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Algebraic Signal Processing Theory:
Foundation and 1-D Time

Markus P̈uschel and José M. F. Moura

Abstract— This paper introduces a general and axiomatic
approach to linear signal processing (SP) that we refer to as
the algebraic signal processing theory (ASP). Basic to ASP is
the linear signal model defined as a triple (A, M, Φ) where
familiar concepts like the filter space and the signal space
are cast as an algebraA and a module M, respectively.
The mapping Φ generalizes the concept of az-transform to
bijective linear mappings from a vector space of signal samples
into the module M. Common concepts like filtering, spectrum,
or Fourier transform have their equivalent counterparts in
ASP. Once these concepts and their properties are defined and
understood in the context of ASP, they remain true and apply to
specific instantiations of the ASP signal model. For example, to
develop signal processing theories for infinite and finite discrete
time signals, for infinite or finite discrete space signals, or for
multidimensional signals, we need only to instantiate the signal
model to one that makes sense for that specific class of signals.
Filtering, spectrum, Fourier transform, and other notions follow
then from the corresponding ASP concepts. Similarly, common
assumptions in SP translate into requirements on the ASP
signal model. For example, shift-invariance is equivalent toA
being commutative. For finite (duration) signals shift invariance
then restricts A to polynomial algebras. We explain how to
design signal models from the specification of a special filter,
the shift. The paper illustrates the general ASP theory with
the standard time shift, presenting a unique signal model for
infinite time and several signal models for finite time. The latter
models illustrate the role played by boundary conditions and
recover the discrete Fourier transform (DFT) and its variants as
associated Fourier transforms. Finally, ASP provides a systematic
methodology to derive fast algorithms for linear transforms. This
topic and the application of ASP to space dependent signals and
to multidimensional signals are pursued in companion papers.

Index Terms— Signal model, filter, Fourier transform, bound-
ary condition, signal extension, shift, shift-invariant, z-transform,
spectrum, algebra, module, representation theory, irreducible,
convolution, polynomial transform

I. I NTRODUCTION

Linear signal processing (SP) is built around signals, filters,
z-transform, spectrum, Fourier transform, as well as other
concepts; it is a well-developed theory for continuous and
discrete time. In linear signal processing, signals are modeled
as elements of vector spaces over some base field (usuallyR
or C) and filters operate as linear mappings on the vector
spaces of signals. This paper presents an algebraic signal
processing theory (ASP) forlinear signal processing. ASP
starts with three basic objects: 1) an algebra1 A of filters,
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1The term algebra here is used to describe a specific algebraicstructure
that is introduced later, and not the mathematical discipline.

2) an A-module M of signals, and 3) a bijective linear
mappingΦ from a coordinate vector spaceV into M that
generalizes thez-transform. These objects form the triple
(A,M,Φ), which we refer to as thesignal model. In principle,
many signal models(A,M,Φ) are possible; knowing which
models arise in common SP applications, or which models
should be associated with a given linear transform, or how
to develop signal models which reflect desired properties are
relevant questions. We address these questions by fixing, i.e.,
choosing, ashift operator that generates the algebraA of
filters, and by showing that standard properties in SP translate
into corresponding requirements for the signal model. For
example, shift-invariance forces the algebraA to be commu-
tative. If the signals are finite—and for now assuming one
dimensional (1-D) signals—this requiresA to be apolynomial
algebraC[x]/p(x), which is the space of polynomials modulo
the fixed polynomialp(x). Hence, polynomial algebras are a
key structure in ASP.

We present the ASP equivalents of filtering, spectrum,
Fourier transform, frequency response, and other common
signal processing concepts. Once defined and their properties
derived in the framework of ASP, it is simple to identify
these concepts for concrete examples of ASP signal models.
We consider explicitly infinite (duration) and finite (duration)
discretetime signals. For the corresponding infinite discrete
time signal model, the Fourier transform is the discrete time
Fourier transform (DTFT). For finite discrete time signals,
we can have several signal models; for example, assuming
shift-invariance, a common signal model setsA = M =
C[x]/(xn−1) for which the corresponding Fourier transform is
the discrete Fourier transform (DFT). For other finite discrete
time models, the Fourier transform becomes the real DFT
(RDFT) or the discrete Hartley transform (DHT). In [1], we
consider shift-invariant signals indexed by 1-D lattices;we call
them 1-Dspacesignals. In their signal models, the polynomial
p(x) in A is a Chebychev polynomial and their Fourier
transforms are the 16 variants of the discrete trigonometric
transforms (DTT), e.g, the discrete cosine transform (DCT)
and the discrete sine transform (DST). The ASP framework
can be applied to signals in higher dimensions. References [2],
[3] instantiate ASP for 2-D signals indexed by the quincunx
and hexagonal lattices. The Fourier transforms for these mod-
els are novel non-separable 2-D linear transforms.

Besides representing a unifying framework for existing or
new signal processing theories in 1-D or higher dimensions,
ASP also provides the means to concisely derive fast algo-
rithms for Fourier transforms in its many instantiations. For
example, in [4], [5], [6], [7], we derive from a few basic ASP
principles many dozens fast algorithms including many new
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ones, such as general-radix Cooley-Tukey type algorithms for
various DCTs and DSTs. We also apply the theory in [8] to
derive fast algorithms for novel 2-D transforms.

A longer version of this paper is available in [9]. Early work
on the algebraic approach to linear transforms appeared in [4].

Related work. To date algebra has not been a mainstream
tool in signal processing. However, we can identify two
important algebraic research directions in signal processing:
the algebraic derivation of fast Fourier transform algorithms
(FFT) and Fourier analysis on groups.

The rediscovery of the (standard) FFT by Cooley-Tukey
[10], [11] spawned research on the derivation and optimization
of DFT algorithms. Key in this work was recognizing the well-
known connection between the DFT and the cyclic group, or
equivalently the polynomial algebraC[x]/(xn − 1), and to
use algebra in the algorithm derivation (e.g., [12], [13]).A
similar approach underlies Winograd’s seminal work on the
multiplicative complexity of the DFT, which produced a new
class of DFT algorithms [14], [15]. The first book on FFTs by
Nussbaumer makes heavy use of the algebraic interpretation
of the DFT [16].

Fourier analysis on groups is classic in mathematics, going
back to the 19th century [17]. In signal processing, general
commutative and finite groups were considered in [18] (in-
cluding fast algorithms) and are essentially associated with
DFTs (of arbitrary dimension). The first proposition of non-
commutative groups in SP is due to Karpovsky [19] but it
has not found many applications. Notable exceptions include
Fourier analysis on the symmetric group to study ranked data
[20], on the 2-sphere [21], and on wreath product groups for
multi-resolution analysis [22]. Each of these examples is in
ASP terms a specific choice of a signal model.

In all this work, groups and group algebras are the algebraic
objects of choice. Since shift-invariance requires commutative
algebras, as we assert, we need to go beyond group algebras
to capture other linear transforms, like the DTTs, within one
algebraic framework.

Algebra has played a more significant role in other areas
like for example system theory and coding. Algebraic system
theory was started in the seminal work of Kalman (see
Chapter 10 in [23]) and further developed by others, including
[24], [25], [26]. Polynomial algebras play a crucial role but
are used differently than in ASP, namely, to study realization,
controllability, and observability in linear systems. Similarly,
algebraic coding theory is standard [27] and makes heavy use
of polynomial algebras. One reason is that finite fields are
polynomial algebras over prime-size fields, but polynomial
algebra also provide the structure for certain linear codes(e.g.,
cyclic codes).

Organization. We start by identifying the algebraic struc-
ture and basic assumptions underlying SP in Section II and
introduce the concept of signal model on which ASP is built.
Section III captures and derives basic SP concepts from a given
signal model. In Section IV we specialize ASP to finite, shift-
invariant SP which means signal models built from polynomial
algebras. Section V constructs infinite and finite 1-D time
models from basic assumptions and gives detailed insight into
possible choices and the need for boundary conditions. We

conclude with Section VI.

II. FOUNDATION: SIGNAL MODEL

As stated in the introduction, by SP we meanlinear signal
processing. In this section, we first explain why SP naturally
falls into the framework of algebra and then define the
signal model. Once a signal model is given, spectrum, Fourier
transform, and other SP concepts are automatically defined as
we will show in Section III.

