], [8], [9].

The DCT, type 3, was related to a polynomial algebra
in [10]; all DTTs of types 1–4 were related to polynomial
algebras in [11]; see also [12]. In all cases no connection to
signal processing was established.

Organization. We start with a brief overview of ASP in
Section II. The focus will be on finite shift-invariant signal
models that are built from polynomial algebras. In SectionsIII
and IV, we derive the infinite and finite space models. The
finite case is worked out in greater detail since it provides the
underpinning of the frequently used DTTs including many of
their properties. An important variant of the DTTs, and their
underlying signal models, is derived in Section V. Finally,we
offer conclusions in Section VII.
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II. A LGEBRAIC SIGNAL PROCESSINGTHEORY

We introduce the necessary background on the algebraic
signal processing theory (ASP) and show infinite and finite
time signal processing as examples. For a complete and
detailed introduction we refer the reader to [1], [6]. For brevity
we will denote linear signal processing by SP.

A. Signal Model

Algebra (filter space).An algebraA is a vector space that
is also a ring, i.e., it permits multiplication of elements and
the distributivity law holds. Examples include the setsC, R

of complex or real numbers and the set of polynomials with
complex coefficientsC[x]. In SP, the set of filters is commonly
assumed to be an algebra, with the multiplication being the
concatenation of filters. We denote elements of algebras with
h, the common symbol for filters in SP.

Module (signal space).Given an algebraA, anA-module
M is a vector space that permits an operation “·” of A on
M:

h · s ∈ M, for h ∈ A, s ∈ M. (3)

Further, several properties such as the distributivity lawhave
to hold [13]. In SP, the signal space is commonly assumed to
be anA-module, whereA is the associated space of filters.
The operation· denotes filtering; (3) ensures that filtering a
signals ∈ M with a filter h ∈ A yields again a signal.

A special case of a module is given byM = A (equality
as sets, not as algebraic structures) with the operation in (3)
being the ordinary multiplication inA. This module is called
the regular module.

Spectrum, frequency response, Fourier transform.For
every given A and M there is an associated notion of
spectrum, frequency response, and Fourier transform (if they
exist). See [1] for details.

Signal model. In applications, signals do not arise as
elements of modules, but, in the discrete case considered
here, as infinite or finite sequences of numbers, e.g.,s =
(. . . , s−1, s0, s1, . . . ) ∈ CZ or s = (s0, . . . , sn−1) ∈ Cn. The
purpose of the signal model, introduced next, is to assign a
filter algebraA and anA-moduleM to such sequences. This
way, filtering is automatically defined (the operation ofA on
M) and we get access to the associated notion of spectrum
and Fourier transform. In the definition we assume complex
signals, but other base fields can be chosen.

Definition 1 (Signal model)Let V ⊆ CI be a vector space.
A signal modelfor V is a triple (A,M,Φ), whereA is an
algebra,M is anA-module, andΦ is a bijective (one-to-one
and onto) linear mapping

Φ : V → M, s 7→ s ∈ M.

Example: Discrete infinite time. The abstract definition
of the signal model is best illustrated by an example. Namely,
the signal model commonly adopted for infinite length discrete

time SP is given by (we setx = z−1)

A = {
∑

n∈Z
hnxn | h = (. . . , h−1, h0, h1, . . . ) ∈ ℓ1(Z)},

M = {
∑

n∈Z
snxn | s = (. . . , s−1, s0, s1, . . . ) ∈ ℓ2(Z)},

Φ = ℓ2(Z) → M, s 7→ s =
∑

n∈Z
snxn.

(4)
The symbolsℓ1(Z) and ℓ2(Z) represent the set of infinite
length absolute summable and square summable (finite energy)
sequences, respectively. As defined,(A,M,Φ) is a signal
model forV = ℓ2(Z) andΦ is just the ordinaryz-transform.
Note that in ASPΦ(s) = s in (4) is primarily viewed as a
formal series and not as a function. The idea is thatΦ provides
a basis for the coordinatess and gives convolution its desired
form.

Shift and shift-invariance. In the algebraic theory, theshift
(or shifts) is the chosen generator (or generators) of the filter
algebra. This means that every filter can be expressed as a
series or polynomial in the shift (or shifts). A signal model
(A,M,Φ) has theshift-invariance propertyif and only if A is
commutative. For example, the infinite discrete time model in
(4) is shift-invariant, since the multiplication of Laurent series
in A is commutative.

Visualization. Every (discrete) signal model implicitly fixes
a basis ofM via Φ, such asb = (. . . , x−1, x0, x1, . . . ) for the
time model (4). The operation of the shift on this basis can be
represented by a graph, which is called thevisualizationof the
model (see [1] for a rigorous definition). The visualizationof
(4) is shown in Fig. 1. Intuitively, it is the structure imposed
by the model on the signal valuess, which are associated with
the nodes of the graph.

b b b b b b b b b b b b

x−2 x−1 x0 x1 x2 x3

Fig. 1. Visualization of the infinite discrete time model (4) (x = z−1).

B. Finite Shift-Invariant Signal Models

We identify possible signal models for finite length 1-D
sequencess = (s0, . . . , sn−1) ∈ V = Cn. In this case,
dim(M), dim(A) < ∞. If we require shift-invariance (i.e.,
A is commutative) and assume one shift, thenA must be a
polynomial algebrain one variable:

A = C[x]/p(x) = {q(x) ∈ C[x] | deg(q) < deg(p)}. (5)

Here,p is an arbitrary but fixed polynomial, and addition and
multiplication inA is defined modulop. The shift inA is x.

In the following, we discuss signal models built from poly-
nomial algebras and show the finite time model as an example.
See [1] for more details. A good reference on polynomial
algebras is [14].

Signal model.We focus on a specific class of finite shift-
invariant 1-D signal models, namely,A chosen as in (5),M =
A the regularA-module, and we assume thatp is separable,
i.e., has pairwise distinct zerosα = (α0, . . . , αn−1). If we
choose a basisb = (p0, . . . , pn−1) of polynomials inM, then

A = M = C[x]/p(x),

Φ = Cn → M, s 7→ s =
∑

0≤ℓ<n sℓpℓ

(6)
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defines a signal model forV = Cn. Filtering in this model is
the multiplicationh(x)s(x) mod p(x) for h ∈ A, s ∈ M.

Signal extension.Finite signals often arise because only
a finite number of signal samples are available. How a finite
signal continues beyond its domain is its signal extension.

Definition 2 (Signal extension)Let I ⊂ Z and s = (sℓ)ℓ∈I ∈
CI . A (linear) signal extension ofs is a series of linear
combinations

sk =
∑

ℓ∈I

βk,ℓsℓ, for k 6∈ I. (7)

If each summand contains at most one term, the signal
extension is calledmonomial.

If we assume that the basis polynomialspℓ from b in (6) are
part of an infinite sequence(pk)k∈Z, then (6) implicitly defines
a signal extension fors ∈ Cn. It is given by reducingpk

modulop and expressing the result inb: pk ≡
∑

0≤ℓ<n βk,ℓpℓ.
Replacingp by s yields the signal extension in (7).

Spectrum, Fourier transform, and frequency response.
For the signal model (6), the spectral decomposition ofM,
i.e., the Fourier transform, is given by the Chinese remainder
theorem as

∆ : C[x]/p(x) → C[x]/(x − α0) ⊕ . . . ⊕ C[x]/(x − αn−1),

s = s(x) 7→ (s(α0), . . . , s(αn−1)).
(8)

∆(s) is the spectrum ofs. Further,∆ is linear1; hence, if
we chooseb (which is fixed byΦ in (6)) as basis ofM and
x0 = 1 as basis in each spectral componentC[x]/(x − αk),
∆ is represented by thepolynomial transformmatrix

Pb,α = [pℓ(αk)]0≤k,ℓ<n. (9)

An arbitrary choice of basesakx0, ak ∈ C, in the spectral
components yields ascaled polynomial transform

diag(1/a0, . . . , 1/an−1) · Pb,α. (10)

Any (scaled or not) polynomial transform is a Fourier trans-
form for the signal model (6) and denoted withF .

For a filter h ∈ A, (h(α0), . . . , h(αn−1)) is the frequency
response ofh. Filtering h · s (mod p) is equivalent to the
pointwise multiplication(h(α0)s(α0), . . . , h(αn−1)s(αn−1))
in the spectral domain.

