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Abstract— In [1], we presented the algebraic signal processing have the 16 discrete cosine and sine transforms (DCTs/DSTS)
theory, an axiomatic and general framework for linear signal as Fourier transforms. This establishes the DCTs/DST ast exa
processing. The basic concept in this theory is the signal model analogs of the DFT, a satisfying alternative to the original

defined as the triple (A, M, ®), where A is a chosen algebra e . .
of filters, M an associated.4-module of signals, and® is a derivation of the DCTs and DSTs as approximations to the

generalization of the z-transform. Each signal model has its own Karhunen-Leéve transform of a stationary process [2], [3].
associated set of basic SP concepts including filtering, spectrum, The complete set of DCTs/DSTs was defined in [4] without

and Fourier transform. Examples include infinite and finite  derivation or motivation. In this paper, we jointly refer tioe
discrete time where these notions take their well-known forms. DCTs and DST as discrete trigonometric transforms (DTTs)

In this paper, we use the algebraic theory to develop infinite and . . .
finite space signal models. These models are based orsgmmetric even though this class is actually larger (e.g, it contalmes t

space shift operator, which is distinct from the standard time real DFT and discrete Hartley transform).

shift. We present thespace signal processing concepts of filtering e note that in other areas such as dynamic systems it is

or co_n\{olutlon, z-transfo_rm, spectrum, gnd Fourier transform. common to consider different notions of shift [5].
For finite length space signals, we obtain 16 variants of space

models, which have the 16 discrete cosine and sine transforms We developspaceSP as an instantiation of the algebraic
(DCTs/DSTs) as Fourier transforms. Using this novel derivation, signal processing theory (ASP), a general and axiomataryhe
we provide missing signal processing concepts associated withgt (linear) SP presented in [1], [6]. The central object inNFAS

the DCTs/DSTSs, establish them as precise analogs to the DFT,. . . .
get deep insight into their origin, and enable the easy derivation !S the signal model, defined as a tripld, M, @), where.A

of many of their properties including their fast algorithms. is the filter space (an_algebraM the signal space (ant-
Index Terms—Signal model, Fourier transform, boundary module), andb generalizes the concept oftransform. Many
condition, signal extension, shiff, algebra, module, répresent’mm signal models are in principle possible, each with its own

theory, convolution, Chebyshev polynomials, discrete cosine and SP notions including filtering, spectrum, or Fourier tramsf.
sine transform, DCT, DST ASP establishes that for finite signals and shift-invariant

models, A and M are polynomial algebra€|x]/p(z), i.e.,
spaces of polynomials with multiplication modulo a fixed

I. INTRODUCTION ) T :
polynomial. For example, for the finite time model, which has

Standard linear signal processing (SP) considers signg|s' prT as Fourier transform, both take the farn= M =
indexed by time (discrete or continuous) and time—invaria@j[x]/(mn —1)

systems or filters. Associated with SP is the time shift djoera
abstractly defined (in discrete form) as

In [1] we explained how to derive signal models from a
definition of the shift. Application to the time shift (1) yoked
qoty, =tni1. (1) the well-known infinite and finite time signal models. In this
) ) , __paper, we derive signal models from the space shift (2). We
The formulas for linear convolution and the d|screte—t|m%entify and define theC-transform as the appropriate:-*
Fourier transform for infinite length signals or for circula o«orm? and, for finite space signals, show that the 16 ©TT
convolution and the discrete Fourier transform (DFT) foitéin o 1o appropriate space Fourier transforms. As expettted,
length signals can be derived from this definition of thetshifg; ... space signals models underlying the DTTs are again

In this paper we show that an alternative linear SP framggi from polynomial algebras. One application of the ASP

work can be derived from a different definition of the shiffye hetation of the DTTs is the easy derivation of many of
operator. This shift operatasndirectedor symmetricallyin their properties and and their fast algorithms [7], [8]..[9]

contrast to the directed operation of the time shift in (Ior F .

. : B ! The DCT, type 3, was related to a polynomial algebra
th Ilit th hiftit tractl f _ .

is reason we call it thepace shiftit is abstractly defined as in [10]; all DTTs of types 1-4 were related to polynomial

qoty =%(tn-1 4 tn+1)- (2) algebras in [11]; see also [12]. In all cases no connection to
signal processing was established.

Organization. We start with a brief overview of ASP in
ection Il. The focus will be on finite shift-invariant signa
cadels that are built from polynomial algebras. In Sectitbhs
and IV, we derive the infinite and finite space models. The
finite case is worked out in greater detail since it provides t
This work was supported by NSF through awards 9988296, 081aend underpinning of the frequently used DTTs including many of

0634967. ) , __their properties. An important variant of the DTTs, and thei
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Accordingly, we derive for infinite and finite length signéhe
appropriate space SP notions including filtering or convolu
tion, “z-transforms,” spectrum, Fourier transforms, frequen
response, and others. In the finite case, we explain the n
for boundary conditions and identify 16 “natural” choiclatt



Il. ALGEBRAIC SIGNAL PROCESSINGTHEORY time SP is given by (we set = z71)

We introduce the necessary background on the algebraied = {>_,cz ™ [N = (... ho1,ho,,...) € £1(Z)},
signal processing theory (ASP) and show infinite and finiteM = {}° _, s,z |s=(...,s_1,80,81,...) € (*(Z)},
time signal processing as examples. For a complete andp — ¢2(7) — M, s s = > ez Snt™.
detailed introduction we refer the reader to [1], [6]. Foeity (4)
we will denote linear signal processing by SP. The symbols/!(Z) and ¢2(Z) represent the set of infinite

length absolute summable and square summable (finite energy
sequences, respectively. As definéd, M, ®) is a signal
A. Signal Model model forV = (2(Z) and ® is just the ordinaryz-transform.

Algebra (filter space).An algebra A is a vector space that NOte that in ASP®(s) = s in (4) is primarily viewed as a
is also a ring, i.e., it permits multiplication of elementsda formal series and not as a function. The idea is thatovides

the distributivity law holds. Examples include the s@sR & basis for the coordinatesand gives convolution its desired

of complex or real numbers and the set of polynomials wiflerm. S _ _
complex coefficient€[z]. In SP, the set of filters is commonly Shift and shift-invariance. In the algebraic theory, thehift
assumed to be an algebra, with the multiplication being th@" Shifts) is the chosen generator (or generators) of the fil

concatenation of filters. We denote elements of algebras wi!9ebra. This means that every filter can be expressed as a
h, the common symbol for filters in SP. series or polynomial in the shift (or shifts). A signal model

Module (signal space)Given an algebrad, an.4-module (A, M, ®) has theshift-invariance propertyf and only if A is

M is a vector space that permits an operatighdf .4 on commutative. For example, the infinite discrete time model i
M: (4) is shift-invariant, since the multiplication of Lauteseries

in A is commutative.
h-seM, forheA, seM. ®) Visualization. Every (discrete) signal model implicitly fixes
. o a basis ofM via ®, sucha® = (..., 2z~ 2% 21, ...) for the
Further, several properties such as the distributivity l@we o model (4). The operation of the shift on this basis can be
to hold [13]. In SP, the S|g.nal space |s'commonly assu_med rté’presented by a graph, which is called #sualizationof the
be an.A-module, whereA is the associated space of fIItersmodel (see [1] for a rigorous definition). The visualizatiain

The operation denotes filtering; (3) ensures that filtering 5(4) is shown in Fig. 1. Intuitively, it is the structure impeab

signals € M with a filter i € A yields again a signal. 1,/ he model on the signal valusswhich are associated with
A special case of a module is given byl = A (equality ine nodes of the graph.

as sets, not as algebraic structures) with the operatioB)in (
being the ordinary multiplication ipd. This module is called
c O— P O0—P 0 ——P 0 ——P 0 —P 0 °+ o o

the regular module _9 -1 0 1 2 3

. x x x x x x

Spectrum, frequency response, Fourier transform.For

every given 4 and M there is an associated notion o
spectrum, frequency response, and Fourier transform €if th

eXIS.t)' See [1] for detalls._ . . ) B. Finite Shift-Invariant Signal Models
Signal model. In applications, signals do not arise as

elements of modules, but, in the discrete case consideredVe identify possible signal models for finite length 1-D

here, as infinite or finite sequences of numbers, eg= SEdUeNCesS = (so,...,sn—1) € V = C". In this case,
(e 5-1,50,51,...) € CE Or S=(s0,...,5n_1) € C". The dim(M), dim(A) < oco. If we require shift-invariance (i.e.,

purpose of the signal model, introduced next, is to assigrm’hiS commutative) and assume one shift, thémmust be a
filter algebra4 and anA-moduleM to such sequences. ThisPClynomial algebran one variable:

way, filtering is automatically defined (the operation.éfon A = Clz]/p(x) = {¢(z) € C[z] | deg(q) < deg(p)}. (5)
M) and we get access to the associated notion of spectrum

and Fourier transform. In the definition we assume compl
signals, but other base fields can be chosen.