A. The Algebraic Structure in Signal Processing

Algebra studies algebraic structures. An algebaric structure
is a set (or a collection of sets) with operations (such as
addition and multiplication) that satisfy certain properties
such as the distributive law. Examples of algebraic structures
include groups, rings, fields, and vector spaces. Each one of
these spawns its own structure theory. For example, linear
algebra is the theory of vector spaces. Hence, to investigate
the algebraic structure in SP, we start by identifying the crucial
sets and their available operations.

Sets.The basic sets used in SP are the set of signalsM
and the set of filtersA.

Operations. The set of signalsM is usually assumed to
be avector space: signals can be added and multiplied by a
scalarα (from the base field), to yield a new signal. Formally,

signal+ signal = signal,

α · signal = signal.

The structure of a vector space gives access to dimension,
basis, linear mapping, subspace, and other related notions.

In SP, signals are processed by linear systems2, commonly
calledfilters. In block diagram form

signal - filter - signal (1)

By writing the filter operation formally as multiplication·
we can write (1) as

filter · signal = signal.

Multiplication of a signal inM by a filter in A can take
different forms depending on the representation of signals
and filters, e.g., convolution (in the time domain), standard
multiplication (in thez-transform domain), or any other ade-
quate form, as long as certain properties are satisfied, e.g., the
distributive law:

filter · ( signal + signal )
= filter · signal + filter · signal.

Next, we determine the algebraic structure of the filter space
A. Filters can be added, multiplied, and multiplied by a scalar
α from the base field; formally,

filter + filter = filter (parallel connection),

α · filter = filter (amplification),

filter · filter = filter (series connection)

2We only consider single-input single-output linear (SISO)systems in
this paper. Extensions to multiple-input multiple-output (MIMO) systems are
under research.
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The first two makeA a vector space. In addition, multipli-
cation in A is defined, which is not the case inM. Note
that multiplication of two filters and multiplication of a filter
(element ofA) and a signal (element ofM), though written
using the same symbol·, are algebraically different.

Algebraic description. Sets with the above operations are
well-known in algebra. The filter space is analgebraA (i.e.,
a vector space that is also a ring, i.e., with multiplicationof
its elements defined). It operates on the signal vector space
M, making the signal spaceM anA-module. The operation
of A on M is filtering.

set of filters/linear systems= algebraA
set of signals = A-moduleM

The exact definitions of algebra and module are given in
Appendix I. The theory of algebras and associated modules
is known as therepresentation theory of algebras. For an
introduction to representation theory, we refer to [28], [29],
[30].

Example: Infinite discrete time. In infinite discrete time
SP, the algebra commonly used consists of filters whose
z-domain representation has absolute summable coefficient
sequences3

A = {h =
∑

n∈Z

hnz−n | h = (. . . , h−1, h0, h1, . . . ) ∈ ℓ1(Z)}.

(2)
We use bold-faced symbols likeh to denote coordinate repre-
sentations, i.e., sequences of scalars from the base field (such
as C). The corresponding element of an algebra (or module
below) is written unbolded likeh.

The associated module is commonly assumed to be the
space of finite energy signals, in thez-domain given by

M = {s =
∑

n∈Z

snz−n | s = (. . . , s−1, s0, s1, . . . ) ∈ ℓ2(Z)}.

(3)
We provide a proof thatM in (3) is indeed anA-module

(i.e., closed under filtering) in [9].
Note that in ASP we considerA andM as spaces of series

and not immediately as spaces of complex functions. This
means that the difference between, e.g.,sands is that the latter
makes a basis explicit for which the former is the coordinate
vector.

B. Signal Model

ASP provides an axiomatic approach to SP. It does so by
identifying the fundamental objects that are needed to develop
an SP theory.

Clearly, we need filter and signal space, i.e., an algebra
and an associated module as explained above. However, in SP
applications, signals are usually identified as elements ofa
vector spaceV and not as elements of modules. For example,
in the discrete case, which is the focus of this paper, signals
are infinite or finite sequencess of numbers from the base field
(which we assume to be complex for now) over some index

3Replacingℓ1 with ℓ2 in (2) destroys the algebra structure: the concatena-
tion or multiplication of twoℓ2 filters is in general not anℓ2 filter.

rangeI: s∈ CI . For finiteI = {0, . . . , n−1}, V = CI = Cn;
for I = N, Z, we usually considerV = ℓ1(I) or V = ℓ2(I).

To define filtering, we need to assign toV a moduleM with
associated algebra (i.e., filter space). This is done through a
bijective linear mappingΦ : V → M. For example, in infinite
discrete time SP,Φ is the well-knownz-transform

Φ : ℓ2(Z) → M
s 7→ s = S(z) =

∑

n∈Z
snz−n,

(4)

whereM is defined in (3).
As we will show later, the three objectsA, M, andΦ are

indeed sufficient to develop a theory of SP, e.g., to define
spectrum, Fourier transforms, and other concepts. Hence we
collect these objects in a triple called asignal model.

Definition 1 (Linear Signal Model)Let V ≤ CI be a vector
space of complex valued signals over a discrete index do-
main I. A discrete linear signal model, or just signal model,
for V is a triple (A,M,Φ), whereA is an algebra of filters,
M is anA-module of signals withdim(M) = dim(V ), and

Φ : V → M (5)

is a bijective linear mapping. IfA,M are clear from the
context, we sometimes refer toΦ as the signal model. Further,
we transfer properties fromM to the signal model. For
example, we say the signal model is finite, ifM is finite-
dimensional.

Example: Infinite discrete time model. Continuing the
previous example, the signal model usually adopted for infinite
discrete time SP is

(A,M,Φ) (6)

with A from (2), M from (3), andΦ from (4).
Remarks on the signal model.If M is of dimensionn

with basis4 b = (b0, . . . , bn−1) ands∈ Cn, then

Φ(s) = s =

n−1
∑

i=0

sibi (7)

defines a signal model forV = Cn. Conversely, ifΦ is any
signal model forV with canonical basisei (ith element inei

is 1; all other elements are 0), then the list of allbi = Φ(ei)
is a basis ofM (sinceΦ is bijective) and thusΦ has the form
in (7). In other words, the signal model implicitly chooses a
basis inM andΦ is dependent on this basis.

Definition 1 makes it possible to apply different signal mod-
els to the same vector of numbers. For example, application
of a DFT or a DCT to compute the spectrum of a finite-length
vectors implicitly adopts different signal models for this vector
(Section V-B and [1]).

We remark that Definition 1 of the signal model and the
algebraic theory extend to the case of continuous (index)
signals. However, in this paper, we will not pursue this
extension and limit ourselves to discrete (index) signals.

4In this paperb will always denote a basis andbi always basis elements,
i.e., elements (or signals) inM, which should not be confused with scalars
such assi, hi.
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III. A LGEBRA AND SIGNAL PROCESSING

We claimed that, given a signal model for a vector spaceV ,
the major ingredients for SP onV are automatically defined.
This section confirms this claim. We show that signals, filters,
convolution, spectrum, Fourier transform, frequency response,
shift, shift-invariance have their abstract analogue in ASP and
can be derived from the signal model. Understanding and
exploiting the benefits of this connection between SP concepts
and their algebraic equivalents helps us to develop new SP
frameworks, or signal models, different from standard time
SP.

In this section we assume a given signal model(A,M,Φ)
for a vector spaceV ≤ CI with

Φ : V → M, s 7→
∑

i∈I

sibi. (8)

As remarked before, this implies that thebi form a basis for
M. This basis is automatically fixed by the model. Further,
we assume that the base field isC, i.e., bothA andM are
C-vector spaces. Other base fields are of course possible.

As a running example, we use the infinite discrete time
model in (6).

A. Basic Algebraic Versus SP Concepts

Algebra (filter space).The filters are given by the elements
h ∈ A. Serial and parallel connection of filters are defined
through the properties ofA (see Appendix I).

As seen before, in infinite discrete time,A is given by (2).
Module (signal space).The signals are the elementss ∈

M. Filtering is automatically defined as the operation ofA
on M and h · s ∈ M is ensured by the axioms defining the
module.