Filtering and diagonalization properties. For every filter
h ∈ A, filtering is a linear mapping onM; thus, with respect
to the basisb = (p0, . . . , pn−1) of M fixed by the model (6),
h is represented by ann × n matrix Mh. The mapping

φ : A → Cn×n, h 7→ φ(h) = Mh

is called therepresentationof A afforded byM with basis
b. In particular,φ(x) is called theshift matrix. Filtering h · s
becomes in coordinates the matrix-vector productφ(h)s.

The matricesφ(h) are precisely those diagonalized by any
Fourier transformF for the model. Specifically,

Fφ(h)F−1 = diag(h(α0), . . . , h(αn−1)). (11)

1More precisely anA-module homomorphism.

Visualization. The graph with adjacency matrixφ(x) (the
shift matrix) is the visualization of the model (6).

Example: Discrete finite time.As an example we consider
the commonly adopted signal model for discrete finite time,
given by

A = M = C[x]/(xn − 1),

Φ = Cn → M, s 7→ s =
∑

0≤ℓ<n sℓx
ℓ.

(12)

We call Φ the finite z-transform. Note that the chosen basis
(via Φ) is b = (x0, . . . , xn−1). Filtering in this model is
polynomial multiplicationh(x)s(x) moduloxn − 1, which is
equivalent to the circular convolution ofh and s. The signal
extension is obtained by reducingxk ≡ xk mod n mod xn − 1,
and is hence periodic and also monomial.

The (polynomial) Fourier transform for the model (12) is
readily computed via (9) as the discrete Fourier transform
(DFT)

F = Pb,α = DFTn = [ωkℓ
n ]0≤k,ℓ<n, ωn = e−2π

√
−1/n.

For a filter h ∈ A the matrix φ(h) is a circulant matrix,
which confirms the well-known property

DFTn φ(h)DFT−1
n = diag(h(ω0

n), . . . , h(ωn−1
n )).

The shift matrixφ(x) is the circular shift:

φ(x) =











1
1

.. .
1











Thus, the visualization of the discrete finite time model is
given by the directed circle in Fig. 2 that also captures the
periodic signal extension. In words, applying a DFT to a signal
s∈ Cn associates the valuessℓ with the nodes of this graph,
which is equivalent to imposing a periodic signal extension.

b b b b b b b b b b b

x0 x1 x2 xn−3 xn−2 xn−1

Fig. 2. Visualization of the finite discrete time model (12).

C. Derivation of Signal Models

In [1], we presented a procedure to derive infinite and finite
signal models from an abstract definition of the shift operation.
We used this procedure to derive the infinite and finite time
models (4) and (12) from the standard time shift

time shift: q ⋄ tn = tn+1 n ∈ Z. (13)

displayed in Fig. 3 (top). Here thetn denote abstract time
marks,q is the shift operator, and⋄ is the shift operation.

The procedure consists of three steps. First, the shift is
defined in the abstract form shown in (13) and ak-fold
shift qk is introduced throughqk ⋄ tn = tn+k. This implies
that qk = qk. Second, the shift operation is extended to
linear combinations

∑

sntn of the time marks and to linear
combinations ofk-fold shifts qk:

∑

hkqk. Third, the model
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b b b b b b b bbbbbb

tn−1 tn tn+1

q⋄ q⋄

b b b b b b b bbbbbb

tn−1 tn tn+1

q⋄1
2

1
2

Fig. 3. The time shift (top) and the space shift (bottom).

is realized by settingq = x, replacing ⋄ with ordinary
multiplication, and solving

tn+1 = x · tn (14)

for tn. Normalizingt0 = 1 yields tn = xn as unique solution.
In the infinite case, convergence requirements lead to the
model in (4). In the finite case, as was shown in [1], a boundary
condition is needed to ensure thatM becomes a module. This
boundary condition determines the entire signal extension, and
requiring a monomial signal extension (the simplest possible;
see Definition 2) leads toA = M = C[x]/(xn − a), a ∈ C.
For a = 1 this yields the finite time model (12).

In the following sections, we derive signal models for
discrete infinite and finite space. These models are built using
the same procedure but starting from a different definition of
the shift.

III. I NFINITE 1-D SPACE MODELS

Standard SP considers time-invariant systems, which im-
plies the standard definition of the shift in (13). In this section
and the next, we will use ASP to derive an SP framework
for space SP as we refer to it. It is built from a different,
symmetric definition of the shift. We have two motivations
for this definition. The first is our goal to define the shift for
signals for which there is no intrinsic sense of direction. These
signals contrast with time signals, for which past, present, and
future are inherent from the direction of time. The second
reason is, as we will show, that our space shift definition leads
to signal models that have the 16 DTTs as Fourier transforms.
Thus, within ASP, time and space SP, the DFT and the DTTs
become instantiations of one general framework. There will
be many other benefits of this theoretical exercise as discussed
later.

A. Constructing the Signal Model

We follow the same steps as in the time model derivation
in [1].

Definition of the shift. We consider discrete complex sig-
nals indexed byZ: s∈ CZ; i.e., we consider the vector space
V = CZ. We define nowspacemarkstn and an appropriate
spaceshift operatorq and its operation⋄ on the space marks.
As mentioned above,q should operate symmetrically. We
adopt the definition

space shift: q ⋄ tn = (tn+1 + tn−1)/2, n ∈ Z. (15)

visualized in Fig. 3 (bottom).

We proceed by extending the operator domain fromq to k-
fold shift operatorsqk. A natural definition of thek-fold space
shift is

qk ⋄ tn = (tn+k + tn−k)/2, (16)

sincetn+k andtn−k are those space marks at distancek from
tk.

Here we have the first interesting difference with respect to
the time model derivation, since clearlyqk 6= qk. Furthermore,
(16) impliesqk = q−k; hence, it is sufficient to consider only
shift operatorsqk with k ≥ 0. Thus, the natural representation
of a filter will be

∑

k≥0 hkqk. The following lemma shows
that theqk are given by the Chebyshev polynomials of the
first kind Tk in the variableq. The Chebyshev polynomials
will play a central role in the definition of space models. For
this reason, we provide the necessary background on four types
of Chebyshev polynomialsT , U , V , and W in Appendix I,
which we encourage the reader to briefly review at this point.

Lemma 3The k-fold space shift operator is given byqk =
Tk(q).

Proof: Induction on k. By definition q0 = 1, and
q1 = q = T1(q). Also by definition,qk+1 ⋄ tn = (tn+k+1 +
tn−k−1)/2 = (tn+k+1 + tn+k−1 + tn−k+1 + tn−k−1)/2 −
(tn+k−1 + tn−k+1)/2 = 2q ⋄ (tn+k + tn−k)/2 − (tn+k−1 +
tn−k+1)/2 = (2qqk−qk−1)⋄tn, for n ∈ Z. From the induction
hypothesis,qk = Tk(q), qk−1 = Tk−1(q), and thus, using the
recurrence of the Chebyshev polynomials ((43) in Appendix I),
qk+1 = Tk+1(q), as desired.

Linear extension. To construct a linear signal model, we
extend by linearity the operation ofq to the entire setM =
{s =

∑

n∈Z
sntn}, namely asq⋄s =

∑

n∈Z
sn(q⋄tn)}, which

can be evaluated. Similarly, we linearly extend the operator
domain toA = {h =

∑

k≥0 hkqk} = {h =
∑

k≥0 hkTk(q)}
using Lemma 3.

Realization. We determine a “realization” of the model
introduced in the previous section. We set in (15)q = x,
⋄ = ·, and determine polynomialsCn that replace the space
markstn in (15), i.e., that satisfy

x · Cn = (Cn+1 + Cn−1)/2. (17)

Since (17) is equivalent to (43) (in Appendix I), the solution
is given by a sequence of Chebyshev polynomials.

We immediately notice differences with respect to the
corresponding derivation in the time case. These differences
are intrinsic to the space model:

• Equation (17) is a three-term recurrence for the space
marks, whereas (14) is a two-term recurrence for the time
marks.

• Only the Cn, n ≥ 0, are linearly independent; theCn,
n < 0, are polynomials inx and can thus be expressed
as linear combinations of{Cn | n ≥ 0}. In other words,
the realization of the space model introduces a starting
point in space, given byC0 = 1. Fixing C1 determines
the left boundary condition and the left signal extension.