],Fig. 1. Visualization of the infinite discrete time model (4) £ z~1).

re,p is an arbitrary but fixed polynomial, and addition and
multiplication in A is defined modulg. The shift inA4 is x.

In the following, we discuss signal models built from poly-
nomial algebras and show the finite time model as an example.
Definition 1 (Signal modelLet V' C C’ be a vector space. See [1] for more details. A good reference on polynomial
A signal modelfor V' is a triple (A, M, ®), where A is an algebras is [14].
algebra, M is an.4A-module, and® is a bijective (one-to-one  Signal model. We focus on a specific class of finite shift-

and onto) linear mapping invariant 1-D signal models, namely, chosen as in (5)M =
A the regularA-module, and we assume thats separable,
¢: VoM, s—>seM. i.e., has pairwise distinct zeras = (ag,...,a,_1). If we

_ o ~ choose a basis= (po, . ..,pn—1) Of polynomials inM, then
Example: Discrete infinite time. The abstract definition

of the signal model is best illustrated by an example. Namely A =M =Clz]/p(z), ©)
the signal model commonly adopted for infinite length disere dP=C"—> M, s—s= Zogkn Sepe



defines a signal model fdr = C™. Filtering in this model is  Visualization. The graph with adjacency matrix(x) (the
the multiplicationh(z)s(xz) mod p(x) for h € A, s € M. shift matrix) is the visualization of the model (6).

Signal extension.Finite signals often arise because only Example: Discrete finite time.As an example we consider
a finite number of signal samples are available. How a finitke commonly adopted signal model for discrete finite time,
signal continues beyond its domain is its signal extension. given by

A= M=Clt/@" - 1),

Definition 2 (Signal extensionlet I C Z ands = (s¢)eer € ' (12)
C!. A (linear) signal extension o6 is a series of linear P=C">M, s—s= Zo§g<n Sex”.
combinations We call ® the finite z-transform. Note that the chosen basis
_ [ i = (2°,...,2" ). Filtering in this model is
se= Bruse, forkel. (7) (via ®)is b = (a%...,2"""). Filtering del
’ ; e polynomial multiplicationh(z)s(z) moduloz™ — 1, which is

uivalent to the circular convolution &f ands. The signal
tension is obtained by reducing = z* ™" mod z™ —1,
and is hence periodic and also monomial.
If we assume that the basis polynomiaisfrom b in (6) are ~ The (polynomial) Fourier transform for the model (12) is
part of an infinite sequende;,),cz, then (6) implicitly defines readily computed via (9) as the discrete Fourier transform
a signal extension fos € C™. It is given by reducingp, (DFT)
modulqp and exprgssing the.resultbnpk = Epgkn B eDe- F =Pyo =DFT, = [0 ochicn, wn=e 2V71/n,
Replacingp by s yields the signal extension in (7). ' =

Spectrum, Fourier transform, and frequency response.  For a filter h € A the matrix¢(h) is a circulant matrix,
For the signal model (6), the spectral decomposition\df Wwhich confirms the well-known property
i.e., the Fourier transform, is given by the Chinese ren&ind DFT, ¢(h) DFT;l — diag(h(&?),. .., h(w" V).

. . e
If each summand contains at most one term, the S|gneéj
extension is callednonomial

theorem as "
A: Clz]/p(z) — Cla]/(z — a0) @ ... ® Clz]/( — an_1), The shift matrix¢(x) is the circular shift:
s=s(z) — (s(x),...,5(an-1)). 1
(8) 1
A(s) is the spectrum ok. Further, A is lineat; hence, if (z) =
we choose (which is fixed by® in (6)) as basis ofM and 1
2% = 1 as basis in each spectral compon&it]/(z — az),
Ais represented by thpo|ynom|a| transformrmatrix Thus, the visualization of the discrete finite time model is
given by the directed circle in Fig. 2 that also captures the
Po,a = [pelar)]o<k,e<n- 9) periodic signal extension. In words, applying a DFT to a algn

| S€ C" associates the values with the nodes of this graph,

An arbitrary choice of bases;z, a;, € C, in the spectra o ’ ) P RS :
which is equivalent to imposing a periodic signal extension

components yields acaled polynomial transform

diag(l/aoa'“vl/an—l) 'Pb,a~ (10)
Any (scaled or not) polynomial transform is a Fourier trans- ST LT o e
. . X X x x X x
form for the signal model (6) and denoted with
For a filterh € A, (h(ao), s h(an—l)) is the frequency Fig. 2. Visualization of the finite discrete time model (12).
response ofh. Filtering h - s (mod p) is equivalent to the
pointwise multiplication(h(co)s(ag), ..., Alan—1)s(@n-1))
in the spectral domain. C. Derivation of Signal Models

Filtering and diagonalization properties. For every filter | [1] we presented a procedure to derive infinite and finite
h € A, filtering is a linear mapping oM; thus, with respect gigna| models from an abstract definition of the shift opierat
to the basi® = (po, . - -, pn—1) 0f M fixed by the model (6), we used this procedure to derive the infinite and finite time
h is represented by an x n matrix M. The mapping models (4) and (12) from the standard time shift

¢: A= C"", h— ¢(h) = My time shiftt qot, =tni1 n € Z. (13)

is called therepresentationof .A afforded by M with basis gisplayed in Fig. 3 (top). Here the, denote abstract time
b. In particular,¢(z) is called theshift matrix Filtering - s marks, q is the shift operator, and is the shift operation.

becomes in coordinates the matrix-vector prodb(at)s. The procedure consists of three steps. First, the shift is
The matricesy(h) are precisely those diagonalized by anjefined in the abstract form shown in (13) andkdold
Fourier transformF for the model. Specifically, shift g, is introduced throughy, o t, = t,4%. This implies

Fo(h)F~! = diag(h(ap), - . ., h(an_1)). (11) t_hat G = Qk. _Second, the shift _operation is extenc_zled to
linear combinations)_ s,.t, of the time marks and to linear
IMore precisely and-module homomorphism. combinations ofk-fold shifts gi: > hrqx. Third, the model



We proceed by extending the operator domain fipto k-
fold shift operatorsy;.. A natural definition of the:-fold space

shift is
3 a° 3 qr Oty = (thrk‘ + tnfk)/Zv (16)
..... Q@d—— @ — P @ + o o o o
th—1  tn  tpta sincet,, . andt,_ are those space marks at distakdeom
Fig. 3. The time shift (top) and the space shift (bottom). tg.
Here we have the first interesting difference with respect to
the time model derivation, since cleady # ¢*. Furthermore,
is realized by settingg = =z, replacing¢ with ordinary (16) impliesqx = q_x; hence, it is sufficient to consider only
multiplication, and solving shift operators;;, with k& > 0. Thus, the natural representation
of a filter will be 3, ., hrqr. The following lemma shows
tng1 =2ty (14)  that theq, are given by the Chebyshev polynomials of the

first kind T}, in the variableq. The Chebyshev polynomials

In the infinit . ts lead t ill play a central role in the definition of space models. For

n the infinite case, convergence requirements lead 10 g, reason, we provide the necessary background on foastyp

model in (4). In the finite case, as was shown in [1], aboundaa( Chebvshev polvnomiald. U V. and W in Appendix |

condition is needed to ensure that becomes a module. This_ . y POty L Append,
i . T . which we encourage the reader to briefly review at this point.

boundary condition determines the entire signal extensind

requiring a monomial signal extension (the simplest pdssib . L _

see Definition 2) leads tol = M — Cla]/(z" — a), a € C. ;emma 3The k-fold space shift operator is given hy, =

Fora — 1 this yields the finite time model (12). k(2).

discrete infinite and finite space. These models are buiigusi;, — ; = 7, (¢). Also by definition, g1 ¢ tn = (tnirs1 +

the same procedure but starting from a different definitibn @ y/2 = (¢, .01 + tnino1 + tooirr + tnor_1)/2 —

for ¢,,. Normalizingty = 1 yieldst,, = 2™ as unigue solution.