The basis elementsbi of M fixed by the model via (8) are
the impulses. The impulse response of a filter for this impulse
is hbi ∈ M.

In infinite discrete time,M is given by (3). The impulses
are thebi = z−i.

Regular module (filter space = signal space).An impor-
tant module associated with an algebra is theregular module
which isA itself:M = A with the operation ofA onM being
the multiplication available inA. We call a signal model with
M = A a regular signal model. Note that even ifA = M
as sets, the algebraic structures ofA and M (i.e., which
operations are allowed) are different.

The infinite discrete time model in (6) is not regular.
Representations (filters as matrices).As a consequence

of the module axioms (Appendix I), a fixed filterh ∈ A can
multiply every signals ∈ M and defines a linear mapping on
M given by

s 7→ h · s. (9)

Thus, with respect to the basisb = (bi)i∈I fixed via (8), every
h is expressed by a matrixMh (possibly, countably infinite if
|I| is countably infinite). As usual with linear mappings,Mh is
obtained by applyingh to each base vectorbi; the coordinate
vector of the resulthbi is the ith column ofMh.

By constructingMh for every filter h ∈ A, we obtain a
mappingφ from the filter algebraA to the algebra of|I|× |I|
matricesC|I|×|I|:

φ : A → C|I|×|I|, h 7→ φ(h) = Mh. (10)

The mappingφ is a homomorphismof algebras, i.e., a
mapping that preserves the algebra structure (see Defini-
tion 8 in Appendix I). In particular,φ(h + h′) = φ(h) +
φ(h′) and φ(hh′) = φ(h)φ(h′). The homomorphismφ is
called the(matrix) representation ofA afforded by theA-
moduleM with basis b and is fixed by the chosen signal
model.

Through the representation, abstract filtering (multiplication
of s ∈ M by h ∈ A) becomes in coordinates a matrix-vector
multiplication:

h · s ⇔ φ(h) · s. (11)

This coordinatization of filtering also shows the fundamental
difference between signals and filters; namely, in coordinates,
signals become vectors, and filters (as linear operators on
signals) become matrices.

In the infinite discrete time model, as is well-known, the
φ(h) are infinite Toeplitz matrices.

Irreducible submodule (spectral component).If M is
an A-module, then a subvector spaceM′ ≤ M is an A-
submoduleof M if M′ is itself anA-module, i.e., closed or
invariant under the operation ofA. Most subvector spaces fail
to beA-submodules; intuitively, the smaller the vector space
M′ is, the harder it is to remain invariant underA.

A submoduleM′ ≤ M is irreducible if it contains no
proper submodules, i.e., no submodules besides the trivial
submodules{0} andM′ itself.

In particular, every one-dimensional submoduleM′ has to
be irreducible and is an eigenspace simultaneously for all
filters h ∈ A; i.e., hs = λhs for all s ∈ M′ with a suitable
λh ∈ C. We call each irreducible module a spectral component
of M and each element in it apure frequencyand write f
instead ofs to emphasize it.

We write the collection of all irreducible submodules as
Mω, ω ∈ W , whereW is a suitable index domain.

In the infinite discrete time model, there is an irreducible
submoduleMω of dimension one for everyω ∈ (−π, π],
spanned by

fω = Fω(z) =
∑

n∈Z

ejωnz−n.

Indeed, for arbitraryh = H(z) ∈ A,

hfω = H(ejω)fω ∈ Mω, (12)

which confirms thatMω is anA-module.5

Irreducible representations (frequency response).We
choose in each irreducible module, or spectral componentMω

of M a basisbω. ThenMω affords a representationφω of A
called irreducible representation:

φω : A → Cdω×dω , h 7→ φω(h),

5To be precise,Mω is an A-module but not asubmodule ofM since
fω 6∈ ℓ2(Z)—a problem with infinite index domains. Besides that the theory
remains intact.
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spectrumMω, ω ∈ W

filter algebra

Fig. 1. A visualization of the concept Fourier transform, which decomposes
the A-module M into a direct sum of irreducible (minimal)A-invariant
subspaces, i.e.,A-submodules. The latter are called the spectrum ofM.

wheredω = dim(Mω). The matrixφω(h) is the frequency
response ofh at frequencyω. The collection of allφω(h),
ω ∈ W , is the frequency response ofh.

In infinite discrete time, (12) shows thatφω(h) = H(ejω) ∈
C1×1 = C as expected.

Module decomposition (spectrum, Fourier transform).
It may be possible to decompose the moduleM into a direct
sum of its irreducible modules. The mapping

∆ : M →
⊕

ω∈W Mω,
s 7→ (sω)ω∈W .

(13)

is then the Fourier transform for the signal model and is
invertible.6 The existence of such a decomposition, and hence
of the Fourier transform, is not guaranteed; it depends onA
andM. See Fig. 1 for a visualization of the Fourier transform.

With respect to the fixed basisb of M and chosen bases
bω ∈ Mω, we obtain the coordinate form of∆ as

F : V →
⊕

ω∈W Cdim(Mω),
s 7→ (sω)ω∈W .

(14)

In infinite discrete time, fors = S(z) ∈ M, i.e., s ∈
ℓ2(Z), dim(Mω) = 1, ω ∈ (−π, π], i.e., all modules
are of dimension1, and the tuple(sω)ω∈W is a (scalar)
function F(s) = S(ejω), ω ∈ (−π, π]. This is in general
not the case; differentω may be associated with modules of
different dimensions. An example is the real discrete Fourier
transform (RDFT) discussed in Section V-C.

The Fourier transform is anA-module homomorphism (see
Definition 9 in Appendix I), which means that∆(h · s) =
h ·∆(s) for h ∈ A, s ∈ M. In words, this means that filtering
in the signal spaceM is equivalent to parallel filtering in the
spectrum (as visualized in Fig. 1):

(h · s)ω = h · sω, for all ω ∈ W. (15)

∆(h ·s) = h ·∆(s) also yields a general convolution theorem:

h · s = ∆−1(h · ∆(s)). (16)

6The spectral componentssω of s should not be confused with the
coordinatessℓ of s.

B. Shift-Invariance

Section III-A illustrated that once a signal model is given,
basic SP concepts are available. From a practical point of view,
this means that we can construct a large number of distinct SP
frameworks with different notions of filtering, spectrum, and
Fourier transform. In this section, we narrow down the choices
by imposing shift-invariance on a signal model. For finite
(-dimensional) signal models, this will identify polynomial
algebras as key structures in SP.

Shifts (generators of filter algebra).The shift operator is
a special filter, and thus is an element7 x ∈ A. Further, it is
common to require thateveryfilter h ∈ A be expressed as a
polynomial or series in the shift operatorx. In algebraic terms,
this means that the shift operator generates8 the algebraA.

The same holds if multiple shifts are available:

shift(s) = chosen generator(s) ofA

In the infinite discrete time model, the shift isx = z−1.
Shift-invariant signal models.A key concept in SP isshift-

invariance. In ASP this property takes a very simple form.
Namely, if x is a shift andh a filter, thenh is shift-invariant,
if for all signalss, h(xs) = x(hs), which is equivalent to

x · h = h · x, for all h ∈ A. (17)

Since the shifts generateA, A is necessarily commutative in
this case.9 Conversely, ifA is a commutative algebra then (17)
holds:

shift-invariant signal model ⇔ A is commutative

In 1-D SP only one shift is available, ink-D SP k shifts
are needed. We focus on the case of one shift and identify
possible commutative algebras. The discussion for more shifts
is analogous.

Commutative algebras of infinite dimension are spaces of
series inx such asA in (2). Finite-dimensional commutative
algebras generated byx are exactly thepolynomial algebras

A = C[x]/p(x), p a polynomial of degreen.

C[x]/p(x) is the set of all polynomials of degree less than
n with addition and multiplication modulop(x). As a vector
space,A has dimensionn.

Thus, imposing only shift-invariance, we have identified
one of the key players in ASP, namely polynomial algebras.
Indeed, as we will see, they provide the underlying structure
for finite time SP and the DFT (Section IV) and for finite
space SP and the DCTs/DSTs [1].

7We write x instead of z−1 to emphasize the abstract nature of the
discussion. Later, this will enable us to introduce withoutadditional effort
other shifts as well.