• As a consequence, even after normalizingC0 = 1, the
sequenceCn of Chebyshev polynomials is not uniquely
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TABLE I

REALIZATION OF THE ABSTRACT SPACE MODEL.

concept abstract realized

shift operator q T1(x) = x

shift operation ⋄ ·

space mark tn Cn

k-fold shift qk = Tk(q) Tk(x)

space shift q ⋄ tn = 1
2
(tn+1 + tn−1) x · Cn = 1

2
(Cn+1 + Cn−1)

signal
P

sntn
P

snCn(x)

filter
P

hkTk(q)
P

hkTk(x)

determined. The degree of freedom is given by the choice
of C1 as a polynomial of degree 1.

• Again, we note that in the time model, ak-fold shift
operator is given byxk:

xk · xn = xn+k,

in contrast to the space model, where, by Lemma 3, the
k-fold shift operator is given byTk(x), independent of
C (see Lemma 14(iv) in Appendix I):

Tk · Cn = (Cn+k + Cn−k)/2. (18)

As a result of this discussion, we obtain the spacesA =
{h =

∑

k≥0 hkTk} and M = {s =
∑

n≥0 snCn}, i.e., the
signal model that we obtain later will be only for right-sided
sequences.

Table I shows the correspondence between abstract and
realized concepts.

To ensure convergence, we would like to require as before
h ∈ ℓ1(N) ands∈ ℓ2(N). However, to prove convergence, we
have first to choose proper boundary conditions, i.e., we have
to choose the proper Chebyshev polynomialsC. We analyze
the boundary conditions in the next paragraph. This discussion
has no counterpart in the derivation of the infinite time model
in [1].

Left boundary condition and left signal extension.The
degree of freedom for choosing a Chebyshev sequenceC,
normalized byC0 = 1, is given by the choice ofC1, or,
equivalently, by the choice ofC−1, since the entire sequence
is then obtained by applying the Chebyshev recursion (43)
in both directions (see Lemma 14(i) in Appendix I). Fixing
either C1 or C−1 is equivalent to choosing aleft boundary
condition for the signals = (s0, s1, . . . ). For example, setting
C1 = x impliesC−1 = x, and thusC−1 = C1, which imposes
on the signals the left boundary conditions−1 = s1. Using
Table VII, the corresponding sequence isC = T .

To determine the left boundary condition in the general case,
we setC0 = 1 andC1 = ax+ b, a 6= 0 (to satisfydeg(C1) =
1). Then, by applying (43) backwards, we get

C−1 = 2x − (ax + b) =
2 − a

a
C1 −

2b

a
C0. (19)

Since C−1 is of degree at most 1, every polynomialC−n,
n > 0, obtained by the recursion (43), is of degree at mostn,
and thus a linear combination of the polynomialsC0, . . . , Cn,

C−n =
∑

0≤i≤n

βi · Ci. n > 0, (20)

This equation defines theleft signal extension associated with
the sequenceC. On the other hand, by comparing the degrees
of freedom, it is obvious that not every signal extension can
be obtained by choosing a suitable boundary condition. Thus,

(C ⇔ left boundary condition) ⇒ left signal extension.

For a generic left boundary condition, the left signal exten-
sion (20) has no simple structure; in particular, it is not mono-
mial (see Definition 2). We determine now those left boundary
conditions that yield amonomialleft signal extension in (20).
The answer is provided in the following lemma.

Lemma 4 (Monomial left signal extension)Let C = (Cn |
n ∈ Z) be a sequence of Chebyshev polynomials withC0 = 1
and deg(C1) = 1. Then the left signal extension associated
with C is monomial, i.e., everyCk, k < 0, is a multiple of a
Cn, n ≥ 0, if and only if C ∈ {T,U, V,W} (see Appendix I),
i.e., C−1 ∈ {C1, 0, C0,−C0}, which implies the correspond-
ing left boundary conditionss−1 ∈ {s1, 0, s0,−s0}.

Proof: If C ∈ {T,U, V,W}, then the assertion holds
as shown in the “symmetry” column of Table VII. It remains
to show the converse. We start with the generic left boundary
condition in (19). Because the signal extension associatedwith
C is monomial, one of the two summands in (19) has to vanish.

Case 1:C−1 is a multiple ofC0, i.e., constant. It follows
a = 2, C1 = 2x+b, C−1 = −b, C−2 = −2bx−1. Now, either
C−2 is constant, i.e.,b = 0, which impliesC = U , or C−2 is
a multiple ofC1, which impliesb = ±1, or C ∈ {V,W}.

Case 2:C−1 is a multiple ofC1. It follows b = 0, C1 = ax,
C2 = 2ax2 − 1, C−1 = (2 − a)x, a 6= 2, andC−2 = 2(2 −
a)x2−1. SinceC−2 has to be a multiple ofC2, we geta = 1
and thusC = T . This completes the proof.

The four boundary conditions in Lemma 4 are the discrete
versions of the so-called Dirichlet boundary condition (“zero
value”) and von Neumann (̧“zero slope”) [15], [16]. In each
case, the symmetry point is either a “whole” sample point, ora
“half” sample point, i.e., is located between two sample points.
In the literature, these four signal extensions are sometimes
called: whole point symmetry (WS), whole point antisymmetry
(WA), half point symmetry (HS), and half point antisymmetry
(HA) [17].

For these four choices of boundary conditions, filtering,
i.e., the multiplication

∑

n≥0 hnTn ·
∑

n≥0 snCn converges
providedh ∈ ℓ1(N), s∈ ℓ2(N) (see [6] for more details).

Resulting infinite space models.We define four infinite
space models(A,M,Φ) for V = ℓ2(N). Namely, for C ∈
{T,U, V,W},

A = {h =
∑

k≥0 hkTk(x) | h ∈ ℓ1(N)},

M = {s =
∑

n≥0 snCn(x) | s∈ ℓ2(N)},

Φ : ℓ2(N) → M, s 7→
∑

n≥0 snCn(x).

(21)

We call Φ the C-transform but will replaceC by either
T,U, V , or W , when appropriate, and accordingly refer to
the T -, U -, V -, or W -transform.
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b b b b b b b b

T0 T1 T2 T3 T4

b b b b b b b b

U0 U1 U2 U3 U4

b b b b b b b b

V0 V1 V2 V3 V4

b b b b b b b b-1
W0 W1 W2 W3 W4

Fig. 4. Visualization of the four infinite space models forC ∈ {T, U, V, W}.
The common edge scaling factor1/2 is omitted.

B. Properties

Each of these models has its associated notion of filtering,
spectrum, frequency response, and Fourier transform as ex-
plained in [1]. We omit the details here since our focus are
thefinite space models that we will show to underly the DTTs.

The visualizations of the models are shown in Fig. 4 with
a common scaling factors of1/2 omitted. The graphs are
undirected, since they are space models. Namely, the space
shift (Fig. 3 bottom) yields between each two space marks
an edge in both directions. The behavior at the left edge is
determined by the left boundary condition. Namely,xC0 =
1
2 (C−1 + C1) produced a directed edge to the (non-existent)
C−1. In the first case,C = T , T−1 = T1, and hence this edge
is rerouted toT1. In the second case,C = U , U−1 = 0; hence,
the edge vanishes.

IV. F INITE 1-D SPACE MODELS AND DTTS

In this section, we derive finite versions of the space models
in (21). As in the finite time model (12), these space models
will have polynomial algebras as filter and signal spaces. This
is not surprising as ASP explains that only those choices
support shift-invariance (Section II-A). We derive the finite
space models in the same way as we derived the finite
time model in [1], namely by requiring a monomial signal
extension. However, in contrast with the time case, this signal
extension will not be periodic but symmetric or antisymmetric
with 16 choices. This is due to the different basis required
after realizing the shift operation:xℓ supports the time shift,
Cℓ supports the space shift.

By applying the general theory from Section II-B, we will
see that the Fourier transforms for the finite space models
are precisely the 16 DTTs. There are various benefits to
knowing these models. First, as application of the general
theory in Section II-B, we obtain the appropriate notions of
“z-transform,” filtering or convolution, convolution theorems,
spectrum and frequency response associated with the DTTs
and can derive and explain many of their properties. Second,
we establish that the DTTs are, in a rigorous sense, associated
with the space shift, Fig. 3 (bottom), in the same way as the
DFT is associated with the time shift. Third, knowing those
signal models is the key to deriving and understanding the
DTTs’ fast algorithms [7], [9].