LR L (tnak—1 + tn-k41)/2 = 2 © (tpgr + tn—k)/2 — (tpgn—1 +
tn—k+1)/2 = (2qqk —qr—1)ot,, forn € Z. From the induction
1. I NFINITE 1-D SPACE MODELS hypothesisgi = Ti(q), qx—1 = Ti-1(q), and thus, using the
recurrence of the Chebyshev polynomials ((43) in Appengix |
Standard SP considers time-invariant systems, which im- . — 7, ., (¢), as desired. u

plies the standard definition of the shift in (13). In thists®T | jnear extension. To construct a linear signal model, we
and the neXt, we will use ASP to derive an SP framewo%(tend by |inearity the Operation qfto the entire sefM =

for space SP as we refer to it. It is built from a different;; — S ez Sntn}, namely asjos = 3, s, (got,)}, which
symmetric definition of the shift. We have two motivationgan be evaluated. Similarly, we linearly extend the operato
for this definition. The first is our goal to define the shift fogomain toA4 = {1 = Seso hrar} = {h = o0 M Ti(q)}
signals for which there is no intrinsic sense of directioheSe ysing Lemma 3. - -

signals contrast with time signals, for which past, presendl  Realization. We determine a “realization” of the model
future are inherent from the direction of time. The secongtroduced in the previous section. We set in (1p)= =,
reason iS, as we will ShOW, that our space shift definitiod$ea<> =, and determine p0|yn0mia€n that rep]ace the space
to signal models that have the 16 DTTs as Fourier transformgarkst,, in (15), i.e., that satisfy

Thus, within ASP, time and space SP, the DFT and the DTTs

become instantiations of one general framework. There will z-Cp = (Cpy1+Cn1)/2. (17)

be many other benefits of this theoretical exercise as disdus

later Since (17) is equivalent to (43) (in Appendix I), the solatio

is given by a sequence of Chebyshev polynomials.
We immediately notice differences with respect to the
A. Constructing the Signal Model corresponding derivation in the time case. These differenc

) ) . are intrinsic to the space model:
We follow the same steps as in the time model derivation . .
« Equation (17) is a three-term recurrence for the space

in [1]. : :
Definition of the shift. We consider discrete complex sig- m:::: whereas (14) is a two-term recurrence for the time

i ) 7. :
nals chjexed byZ. se C#; i.e., we consider the vector space « Only the C,,, n > 0, are linearly independent; th@,,
V = C*. We define nowspacemarkst, and an appropriate .

. . . n < 0, are polynomials inc and can thus be expressed
spaceshift operatorg and its operatior on the space marks. . L

: . as linear combinations dfC,, | n > 0}. In other words,
As mentioned aboveg should operate symmetrically. We L . .

the realization of the space model introduces a starting

adopt the definition point in space, given by, = 1. Fixing C; determines
space shift: qot, = (tny1 +tn_1)/2, ne€Z. (15) the left boundary condition and the left signal extension.

« As a consequence, even after normalizifig = 1, the
visualized in Fig. 3 (bottom). sequence’,, of Chebyshev polynomials is not uniquely



TABLE |

This equation defines tHeft signal extension associated with
REALIZATION OF THE ABSTRACT SPACE MODEL

the sequenc€’. On the other hand, by comparing the degrees
of freedom, it is obvious that not every signal extension can

concept abstract realized A . . -

be obtained by choosing a suitable boundary condition. ;Thus
shift operator ¢ Ti(z) ==
shift operation o (C < left boundary condition=- left signal extension.
space mark Chn
k-fold shift =T, iy . . .
szce Ssh'm Zkot i(z)(t ) ﬁ’“(g) 1(Gpar + O,y FOT @ generic left boundary condition, the left signal exten
signal ZsZtn E anncn(;) e sion (20) has no simple structure; in particular, it is notnmo
filter S hiTi(q) S by T () mial (see Definition 2). We determine now those left boundary

conditions that yield anonomialleft signal extension in (20).
The answer is provided in the following lemma.

determined. The degree of freedom is given by the choice

of Cy as a polynomial of degree 1. Lemma 4 (Monomial left signal extensiohgt C = (C,, |
« Again, we npte that in the time model, afold shift ,, - 7) be a sequence of Chebyshev polynomials with= 1
operator is given by:*: and deg(C7) = 1. Then the left signal extension associated
ok g — gtk with C' is monomial, i.e., every’, k < 0, is a multiple of a

)

Cpn,n >0, ifand only ifC € {T,U,V, W} (see Appendix I),
in contrast to the space model, where, by Lemma 3, the c_, € {C},0,Cy, —Cy}, which implies the correspond-
k-fold shift operator is given byl),(x), independent of jng |eft boundary conditions_; € {51,0, 50, —So}-
C (see Lemma 14(iv) in Appendix I):
Tho - Co = (Crie + Ci) /2. (18) Proof: If C € {T,U,V,W}, then the assertion holds
as shown in the “symmetry” column of Table VII. It remains
As a result of this discussion, we obtain the spages- g show the converse. We start with the generic left boundary
{h = soheTet and M = {s = > ~;5.Cn}, i.., the condition in (19). Because the signal extension associaid
signal model that we obtain later will be only for right-sile ¢ js monomial, one of the two summands in (19) has to vanish.

sequences. Case 1:C_; is a multiple of Cy, i.e., constant. It follows
Table | shows the correspondence between abstract gnd , Cy = 224b, C_y = —b, C_y = —2bz— 1. Now, either
realized concepts. C_, is constant, i.e.h = 0, which impliesC = U, or C_, is

To ensure convergence, we would like to require as befoéemultiple of Cy, which impliesb = +1, or C € {V, W}.
h € ¢1(N) ands € ¢*(N). However, to prove convergence, we Case 2C_, is a multiple ofC,. It follows b = 0, C; — a
have first to choose proper boundary conditions, i.e., weh — 22 —1,C_, = (2—a)z, a # 2, andC 2 —2(2 -
to choose the proper Chebyshev polynomialsWe analyze a)z? 1. Since,C_z has to be a ,multiplé of’,, we geta = 1
the boundary conditions in the next paragraph. This dis'scnssand thusC = T This completes the proof ' -

has no counterpart in the derivation of the infinite time node The four boundary conditions in Lemma 4 are the discrete

in [1]. . . o
Left boundary condition and left signal extension.The versu?,ns of the so-called D|r‘!chlet boun:jary conditionefa
. value”) and von Neumann (“zero slope”) [15], [16]. In each
degree of freedom for choosing a Chebyshev sequénce R . - .
case, the symmetry point is either a “whole” sample poing or

normahzed byCo = 1, IS gven by the °h°'c? ots, or, “half” sample point, i.e., is located between two samplenfmi
_equwalently,_by the ch0|ce_(1f,’_1, since the entire seq_uencq% the literature, these four signal extensions are sonastim
:f] :Jhoetﬂ gitr)g{i]sgsbéeipﬁzg]r%;hf 4(Ci)h§]bfhegn;?;ul)m2&ir(]4c lled: whole point symmetry (WS), whole point antisymmetry

. . . APP ) g(WA), half point symmetry (HS), and half point antisymmetry
either C; or C_; is equivalent to choosing keft boundary (HA) [17]

conditionfor the signals = (s, s1, - . . ). For example, setting . " _—
C) =z impliesC_, = z, and thusC'_, = C,, which imposes For these four choices of boundary conditions, filtering,

on the signals the left boundary conditios_; = s;. Using "€ .the multi?licationzgzo finTn - 320 5nChn corverges
Table VII, the corresponding sequence(is= T. providedh € ¢*(N), se ¢#(N) (see [6] for more details).