8This is not entirely correct, as, in a strict sense, one element x can only
generate polynomials inx (and x−1 if x is invertible), not infinite series.
However, by completing the space with respect to some norm the notion of
generating can be expanded. We gloss over this detail to focus on the algebraic
nature of the discussion.

9The requirement of “x generatingA” is indeed necessary as there are
linear shift-invariant systems that cannot be expressed as convolutions, i.e.,
as series inx; see [31].
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Further, by allowing more than one shift and hence polyno-
mial algebras in several variables, ASP enables the derivation
of 2-D (and higher-dimensional) SP frameworks including
nonseparable ones [3], [2].

Finally, we note that noncommutative algebras are allowed
in ASP but necessarily yield shift-variant SP. For example,
this is the case for Fourier analysis on noncommutative finite
groups [32], which, in ASP terms, considers regular signal
models withA = M = C[G], the group algebra for a finite
groupG. Note that the set of polynomial algebras and the set
of group algebras are different and intersect only for the case
of commutative groups. A more detailed discussion is in [9].

Visualization of a signal model. A given signal model
can be visualized by a graph, which provides an intuitive
understanding of the model.

Definition 2 (Visualization of Signal Model)Assume that a
signal model(A,M,Φ) is given as in (8). Denote the chosen
shift operators, i.e., generators, ofA by x1, . . . , xn. Further,
assume thatφ is the representation ofA afforded byM with
basisb. Then eachφ(xi) is an infinite or finite matrix (which
we callshift matrix) and can be viewed as the adjacency matrix
of a weighted graphGi. Each of these graphs has the same
vertices corresponding tob. Thus we can join these graphs
by adding the adjacency matrices of theGi to obtain a graph
G. We call this graph thevisualizationof the signal model
(A,M,Φ).

Intuitively, the graph provides the topology imposed by the
signal model. For example the infinite discrete time model has
the visualization shown in Fig. 2. The vertices are the base
elementsbi = xi = z−i, the edges show the shift operation.

b b b b b b b b b b b b

x−2 x−1 x0 x1 x2 x3

Fig. 2. Visualization of the infinite discrete time model (6).

C. Summary

We summarize the correspondence between algebraic con-
cepts and signal processing concepts in Table I. The signal
processing concepts are given in the first column and their al-
gebraic counterparts in the second column. With respect to the
basis fixed by the signal model we obtain the corresponding
coordinate versions in the third column. In coordinates, the
algebraic objects, operations, and mappings become vectors
and matrices and thus allow for actual computation. This is
the form used in signal processing. However, the coordinate
version hides the underlying algebraic structure, which often
cannot be easily recovered if it is not known beforehand.

IV. F INITE , SHIFT-INVARIANT , 1-D SIGNAL MODELS

In Section III-B, we have learned that, for finite shift-
invariant signal models(A,M,Φ), A is a polynomial algebra.
In particular, in the case of finite 1-D (one shift) signal models,
these algebras are necessarily of the formC[x]/p(x). With
this motivation, we investigate what it means to do signal

processing using these algebras. We do this by specializing
the general theory from Section III.

The mathematics of polynomial algebras is well-known
(e.g., [33]). The purpose of this section is to connect it to
SP using the general ASP framework.

We focus on regular models, i.e.,A = M = C[x]/p(x). As
running example, we will use what we call thefinite discrete
time model. The motivation for this notion will become clear
as we proceed.

Polynomial algebras in one variable. Let p(x) be a
polynomial of degreedeg(p) = n. Then,A = C[x]/p(x) =
{h(x) | deg(h) < n}, called the set of residue classes modulo
p, is an algebra with respect to the addition of polynomials,
and the polynomial multiplication modulop. We call A a
polynomial algebra (in one variable). A can be generated by
one element, usually chosen to bex.

As an example, considerp(x) = xn − 1, i.e., A =
C[x]/(xn − 1). In A, multiplying, for example,x and xn−1

yields x · xn−1 = xn ≡ 1 mod xn − 1. The last equality is
read as “xn is congruent 1 moduloxn − 1.” Thus, we do
not use “mod” as an operator but to denote equality of two
polynomials modulo a third polynomial.

A. Signal Model

General case.We considerA = M = C[x]/p(x) with
deg(p) = n, and choose a basisb = (p0, . . . , pn−1) of
M. This defines a signal model forV = Cn; namely, for
s = (s0, . . . , sn−1)

T ∈ Cn, we can define the bijective linear
mappingΦ as

Φ : Cn → M, s 7→
∑

0≤ℓ<n

sℓpℓ. (18)

Φ in (18) is the equivalent of thez-transform for
this model. Filtering in this model is the multiplication
h(x)s(x) mod p(x) for h ∈ A and s ∈ M. The shift in this
model isx ∈ A. The basis elementspi are the unit impulses
in M, i.e.,pi is a canonical base vector. The impulse response
of a filter h ∈ A for the impulsepi is hpi ∈ M.

Example. Our running example will be the finite discrete
time model defined as

A = M = C[x]/(xn − 1),

Φ : Cn → M, s 7→
∑

0≤ℓ<n sℓx
ℓ.

(19)

We call Φ the finite z-transform. It fixes the basisb =
(1, x, . . . , xn−1) in M.

B. Filtering

General case.As said above, filtering in the signal model
defined in (18) is the multiplication of polynomials (filterh
and signals) modulop. In coordinates, filtering becomes the
matrix-vector multiplication

hs ∈ M ↔ φ(h) · s∈ Cn, (20)

whereφ(h) ∈ Cn×n. The ith column ofφ(h) is exactly the
coordinate vector of the impulse responsehpi. The representa-
tion of A associated with the signal model isφ : A → Cn×n.

We call theφ(h) filter matrices;φ(x) is theshift matrix.
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TABLE I

CORRESPONDENCE BETWEEN DISCRETE SIGNAL PROCESSING CONCEPTS AND ALGEBRAIC CONCEPTS.

signal processing concept algebraic concept (coordinate free) in coordinates

filter h ∈ A (algebra) φ(h) ∈ CI×I

signal s =
P

sibi ∈ M (A-module) s = (si)i∈I ∈ CI

filtering h · s φ(h) · s
impulse base vectorbi ∈ M bi = (. . . , 0, 1, 0, . . . )T ∈ CI

impulse response ofh ∈ A h · bi ∈ M φ(h) · bi ∈ CI

Fourier transform ∆ : M →
L

ω∈W Mω F : CI →
L

ω∈W Cdω ⇔ φ →
L

ω∈W φω

spectrum of signal ∆(s) = (sω)ω∈W F(s) = (sω)ω∈W

frequency response ofh ∈ A n.a. (φω(h))ω∈W

shift(s) generator(s)x of A φ(x)

shift-invariance A is commutative n.a.

Example. In our example, the filter matrix for a generic
filter

∑

0≤k<n hkxk is readily computed as

φ(h) =

















h0 hn−1 hn−2 . . . h1

h1 h0 hn−1 . . . h2

h2 h1 h0
. ..

...
...

. . .
.. .

. .. hn−1

hn−1 . . . h2 h1 h0

















. (21)

Hence, the filter matrices in this model are precisely the
circulant matrices. Filtering in coordinates,φ(h)s, is exactly
circular convolution.

C. Visualization

General case. The visualization of the signal model
(A,M,Φ) with Φ in (18) is the graph withn vertices that has
the shift matrixφ(x) as adjacency matrix (see Definition 2).
In the general case the graph has no apparent structure.

Example. In our example (19), the shift matrixφ(x) is a
special case of (21), namely the cyclic shift

φ(x) =











0 1
1 0

. ..
. . .
1 0











, (22)

This yields the visualization as a circle shown in Fig. 3.

b b b b b b b b b b b

x0 x1 x2 xn−3 xn−2 xn−1

Fig. 3. Visualization of the finite discrete time model in (19).

D. Spectrum and Fourier Transform

General case.We assume thatp(x) has pairwise distinct
zeros:

p(x) =

n−1
∏

k=0

(x − αk), αk 6= αℓ, for k 6= ℓ,

and setα = (α0, . . . , αn−1).

The Fourier transform, or spectral decomposition, of the
regular moduleM = C[x]/p(x) is given by the Chinese re-
mainder theorem (CRT; stated in Theorem 10 in Appendix I).