A. Constructing the Signal Model

Shift, linear extension, realization. We consider a finite
number of space markst0, . . . , tn−1 and adopt the space
shift operatorq in Figure 3 (bottom) and its realization by
setting q = x, and hencetk = Ck (a generic sequence
of Chebyshev polynomials)2, as derived in Section III-A.
These definitions will need to be complemented by appropriate
boundary conditions, as we discuss next.

Let s = (s0, . . . , sn−1) ∈ Cn be a finite sampled signal and
C a sequence of Chebyshev polynomials. A straightforward
realization seems to lead to signals that are polynomials ofthe
form

∑

0≤k<n skCk. The set of these is the vector spaceCn[x]
of polynomials of degree less thann (with basis polynomials
Ck). However, this space is not closed under multiplication by
the shift operatorx, and thus it is not a module, which means
filtering is not well-defined. In particular, the problem is that

x · Cn−1 = (Cn−2 + Cn)/2 6∈ Cn[x], (22)

sinceCn 6∈ Cn[x]. Note that, in contrast to the time case [1],
the left boundary does not impose any problems, since

x · C0 = (C−1 + C1)/2 ∈ Cn[x].

Namely, the choice ofC already implies a left boundary
condition via (19). So the remaining task is to determine the
properright boundary conditions.

Right boundary condition and signal extension.To solve
the problem in (22), we introduce an equation

Cn = r =
∑

0≤k<n

βkCk, or Cn − r = 0. (23)

This imposes the same equation on the corresponding signal
samplessk associated withCk, namely

sn =
∑

0≤k<n

βksk,

which is the right boundary condition. As a consequence of
(23), using thek-fold space shift operatorTk (see Lemma 3),
we get the series of equations fork ≥ 0

0 = 2Tk · 0 ≡ 2Tk(Cn − r) = Cn+k + Cn−k − 2Tkr,

which determine the entire right signal extension. It is obtained
by reducingCn+k ≡ 2Tkr − Cn−k modulo (Cn − r).

Algebraically, the right boundary condition replaces the
vector spaceCn[x] (with basis b = (C0, . . . , Cn−1)) by
M = C[x]/(Cn − r) (also with basisb), viewed as a regular
module, i.e., the algebra isA = M. The natural basis inA is
given by (T0, . . . , Tn−1), regardless of the choice ofC.

For a general choice of left boundary condition (given by the
choice ofC) and right boundary condition (given by the choice
of r), the corresponding signal extension has a complicated
structure. As before, we identify those boundary conditions
that lead to a monomial signal extension. Lemma 4 gives
already the proper left boundary conditions and shows that
they are obtained by choosingC ∈ {T,U, V,W}. For the

2We note that another realization is possible by settingq not equal
to x. However, the derived space models have two-dimensional spectral
components, which is undesirable. See [6] for details.
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TABLE II

THE 16 POLYNOMIALS p ASSOCIATED WITH THE16 FINITE SPACE

MODELS. Cn HAS TO BE REPLACED BYTn , Un , Vn , Wn TO OBTAIN ROWS

1, 2, 3, 4, RESPECTIVELY.

Cn Cn − Cn−2 Cn Cn − Cn−1 Cn + Cn−1

Tn 2(x2 − 1)Un−2 Tn (x − 1)Wn−1 (x + 1)Vn−1

Un 2Tn Un Vn Wn

Vn 2(x − 1)Wn−1 Vn 2(x − 1)Un−1 2Tn

Wn 2(x + 1)Vn−1 Wn 2Tn 2(x + 1)Un−1

right boundary conditions there are again 4 choices, which
gives yields a total number of 16 possibilities—corresponding
to the 16 types of DTTs as we will see below.

Lemma 5 (Monomial right signal extension)For a monomial
left signal extension, letC ∈ {T,U, V,W}. The only four right
boundary conditions that yield a monomial signal extensionfor
M = C[x]/p(x) areCn = Cn−2, Cn = 0, andCn = ±Cn−1,
which impliesp ∈ {Cn − Cn−2, Cn, Cn ± Cn−1}. These 16
p’s are shown in Table II.

Proof: Necessarily, the boundary condition has the form
Cn = aCk, 0 6= k < n. By multiplying byx on both sides, we
obtainCn+1 = a(Ck+1 +Ck−1)−Cn−1. We determine under
which conditions the three summands on the right reduce to
at most one summand.

Case 1:k 6= n − 1. Then eithera = 0, or k = n − 2 and
a = 1.

Case 2:k = n − 1. Then aCk+1 = aCn = a2Cn−1 and
thusa = ±1.

It remains to show that these four boundary conditions yield
a monomial signal extension, which is done by induction. We
omit the details.

The identities in Table II are obtained using Table VII in
Appendix I and well-known trigonometric identities.
It is interesting to note that the right boundary conditionsin
Lemma 5 are the reflections of the left boundary conditions
in Lemma 4.

Resulting finite space models.We define 16 finite
space models(A,M,Φ) for V = Cn. Namely, for C ∈
{T,U, V,W} andp ∈ {Cn − Cn−2, Cn, Cn ± Cn−1},

A = C[x]/p(x) = {h =
∑

0≤k<n hkTk(x) | hk ∈ C},

M = C[x]/p(x) = {s =
∑

0≤k<n skCk(x) | sk ∈ C},

Φ : Cn → M, s 7→
∑

0≤k<n skCk(x).

(24)

We call eachΦ a finite C-transform, and replaceC with
T,U, V, or W if specified. Note thatA = M but the natural
basis in A always consists of thek-fold space shiftsTk,
independently ofC.

Example.We choose the left boundary conditions−1 = s0,
i.e., C−1 = C0, which is afforded by the base polynomials
C = V . As right boundary condition, we choosesn = sn−1,
i.e., Cn = Cn−1, which implies

p = Cn − Cn−1 = Vn − Vn−1 = 2(x − 1)Un−1

TABLE III

8 TYPES OFDCTS AND DSTS (UNSCALED) OF SIZEn. THE ENTRY AT

ROW k AND COLUMN ℓ IS GIVEN FOR0 ≤ k, ℓ < n.

type DCT DST

1 cos kℓ π
n−1

sin(k + 1)(ℓ + 1) π
n+1

2 cos k(ℓ + 1
2
) π

n
sin(k + 1)(ℓ + 1

2
) π

n

3 cos(k + 1
2
)ℓ π

n
sin(k + 1

2
)(ℓ + 1) π

n

4 cos(k + 1
2
)(ℓ + 1

2
) π

n
sin(k + 1

2
)(ℓ + 1

2
) π

n

5 cos kℓ π

n− 1
2

sin(k + 1)(ℓ + 1) π

n+ 1
2

6 cos k(ℓ + 1
2
) π

n− 1
2

sin(k + 1)(ℓ + 1
2
) π

n+ 1
2

7 cos(k + 1
2
)ℓ π

n− 1
2

sin(k + 1
2
)(ℓ + 1) π

n+ 1
2

8 cos(k + 1
2
)(ℓ + 1

2
) π

n+ 1
2

sin(k + 1
2
)(ℓ + 1

2
) π

n− 1
2

using Table II. We obtain the associated signal model (the 2
in p can be dropped)

A = M = C[x]/(x − 1)Un−1(x),

Φ : s 7→ s =
∑

0≤ℓ<n sℓVℓ.
(25)

We will see later that the DCT, type 2, is a Fourier transform
for this model.

Next, we apply the general theory from Section II-B to all
16 finite space models.

B. Spectrum and Fourier Transform: DTTs

We show that the 16 DTTs are Fourier transforms for the
16 finite space models (24). In doing so, we settle the question
why there are 16 DTTs to begin with, as the original derivation
of the full set of all 16 [4] does not provide an explanation.

The first and most important DTT is the DCT, type 2,
introduced in [2] and used in the JPEG image compression
standard. Table III gives the definitions of thenon-orthogonal
versions of the 16 DTTs. We note that the DTTs of type 1, 4,
5, 8 are symmetric, and that the DTTs of type 2 and 3, 6 and
7, respectively, are transposes of each other. We use Arabic
instead of Roman numbers to denote the type following [16].

To compute the Fourier transform (8) of the finite space
models (24) and its matrix formF in (9) or (10), we have to
determine the zeros of the 16 polynomials in Table II, which
can be done using Table VII in Appendix I. Instead of giving
the details for all 16 cases, we consider the signal model (25)
as a representative example and then state the result for all16
DTTs. Note that the discussion is an application of the general
theory in Section II-B.