To determine the left boundary condition in the general case Resulting infinite space modelsz.We define four infinite
we setCy = 1 andC; = az +b, a # 0 (to satisfydeg(C;) = SPace modelg.A, M, ®) for V = ¢#(N). Namely, forC €

1). Then, by applying (43) backwards, we get {T,U,V,W},
C_1=21x— (ax+b) = Q;GCﬁ%bco. (19) A={h=3 50 mTi(x) | he!(N)},
. . . M={s=3,505.Cn(x)|se *>(N)}, (21)
_ f 1 I nZ
Since C_; is of degree at most 1, every polynomial ,,, & PN) o M, S S o0 8nCa(2).

n > 0, obtained by the recursion (43), is of degree at mgst

and thus a linear combination of the polynomiél, ... ., Ci, We call & the C-transform but will replaceC by either

C_, = Z B;i-Ci. n>0, (20) T,U,V, or W, when appropriate, and accordingly refer to
0<i<n the T-, U-, V-, or W-transform.



o~ A. Constructing the Signal Model

jb YE 15 7% jh

Shift, linear extension, realization. We consider a finite

number of space marks,...,t,_1 and adopt the space
. . . . ° - . . shift operatorq in Figure 3 (bottom) and its realization by
Uy Uy U, Us U, setting ¢ = z, and hencet, = Cj (a generic sequence
C‘ . . . ... of Chebygh_ejv pol)_/nomial%,) as derived in Section III-A._
Vo Wi Vs Va Vi These deflnltlor_1§ will need to b_e complemented by apprapriat
boundary conditions, as we discuss next.
_1C. . . . ° - . . Lets= (sg,...,sn—1) € C™ be a finite sampled signal and
Wo Wi W Wiz W, C a sequence of Chebyshev polynomials. A straightforward
Fig. 4. Visualization of the four infinite space models @r {T,U,v,w}. realization seems to lead to signals that are polynomialseof
The common edge scaling factby2 is omitted. form ;.. skCk. The set of these is the vector spdtgz]

of polynomials of degree less than(with basis polynomials
C}). However, this space is not closed under multiplication by
B. Properties the shift operator:, and thus it is not a module, which means

Each of these models has its associated notion of filterirI&t,e”ng is not well-defined. In particular, the problem et

spe_ctrun_"n, frequency response, _and Fouri_er transform as ex- z-Ch1=(Cp_o+Cpn)/2¢&C,lx], (22)

plained in [1]. We omit the details here since our focus are ) ]

thefinite space models that we will show to underly the DTTsSINCeCy & Cy[z]. Note that, in contrast to the time case [1],
The visualizations of the models are shown in Fig. 4 witH'€ |eft boundary does not impose any problems, since

a common scaling factors of/2 omitted. The graphs are z-Co=(C_i+Ch)/2 € Cplzl.

undirected, since they are space models. Namely, the space

shift (Fig. 3 bottom) yields between each two space markémely, the choice ofC' already implies a left boundary

an edge in both directions. The behavior at the left edge Ggndition via (19). So the remaining task is to determine the

determined by the left boundary condition. Namely;, = Properright boundary conditions.

1(C_1 + C4) produced a directed edge to the (non-existent) Right boundary condition and signal extension.To solve

C_1. In the first case(' = T, T_; = T}, and hence this edgethe problem in (22), we introduce an equation

is rerouted tdl. In the second cas€; = U, U_; = 0; hence,

the edge vaniéhes. 1 Co=r= 3, BCr or Co=r=0. (23

0<k<n
This imposes the same equation on the corresponding signal
In this section, we derive finite versions of the space models Sy = Z Brsi

in (21). As in the finite time model (12), these space models

will have polynomial algebras as filter and signal spacess Th

is not surprising as ASP explains that only those choic¥dlich is the right boundary condition. As a consequence of
support shift-invariance (Section 1Il-A). We derive the tini (23), using thet-fold space shift operatdf}; (see Lemma 3),

space models in the same way as we derived the fini§ 9€t the series of equations for> 0
time model in [1], namely by requiring a monomial signal ( — o7, . = 2T3(Cpy — 1) = Cpgke + Cr—pe — 2T,
extension. However, in contrast with the time case, thisalig
extension will not be periodic but symmetric or antisymrivetr Which determine the entire right signal extension. It isafied
with 16 choices. This is due to the different basis requird®y reducingCi,,x = 2Tyr — Cy,—, modulo (C, — 7).
after realizing the shift operation: supports the time shift, Algebraically, the right boundary condition replaces the
C, supports the space shift. vector spaceC,[z] (with basisb = (Cy,...,Cn-1)) by
By applying the general theory from Section 1I-B, we willM = Clz]/(C, — ) (also with basig), viewed as a regular

see that the Fourier transforms for the finite space modé@dule, i.e., the algebra id = M. The natural basis it is
are precisely the 16 DTTs. There are various benefits @en by (To,...,T,—1), regardless of the choice df.
knowing these models. First, as application of the generalFor ageneral choice of left boundary condition (given by the
theory in Section II-B, we obtain the appropriate notions ghoice ofC') and right boundary condition (given by the choice
“z-transform,” filtering or convolution, convolution theems, ©Of ), the corresponding signal extension has a complicated
spectrum and frequency response associated with the DBficture. As before, we identify those boundary condgion
and can derive and explain many of their properties. Secofi@@t lead to a monomial signal extension. Lemma 4 gives
we establish that the DTTs are, in a rigorous sense, asedciaiready the proper left boundary conditions and shows that
with the space shift, Fig. 3 (bottom), in the same way as thaey are obtained by choosing € {T'U,V,W}. For the
DFT is associated with the time shift. Third, knowing those ,, o _ _

We note that another realization is possible by settingiot equal

signal models is_ the key to deriving and understanding tlﬂ:?x. However, the derived space models have two-dimensionaltrapec
DTTs’ fast algorithms [7], [9]. components, which is undesirable. See [6] for detalils.

0<k<n



TABLE I TABLE Il

THE 16 POLYNOMIALS p ASSOCIATED WITH THE 16 FINITE SPACE 8 TYPES OFDCTS AND DSTS (UNSCALED) OF SIZEn. THE ENTRY AT
MODELS. C), HAS TO BE REPLACED BYTy,, Uy, Vi, W), TO OBTAIN ROWS ROW k AND COLUMN £ 1S GIVEN FOR0O < k, £ < n.
1,2,3,4, RESPECTIVELY
type DCT DST
Cn Cn - C'n—z Cn Cn - Cn—l Cn + Cn—l 1 cos kﬁﬁ sin(/c + 1)([ + 1)%“
Tn 222 —=10DUp—2 Tn (z—1DWn_1 (z+1)Vn1 2 cosk(t+4)Z sin(k+1)(¢+ )T
U, 2Tn Un Va W 3 cos(k+ 1)ex sin(k+ 2)(¢+1)Z
Vo 2@ —1D)Wp1 Vo  2(@—10Up_1 2Ty 4 cos(k+ 3)(L+3)Z sin(k+ 5)(0+ 3)Z
Wr 2(z+1)Vip—1 Wn 2T 2(z + 1)Up—1 5 cosk@n:rl sin(k 4+ 1)(£+ 1) n:l
2 2
6 cosk(2+%)ni’l sin(kJrl)(ZJr%)ni%
. N _ _ _ 7 cos(k-l—%)énjl sin(k—i—%)(@—i— l)n;’%
right boundary conditions there are again 4 choices, which 8 cos(h+ )+ )= sin(k+ L)€+ L)—
gives yields a total number of 16 possibilities—correspogdi "t re

to the 16 types of DTTs as we will see below.

using Table Il. We obtain the associated signal model (the 2

Lemma 5 (Monomial right signal extensiofpr a monomial in p can be dropped)

left signal extension, let’ € {T',U, V, W'}. The only four right
boundary conditions that yield a monomial signal extengon A= M=C 1\
M = C[.’I)]/p({l}) areCn = Un-2, Cn =0, anan = i(/\171711 & - 7[33]/(33 ) n_l(x)7
which Imp“esp € {On - Cn—27 Cn; C, £ Cn—l}- These 16 PSS = ZO§€<” seVe.

p’'s are shown in Table II.

(25)

We will see later that the DCT, type 2, is a Fourier transform

. o for this model.
Proof: N ly, th has the f .
00 ecessarily, the boundary condition has the form Next, we apply the general theory from Section 11-B to all

C, = aCy, 0 # k < n. By multiplying by 2 on both sides, we o

obtainC,,+1 = a(Cry1+Cr—_1) — Cr—1. We determine under 16 finite space models.
which conditions the three summands on the right reduce to
at most one summand.