In coordinate-free form, the Fourier transform is given by
the mapping

∆ : C[x]/p(x) → C[x]/(x − α0) ⊕ . . . ⊕ C[x]/(x − αn−1),

s = s(x) 7→ (s(α0), . . . , s(αn−1)).
(23)

EachMk = C[x]/(x−αk) is of dimension 1. So the elements
of C[x]/(x−αk) are polynomials of degree 0, i.e., scalarsc ∈
C. Further, eachMk is anA-module, since forh = h(x) ∈ A
andc ∈ Mk,

h(x) · c ≡ h(αk) · c mod (x − αk),

i.e., the result is again inMk. SinceMk is of dimension 1,
it is irreducible.

The scalarss(αk) in (23) are the spectral components ofs.
The mapping in (23) simultaneously projects a signal (i.e.,
polynomial) s ∈ C[x]/p(x) into the modulesC[x]/(x − αk).
This projection is precisely the evaluation

s(x) ≡ s(αk) mod (x − αk).

The set of the one-dimensional irreducible modulesMk =
C[x]/(x−αk), 0 ≤ k < n, is thespectrumof the signal space
M. EachMk is an eigenspace simultaneously for all filters
(or linear systems) inA. The spectrum of a signals ∈ M is
the vector∆(s) = (s(α0), . . . , s(αn−1)).

The pure frequenciesfk associated withMk are those
elements ofM that are mapped to a canonical base vector:
∆(fk) = ek. This impliesfk(αi) = 1 for i = k and= 0 for
i 6= k. This is an interpolation problem, and the solution is
well known and given by the Lagrange polynomial [33]

fk =
∏

i6=k

(x − αi)/
∏

i6=k

(αk − αi). (24)

With this we see that∆ enables us to express a signals
as a linear combination of pure frequencies, namelys =
∑

0≤k<n s(αk)fk.
Example. In our example,xn − 1 = 0 has pairwise distinct

zeros αk = ωk
n with ωn = e−2πj/n. Thus, spectrum and



8

Fourier transform of the model (19) are given by

∆ : C[x]/(xn − 1) →
⊕

0≤k<n C[x]/(x − ωk
n)

s = s(x) 7→ (s(ω0
n), . . . , s(ωn−1

n )).
(25)

The pure frequencyfk is given by

fk =
∏

i6=k

(x − ωi
n)/

∏

i6=k

(ωk
n − ωi

n). (26)

This expression can be simplified as explained later.

E. Frequency Response

General case. Filtering in the regular moduleM =
C[x]/p(x) becomes parallel filtering in the frequency domain,
i.e., on the irreducibleA-modulesMk. Namely, leth ∈ A be
any filter and lets(αk) ∈ Mk be a spectral component of the
signals. Then filtering byh yields

h(x)s(αk) ≡ h(αk)s(αk) mod (x − αk).

This shows thatMk affords the irreducible representation

φk : h = h(x) 7→ h(αk). (27)

The collection of theφk(h), namely, (h(α0), . . . , h(αn−1))
is the frequency response of the filterh. This means that
the kth spectral components(αk) of a signal s = s(x) is
obtained in the same way as the frequency responseh(αk)
at αk, namely by evaluating polynomials. This is a special
property of polynomial algebras.

Example. In our example (19), the frequency response of
h ∈ A is the collectionh(ωk

n), 0 ≤ k < n.

F. Fourier Transform as Matrix

General case.The Fourier transform∆ in (23) is a linear
mapping, which is expressed by a matrixF after bases are
chosen. We will call this matrix also a Fourier transform
for M. To compute this matrix, we choose the basisb =
(p0, . . . , pn−1) in M, fixed by the signal model (18), and the
basisbk = (1) (the list containing the polynomialx0 = 1)
for each summandC[x]/(x − αk). The columns ofF are
precisely the coordinate vectors of∆(pℓ), 0 ≤ ℓ < n. Since
pℓ(x) ≡ pℓ(αk) mod (x − αk), we get

F = Pb,α = [pℓ(αk)]0≤k,ℓ<n. (28)

We callPb,α apolynomial transform. It is uniquely determined
by the signal model.

This definition coincides with the notion of a polynomial
transform in [34], [35] and is related but different from theuse
in [36]. In [37], polynomial transforms are called polynomial
Vandermonde matrices.

Note thatPb,α can have entries equal to zero, but, as an
isomorphism (as stated by the CRT), it is necessarily invertible.

Let s = s(x) =
∑

sℓpℓ(x) ∈ M be a signal. Then, in
coordinates,∆ in (23) becomes a matrix-vector product:

∆(s) ⇔ Pb,α · s = (s(α0), . . . , s(αn−1))
T ∈ Cn. (29)

The matrix formF of ∆ in (23) is not uniquely determined.
The degree of freedom is in the choice of bases in the

irreducible modulesMk = C[x]/(x − αk). If we choose
generic basesbk = (ak), ak 6= 0, in Mk, 0 ≤ k < n, then the
Fourier transformF becomes thescaledpolynomial transform

diag(1/a0, . . . , 1/an−1) · Pb,α.

OnceF is chosen, the coordinate vectorsfk of the pure
frequencies in (24) are theF−1ek, i.e., the columns ofF−1.

Example. In our example, the (polynomial) Fourier trans-
form associated with (25) is computed as

Pb,α = [ωkℓ
n ]0≤k,ℓ<n = DFTn, (30)

i.e., it is precisely the discrete Fourier transform, which
supports that we call (19) finite discrete time model andΦ
in (19) finite z-transform. It also follows that thekth column
of DFT−1

n is the coordinate vectorfk of fk in (26).

G. Diagonalization Properties and Convolution Theorems

General case.The diagonalization property of any Fourier
transformF of the regular moduleM = C[x]/p(x) is a
consequence of the CRT.

Theorem 3 (Diagonalization Properties)Let F be a Fourier
transform for the regular signal model in (18). Then

F · A · F−1 = diag(a0, . . . , an−1), (31)

if and only if A = φ(h) for a filter h ∈ A. In this case,
ak = h(αk), 0 ≤ k < n, is the frequency response ofh.

In particular,F diagonalizes the shift matrixφ(x), and the
shift operatorx has the frequency response(α0, . . . , αn−1).

Proof: Let A = φ(h). Then Fφ(h)F−1 is diagonal,
since it is the coordinate representation of the filterh in
the frequency domain, which is the diagonal matrix with the
frequency response on the diagonal.

Conversely, the set of diagonal matricesdiag(a0, . . . , an−1)
is ann-dimensional vector space. SinceF is invertible, the set
of matricesA diagonalized byF is alson-dimensional. Since
A is of dimensionn, andφ is injective, the set of all matrices
φ(h) is a vector space of dimensionn and thus the set of all
matrices diagonalized byF .

We also note that, using Theorem 3, we get immediately
the characteristic polynomial, trace, and determinant forev-
ery matrix φ(h), since it is similar to the diagonal ma-
trix diag(h(α0), . . . , h(αn−1)). In particular, the characteristic
polynomial ofφ(x) is p(λ).

Theorem 3 is the convolution theorem for the signal model
under consideration. Namely, it states that filteringφ(h)s in
the signal domain becomes pointwise multiplication by the
frequency reponsediag(h(αk))(Fs). in the spectral domain.

Example.For our example (19), Theorem 3 yields the well-
known fact that theDFTn diagonalizes the circulant matrices.

V. 1-D TIME MODELS

We presented two signal models as examples of the general
algebraic theory: the infinite time model in (6) and the finite
time model in (19). The former bore no surprises, but the
latter is, as formulated, non-standard in SP and ASP produced
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a first small benefit: the proper notion of a finitez-transform.
To develop new SP frameworks, not directly related to standard
time SP, we present in this section a methodology to derive
signal models from basic principles, namely, from the shift
operator. This will further shed light on why, for example, the
time models look exactly as in (6) and, in particular, as in (19).
In the process, we get a deeper appreciation of the difference
between the filter and signal spaces (a difference that follows
from the axioms of ASP). We also understand the necessity
for boundary conditions, the impact of different choices, and
how they relate to the problem of signal extension. We use
this methodology to derive 1-D and 2-D space signal models
in [1] and [3].