Example: DCT, type 2. The zeros of(x − 1)Un−1(x) in
(25) are given byαk = cos(kπ/n), 0 ≤ k < n (from Table VII
in Appendix I). Hence the Fourier transform forM is given
by

∆ : C[x]/(x − 1)Un−1(x) →
⊕

0≤k<n C[x]/(x − αk)

s = s(x) 7→ (s(α0), . . . , s(αn−1)).
(26)

∆(s) is the spectrum of the signals and(h(α0), . . . , h(αn−1))
is the frequency response of the filterh ∈ A.
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In matrix form, the uniquepolynomialFourier transform (9)
for the signal model has entries

Vℓ(αk) =
1

cos kπ/(2n)
· cos k(ℓ + 1/2)π/n.

We can scale these to cancel the denominator and get the
matrix

diag0≤k<n(cos kπ/(2n)) · [Vℓ(αk)]0≤k,ℓ<n

= [cos k(ℓ + 1/2)π/n]0≤k,ℓ<n

= DCT-2n.
(27)

In words, theDCT-2n is a Fourier transform (namely a scaled
polynomial transform (10)) for the signal model (25). The
scaling diagonal in (27) shows the basis chosen on the right
hand side of (26), namely1/(cos kπ/(2n)) in thekth spectral
componentC[x]/(x − cos kπ/n), 0 ≤ k < n.

All DTTs. Similar computations for all 16 cases establishes
the 16 DTTs as Fourier transforms for the 16 finiteC-
transforms.

Theorem 6 (DTTs and polynomial algebras)The 16 DTTs
are the Fourier transforms for the 16 finite space models
(24). The correspondence is given in Table IV as follows.
Let (A,M,Φ) be a finite space model withM = C[x]/p
with basisb = (C0, . . . , Cn−1). The choice ofC (rows of
Table IV) determines the left boundary condition and a scaling
function f . The choice of right boundary condition (columns
2–5 in Table IV) then determines the polynomialp, given at
the intersection of row and column. The corresponding DTT is
given abovep. More specifically, assumeα = (α0, . . . , αn−1)
are the zeros ofp. All αk have the formcos rkπ, rk ∈ [0, π]
(see Table VII in the Appendix I), andα is ordered by
increasingrk. Then

DTTn = diag0≤k<n(f(αk)) · Pb,α, (28)

i.e.,DTTn is a scaled polynomial transform and thus a Fourier
transform for the associated signal model (see Section II-B).
Equation (28) implies that the chosen basis in the spectral
component

⊕

0≤k<n C[x]/(x − αk) is 1/f(αk), 0 ≤ k < n.

The DCT, type 3, was implicitly recognized as a polynomial
transform in [10]. The DCTs and DSTs of types 1–4 where
recognized as (scaled) polynomial transforms in [11]. In both
cases no connection to signal processing was established.
The original derivation of the DCT, type 2, in [2] mentions
Chebyshev polynomials but does not make use of this fact nor
connects to algebra.

Polynomial DTTs. Theorem 6 shows that each DTT is
a Fourier transform for a finite space model but in general
not the corresponding polynomial transform. Thus, we now
associate to each DTT its polynomial transformPb,α obtained
by omitting the scaling factors in (28).

Definition 7 (Polynomial DTTs)Let DTTn be given. We call
the unique polynomial transformPb,α associated withDTTn

by (28) the “polynomial DTT” and denote it withDTTn.
Thus, (28) can be rewritten as

DTTn = diag0≤k<n(f(αk)) · DTTn .

b b b b b b b b b b b

T0 T1 T2 Tn−3 Tn−2 Tn−1

b b b b b b b b b b b

V0 V1 V2 Vn−3 Vn−2 Vn−1

b b b b b b b b b b b

T0 T1 T2 Tn−3 Tn−2 Tn−1

b b b b b b b b b b b

V0 V1 V2 Vn−3 Vn−2 Vn−1

-1

Fig. 5. Visualizations of the finite space models associated with the DCTs
of type 1–4 (from top to bottom) and sizen. A common edge scaling factor
of 1

2
has been omitted.

We have DTT = DTT if and only if DTT ap-
pears in the first row of Table IV, i.e., ifDTT ∈
{DCT-1,DCT-3,DCT-5,DCT-7}.

The polynomial DTTs will play an important role in the
derivation of fast DTT algorithms [7]. Also, in some cases
the polynomial DTTs have a lower complexity than the actual
DTT. This makes them a candidate for applications in which
the DTT is followed by scaling (such as JPEG compression).

Remarks and observations.For each DTT, we have three
relevant versions. First, the polynomial versionDTT, which
is the unique polynomial transform for its associated signal
model (see Definition 7 above). Second, the unscaled or
natural version, which has pure cosines (or sines) as entries
(see Table III). Third, the orthogonal version, which arises
from the other two by suitable scaling of rows and columns,
i.e., by slightly adjusting the signal model (explained below
in Section IV-E).

The 16 DTTs can be divided into four groups of four each
with respect to the polynomialp in the associated module
C[x]/p (see Table IV). For example, the “T -group” comprises
all DTTs of types 3 and 4, which have the same module
M = C[x]/Tn. The modules within the other groups differ
slightly, e.g., in theU -group that comprises the DTTs on
the main diagonal in Table IV. The difference between the
DTTs within the same group is the choice of basis, which
is one of T,U, V,W . As a consequence, these transforms
can be converted into each other using a sparse base change
(explained in Section IV-F).

C. Visualization

The right boundary conditions for the 16 finite space models
(24) are precisely the mirrored left boundary conditions that
occurred already in Fig. 4. This makes it easy to obtain the
visualizations for (24). For example, Figure 5 shows the cases
associated with the DCTs of type 1–4.

More formally, consider the model (25) as example. To
obtain the visualization, we have to compute the shift matrix
φ(x). From xV0 = 1

2V0 + 1
2V1, xVi = 1

2Vi−1 + 1
2Vi+1, 1 ≤

i < n − 1, and xVn−1 = 1
2Vn−2 + 1

2Vn ≡ 1
2Vn−2 +
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TABLE IV

OVERVIEW OF THE 16 DTTS AND THEIR ASSOCIATED SIGNAL MODELS. THE LEFT BOUNDARY CONDITION (ROWS) DETERMINES A SCALING FUNCTION

f (cos θ = x) AND THE BASIS C ∈ {T, U, V, W} IN M = C[x]/p(x) AND HENCE Φ. THE RIGHT BOUNDARY CONDITION (COLUMNS) THEN

DETERMINESp(x) (GIVEN BELOW THE DTT) AND HENCE ALSOA = M.

sn − sn−2 sn sn − sn−1 sn + sn−1 f C

s
−1 = s1 DCT-1 DCT-3 DCT-5 DCT-7 1 T

2(x2 − 1)Un−2 Tn (x − 1)Wn−1 (x + 1)Vn−1

s
−1 = 0 DST-3 DST-1 DST-7 DST-5 sin θ U

2Tn Un Vn Wn

s
−1 = s0 DCT-6 DCT-8 DCT-2 DCT-4 cos 1

2
θ V

2(x − 1)Wn−1 Vn 2(x − 1)Un−1 2Tn

s
−1 = −s0 DST-8 DST-6 DST-4 DST-2 sin 1

2
θ W

2(x + 1)Vn−1 Wn 2Tn 2(x + 1)Un−1

TABLE V

THE VALUES β1, β2, β3, β4 FROM (30) FOR THE4 RESPECTIVE CHOICES

OF LEFT AND RIGHT BOUNDARY CONDITION

left boundary condition β1 β2

s
−1 = s1 0 2

s
−1 = 0 0 1

s
−1 = s0 1 1

s
−1 = −s0 −1 1

right boundary condition β3 β4

sn = sn−2 2 0

sn = 0 1 0

sn = sn−1 1 1

sn = −sn−1 1 −1

1
2Vn−1 mod (Vn − Vn−1), it follows that

φ(x) =
1

2
·













1 1
1 0 ·
0 1 · 1

· 0 1
1 1













(29)

This is precisely the adjacency matrix of the second graph in
Fig. 5 associated with the DCT of type 2. In words, applying
the DCT-2 to a signals implicitly imposes the structure of
this graph on that signal.

For an arbitrary finite space model (24),φ(x) takes the form

φ(x) =
1

2
·













β1 1
β2 0 ·
0 1 · 1

· 0 β3

1 β4













(30)

with the βi shown in Table V.

D. Filtering and Diagonalization Properties

Consider a finite space model (24) withA = M =
C[x]/p(x) andC-basisb (fixed by Φ) and associatedDTTn.
Let φ be the representation associated with the model.

