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Abstract—This paper introduces a general and axiomatic 2) an A-module M of signals, and 3) a bijective linear
approach to linear signal processing (SP) that we refer to as mapping® from a coordinate vector spadé into M that
the algebraic signal processing theory (ASP). Basic to ASP is yanerglizes thes-transform. These objects form the triple

the linear signal model defined as a triple (A, M, ®) where . - S
familiar concepts like the filter space and the signal space (A, M, @), which we refer to as theignal modelIn principle,

are cast as an algebra.A and a module M, respectively. Many signal modelg.A, M, ®) are possible; knowing which

The mapping ® generalizes the concept of az-transform to models arise in common SP applications, or which models
bijective linear mappings from a vector space of signal samples should be associated with a given linear transform, or how
into the module M. Common concepts like filtering, spectrum, 4 gevelop signal models which reflect desired properties ar

or Fourier transform have their equivalent counterparts in I t i We add th ti by fixi -
ASP. Once these concepts and their properties are defined and relevant questions. Ve address these questions by Tixeg, I.

understood in the context of ASP, they remain true and apply to Choosing, ashift operator that generates the algebdaof
specific instantiations of the ASP signal model. For example, to filters, and by showing that standard properties in SP tasasl

develop signal processing theories for infinite and finite discrete nto corresponding requirements for the signal model. For
time signals, for infinite or finite discrete space signals, or for example, shift-invariance forces the algebtao be commu-

multidimensional signals, we need only to instantiate the signal tati If the si | finit d f .
model to one that makes sense for that specific class of signals.a Ive. € signals aré hinite—and for now assuming one

Filtering, spectrum, Fourier transform, and other notions follow ~dimensional (1-D) signals—this requirgsto be apolynomial
then from the corresponding ASP concepts. Similarly, common algebraC[z]/p(z), which is the space of polynomials modulo

assumptions in SP translate into requirements on the ASP the fixed polynomialp(z). Hence, polynomial algebras are a
signal model. For example, shift-invariance is equivalent ta4 key structure in ASP.

being commutative. For finite (duration) signals shift invariance . o
then restricts .A to polynomial algebras. We explain how to We present the ASP equivalents of filtering, spectrum,

design signal models from the specification of a special filter, Fourier transform, frequency response, and other common
the shift. The paper illustrates the general ASP theory with signal processing concepts. Once defined and their preperti

the standard time shift, presenting a unique signal model for derived in the framework of ASP, it is simple to identify
infinite time and several signal models for finite time. The latter these concepts for concrete examples of ASP signal models.

models illustrate the role played by boundary conditions and . P . . .
recover the discrete Fourier transform (DFT) and its variants as  YWe consider explicitly infinite (duration) and finite (duira)

associated Fourier transforms. Finally, ASP provides a systematic discretetime signals. For the corresponding infinite discrete
methodology to derive fast algorithms for linear transforms. This time signal model, the Fourier transform is the discretestim

topic and the application of ASP to space dependent signals and Fourier transform (DTFT). For finite discrete time signals,
to multidimensional signals are pursued in companion papers. we can have several signal models; for example, assuming

Index Terms— Signal model, filter, Fourier transform, bound-  shift-invariance, a common signal model sedls= M =
ary condition, signal extension, shift, shift-invariant, z-transbrm, C[z]/(z"—1) for which the corresponding Fourier transform is
spectrum, algebra, module, representation theory, imeducible, ¢ giscrete Fourier transform (DFT). For other finite diser
convolution, polynomial transform . .

time models, the Fourier transform becomes the real DFT
(RDFT) or the discrete Hartley transform (DHT). In [1], we
. INTRODUCTION consider shift-invariant signals indexed by 1-D lattioss: call