. B. Spectrum and Fourier Transform: DTTs
Case 1:k # n — 1. Then eithera = 0, or k = n — 2 and

a=1. We show that the 16 DTTs are Fourier transforms for the
Case 2:k = n — 1. ThenaCj41 = aC,, = a*C,_, and 16 finite space models (24). In doing so, we settle the questio
thusa = +1. why there are 16 DTTSs to begin with, as the original derivatio

It remains to show that these four boundary conditions yieff the full set of all 16 [4] does not provide an explanation.
a monomial signal extension, which is done by induction. We The first and most important DTT is the DCT, type 2,
omit the details. introduced in [2] and used in the JPEG image compression

The identities in Table Il are obtained using Table VII iﬁ;tan_dard. Table 1l gives the definitions of then-orthogonal
Appendix | and well-known trigonometric identites. ~m  Versions of the 16 DTTs. We note that the DTTs of type 1, 4,
It is interesting to note that the right boundary conditigns 2 8 aré symmetric, and that the DTTs of type 2 and 3, 6 and
Lemma 5 are the reflections of the left boundary conditiorfs "€SPectively, are transposes of each other. We use Arabic
in Lemma 4. instead of Roman numbers to denote the type following [16].

Resulting finite space models.We define 16 finite To compute the Fourier transform (8) of the finite space
space modelg.A, M,d) for V = C". Namely, for C' € models (24) and its matrix fornf in (9) or (10), we have to

{T,U,V,W} andp € {C), — Cpr_2,Ch,Cr, £ Cr_1} determine the zeros of the 16 polynomials in Table II, which
Y Y can be done using Table VII in Appendix I. Instead of giving
A =Clz]/p(x) = {h = g<pen eTk(z) | hp € C}, the details for all 16 cases, we consider the signal modgl (25

_ (e — . as a representative example and then state the result fb8 all
g/t. ((I(S[ﬂ/i/(lx)s }—>{SZ Zo<k<gslgc;k(x) s € €}, (24) DTTs. Note that the discussion is an application of the ganer
' ’ 0<k<n SkRLL): theory in Section II-B.
We call each® a finite C-transform, and replac€ with Example: DCT, type 2. The zeros of(z — 1)U, —1(z) in
T,U,V, or W if specified. Note thatd = M but the natural (25) are given byv, = cos(km/n),0 < k < n (from Table VII
basis in.A4 always consists of the-fold space shiftsT;;, in Appendix I). Hence the Fourier transform favt is given
independently of”'. by
Example. We choose the left boundary conditien; = s,
ie., C_, = C,, which is afforded by the base polynomials 2 Clz]/(z = DUn-1(2) — Docren Clzl/(z —an)
C = V. As right boundary condition, we choose = s,,_1, s=s(x) — (s(a),...,s(an-1)).
i.e., C, = C,_1, which implies (26)
A(s) is the spectrum of the signaland(h(«), . . ., h(apn—1))
p=Cp,—Cpo1 =V, = V1 =2(x - 1)Uy is the frequency response of the filterc A.



In matrix form, the uniqugolynomialFourier transform (9) o~

for the signal model has entries °o——e ® o v oo . ° .
1 TO T1 T2 Tn—3 Tn—2 Tn—l
Vi(ax) = prey T ~cosk({ +1/2)m/n. C’ . . . ... _V. V. - .:)
. V V V n— n— n—
We can scale these to cancel the denominator and get the 0 ! 2 3 2 !
matrix ° ° @ ¢ o o s . ° ° °
diagy< <, (cos K/ (2n) - [Vi(ak)osk,e<n o ho h Tns Inz dns
= [cosk(+ 1/2)7T/n]0§k75<" (27) Co ° e -+ o . ° ) o:) -1
= DCT_ZH VE) Vl ‘/2 Vn—S Vn—2 Vn—l

In words, theDCT-2,, is a Fourier transform (namely a scaledrig. 5. Visualizations of the finite space models associatithl the DCTs

polynomial transform (10)) for the signal model (25). Thef t%/pe 1-4 (from top to bottom) and size A common edge scaling factor
. . . . . of 5 has been omitted.

scaling diagonal in (27) shows the basis chosen on the rlé)th

hand side of (26), namely/(cos k7 /(2n)) in the kth spectral

componentC[z]/(xz — coskmr/n), 0 < k < n.

All DTTs. Similar computations for all 16 cases establishede have DTT = DTT if and only if DTT ap-
the 16 DTTs as Fourier transforms for the 16 finife Pears in the first row of Table IV, ie., iDTT €
transforms. {DCT-1,DCT-3,DCT-5,DCT-7}.

Theorem 6 (DTTs and polynomial algebrahe 16 DTTs The polynomial DTTs will play an important role in the
are the Fourier transforms for the 16 finite space modederivation of fast DTT algorithms [7]. Also, in some cases
(24). The correspondence is given in Table IV as followshe polynomial DTTs have a lower complexity than the actual
Let (A, M,®) be a finite space model with1 = Clz]/p DTT. This makes them a candidate for applications in which
with basisb = (Co,...,C,_1). The choice ofC (rows of the DTT is followed by scaling (such as JPEG compression).
Table 1V) determines the left boundary condition and a scali  Remarks and observationsFor each DTT, we have three
function f. The choice of right boundary condition (columnselevant versions. First, the polynomial versibd T, which
2-5 in Table IV) then determines the polynomjalgiven at is the unique polynomial transform for its associated digna
the intersection of row and column. The corresponding DTT iaodel (see Definition 7 above). Second, the unscaled or
given abovep. More specifically, assume = (o, ..., a,—1) natural version, which has pure cosines (or sines) as entrie
are the zeros op. All oy, have the formcos rim, 7 € [0,7]  (see Table Ill). Third, the orthogonal version, which asise
(see Table VII in the Appendix 1), andv is ordered by from the other two by suitable scaling of rows and columns,
increasingr,. Then i.e., by slightly adjusting the signal model (explaineddvel

. in Section IV-E).

DTTy = diagocpn(f (k) - Pha; (28) The 16 DTTs can be divided into four groups of four each
i.e.,DTT, is a scaled polynomial transform and thus a Fourigvith respect to the polynomigb in the associated module
transform for the associated signal model (see Section).ll-B[z]/p (see Table IV). For example, thé€“group” comprises
Equation (28) implies that the chosen basis in the spectedl DTTs of types 3 and 4, which have the same module
componenit®, ., Clz]/(xz — o) is 1/ (o), 0 <k <n. M = C[z]/T,. The modules within the other groups differ

slightly, e.g., in theU-group that comprises the DTTs on

The DCT, type 3, was implicitly recognized as a polynomighe main diagonal in Table IV. The difference between the
transform in [10]. The DCTs and DSTs of types 1-4 Whergrrg yithin the same group is the choice of basis, which

recognized as (scaled) polynomial transforms in [11]. IthboiS one of T,U,V,W. As a consequence, these transforms

cases no connection to signal processing was establis be converted into each other using a sparse base change
The original derivation of the DCT, type 2, in [2] mentions(explained in Section IV-F)

Chebyshev polynomials but does not make use of this fact nor
connects to algebra.

Polynomial DTTs. Theorem 6 shows that each DTT is
a Fourier transform for a finite space model but in gener& Visualization
not the corresponding polynomial transform. Thus, we now
associate to each DTT its polynomial transfaRy,, obtained
by omitting the scaling factors in (28).

The right boundary conditions for the 16 finite space models
(24) are precisely the mirrored left boundary conditionat th
occurred already in Fig. 4. This makes it easy to obtain the
visualizations for (24). For example, Figure 5 shows theesas

Definition 7 (Polynomial DTTsLet DTT,, be given. We call associated with the DCTs of type 1—4.

the unique polynomial transforrR, , associated wittbTT,, i
by (28) the “polynomial DTT" and denote it Wit T'T,,. More formally, consider the model (25) as example. To
Thus, (28) can be rewritten as ""  obtain the visualization, we have to compute the shift matri
’ o(x). FromaVy = %VO + %Vl, zV; = %Vifl + %Vi+1, 1<
DTTTL = diag0§k<n(f(ak)) DTTn < n-—1 and xvnfl = %Vn72 + %Vn = %an2 +



TABLE IV
OVERVIEW OF THE16 DTTS AND THEIR ASSOCIATED SIGNAL MODELS THE LEFT BOUNDARY CONDITION (ROWS) DETERMINES A SCALING FUNCTION
f (cos® = z) AND THE BASISC € {T,U,V,W} IN M = Clz]/p(z) AND HENCE ®. THE RIGHT BOUNDARY CONDITION (COLUMNS) THEN
DETERMINESp(z) (GIVEN BELOW THE DTT) AND HENCE ALSO.A = M.