Filtering in this model is the multiplication ofh ∈ A
(expressed in theT -basis) with s ∈ M (expressed inb)
modulop to yield again a signal expressed inb. In coordinates,
hs mod p is equivalent toφ(h)s.

The diagonalization properties of the 16 DTTs are a special
case of (11) and can be stated in a unified way. For any filter

h ∈ A,

DTTn ·φ(h) · DTT−1
n = diag0≤k<n(h(αk)), (31)

where theαk are the zeros ofp(x). This unifies and explains
the result from [18]. Conversely, theφ(h) areall the matrices
diagonalized byDTT. The matricesφ(h) have in all cases
structure: eachφ(h) can be written as the sum of a Toeplitz
and a Hankel matrix, up to potential scaling factors. More
details are in [6].

As one example, forφ(x) in (29) we get

DCT 2n · φ(x) · DCT-2−1
n = diag0≤k<n(cos(kπ/n)).

More generally, the DTTs diagonalize their associatedφ(x) in
(30) via (31), which was also observed in [16] (whereφ(2 −
2x) = 2In−2φ(x) was considered instead ofφ(x)). This also
implies that theφ(x) have pairwise distinct eigenvalues.

Equation (31) also provides the convolution theorems asso-
ciated with the finite space models.

E. Orthogonal DTTs

It is well-known that the DTTs, as defined in Table III, are
“almost orthogonal,” which means that after a suitable scaling
of rows and columns they become orthogonal. Using ASP, i.e.,
the knowledge of the DTTs’ underlying signal models (24),
these scaling factors can be derived as explained in [6] and
omitted here due to space limitations.

Another argument (following [16]) for the “almost orthog-
onality” of the DTTs is that they diagonalize the matrices
in (30), which are almost symmetric and have pairwise dis-
tinct eigenvalues as mentioned above. For example,DCT-2
diagonalizes the symmetricφ(x) in (29) and hence can be
made orthogonal by a suitable scalingD · DCT-2, whereD
is diagonal.

F. Relationships Between DTTs

Some DTTs can be translated into each other using sparse
matrices. These relationships can be understood and derived
once their underlying signal models are known. We explained
this in [9] (without using the notion of signal model) and
briefly restate the result for completeness. The origin of these
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relationships is similarity in the signal model, i.e., thattwo
DTTs belong to the same group of four (e.g.,T -group).

Duality. We observed before that the right boundary condi-
tions for the DTTs are precisely the mirrored versions of the
left boundary conditions, a fact that meets our intuition since
the DTTs are based on symmetric space models. However,
the construction ofA = M = C[x]/p for a given DTT
(see Theorem 6) deals differently with the left boundary
condition (which determines the choice of the base sequence
C) and the right boundary condition (which determinesp);
thus, we obtain different DTTs for a given pair of boundary
condition’s and for its mirrored counterpart. The associated
pair of DTTs occurs in positions in Table IV that are mirrored
at the main diagonal. We call such a pairdual. Dual DTTs
occur at mirrored positions in Table IV, i.e., at positions(i, j),
(j, i), 1 ≤ i, j ≤ 4, respectively. The DTTs on the main-
diagonal are self-dual. From [9]:

Theorem 8 (Duality Relationship)Let DTTn and DTT′
n be

a pair of dualDTTs. Then

diag0≤k<n((−1)k) · DTTn = DTT′
n ·Jn,

whereJn is an identity matrix with the columns in reversed
order. As an important consequence of Theorem 8, dual DTTs
have the same arithmetic complexity.

Relationships in groups of DTTs.Dual DTTs necessarily
have the same associatedA = M = C[x]/p. However, in
Table IV, we also have DTTs that are not dual but have the
same or similarM, namely those in the same group of four
(e.g.,T -group). An example is given by the DCTs of type 3
and 4 withM = C[x]/Tn.

Further inspection shows that, in each group, all possible
left and right boundary condition’s are present. The DTTs in
one group have (almost) the same module, but with different
bases. Thus, we can translate DTTs in the same group into
each other using a base change. Further, because of Table II,
the resulting base change matrices are sparse, i.e., require only
O(n) operations.

Example: DCT, type 3 and 4.We considerDCT-3n and
DCT-4n, which are both in theT -group, i.e., the associated
module isM = C[x]/Tn. The difference is in the choice of
basis:

DCT-3n : C[x]/Tn, b = (T0, . . . , Tn−1),
DCT-4n : C[x]/Tn, b′ = (V0, . . . , Vn−1).

Using Tℓ = (Vℓ + Vℓ−1)/2 from Table II andV−1 = V0, the
corresponding base change matrixS′

n for b → b′ is given by

S′
n =

1

2
·













2 1
0 1 1

· ·
1 1

1













. (32)

We denote the zeros ofTn by αk = cos(k + 1/2)π/n. As a
consequence of the above, we get the diagram

C[x]/Tn

S′
n

//

DCT-3n
��

C[x]/Tn

DCT-4n
��

⊕

C[x]/(x − αk)
In

//
⊕

C[x]/(x − αk)

(33)

which implies the equationDCT-3n = DCT-4n·S
′
n. Note that

we haveIn in the bottom row of (33) since bothDCT-3 =
DCT-3 andDCT-4 are polynomial transforms and thus use
the same basis(1, . . . , 1) in the spectrum. Introducing the
scaling diagonalDn = diag0≤k<n(cos(2k+1)π/(4n)) of the
DCT-4 (see Table IV), we get

Dn · DCT-3n = DCT-4n · S′
n. (34)

If desired, this equation can now be further manipulated
through transposition or inversion. As an example, one can
obtain

Sn · DCT-2n ·
1

2
D−1

n = DCT-4n, (35)

whereSn is S′
n with the 2 replaced by 1 in the first entry and

without the scaling factor1/2.
Other cases.Using this procedure on all DTTs shows that

all DTTs of types 1–4 and all DTTs of type 5–8 can be
converted into each other usingO(n) operations, respectively
[9].

V. FINITE SKEW C-TRANSFORM AND SKEW DTTS

In this section we introduce a new class of transforms that
is closely related to the DTTs. We call these transformsskew
DTTs. More specifically, the skew DTTs correspond to and
generalize the DTTs in theT -group, i.e., those with associated
A = M = C[x]/Tn, which are the DTTs of type 3 and 4.
The first skew DCT (type 3) was introduced in [19].

We introduce the skew DTTs for the following reasons.
First, they are interesting from a signal processing point of
view. As the DTTs, they are associated with a finite space
model, their associated boundary conditions are simple, and
their signal extension is sparse even though not monomial.

Second, they are necessary building blocks in the general-
radix Cooley-Tukey type DTT algorithms derived in [7].

A. Constructing the Signal Model

In the finite space models (24), we chose the right boundary
condition to ensure a monomial signal extension via Lemma 5.
Now we relax this requirement and consider a more general
boundary condition for the four signal models in (24) for
which A = M = C[x]/Tn. Namely we generalize to
A = M = C[x]/(Tn − cos rπ), r ∈ Q, 0 ≤ r ≤ 1. For
r = 1/2, cos rπ = 0, which is the previous case. Hence, the
Fourier transforms will generalize the DTTs in theT -group
and depend onr.

The right boundary conditions associated withC[x]/(Tn −
cos rπ) depend on the basisC ∈ {T,U, V,W} and can be
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read off from Table IV:

Tn = cos rπ,
Un = Un−2 + 2 cos rπ,
Vn = −Vn−1 + 2 cos rπ,

Wn = Wn−1 − 2 cos rπ.

(36)

In the general caser 6= 1/2, these boundary conditions lead to
no monomial signal extensions, since this property uniquely
defines the signal models for the 16 DTTs. However, it is
intriguing that the signal extension is “two-monomial,” which
means that the sum in (7) has at most two summands.

Lemma 9The moduleC[x]/(Tn − cos rπ) with T -, U -, V -,
or W -basis has a two-monomial signal extension.

Proof: The proof and the exact form of the signal
extension can be found in [6].

Resulting finite space model.We define four skew finite
space models parameterized byr ∈ Q, 0 < r < 1 for V = Cn.
Namely, forC ∈ {T,U, V,W},

A = M = C[x]/(Tn − cos rπ)

Φ : s 7→
∑

0≤k<n skCk ∈ M,
(37)

As in (24), the natural basis ofA is the T -basis:A = {h =
∑

0≤k<n hkTk}, independent ofC. For r = 1/2, the skew
models reduce to their non-skew counterpart in (24).