For notational convenience, we set as before10 x = z−1.
The construction of the infinite and finite time models follows
three basic steps: definition of the shift, linear extension, and
realization.

A. Constructing the Infinite Time Model

Definition of the shift. Following Kalman [23], when
considering discrete time, we need two ingredients:time marks
tn and ashift operatorq.

The time marks are symbolic independent variablestn, n ∈
Z; tn is associated to “timen.” However, time marks alone
capture neither the equidistance of the time points nor the
directed nature of time. This problem is resolved by the shift
operatorq and the shift operation⋄ defined as

q ⋄ tn = tn+1, n ∈ Z. (32)

Fig. 4 shows a graphical representation of the time shift.

· · · · · · · · •
tn−1

%%

q⋄

•
tn

%%

q⋄

•
tn+1

· · · · · · · ·

Fig. 4. The time shiftq ⋄ tn.

Next, we extend the operator domain from the shift operator
q to k-fold shift operatorsqk, defined by

qk ⋄ tn = tn+k.

Clearly, qk = qk.
At this point of the construction, working only withtn and

qk, there is no notion of linearity.
Linear extension. To obtain a linear signal model, we

consider two extensions: 1) we extend linearly the operation ⋄
of the shift operatorq from the set of thetn to the set of all
formal sums

∑

sntn: q ⋄ s =
∑

sn(q ⋄ tn); and 2) we extend
linearly the set ofk-fold shift operatorsqk to the set of all
formal sums

∑

hkqk. The first set will become the module
of signals, while the second set will become the algebra of

10Note that the choice ofz−1 instead ofz in the definition (4) is a
convention, not a mathematical necessity; choosingz leads to equivalent
properties and an equivalent theory for thez-transform. In fact, the choice of
z−1 in SP is in contrast to the original mathematical work on Laurent series.
The reason may lie on the fact that the shift operatorz−1 causes a delay of
the signal. However,z−1 advanceswhat we call below the time marks.

TABLE II

REALIZATION OF THE ABSTRACT TIME MODEL.

concept abstract realized

shift operator q x

shift operation ⋄ ·

time mark tn xn

k-fold shift operator qk = qk xk

shift q ⋄ tn = tn+1 x · xn = xn+1

signal
P

sntn
P

snxn

filter
P

hkqk
P

hkxk

filters. Convergence of the filter operation is handled as part
of the next step.

Realization. To obtain the signal model, we first consider
the “realization” of the abstract model. We replace the abstract
objectstn andq and the operation⋄ by objects we can compute
with. To this end, we choose a variablex and setq = x,
and ⋄ = ·, the ordinary multiplication of series. Then, (32)
becomes

tn+1 = x · tn. (33)

This two-term recurrence, when started witht0 = 1, has the
unique solution

tn = xn. (34)

In other words, the realization is essentially (up to a common
scaling factor for allxn) unique.

As a result, we obtainM = {s =
∑

snxn} and A =
{h =

∑

hkxk}. Since the series are infinite, we have to ensure
convergence as part of the realization; namely, that filtering,
the operation ofA onM, is well-defined. This is achieved, for
example, by requirings∈ ℓ2(Z) andh ∈ ℓ1(Z), as explained
in Section III-A.

Table II shows the correspondence between the abstract
and the realized concepts. Note that signals and filters are
conceptually different (as pointed out several times before)
but look the same (both are Laurent series inx) because the
realization maps bothqn and tn to xn.

Resulting signal model.As a result of the above procedure,
we obtain the infinite discrete time model in (6).

B. Constructing the Finite Time Model

In real applications, usually only a finite subsequence
s = (s0, . . . , sn−1) is available, not the entire (sampled)
sequence(sk)k∈Z. Thus, for time SP, the question arises how
to construct afinite time model(A,M,Φ). Here ASP and in
particular polynomial algebras provide a very detailed insight
into the possible choices.

For our investigation we first need a formal notion ofsignal
extension.

Definition 4 (Signal Extension)Let s = (sk)k∈I be a signal
given on an index setI ⊂ Z. A (linear) signal extension of
s is the sequence of linear combinations (only finitely many
summands are nonzero)

sk =
∑

i∈I

βk,isi, for k 6∈ I.
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The signal extension is calledmonomial, if, for eachk, the
sum has only one summand.

In other words, in a monomial signal extension, every signal
value outside the signal scopeI is assumed to be a multiple
of a signal value inside the signal scope. For example, the
periodic signal extension is monomial.

Note that we consider onlylinear signal extensions (e.g.,
polynomial signal extensions are excluded). The reason is that
with nonlinear signal extensions it is not possible to maintain
filtering as a linear operation. Thus, we are outside linear SP,
and hence outside ASP as developed here.

Shift, linear extension, realization. To construct a finite
time signal model, we follow the exact same steps as in Sec-
tion V-A, but start from afinite set of time markst0, . . . , tn−1.

The construction seems to lead to the following definition
of a “finite” z-transform, which mapss∈ Cn to

s = s(x) =
∑

0≤k<n

skxk,

Clearly, the setCn[x] of the polynomialss(x) of degree
less thann is a vector space with the natural basisb =
(x0, . . . , xn−1). The problem, however, arises from the op-
eration of the (realized) time shiftx: the set of polynomials
of degree less thann is not closedunder multiplication byx.
More precisely, the root of the problem is

x · xn−1 = xn 6∈ Cn[x], (35)

and, if x is invertible,

x−1 · x0 = x−1 6∈ Cn[x]. (36)

Thus, the time shift as defined is not a valid operation on
Cn[x], which implies that we cannot define filtering inCn[x],
or, algebraically,Cn[x] is not a module. Without filtering,
there is also no notion of spectrum or Fourier transform. To
resolve this, we need to take care of the problems raised
by (35) and (36), which we do now by introducing boundary
conditions.

Boundary conditions and signal extension.To remedy the
first problem (35), we have to make sure thatxn can again be
expressed as a polynomial of degreen − 1. This is achieved
by introducing an equation

xn = r(x) =
∑

0≤k<n

βkxk, or xn − r(x) = 0. (37)

This equation implicitly defines the right boundary condition
sn =

∑

0≤k<n βksk. Further, (37) determines the entire right
signal extension obtained by reducingxn+k, k ≥ 0, modulo
xn − r(x):

xn+k ≡ rk(x) mod (xn − r(x)). (38)

Algebraically, the boundary condition replaces the vector
spaceCn[x] by the vector spaceM = C[x]/(xn − r(x)),
which is of the same dimension, butclosedunder multipli-
cation by the time shift operatorx and thus a module. The
corresponding algebraA, generated byx, is identical toM.
The remaining question to consider is (36). There are two
cases.

Case 1:x | r(x). Then alsox|(xn − r(x)), and thusx (the
shift operator) is not invertible11 in A = C[x]/(xn − r(x))
and (36) does not need to be considered: the signal has no
left boundary, since “the past” is not accessible without an
invertible x.

Case 2:x ∤ r(x). Then, from (37), we get

x−1 = −
1

β0
(β1 + β2x + · · · + βn−1x

n−2 − xn−1),

which is the left boundary condition. Similar to above, the left
signal extension can be determined by multiplying byx−k and
reducing moduloxn−r(x). Thus, the signal extension inboth
directions is determined byoneequation (37), which provides
the left and the right boundary condition:

boundary condition⇒ right and left signal extension.

By assuming the generic boundary conditionxn = r(x),
we obtain a valid signal model. However, the corresponding
signal extension (38) has in general no simple structure. To
obtain a module that is reasonable for applications, we thus
require

• the shift operatorx ∈ A to be invertible; and
• the signal extension to be monomial (see Definition 4).

These requirements lead to the signal model for the DFT in
the finite time case (explained below) and for the 16 DCTs
and DSTs in thefinite spacecase [1].

We can now explicitly determine the polynomialsxn−r(x)
that satisfy the above two conditions.

Lemma 5The boundary conditionxn = r(x) makesA =
C[x]/(xn − r(x)) an algebra in whichx is invertible and
determines a monomial signal extension inM = A, if
and only if the polynomialr(x) is a nonzero constant, i.e.,
r(x) = a 6= 0. The signal extension in this case is given by
sk = ak2sk1

, wherek ∈ Z is expressed ask = k1 +k2n, with
0 ≤ k1 < n.