Sn — Sp—2 Sn Sn — Spn—1 Sn + Sn—1 f C

s_1=s1 DCT-1 DCT-3 DCT-5 DCT-7 1 T
2(z2 — )Up—2 Tn (x —1)Wp_1 (z+1)Vp_1

s_1=0 DST-3 DST-1 DST-7 DST-5 sind U
2T Un, Vn W,

s_1 =50 DCT-6 DCT-8 DCT-2 DCT-4 cos30 V
20 — 1V )Wp_1  Va 2(x — V) Up—1 2Tn

s_1=—-s9 DST-8 DST-6 DST-4 DST-2 sinlo W
2@+ DVp1 Wi 2T, 2+ 1)Up_1

TABLE V

THE VALUES 31, B2, 83, B4 FROM (30) FOR THE4 RESPECTIVE CHOICES
OF LEFT AND RIGHT BOUNDARY CONDITION

left boundary condition (31 2 right boundary condition 83 4

S_1 =81 0 2 Sn = Sn—2 2 0
s—1=0 0 1 sn =20 1 0
S_1 =S80 1 1 Sn = Sp—1 1 1
S_1 = —50 —1 1 Sn = —Sn—1 1 -1
Va1 mod (V;, — V;,_1), it follows that
11
1 1 0
dl)=5-| 0 1 (29)

1
0 1
11

h e A,
DTT, -¢(h) - DTT, ! = diagycgcn, (h(on)),  (31)

where thewy, are the zeros of(x). This unifies and explains
the result from [18]. Conversely, thigh) areall the matrices
diagonalized byDTT. The matricesp(h) have in all cases
structure: eachy(h) can be written as the sum of a Toeplitz
and a Hankel matrix, up to potential scaling factors. More
details are in [6].

As one example, fop(x) in (29) we get

DCT2, - ¢(z) - DCT-2,* = diagg< <, (cos(km/n)).

More generally, the DTTs diagonalize their associatéd) in

(30) via (31), which was also observed in [16] (wher@ —

2x) = 21I,, —2¢(z) was considered instead ¢fx)). This also

implies that thep(x) have pairwise distinct eigenvalues.
Equation (31) also provides the convolution theorems asso-

This is precisely the adjacency matrix of the second graph §fted with the finite space models.
Fig. 5 associated with the DCT of type 2. In words, applying
the DCT-2 to a signals implicitly imposes the structure of E. Orthogonal DTTs

this graph on that signal.
For an arbitrary finite space model (24)x) takes the form

B 1
B2 0
o(z) =3 01 (1) 5 (30)
. 3
1 B

with the 8; shown in Table V.

D. Filtering and Diagonalization Properties

Consider a finite space model (24) witA = M =
C[z]/p(x) and C-basisb (fixed by ) and associate®TT,,.
Let ¢ be the representation associated with the model.

Filtering in this model is the multiplication oh € A
(expressed in thel-basis) withs € M (expressed inb)
modulop to yield again a signal expressediinin coordinates,
hs modp is equivalent top(h)s.

It is well-known that the DTTs, as defined in Table I, are
almost orthogonal,” which means that after a suitableisgal
of rows and columns they become orthogonal. Using ASP, i.e.,
the knowledge of the DTTs’ underlying signal models (24),
these scaling factors can be derived as explained in [6] and
omitted here due to space limitations.

Another argument (following [16]) for the “almost orthog-
onality” of the DTTs is that they diagonalize the matrices
in (30), which are almost symmetric and have pairwise dis-
tinct eigenvalues as mentioned above. For exampleT-2
diagonalizes the symmetrig(z) in (29) and hence can be
made orthogonal by a suitable scalifiy- DCT-2, whereD
is diagonal.

F. Relationships Between DTTs

Some DTTs can be translated into each other using sparse
matrices. These relationships can be understood and derive
once their underlying signal models are known. We explained

The diagonalization properties of the 16 DTTs are a specihis in [9] (without using the notion of signal model) and
case of (11) and can be stated in a unified way. For any filteriefly restate the result for completeness. The origin es¢h
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relationships is similarity in the signal model, i.e., thato We denote the zeros &, by o) = cos(k + 1/2)7/n. As a

DTTs belong to the same group of four (e.g-group). consequence of the above, we get the diagram
Duality. We observed before that the right boundary condi- ,
tions for the DTTs are precisely the mirrored versions of the Clz]/ T Sn Clz]/T, (33)
left boundary conditions, a fact that meets our intuitiomcsi
the DTTs are based on symmetric space models. However, DCT-3, DCT-4,

the construction ofA = M = C[z]|/p for a given DTT

(see Theorem 6) deals differently with the left boundary @ Clz]/(z — a) D Clz]/(z — aw)
condition (which determines the choice of the base sequence. , . . . 2 _TETA L

C) and the right boundary condition (which determings Which implies the equatiolCT-3, = DCT-4,-5,,. Note that

Do . : we havel, in the bottom row of (33) since bothCT-3 =
thus, we obtain different DTTs for a given pair of boundar .
e : . CT-3 andDCT-4 are polynomial transforms and thus use
condition’s and for its mirrored counterpart. The ass@tat

pair of DTTs occurs in positions in Table IV that are mirrorect1he same basigl, ..., 1.) In the spectrum. Introducing the
at the main diagonal. We call such a pdual. Dual DTTs scaling diagonaD,, = diagy <, (cos(2k +1)7/(4n)) of the
occur at mirrored positions in Table 1V, i.e., at positiqasj), DCT-4 (see Table IV), we get

(j,1), 1 < 4,5 < 4, respectively. The DTTs on the main- D,, -DCT-3, = DCT-4, - S',. (34)
diagonal are self-dual. From [9]:

I’VL

If desired, this equation can now be further manipulated
through transposition or inversion. As an example, one can

Theorem 8 (Duality Relationship)et DTT,, and DTT/, be Obtain 1
a pair of dualDTTs. Then S, - DCT-2, - §D;1 = DCT-4,, (35)

whereS,, is S/, with the 2 replaced by 1 in the first entry and
without the scaling factot /2.

Other cases.Using this procedure on all DTTs shows that
where J,, is an identity matrix with the columns in reversedy| DTTs of types 1-4 and all DTTs of type 5-8 can be
order. As an important consequence of Theorem 8, dual DTdnverted into each other usiii@(n) operations, respectively
have the same arithmetic complexity. [9].

Relationships in groups of DTTs.Dual DTTs necessarily
have the same associatetl = M = C[z]/p. However, in
Table 1V, we also have DTTs that are not dual but have the
same or similatM, namely those in the same group of four In this section we introduce a new class of transforms that

(e.g., T-group). An example is given by the DCTs of type 3s closely related to the DTTs. We call these transfosksw
and 4 with M = C[z]/T;,. DTTs More specifically, the skew DTTs correspond to and

Further inspection shows that, in each group, all possibggnerallze the DTTs in th@—group, i.e., those with associated
left and right boundary condition’s are present. The DTTs it = " = Clz]/T5, which are the DTTs of type 3 and 4.
one group have (almost) the same module, but with differehfe first skew DCT (type 3) was introduced in [19].
bases. Thus, we can translate DTTs in the same group intdVe introduce the skew DTTs for the following reasons.
each other using a base change. Further, because of TablEI[fl: they are interesting from a signal processing pont o
the resulting base change matrices are sparse, i.e.,eaply VI€W- As the DTTs, they are associated with a finite space
O(n) operations. model, their associated boundary conditions are simpld, an