Linear signal processing (SP) is built around signals rilte them 1-Dspacesignals. In their signal models, the polynomial
z-transform, spectrum, Fourier transform, as well as othgfz) in A is a Chebychev polynomial and their Fourier
concepts; it is a well-developed theory for continuous anghnsforms are the 16 variants of the discrete trigonometri
discrete time. In linear signal processing, signals areeteatl transforms (DTT), e.g, the discrete cosine transform (DCT)
as elements of vector spaces over some base field (ustiallynd the discrete sine transform (DST). The ASP framework
or C) and filters operate as linear mappings on the vectean be applied to signals in higher dimensions. Referergjes [
spaces of signals. This paper presents an algebraic sigaglinstantiate ASP for 2-D signals indexed by the quincunx
processing theory (ASP) folinear signal processing. ASP and hexagonal lattices. The Fourier transforms for thesg-mo
starts with three basic objects: 1) an algébsh of filters, els are novel non-separable 2-D linear transforms.
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1The term algebra here is used to describe a specific algesiraicture exlam.ple' in [4], [5], [6], [7], we deri_ve from a fe_W basic ASP
that is introduced later, and not the mathematical discipline principles many dozens fast algorithms including many new



ones, such as general-radix Cooley-Tukey type algorittons tonclude with Section VI.
various DCTs and DSTs. We also apply the theory in [8] to
derive fast algorithms for novel 2-D transforms. [I. FOUNDATION: SIGNAL MODEL

A longer version of this paper is available in [9]. Early work ag stated in the introduction, by SP we médarear signal
on the algebraic approach to linear transforms appearstl.in [)rocessing. In this section, we first explain why SP natyrall
Related work. To date algebra has not been a mainstreagis into the framework of algebra and then define the
tool in signal processing. However, we can identify tWQjgnal modelOnce a signal model is given, spectrum, Fourier

important algebraic research directions in signal prangss {ransform, and other SP concepts are automatically defised a
the algebraic derivation of fast Fourier transform aldonit \ye will show in Section III.

(FFT) and Fourier analysis on groups.

The rediscovery of the (standard) FFT by Cooley-Tuk
[10], [11] spawned research on the derivation and optiritnat . ] .
of DFT algorithms. Key in this work was recognizing the well- Algebra studies algebraic structures. An algebaric strect
known connection between the DFT and the cyclic group, & @ Set (or a collection of sets) with operations (such as
equivalently the polynomial algebr&[z]/(z" — 1), and to addition and .mL'lltipI'ication) that satisfy certain'prop'mt
use algebra in the algorithm derivation (e.g., [12], [13)). such as the distributive law. Examples of algebraic stnestu
similar approach underlies Winograd's seminal work on tHBCclude groups, rings, fields, and vector spaces. Each one of
multiplicative complexity of the DFT, which produced a newhese spawns its own structure theory. For example, linear
class of DFT algorithms [14], [15]. The first book on FFTs bylgebra is the theory of vector spaces. Hence, to investigat
Nussbaumer makes heavy use of the algebraic interpretafiBf algebraic structure in SP, we start by identifying thectzd
of the DFT [16]. sets and their ayailable operqtions. _

Fourier analysis on groups is classic in mathematics, goingSets. The basic sets used in SP are the set of sigidls
back to the 19th century [17]. In signal processing, gener@d the set of filtersd. _ _
commutative and finite groups were considered in [18] (in- Operations. The set of signals\ is usually assumed to
cluding fast algorithms) and are essentially associateth wPe avector spacesignals can be added and multiplied by a
DFTs (of arbitrary dimension). The first proposition of nonscalara (from the base field), to yield a new signal. Formally,
commutative groups in SP is due to Karpovsky [19] but it signal+ signal = signal
has not found many applications. Notable exceptions irclud
Fourier analysis on the symmetric group to study ranked data
[20], on the 2-sphere [21], and on wreath product groups f@he structure of a vector space gives access to dimension,
multi-resolution analysis [22]. Each of these examplesnis basis, linear mapping, subspace, and other related notions
ASP terms a specific choice of a signal model. In SP, signals are processed by linear systemsmmonly

In all this work, groups and group algebras are the algebrajalled filters. In block diagram form
objects of choice. Since shift-invariance requires conartine ; - ;
algebras, as we assert, we need to go beyond group algebras signal signal @
to capture other linear transforms, like the DTTs, withireon By writing the filter operation formally as multiplication
algebraic framework. we can write (1) as