Proof: Let r(x) = a, a 6= 0, and let k ∈ Z. We
write k = k1 + k2n, with 0 ≤ k1 < n, and thusxk ≡
ak2xk1 mod (xn − a), which is a monomial signal extension.
Conversely, letxn = r(x) determine a monomial signal
extension. This impliesxn = axℓ, for some0 ≤ ℓ < n. Since
x is by assumption invertible moduloxn − axℓ, it follows
ℓ = 0 anda 6= 0 as desired.

Resulting signal model. In summary, the signal model
obtained is forV = Cn and given by

A = M = C[x]/(xn −a), Φ : s 7→
∑

0≤k<n

skxk ∈ M. (39)

For a = 1, this is exactly the finite model in (19), which we
studied in Section IV.

For other values ofa, it is an easy exercise to specialize the
general results from Section IV. In short, the visualization is
as in Fig. 3 with the backwards edge weighted witha, the filter

11A polynomial q(x) is invertible in C[x]/p(x) if and only if
gcd(q(x), p(x)) = 1, since in this case there are polynomialsr(x), s(x)
such that 1 = s(x)q(x) + r(x)p(x), which implies that s(x) ≡
q(x)−1 mod p(x).
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matrices are skew-circulant matrices, filtering is hence skew-
circular convolution, and the polynomial Fourier transform has
the formDFTn ·D, with a suitable diagonal matrixD [9].

In particular, this class includes the generalized DFTs from
[38], [39] defined as

Fc,d = [ω(k+c)(ℓ+d)
n ]0≤k,ℓ<n,

where c, d ∈ R. We briefly investigate the 4 special cases
given by c, d ∈ {0, 1/2}, which in [39] are called DFTs of
types 1–4, written asDFT-1, . . . ,DFT-4. Namely,

DFT-1n = F0,0 = DFTn, (40)

DFT-2n = F0,1/2 = diag0≤k<n(ωk/2
n )DFTn, (41)

DFT-3n = F1/2,0, (42)

DFT-4n = F1/2,1/2 = diag0≤k<n(ωk/2
n )DFT-3n. (43)

We identify the signal models for which these transforms are
Fourier transforms. TheDFT-1n = DFTn is, as seen above, a
polynomial transform forC[x]/(xn−1). TheDFT-2n in (41)
is also a Fourier transform, but not the polynomial transform,
for C[x]/(xn − 1). The DFT-3n in (42) is the polynomial
transform forC[x]/(xn + 1), sinceω

k+1/2
n , 0 ≤ k < n, are

precisely the zeros ofxn + 1. Finally, the DFT-4n in (43)
is also a Fourier transform, but not the polynomial transform,
for C[x]/(xn +1). This means that these DFTs cover the two
important cases of boundary conditionssn = ±s0 or p(x) =
xn ∓ 1.

Other boundary conditions and effect on spectrum.At
this point it is instructive to investigate what problems arise if
we slightly relax the conditions in Lemma 5 by dropping the
requirement of monomial signal extension or the requirement
that the shift operatorx is invertible in the resulting algebra.

If we allow anysignal extension and hencep(x), we obtain
the genericfinite time model

A = M = C[x]/p(x), Φ : s 7→
∑

0≤k<n

skxk.

If p(x) has pairwise distinct zeros, then the polynomial trans-
form is precisely a Vandermonde matrix and the shift matrix
φ(x) is the transpose of the companion matrix ofp.

If we require a monomial signal extension, but allow for a
non-invertible shift, then the proof of Lemma 5 shows that
necessarilyp(x) = xn − axℓ. A simple choice isa = 0
yielding A = M = C[x]/xn, which realizes a right zero
extension (xn = 0 impliesxn+k = 0 for k ≥ 0). The problem
with this model is that it does not permit spectral analysis:
C[x]/xn cannot be decomposed by the Chinese Remainder
Theorem (CRT). This can also be seen from the shift matrix
φ(x), which is the lower Jordan block (and hence cannot be
block-diagonalized)

φ(x) =











0
1 0

. ..
. . .
1 0











.

Another simple choice is the symmetric boundary condition
xn = xn−1, i.e., p(x) = xn − xn−1. This choice implies

a constant right signal extension, sincexn = xn−1 implies
xn+k = xn−1 for all k ≥ 0. In this case, the CRT yields

C[x]/(xn − xn−1) ∼= C[x]/(x − 1) ⊕ C[x]/xn−1,

and the rightmost module, of dimensionn − 1, is again
indecomposable. In contrast, in [1] we will see that finite
space models (which have DCTs/DST as Fourier transforms)
do permit symmetric boundary conditions.

If we relax the requirement of a monomial signal extension
and only require that the Fourier transform approaches the
DTFT asn → ∞, then choices nontrivially different from the
DFT are indeed possible [40].

C. Real Finite Time Model

ASP naturally extends to base fields other thanC and
gives insight into the necessary changes in the SP concepts
associated with a signal model. As an example, we consider
real finite time models in this section. In particular, we
will explain why the real DFTs (RDFTs) or discrete Hartley
transforms (DHTs) are now the associated Fourier transforms.

The algebraic interpretation of the DHT in this section
is equivalent to recognizing the DHT as a special case of
an ADFT (algebraic discrete Fourier transform), a general
concept introduced in [41], [42] and rediscovered (using a
different name) in [43].

Real finite time model. If only real signals and filters are
to be considered and all the computations are inR then we
simply replaceC by R in a given signal model. For example,
the real equivalent of (19) forV = Rn is given by

M = A = R[x]/(xn − 1), Φ : s 7→
∑

0≤k<n

skxk ∈ M. (44)

Compared to its complex counterpart in (19), (44) has the
same notions of filtering (only restricted toR), visualization,
and signal extension.

Spectrum and Fourier transform. The difference arises
when computing the spectrum. Since only real numbers are
available, and the roots ofxn − 1 are complex,M cannot
be decomposed into one-dimensional irreducible modules.12

Over R, the irreducible factors ofxn − 1 are polynomials of
degree 1 or 2. Namely, ifωk

n, ωn−k
n , k 6= 0, n/2, are conjugated

complex roots ofxn − 1, then

(x − ωk
n)(x − ωn−k

n ) = x2 − 2ck,nx + 1,

with ck,n = cos(2kπ/n) is irreducible overR.
Hence the spectral decomposition is now given by

∆ : R[x]/(xn − 1) → R[x]/(x − 1) ⊕
⊕

1≤k<n/2

R[x]/(x2 − 2ck,n + 1) ⊕ R[x]/(x + 1), (45)

where the last summand appears only for evenn (−1 = ω
n/2
n ).

We want to compute the matrix formF of (45). The situ-
ation is slightly outside the scope of Section IV; in particular
there is no notion of polynomial transform. Still, the theory

12In algebraic terms,R is not asplitting field for theA-moduleM.
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is readily extended. To computeF , we choose a basis in
each spectral component. It turns out that the natural choice is
(1, 1

sk,n
(x − ck,n)), sk,n = sin(2kπ/n). Namely, this choice

associates the matrix
[

1 j
1 −j

]

with the decomposition

C[x]/(x2 − 2ck,n + 1) → C[x]/(x − ωk
n) ⊕ C[x]/(x − ωn−k

n )

and hence shows that the coordinates of the real spectrum are
the real and imaginary parts of the complex spectrum. Further,
the irreducible representation (i.e., frequency response) φk

afforded by a two-dimensional spectral component in (45)
maps the shift to a rotation:

φk : A → R2×2, x 7→
[

ck,n −sk,n

sk,n ck,n

]

,

and hence, as a homomorphism,φk(h(x)) = h(φk(x)). The
matrix F is now computed by reducingxℓ modulo x − 1,
x2 − 2ck,n + 1, and x + 1. Further, to precisely match the
common definition of the real DFT, we order the spectral basis
such that first come all the 1’s (bases of the one-dimensional
components and first half of bases of two-dimensional com-
ponents) and then the remaining. The result is

F = RDFTn = [rkℓ]0≤k,ℓ<n

with

rkℓ =

{

cos 2πkℓ
n , 0 ≤ k ≤ n/2,

− sin 2πkℓ
n , n/2 < k < n.