B. Spectrum and Fourier Transform: Skew DTTs

To compute the spectrum and a Fourier transform for the
four models (37), we first need to determine the zeros ofTn−
cos rπ and fix a proper ordering.

Lemma 10Let r ∈ Q, 0 < r < 1. We have the factorization

Tn − cos rπ = 2n−1
∏

0≤i<n

(x − cos r+2i
n π), (38)

which determines the zeros ofTn−cos rπ. We order the zeros
as α = (cos r0π, . . . , cos rn−1π), such that0 ≤ ri ≤ 1, and
ri < rj for i < j. The list α is given by the concatenation

α =
⋃

0≤i<n/2

(cos r+2i
n π, cos 2−r+2i

n π)

for evenn, and by

α =





⋃

0≤i< n−1
2

(cos r+2i
n π, cos 2−r+2i

n π)



 ∪ (cos r+n−1
n π)

for oddn. In the particular case ofr = 1/2 or cos rπ = 0, we
thus haveα = (cos(i+1/2)π/n | 0 ≤ i < n) as in Table VII.

Proof: The zeros ofTn − cos rπ are proved using the
closed form ofTn in Table VII. The ordering ofα is shown
by inspection. We omit the details.
In words, the listα arises from the listγ = (cos(r +2i)π/n |
0 ≤ i < n) in (38) by interleaving the first half ofγ with the
reversed second half ofγ.

Lemma 10 yields the Fourier transform for the models (37).
We omit the form (8) and give directly the matrix formsF .

Definition 11 (Skew DTTs)Let p = Tn − cos rπ, 0 < r < 1,
andA = M = C[x]/p with basisb = (C0, . . . , Cn−1), where
C is one ofT,U, V,W . Let α = (cos riπ)0≤i<n denote the
list of zeros ofp in the order specified in Lemma 10. We
denote the associated polynomial transformsPb,α for M by
DCT-3n(r),DST-3n(r),DCT-4n(r),DST-4n(r), for C =
T,U, V,W , respectively. Further, we define for each of these
four DTT(r) the associatedscaledpolynomial transforms

DTTn(r) = diag0≤i<n(f(cos riπ)) · DTTn(r),

wheref is the scaling function associated with the (ordinary)
DTT (see Table IV). We call these transformsskew DTTs.
If r = 1/2, then DTTn(1/2) = DTTn and DTTn(1/2) =
DTTn in all four cases. In the case of theDCT-3n(r) =
DCT-3n(r), we will omit the bar for the skew versions.
Specifically,

DCT-3n(r) = [cos rkℓπ]0≤k,ℓ<n,

DST-3n(r) = [sin rk(ℓ + 1)π]0≤k,ℓ<n,

DCT-4n(r) = [cos rk(ℓ + 1/2)π]0≤k,ℓ<n,

DST-4n(r) = [sin rk(ℓ + 1/2)π]0≤k,ℓ<n.

As an example, we consider theDCT-43(1/3). Using
Lemma 10, the zeros ofT3 − cos(π/3) = T3 − 1/2 are given
by α = (cos(π/9), cos(5π/9), cos(7π/9)). We get

DCT-43(1/3) =







cos 1
18π cos 1

6π cos 5
18π

cos 5
18π cos 5

6π cos 11
18π

cos 7
18π cos 5

6π cos 1
18π






.

C. Filtering and Diagonalization Property

Filtering in the models (37) is multiplication of polynomials
h ∈ A, s ∈ M modulo p = Tn − cos rπ. In coordinates, it
becomes the matrix-vector multiplicationφ(h)s, whereφ is the
representation associated by the respective model. Convolution
theorems are special cases of (11).

As an example, we compute the shift matrixφ(x). It is
computed from (30) and (36). Specifically, it is obtained from
(30) by adding in the upper right cornerβ(r) = cos rπ for
DCT-3(r), andβ(r) = 2 cos rπ for the other skew transforms.
Hence,

φ(x) =
1

2
·

















β1 1 β(r)
β2 0 1
0 1 0 ·

1 · 1
· 0 β3

1 β4

















. (39)

The values for theβi coincide with the non-skew cases given
in Table V. As a consequence, in the four cases,

DTT(r) · φ(x) · DTT(r)−1 = diag(α),

whereα is the list of zeros ofTn − cos rπ from Lemma 10.
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D. Translation into Non-Skew DTTs

Each of the skew DTTs can be translated into its non-skew
counterpart using a sparse x-shaped matrix.

Lemma 12Let DTTn(r) be a skew DTT. Then

DTTn(r) = DTTn ·X(∗)
n (r), and

DTTn(r) = DTTn ·X(∗)
n (r).

Here, X(∗)
n (r) depends on the DTT and takes the following

forms, indicated by∗ ∈ {C3, S3, C4, S4}. In all four cases,
if the lines intersect, the numbers are added at the intersecting
position.

X(C3)
n (r) =

















1 0 · · · · · · 0
0 c1 sn−1

...
. . . . .

.

... . .
. ...

0 s1 cn−1

















,

X(S3)
n (r) =

















c1 −sn−1 0
. .. . .

. ...

. . . ...
...

−s1 cn−1 0
0 · · · · · · 0 cn

















,

with cℓ = cos(1/2 − r)ℓπ/n andsℓ = sin(1/2 − r)ℓπ/n.

X(C4)
n (r) =













c′0 s′n−1

. . . . .
.

. .
. .. .

s′0 c′n−1













,

with c′ℓ = cos(1/2 − r)(2ℓ + 1)π/(2n) and s′ℓ = sin(1/2 −

r)(2ℓ+1)π/(2n). ForDST-4(r), the siness′ℓ in X
(C4)
n (r) are

multiplied by−1.

Proof: Follows by direct computation, using the defi-
nitions of the matrices andcos(x) cos(y) = (cos(x + y) +
cos(x − y))/2.
Note that the2×2 blocks in the translation matricesXn(r) are
not rotations. The identities in Lemma 12 enable the inversion
of the skew DTTs through the inversion of the ordinary DTTs.

E. Relationships Between Skew DTTs

All skew DTT(r) share the same associated module, but
different bases. Thus they can be translated into each otherby
a base change similar to the ordinary DTTs in Section IV-F.
As in that section, we consider the skew DCTs, type 3 and
4 as an example. The base change matrixS′

n we computed
in (32) did not depend on the right boundary condition. Thus,
the diagram (33) generalizes for arbitraryr to

C[x]/(Tn − cos rπ)
S′

n
//

DCT-3n(r)
��

C[x]/(Tn − cos rπ)

DCT-4n(r)
��

⊕

C[x]/(x − αk)
In

//
⊕

C[x]/(x − αk)
(40)

which implies DCT-3n(r) = DCT-4n(r) · S′
n. The first

difference occurs when we extend (40) to the non-polynomial
DCT-4n(r), since the scaling diagonal depends onr. Let α =
(α0, . . . , αn−1) denote the zeros ofTn−cos rπ andf the scal-
ing function ofDCT-4 and letDn(r) = diag0≤k<n(f(αk)).
Then

Dn(r) · DCT-3n(r) = DCT-4n(r) · S′
n, (41)

which generalizes (34).
In Section IV-F, we continued by inverting this equation to

derive the different relationship (35). To do this, we introduce
the proper “inverse” skew DTTs, which will also be needed in
the DTT algorithms derived in [7] The definition is motivated
by and a generalization of the equations

DCT-3−1
n = 2/n · diag(1/2, 1, . . . , 1) · DCT-2n

DST-3−1
n = 2/n · diag(1, 1, . . . , 1/2) · DST-2n

DTT−1
n = n/2 · DTTT

n = n/2 · DTTn

for DTT = DCT-4,DST-4.

Definition 13 (Inverse Skew DTTs)We define the inverse
skew DTTsby

iDCT-3n(r) = n/2 · diag(2, 1, . . . , 1) · DCT-3n(r)−1,

iDST-3n(r) = n/2 · diag(1, 1, . . . , 2) · DST-3n(r)−1,

iDCT-4n(r) = n/2 · DCT-4n(r)−1,

iDST-3n(r) = n/2 · DST-4n(r)−1.

Thus, for r = 1/2, we have iDCT-3n(1/2) = DCT-2n,
iDST-3n(1/2) = DST-2n, iDCT-4n(1/2) = DCT-4n,
iDCT-4n(1/2) = DCT-4n.