Algebra has played a more significant role in other areas
like for example system theory and coding. Algebraic system
theory was started in the seminal work of Kalman (seguitiplication of a signal inM by a filter in A can take
Chapter 10 in [23]) and further developed by others, ineigdi different forms depending on the representation of signals
[24], [25], [26]. Polynomial algebras play a crucial roletbuand filters, e.g., convolution (in the time domain), staddar
are used differently than in ASP, namely, to study real@ati muyitiplication (in thez-transform domain), or any other ade-

controllability, and observability in linear systems. 8arly, quate form, as long as certain properties are satisfied, tee.
algebraic coding theory is standard [27] and makes heavy yg&tributive law:

of polynomial algebras. One reason is that finite fields are

polynomial algebras over prime-size fields, but polynomial

algebra also provide the structure for certain linear cqdes,

cyclic codes). Next, we determine the algebraic structure of the filter spac
Organization. We start by identifying the algebraic struc~A. Filters can be added, multiplied, and multiplied by a scala

ture and basic assumptions underlying SP in Section Il andfrom the base field; formally,

introduce the concept of signal model on which ASP is built. filter + filter — filter (parallel connection),

Section Il captures and derives basic SP concepts fromemgiv ) i o

signal model. In Section IV we specialize ASP to finite, shift a-filter = filter (amplification),

invariant SP which means signal models built from polyndmia filter - filter = filter (series connection)

algebras. Section V constructs infinite and finite 1-D time, _ N _ , _

We only consider single-input single-output linear (SIS§stems in

mOdgls from _baSiC assumptions and gives detailed in_Sigot irEhis paper. Extensions to multiple-input multiple-outputl{MD) systems are
possible choices and the need for boundary conditions. \Afeler research.

°X. The Algebraic Structure in Signal Processing

«-signal = signal

filter - signal = signal

filter - ( signal 4+ signal)
= filter - signal + filter - signal



The first two makeA a vector space. In addition, multipli-rangel: s € CI. For finite = {0,...,n—1},V = C! = C";
cation in A is defined, which is not the case it. Note for I = N,Z, we usually considelV’ = ¢1(I) or V = ¢2(I).
that multiplication of two filters and multiplication of a tér To define filtering, we need to assignitoa moduleM with
(element of.4) and a signal (element of1), though written associated algebra (i.e., filter space). This is done thraug
using the same symbal are algebraically different. bijective linear mappin@ : V — M. For example, in infinite

Algebraic description. Sets with the above operations areliscrete time SRp is the well-knownz-transform
well-known in algebra. The filter space is algebra A (i.e., 9

. e . TN o *(Z) — M

a vector space that is also a ring, i.e., with multiplicatn S > s=8(2) =% _, spen (4)
its elements defined). It operates on the signal vector space n€L=n ’
M, making the signal spac&1 an.4-module The operation where M is defined in (3).
of A on M is filtering. As we will show later, the three object$, M, and® are
indeed sufficient to develop a theory of SP, e.g., to define
spectrum, Fourier transforms, and other concepts. Hence we
collect these objects in a triple calledsanal model

The exact definitions of algebra and module are given in
Appendix I. The theory of algebras and associated modul@gfinition 1 (Linear Signal Modellet V' < C’ be a vector
is known as therepresentation theory of algebragor an space of complex valued signals over a discrete index do-
introduction to representation theory, we refer to [28Q][2 main . A discrete linear signal modgebr just signal model,
[30]. for V is a triple (4, M, ®), where A is an algebra of filters,
Example: Infinite discrete time. In infinite discrete time M is an.A-module of signals withlim(M) = dim(V'), and
SP, the algebra commonly used consists of filters whose OV M )
z-domain representation has absolute summable coefficient '

sequences is a bijective linear mapping. IfA, M are clear from the
T o 1 context, we sometimes refer #as the signal model. Further,
A={h=3 haz"" [h= (. hos ho ) € (2)} we transfer properties from\ to the signal model. For
(2) example, we say the signal model is finite, Ml is finite-
We use bold-faced symbols liketo denote coordinate repre-dimensional.
sentations, i.e., sequences of scalars from the base figtl (s
as C). The corresponding element of an algebra (or modu
below) is written unbolded likéh.
The associated module is commonly assumed to be
space of finite energy signals, in thedomain given by (A, M, D) (6)