Ciampl: DCT. ype 3 and 4 0e considen0C1-5, and "3, 01 ension b shase v ooyl o toroni
DCT-4,,, which are both in thé&'-group, i.e., the associated ' y y 9 9

module isM = C[z]/T,,. The difference is in the choice of radix Cooley-Tukey type DTT algorithms derived in [7].
basis:

diagy<pen((—=1)F) - DTT,, = DTTY, - J,,,

V. FINITE SKEW C-TRANSFORM AND SKEW DTTSs

A. Constructing the Signal Model
DCT-3,: Clz]/T,, b= (To,...,Th-1),

DCT-4, : Clal/Tor ¥ = (Voo Vo 1), In the finite space models (24), we chose the right boundary

condition to ensure a monomial signal extension via Lemma 5.
. Now we relax this requirement and consider a more general
Using 7, = (Vz + Vi—1)/2 from Table Il andV_; = V4, the poundary condition for the four signal models in (24) for

corresponding base change matsix for b — b’ is given by which 4 = M = C[z]/T,. Namely we generalize to
A =M = Clz]/(T), — cosrm), r € Q, 0 < r < 1. For
2 1 r = 1/2, cosrm = 0, which is the previous case. Hence, the
1 0 11 Fourier transforms will generalize the DTTs in tlégroup
S, == . . (32) and depend on.
2 11 The right boundary conditions associated witfe]/ (T}, —

1 cosrm) depend on the basi€' € {T,U,V,W} and can be
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read off from Table IV: Definition 11 (Skew DTTshet p = T,, — cosrm, 0 < r < 1,

T, = cosrnm, and A = M = C[z]/p with basisb = (Cy,...,C,_1), Where
U, = U, _o+2cosrr, Cis one of T,U,V,W. Let a = (cosr;m)o<i<n denote the
V, = —V, ,+2cosrm, (36) list of zeros ofp in the order specified in Lemma 10. We
W, = W,_,—2cosrr. denote the associated polynomial transforfg, for M by

N DCT-3,(r), DST-3,,(r), DCT-4,,(r), DST-4,,(r), for C =
In the general case+# 1/2, these boundary conditions lead ton U, V,W, respectively. Further, we define for each of these

no monomial signal extensions, since this property unigueioyr DTT(r) the associatedcaledpolynomial transforms
defines the signal models for the 16 DTTs. However, it is

intriguing that the signal extension is “two-monomial,” ish DTT, (r) = diagy<; -, (f(cosrim)) - DT T, (r),
means that the sum in (7) has at most two summands. B

_ where f is the scaling function associated with the (ordinary)
Lemma 9The moduleC[z]/(T;, — cosrm) with T-, U-, V-, DTT (see Table IV). We call these transforrakew DTTs
or W-basis has a two-monomial signal extension. If r =1/2, thenDTT,(1/2) = DTT,, and DTT,,(1/2) =
TT,, in all four cases. In the case of tHeCT-3,(r) =

Prpof: The proof gnd the exact form of the S'gnag;CT-&,(r), we will omit the bar for the skew versions.
extension can be found in [6].

Resulting finite space modelWe define four skew finite Specifically,

space models parameterizediby Q,0 < r < 1forV = C". DCT-3 _ 1l ,
Namely, forC € {T,U,V,W}, () [C.Ob rifrlogk e<n,
DST-3,(r) = [sinrg(£+ D)7]o<k.e<n,
A=M= C[ﬁ}/(Tn — Cos T,]T) (37) DCT-4n(7’) = [COS Tk(e + 1/2)’/T]0§k’g<n,
D1 8= ) gckan KOk €M, DST-4,(r) = [sinri(l+ 1/2)7]o<k.ocn.

As in (24), the natural basis ofl is the T-basis: A = {h = _ _

S o<wen Tk}, independent ofC. For r = 1/2, the skew As an example, we consider thBCT-43(1/3). Using

models reduce to their non-skew counterpart in (24). Lemma 10, the zeros dfy — cos(r/3) = T3 —1/2 are given
by a = (cos(n/9), cos(57/9), cos(77/9)). We get

B. Spectrum and Fourier Transform: Skew DTTs 1 1 5
COS ﬁﬂ' COS 67T COS ET(

To compute the spectrum and a Fourier transform for the 5 5 11
) . DCT-45(1/3) = = 2 =
four models (37), we first need to determine the zerds,of 3(1/3) COS1gM COSEM  COSagm

e ;5 1
cosrm and fix a proper ordering. COS fgm  COSGM  COSgT

6

Lemma 10Let r € Q, 0 < r < 1. We have the factorization

T, — cosrm = 2"~ ! H (z — cos Ttbmﬁ)v (38)
0<i<n

C. Filtering and Diagonalization Property

Filtering in the models (37) is multiplication of polynonsa
) . heA s e M modulop = T,, — cosrm. In coordinates, it
which determines the zeros f, — cos rm. We order the zeros pecomes the matrix-vector multiplicatiorh)s, whereg is the

asa = (cosrom, ..., cosm, 1), such that) < r; <1, and  yepresentation associated by the respective model. Qatiwol
r; <r; fori < j. The lista is given by the concatenation  theorems are special cases of (11).

o = U (cos ™2, cos 2=Tt2irr) As an example, we compute th_e_ shift _m_atd»(x): It is
0<ion/2 computed frpm (_30) and (36). _SpeC|f|caIIy, it is obtainedhiro
(30) by adding in the upper right corngi(r) = cosrn for
for evenn, and by DCT-3(r), andB(r) = 2 cos rn for the other skew transforms.
Hence,
o= U (cos "2y, cos 22220 rr) | U (cos H2=L7r) .
0<i< 2zt gz 0 1 o
for oddn. In the particular case of = 1/2 or cosrm = 0, we () = L4010 - (39)
thus haver = (cos(i+1/2)7/n | 0 < i < n) as in Table VII. R 1 -1 ’
Proof: The zeros off,, — cosrm are proved using the (1) gi
closed form ofT,, in Table VII. The ordering ofx is shown
by inspection. We omit the details. B The values for the3; coincide with the non-skew cases given

In words, the listw arises from the listy = (cos(r+2é)7/n | in Table V. As a consequence, in the four cases,
0 <i < n) in (38) by interleaving the first half of with the
reversed second half of. DTT(r) - ¢(z) - DTT(r) " = diag(a),
Lemma 10 yields the Fourier transform for the models (37).
We omit the form (8) and give directly the matrix forrfs ~ where« is the list of zeros off}, — cosrm from Lemma 10.
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D. Translation into Non-Skew DTTs which implies DCT-3,,(r) = DCT-4,(r) - S,,. The first
Each of the skew DTTs can be translated into its non-skdlifference occurs when we extend (40) to the non-polynomial

counterpart using a sparse x-shaped matrix. DCT-4,(r), since the scaling diagonal dependsrohet o =

(ao, ..., an—1) denote the zeros df, —cos rm and f the scal-

Lemma 12Let DTT, (r) be a skew DTT. Then ing function of DCT-4 and letD,,(r) = diagy<y,, (f(ax)).
DTT,(r) = DTT,-X(r), and Then

Dy (r) - DCT-3,(r) = DCT-4,(r) - S

n?

i (41)
DTT,(r) = DTT,-X{(r). , ,

) ~ Wwhich generalizes (34).
Here, X, “(r) depends on the DTT and takes the following In Section IV-F, we continued by inverting this equation to
forms, indicated by € {C3,53,C4, S4}. In all four cases, derive the different relationship (35). To do this, we inlice

if the lines intersect, the numbers are added at the intigmgec the proper “inverse” skew DTTs, which will also be needed in

position. the DTT algorithms derived in [7] The definition is motivated
1 0 «-v ee- 0 by and a generalization of the equations
0 Sn—1 DCT-3;' = 2/n-diag(1/2,1,...,1)-DCT-2,
X3 ()= | : ' ' , DST-3,' = 2/n-diag(l,1,...,1/2)-DST-2,
: _ _ DTT,! = n/2-DTT. =n/2-DTT,
0 s Cn—1 for DTT = DCT-4,DST-4.
“ “Sn-1 0 Definition 13 (Inverse Skew DTT8/e define the inverse
skew DTTshy
(93) —
Xpr) = . . e iDCT-3,(r) = n/2- diag(2,1,...,1) - DCT-3,(r)",
—51 1 0 iDST-3,(r) = n/2-diag(1,1,...,2)-DST-3,(r)" 1,
0 e 0 e iDCT-4,(r) = n/2-DCT-4,(r)"%,
with ¢, = cos(1/2 — r)ér/n and s, = sin(1/2 — r)lmw/n. iDST-3,(r) = n/2- DST-4,(r)"".
“ Sn-1 Thus, forr = 1/2, we haveiDCT-3,(1/2) = DCT-2,,
o iDST-3,(1/2) = DST-2,, iDCT-4,(1/2) = DCT-4,,
X H(r) = o ; iDCT-4,(1/2) = DCT-4,.
s} ' ' o Note that Definition 13 does not provide direct knowledge

about the matrix entries of thdDTTs. These, however, can

o, e
with c; = cos(1/2 = r)(20 + 1)r/(2n) ands; = sin(1/2 = o oompited using Lemma 12. For example

r)(2¢+1)7/(2n). ForDST-4(r), the siness; in x5 (r) are (©3) .
multiplied by —1. iDCT-3,(r) = (Xn “(r))  -DCT-2,,