Note that Definition 13 does not provide direct knowledge
about the matrix entries of theiDTTs. These, however, can
be computed using Lemma 12. For example

iDCT-3n(r) =
(

X
(C3)
n (r)

)−1
· DCT-2n,

iDCT-4n(r) =
(

X
(C4)
n (r)

)−1
· DCT-4n,

(42)

and similarly forDST-3 andDST-4. Note that
(

X
(∗)
n (r)

)−1

has in all four cases the same x-shaped pattern asXn(r).
Namely, the four inverses are derived from

[

cos a sin b
sin a cos b

]−1

=
1

cos(a + b)

[

cos b − sin b
− sin a cos a

]

.

For example,
(

X(C3)
n (r)

)−1
=

1

cos(1/2 − r)π

















cn 0 · · · · · · 0
0 cn−1 −sn−1

...
. . . . .

.

... . .
. .. .

0 −s1 c1

















.

Using Definition 13, we can now invert (34) to get a
generalization of (35),

Sn · iDCT-3n(r) ·
1

2
Dn(r)−1 = iDCT-4(r)n,

whereSn is the same as in (35).
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TABLE VI

OVERVIEW OF THE FINITE SPACE MODELS AND ASSOCIATEDFOURIER

TRANSFORMS DISCUSSED IN THIS PAPER.

A = M Φ F = Pb,α otherF

C[x]/(x2 − 1)Un−2 s 7→
P

skTk DCT-1n —

C[x]/Tn DCT-3n —

C[x]/(x − 1)Wn−1 DCT-5n —

C[x]/(x + 1)Vn−1 DCT-7n —

C[x]/(Tn − cos rπ) DCT-3n(r) —

C[x]/Tn s 7→
P

skUk DST-3n DST-3n

C[x]/Un DST-1n DST-1n

C[x]/Vn DCT-7n DCT-7n

C[x]/Wn DST-5n DST-5n

C[x]/(Tn − cos rπ) DST-3(r)n DST-3n(r)

C[x]/(x − 1)Wn−1 s 7→
P

skVk DCT-6n DCT-6n

C[x]/Vn DCT-8n DCT-8n

C[x]/(x − 1)Un−1 DCT-2n DCT-2n

C[x]/Tn DCT-4n DCT-4n

C[x]/(Tn − cos rπ) DCT-4(r)n DCT-4n(r)

C[x]/(x + 1)Vn−1 s 7→
P

skWk DST-8n DST-8n

C[x]/Wn DST-6n DST-6n

C[x]/Tn DCT-4n DCT-4n

C[x]/(x + 1)Un−1 DST-2n DST-2n

C[x]/(Tn − cos rπ) DST-4(r)n DST-4n(r)

VI. OVERVIEW OF FINITE SPACE MODELS

In Table VI we list all the finite space signal models, and
their associated Fourier transforms, that we introduced inthis
paper. The table is divided according toΦ, which is a finite
T -, U -, V -, or W -transform.

In each row, we list in the first two columns the signal
model, in the third column the associated unique polynomial
Fourier transform, and in the fourth column possibly other
relevant Fourier transforms for the model.

Except for the skew DTTs, each of the listed transforms has
an orthogonal counterpart, which is obtained by proper scaling
of rows or columns.

Table VI, together with [1, Table III] for finite 1-D time
models classifies practically all existing 1-D trigonometric
transforms, i.e., those transforms that can be expressed using
cosines and sines. For each of these transforms, ASP hence
provides the associated signal model and with it all basic
SP concepts, many of which have not been defined or found
before.

VII. C ONCLUSIONS

This paper shows that a theory of linear signal processing
can be developed from a new concept of shift that is different
from the standard time shift, namely from the space shift as
we call it. Using the algebraic signal processing theory, we
derived from this shift appropriate signal models for space
signal processing, i.e., filter algebras, signal modules, and “z-
transforms.” In the finite case this approach derived from basic
principles the 16 DTTs as Fourier transforms. This interpre-
tation is arguably more satisfying than the original one as
asymptotic approximations of the Karhunen-Loève transform

(KLT) of a first-order causal Gauss-Markov random process.
For a closer investigation of the relationship between KLTs
and DTTs and between KLTs and general Fourier transforms
in ASP see [20], [6].

By identifying the signal models underlying the DTTs,
we also identified their associated notions of “z-transform,”
filtering or convolution, and explained in one framework many
of the known properties of the DTTs. In [7], [9] we use the
knowledge of these signal models to derive known and novel
fast DTT algorithms.

One may wonder which other shifts provide meaningful SP
frameworks and ASP is the proper platform to investigate this
question. We have done first steps in this direction with a
generalization of the space shift (called GNN shift) in [6],and
with 2-D space shifts for both the quincunx lattice [21] and
the hexagonal lattice [22]. The latter two yield non-separable
2-D signal models.
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APPENDIX I
CHEBYSHEV POLYNOMIALS

Chebyshev polynomials, and the more general class of
orthogonal polynomials, have many interesting propertiesand
play an important role in different areas of mathematics, in-
cluding statistics, approximation theory, and graph theory. An
excellent introduction to the theory of orthogonal polynomials
can be found in the books of Chihara, Szegö, and Rivlin
[23], [24], [25]. In this section we give the main properties
of Chebyshev polynomials that we will use in this paper.

We call every sequenceC = (Cn)n∈Z of polynomials that
satisfies the three-term recurrence

Cn+1(x) = 2xCn(x) − Cn−1(x) (43)

a sequence ofChebyshev polynomials(C stands for Cheby-
shev). Using (43), the sequenceC is uniquely determined
by the initial polynomialsC0, C1. The most important—and
commonly known—are the Chebyshev polynomials of thefirst
kind, denoted byCn = Tn and determined byT0 = 1 and
T1 = x. We provide a few examples:

T−2 T−1 T0 T1 T2 T3

2x2 − 1 x 1 x 2x2 − 1 4x3 − 3x

For x ∈ [−1, 1], Tn can be written in closed form as

Tn = cos nθ, cos θ = x. (44)

The closed form exhibits thesymmetry propertyT−n = Tn,
n ∈ Z, and can be used to derive the zeros ofTn. We will
occasionally use another parameterization ofTn, which we
call power form, given by

Tn =
un + u−n

2
,

u + u−1

2
= x. (45)

By substitutingu = ejθ we obtain (44).
In this paper, we also consider the Chebyshev polynomials

of the second, third, and fourth kind, denoted byUn, Vn,Wn,
respectively, that arise fromC0 = 1 and different choices of
C1. Each of these sequences exhibits a symmetry property and
possesses parameterized forms. These properties are summa-
rized in Table VII.

In addition, we will need the following properties that are
shared by all sequences of Chebyshev polynomials including
T,U, V,W (see [23]).

Lemma 14Let C = (Cn)n∈Z be a sequence of Chebyshev
polynomials. Then the following holds:
(i) The sequenceC is determined by any two successive

polynomialsCn, Cn+1.

(ii) deg(C0) = 0,deg(C1) = 1 ⇒ deg(Cn) = n, for n ≥ 0.
(iii) Cn = C1 · Un−1 − C0 · Un−2.
(iv) Tk · Cn = (Cn+k + Cn−k)/2.
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TABLE VII

FOUR SERIES OFCHEBYSHEV POLYNOMIALS. IN THE TRIGONOMETRIC CLOSED FORMcos θ = x AND IN THE POWER FORM(u + u−1)/2 = x.

Cn n = 0, 1 closed form power form symmetry zeros(0 ≤ k < n)

Tn 1, x cos(nθ) un+u−n

2
T
−n = Tn cos

(k+ 1
2
)π

n

Un 1, 2x
sin(n+1)θ

sin θ
un+1

−u−(n+1)

u−u−1 U
−n =−Un−2 cos

(k+1)π
n+1

Vn 1, 2x − 1
cos(n+ 1

2
)θ

cos 1
2

θ

un+1/2+u−(n+1/2)

u1/2+u−1/2 V
−n = Vn−1 cos

(k+ 1
2
)π

n+ 1
2

Wn 1, 2x + 1
sin(n+ 1

2
)θ

sin 1
2

θ

un+1/2
−u−(n+1/2)

u1/2
−u−1/2 W

−n =−Wn−1 cos
(k+1)π

n+ 1
2

Jośe M. F. Moura (S’71–M’75–SM’90–F’94) re-
ceived the engenheiro electrotécnico degree in 1969
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