M={s= anz—n |S=(...,5_1,50,81,...) € 2(Z)}. with A from (2), M fr.om (3), and® from (4). . .
Remarks on the signal model.If M is of dimensionn

(3) with basié¢ b= (bg,...,b,_1) andsc C", then

We provide a proof thatM in (3) is indeed an4-module -
(i.e., closed under filtering) in [9]. o "

Note that in ASP we consided and M as spaces of series B(s) =5 = ; sibi )
and not immediately as spaces of complex functions. This ) _ o
means that the difference between, esgnds is that the latter defines a signal model for’ = C”. Conversely, if® is any

makes a basis explicit for which the former is the coordinafégnal model for” with canonical basig; (ith element ine;
vector. is 1; all other elements are 0), then the list of igll= ®(e;)

is a basis ofM (since® is bijective) and thu® has the form
) in (7). In other words, the signal model implicitly chooses a
B. Signal Model basis inM and ® is dependent on this basis.

ASP provides an axiomatic approach to SP. It does so byDefinition 1 makes it possible to apply different signal mod-
identifying the fundamental objects that are needed toldpveels to the same vector of numbers. For example, application
an SP theory. of a DFT or a DCT to compute the spectrum of a finite-length

Clearly, we need filter and signal space, i.e., an algebyactorsimplicitly adopts different signal models for this vector
and an associated module as explained above. However, in(§Bction V-B and [1]).
applications, signals are usually identified as elementsa of We remark that Definition 1 of the signal model and the
vector spacé’ and not as elements of modules. For examplgigebraic theory extend to the case of continuous (index)
in the discrete case, which is the focus of this paper, signalgnals. However, in this paper, we will not pursue this
are infinite or finite sequencef numbers from the base field extension and limit ourselves to discrete (index) signals.
(which we assume to be complex for now) over some index

4In this paperb will always denote a basis arlg always basis elements,
SReplacing¢! with 2 in (2) destroys the algebra structure: the concatenae., elements (or signals) iM, which should not be confused with scalars
tion or multiplication of two¢? filters is in general not ad? filter. such ass;, h;.

set of filters/linear systems= algebraA
set of signals = .A-module M

neZ

IeExample: Infinite discrete time model. Continuing the
previous example, the signal model usually adopted foritefin
t(ﬁgcrete time SP is

nez



I1l. ALGEBRA AND SIGNAL PROCESSING By constructingM;, for every filter h € A, we obtain a
mapping¢ from the filter algebrad to the algebra ofI| x |I|

We claimed that, given a signal model for a vector spéce matricesC/IxI1I-

the major ingredients for SP ovi are automatically defined.

This section confirms this claim. We show that signals, lter ¢: A— CHXUL s (R) = M, (10)
convolution, spectrum, Fourier transform, frequency oese, ) _ ) )

shift, shift-invariance have their abstract analogue irPAsd "€ Mapping¢ is a homomorphismof algebras, ie, a
can be derived from the signal model. Understanding af¢fPPINg that preserves the algebra structure (see Defini-
exploiting the benefits of this connection between SP cascefO" 8 in Append/|x ). In part:cular,qb(h + 1) = oh) +

and their algebraic equivalents helps us to develop new §BY) and ¢(hh') = ¢(h)é(h’). The homomorphisny is

frameworks, or signal models, different from standard tim%aIIeOI the(mgtrix) re_zpresentgtion o4 afforded by theA-
SP. module M with basisb and is fixed by the chosen signal

model.
Through the representation, abstract filtering (multgtiien
of s € M by h € A) becomes in coordinates a matrix-vector
d: VoM, s— Zsibi- (8) multiplication:
ey h-se ¢(h)-s (11)

In this section we assume a given signal mog@é) M, @)
for a vector spacé” < C! with