From the above it follows that

DFTn =

















1 0 · · · · · · 0
0 1 j
...

.. . . .
.

... . .
. .. .

0 1 −j

















· RDFTn . (46)

Since the only degree of freedom is in choosing a spectral
basis in (45), a generic real DFT has the form

F = Xn · RDFTn,

where Xn is any invertible matrix with the same x-shaped
pattern as the matrix in (46). An example is

DHTn = [cos 2kℓπ
n + sin 2kℓπ

n ]0≤k,ℓ,n

= [cas 2kℓπ
n ]0≤k,ℓ,n,

wherecas(x) = cos(x) + sin(x). Obviously,

DHTn =

















1 0 · · · · · · 0
0 1 1
...

. . . . .
.

... . .
. .. .

0 1 −1

















· RDFTn . (47)

Both transforms, the RDFT and the DHT, are special among
the class of all possible real DFTs. The RDFT appears to have
the lowest arithmetic complexity13 and the DHT is equal to
its inverse (up to a scaling factor).

13We do not have a proof. The assertion is based on the best known
algorithms.

The above derivation extends to the DFTs of type 1–
4 in (40)–(43) and allows us to define DHTs and RDFTs
of type 1–4 in parallel to (40)–(43). Namely, the types
t = 1, 2, 3, 4 correspond, respectively, to the parameters
(c, d) = (0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2) in the following
definitions.

RDFT-t = [rk,ℓ]0≤k,ℓ<n

with

rkℓ =

{

cos 2π(k+c)(ℓ+d)
n , 0 ≤ k ≤ m,

− sin 2π(k+c)(ℓ+d)
n , m < k < n,

wherem = n/2 for t = 1, 2 andm = (n− 1)/2 for t = 3, 4.

DHT-tn = [cas 2(k+d)(ℓ+c)π
n ]0≤k,ℓ,n.

The relations (46) and (47) hold for all four types.
The four transformsDHT-t were introduced (in their or-

thogonal form) in [44], [45], [46], [47], where they were called
discrete W transforms (DWTs) of type 1–4. We suggest to
rename these transforms to DHTs of type 1–4 since: 1) the
name DHT (for type 1) is much more commonly used than
DWT, and the types 2–4 are just variants; and 2) even though
the DHT and the DWT were introduced at about the same time
([48] and [47]), the continuous counterpart was introducedby
Hartley much earlier in 1942 [49].

Diagonalization properties. The above discussion gives
immediately the “diagonalization” properties of the RDFT and
DHT. We use double quotes, since these properties are not
actually a diagonalization. Ifh ∈ A = R[x]/(xn − 1) is any
filter, thenφ(h) is a real circulant matrix, i.e, of the form (21)
with a = 1. Then

RDFTn φ(h)RDFT−1
n = X, (48)

whereX is real and has the same x-shaped structure as the
matrix in (46). Convolution theorems can be similarly derived.

Finally, we note that other basefields thanC andR can be
considered. For example, the rational finite time model can
be studied by decomposingxn − 1 over Q. Interestingly, this
yields the rationalized Haar transform as one possible Fourier
transform choice. See [9] for further details.

D. Overview of Finite Time Models

In Table III we list the finite time models that we introduced
in this paper, and their associated Fourier transforms. Thetable
is divided into complex and real time models. In each row
we list in the first two columns the signal model(A,M,Φ),
in the third column the associated unique polynomial Fourier
transform, and in the fourth column other possible relevant
Fourier transforms for the model. Note that the notion of
polynomial transform does not exist for the real time models
since the spectral components are not all one-dimensional.

VI. CONCLUSIONS

We presented the algebraic signal processing theory (ASP),
a new approach to linear signal processing.

ASP is an axiomatic theory of SP. It is developed from
the concept of the signal model, the triple(A,M,Φ). We
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TABLE III

OVERVIEW OF FINITE TIME MODELS AND ASSOCIATEDFOURIER

TRANSFORMS DISCUSSED IN THIS PAPER.

Complex finite z-transform

A = M Φ F = Pb,α otherF

C[x]/(xn − a) s 7→
P

skxk DFTn ·D —

C[x]/(xn − 1) s 7→
P

skxk DFTn = DFT-1n DFT-2n

C[x]/(xn + 1) s 7→
P

skxk DFT-3n DFT-4n

Real finite z-transform

A = M Φ F

R[x]/(xn − 1) s 7→
P

skxk RDFT-1/2n, DHT-1/2n

R[x]/(xn + 1) s 7→
P

skxk RDFT-3/4n, DHT-3/4n

showed that basic concepts such as filtering, spectrum, Fourier
transform, shift, and shift-invariance can be defined (if they
exist) for any signal model, just like basis, dimension, and
linear mapping can be defined for any vector space.

ASP is a very general platform for SP. In this paper, we
focused on capturing time SP in ASP; reference [1] presents
ASP for space dependent signals.

ASP gives deep insight into the structure and choices in
SP. For example, for finite time SP, we derived the periodic
boundary condition from basic principles but also showed that
other choices are possible. We also considered DFT variants
and showed that they are Fourier transforms in ASP for a
properly chosen signal model. This understanding is crucial
when we leave the familiar domain of time SP.

ASP is constructive. For example, we showed how to derive
the time signal models from the shift operation. This enables
the derivation of novel signal models for other, non-standard
shifts. Further, in [5], [7] we use ASP to present concise
derivations of existing and new fast algorithms for linear
transforms.

Besides the derivation of other SP frameworks, or signal
models, a future research direction is to capture “advanced”
SP concepts abstractly within ASP including sampling, down-
sampling, filter banks, multiresolution analysis, frames,and
others.
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APPENDIX I
ALGEBRAIC BACKGROUND

We provide here formal definitions for the most important
algebraic concepts used in this paper. For an introduction to
algebra we refer to [28].

Definition 6 (Algebra)A C-algebraA is aC-vector space that
is also a ring (multiplication is defined and the distributive law
holds), such that the addition in the ring and the addition in
the vector space coincide. Further, forα ∈ C and g, h ∈ A:
α(gh) = (αg)h = g(αh).

Definition 7 (Module)Let A be a C-algebra. A (left) A-
module is aC-vector spaceM with operation

A×M → M, (a,m) 7→ am,

which satisfies, fora, b, 1 ∈ A andm,n ∈ M,

a(m + n) = am + an (ab)m = a(bm)

(a + b)m = am + bm 1m = m

Definition 8 (Homomorphism of algebras)Let A,B be C-
algebras. A homomorphism of algebras is a mappingφ : A →
B that satisfies, fora, b ∈ A, α ∈ C:

φ(a + b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b), φ(αa) = αφ(a).

An isomorphism is a bijective homomorphism.

Definition 9 (Homomorphism of modules)Let M,N be A-
modules. AnA-module homomorphism is a mappingφ :
M → N that satisfies, fora ∈ A, m,n ∈ M,

φ(m + n) = φ(m) + φ(n) andφ(am) = aφ(m).

We denote withZ/nZ the ring of integers{0, . . . , n − 1}
with addition and multiplication modulon. The Chinese
remainder theorem (CRT) for integers states that ifn = pq
andgcd(p, q) = 1, then

φ : Z/nZ → Z/pZ × Z/qZ, k 7→ (k mod p, k mod q).

is a ring isomorphism. In words, the CRT states that “com-
puting (addition and multiplication) modulon is equivalent to
computing in parallel modulop and moduloq.”

The CRT also holds for polynomials. In this case,
C[x]/p(x)C[x] = C[x]/p(x) is the ring (even algebra) of
polynomials of degree less thann = deg(p) with addition
and multiplication modulop(x). Thesepolynomial algebras
are discussed in detail in Section IV.

Theorem 10 (CRT for polynomials)Let p(x) ∈ C[x] be
a polynomial that factorizes asp(x) = r(x)s(x) with
gcd(r(x), s(x)) = 1. Then

φ : C[x]/p(x) → C[x]/r(x) ⊕ C[x]/s(x),

s(x) 7→ (q(x) mod r(x), q(x) mod s(x))

is an isomorphism of algebras. Note that we write⊕ instead
of × in this case, since the rings also carry the vector space
structure.
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