_ 42
iDCT-4,(r) = (X ()" DCT-4,, (42)

Proof: Follows by direct computation, using the defi-
nitions of the matrices andos(z)cos(y) = (cos(z + y) + and similarly forDST-3 andDST-4. Note that(X,({“)(r))_1
cos(z —y))/2. B has in all four cases the same x-shaped pattermXag-).
Note that the2 x 2 blocks in the translation matrices, (r) are  Namely, the four inverses are derived from
not rotations. The identities in Lemma 12 enable the ineersi

of the skew DTTs through the inversion of the ordinary DTTs.  |Cosa@ sinb| 1 cosb  —sinb|
sina cosb cos(a+b) |—sina cosa
E. Relationships Between Skew DTTs For example,
All skew DTT(r) share the same associated module, but (@3 ()L
different bases. Thus they can be translated into each bther ( n (r)) -
a base change similar to the ordinary DTTs in Section IV-F. L U 0
As in that section, we consider the skew DCTs, type 3 and 0 cna —Sn—1
4 as an example. The base change mattjxwe computed 1

in (32) did not depend on the right boundary condition. Thus, cos(1/2 —r)mw
the diagram (33) generalizes for arbitraryo

0 —S81 C1
S/
Clx]/(T,, — cosrn) ——————= C[x]/(T,, — cosrr) Using Definition 13, we can now invert (34) to get a
generalization of (35),
iDCT-?:n(r) iDCTAn(T) 1
I, S, -iDCT-3,(r) - =D, (1)~ = iDCT-4(r),,,
& Clal/(z — o) & Clal/(z - an) )3 nlr) )

(40) wherelsS,, is the same as in (35).
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(KLT) of a first-order causal Gauss-Markov random process.
For a closer investigation of the relationship between KLTs
and DTTs and between KLTs and general Fourier transforms
in ASP see [20], [6].

By identifying the signal models underlying the DTTs,
we also identified their associated notions eftfansform,”
filtering or convolution, and explained in one framework yan

A=M P F =Py other 7
Clz]/(a® = V)Un—z s— S s Tk  DCT-1, —
Clz]/Tn DCT-3, —
Clz]/(x — 1)Wp—1 DCT-5, —
Clz]/(z + 1)Va-1 DCT-7, —
Clz]/(Tn — cosrm) DCT-3,(r) —

— fast
(C[ac]/Tn S+ Z Sk Uk DST-37L DST-3n
Clx]/Un DST-1, DST-1, O
Clz]/Vn DCT-7n DCT-7,,
Clz]/Whn DST-5,, DST-5,,
Clz]/ (T — cosrm) DST-3(r)n ~ DST-3,(r)
Cla)/(z—)Wn-1 s sV DCT6,  DCT-6, with
Cla]/ Vi DCT8,  DCT-8, the
Clz]/(x = 1)Up—1 DCT-2, DCT-2,, 2-D
Clz]/Tn DCT-4, DCT-4,,
Clz]/(Tn — cosrm) DCT-4(r), DCT-4,(r)
Clz)/(x +1)Vno1  S— > s;Wi DST-8, DST-8,,
Cla]/Wn DST6, DST-6,, [
Clz]/Tn DCT-4, DCT-4, 2]
Clz]/(z + 1)Un—1 DST-2,, DST-2,,
Cl2]/(Tn — cosrm) DST-4(r),  DST-4,(r) [3]

(4

VI. OVERVIEW OF FINITE SPACE MODELS (5]

In Table VI we list all the finite space signal models, and€l
their associated Fourier transforms, that we introducetthis [7]
paper. The table is divided according 49 which is a finite
T-, U-, V-, or W-transform.

In each row, we list in the first two columns the signall®
model, in the third column the associated unique polynomial
Fourier transform, and in the fourth column possibly othei9]
relevant Fourier transforms for the model.

Except for the skew DTTs, each of the listed transforms hag
an orthogonal counterpart, which is obtained by propeilirsgal
of rows or columns.

Table VI, together with [1, Table Ill] for finite 1-D time
models classifies practically all existing 1-D trigononetr
transforms, i.e., those transforms that can be expressed u$!?l
cosines and sines. For each of these transforms, ASP hence
provides the associated signal model and with it all bagits]
SP concepts, many of which have not been defined or fouldl
before. [15]

(11]

VIl. CONCLUSIONS [16]

This paper shows that a theory of linear signal processing
can be developed from a new concept of shift that is differelf]
from the standard time shift, namely from the space shift as
we call it. Using the algebraic signal processing theory, ws]
derived from this shift appropriate signal models for space
signal processing, i.e., filter algebras, signal moduled,“a- g,
transforms.” In the finite case this approach derived frosiba
principles the 16 DTTs as Fourier transforms. This interprizo]
tation is arguably more satisfying than the original one as
asymptotic approximations of the Karhunenelve transform

of the known properties of the DTTs. In [7], [9] we use the
knowledge of these signal models to derive known and novel

DTT algorithms.
ne may wonder which other shifts provide meaningful SP

frameworks and ASP is the proper platform to investigate thi
guestion. We have done first steps in this direction with a
generalization of the space shift (called GNN shift) in @&hd

2-D space shifts for both the quincunx lattice [21] and
hexagonal lattice [22]. The latter two yield non-sepbra
signal models.
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APPENDIX |
CHEBYSHEV POLYNOMIALS

Chebyshev polynomials, and the more general class of
orthogonal polynomials, have many interesting propedied
play an important role in different areas of mathematics, in
cluding statistics, approximation theory, and graph thean
excellent introduction to the theory of orthogonal polynals
can be found in the books of Chihara, Sae@nd Rivlin
[23], [24], [25]. In this section we give the main properties
of Chebyshev polynomials that we will use in this paper.

We call every sequenc€ = (C),),cz Of polynomials that
satisfies the three-term recurrence

Chnt1(z) = 22Cp () — Ch_1(x) (43)

a sequence o€hebyshev polynomialg” stands for Cheby-
shev). Using (43), the sequence is uniquely determined
by the initial polynomialsCy, C;. The most important—and
commonly known—are the Chebyshev polynomials offtret
kind, denoted byC,, = T,, and determined by, = 1 and
T, = x. We provide a few examples:

T, T, T, T, T T,
222 -1 =z 1 = 2x2—1 423 -3z

Forz € [-1,1], T,, can be written in closed form as
T, =cosnfl, cosf = x. (44)

The closed form exhibits theymmetry property_,, = T,
n € 7Z, and can be used to derive the zerosigf We will
occasionally use another parameterizationIqf which we
call power form, given by
n —-n -1
AR e S N (45)
2 2
By substitutingu = 7% we obtain (44).

In this paper, we also consider the Chebyshev polynomi:
of the second, third, and fourth kind, denotedy, V,,, W,
respectively, that arise fro@; = 1 and different choices of
C1. Each of these sequences exhibits a symmetry property ¢
possesses parameterized forms. These properties are su

doctoral Researcher at Mathematics and Computer
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TABLE VI

FOUR SERIES OFCHEBYSHEV POLYNOMIALS. IN THE TRIGONOMETRIC CLOSED FORMo0s § = x AND IN THE POWER FORM(u + uil)/Z =x.

Cn, mn=0,1 closed form power form symmetry zer@B@ < k < n)
n__, —n k+1
T. Lz cos(n@) % T_n =Tn cos %
sin(n+1)6 utl_gy— (241 _ (k+D)m
Un 1,2z n 91 T U_p =—Un_2o cos n+11
cos(n+3)60 W t1/2 4, —(n41/2) _ (k+3)m
Vn 1,2z -1 COS%G wl/244—1/2 Von =Vao cos n+%
sin(n+4)0 wnt1/2 4 —(n+1/2) o (k+D)7w
Wn 1,21‘+ 1 sin %6 ul/2_y—1/2 Wen=-Wn_1 cos n+%
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