As remarked before, this implies that theform a basis for This coordinatization of filtering also shows the fundanaént
M. This basis is automatically fixed by the model. Furthedifference between signals and filters; namely, in cootdsia
we assume that the base field@s i.e., both.A and M are signals become vectors, and filters (as linear operators on
C-vector spaces. Other base fields are of course possible. signals) become matrices.
As a running example, we use the infinite discrete time In the infinite discrete time model, as is well-known, the
model in (6). ¢(h) are infinite Toeplitz matrices.
Irreducible submodule (spectral component).If M is
) . an A-module, then a subvector spagd’ < M is an A-
A. Basic Algebraic Versus SP Concepts submoduleof M if M’ is itself an.4-module, i.e., closed or
Algebra (filter space). The filters are given by the elementdnvariant under the operation of. Most subvector spaces fail
h € A. Serial and parallel connection of filters are definet® be .A-submodules; intuitively, the smaller the vector space
through the properties ofl (see Appendix I). M’ is, the harder it is to remain invariant unddr
As seen before, in infinite discrete timd, is given by (2). A submodule M’ < M is irreducible if it contains no
Module (signal space).The signals are the elementse ~ Proper submodules, i.e., no submodules besides the trivial
M. Filtering is automatically defined as the operation.of submodules{0} and M" itself.
on M andh-s € M is ensured by the axioms defining the In particular, every one-dimensional submodul¢ has to
module. be irreducible and is an eigenspace simultaneously for all
The basis elements of M fixed by the model via (8) are filters i € A; i.e., hs = Ans for all s M’ with a suitable
the impulses. The impulse response of a filter for this ingulg» € C. We call each irreducible module a spectral component

is hb; € M. of M and each element in it pure frequencyand write f
In infinite discrete time M is given by (3). The impulses instead ofs to emphasize it. _ .
are theb, — 2. We write the collection of all irreducible submodules as

Regular module (filter space = signal space)an impor- M., w € W, wherel" is a suitable index domain. _
tant module associated with an algebra is fibgular module In the infinite discrete time model, there is an irreducible
which is A itself: M = A with the operation of4 on M being SubmoduleM,, of dimension one for every & (-, ],
the multiplication available ind. We call a signal model with SPanned by

M = A aregular signal model. Note that even ift = M fo=Fu(z) =Y e“mam.
as sets, the algebraic structures .4fand M (i.e., which n€z
operations are allowed) are different. Indeed, for arbitranyh = H(z) € A,

The infinite discrete time model in (6) is not regular. "
Representations (filters as matrices)As a consequence hfo=H(e™)fo € Mo, (12)

of the module axioms (Appendix ), a fixed filtére A can which confirms thatM,, is an.A-module®
multiply every signals € M and defines a linear mapping on |rreducible representations (frequency response).We
M given by choose in each irreducible module, or spectral compondpt
s+ h-s. (9) of M a basish,,. ThenM,, affords a representatiap,, of A

. _ _ . called irreducible representation:
Thus, with respect to the badis= (b;);c; fixed via (8), every

. . . PR . de Xdy,
h is expressed by a matrixf;, (possibly, countably infinite if ¢ A— CWX% his gy (h),
|I| is countably infinite). As usual with linear mappindd;, is 5 _ _ _
To be precise M, is an. A-module but not asutmodule of M since

obtained by applying. FO each base vectdr; the coordinate fu & £2(Z)—a problem with infinite index domains. Besides that the theor
vector of the resultb; is theith column of M;,. remains intact.



filter algebra
A

filter algebra

A

operates on

A

M

signal space spectrumM,,, w e W

Fig. 1. A visualization of the concept Fourier transform, efhdecomposes
the A-module M into a direct sum of irreducible (minimalA-invariant
subspaces, i.e.A-submodules. The latter are called the spectruniof

whered,, = dim(M,,). The matrix¢,,(h) is the frequency
response ofi at frequencyw. The collection of allg,,(h),
w € W, is the frequency response bf

In infinite discrete time, (12) shows that, (h) = H(e/*) €
C'*! = C as expected.

Module decomposition (spectrum, Fourier transform).
It may be possible to decompose the modMeinto a direct
sum of its irreducible modules. The mapping

A: M — D e Mo,

s = (Sw)weW- (13)

is then the Fourier transform for the signal model and
invertible® The existence of such a decomposition, and hen
of the Fourier transform, is not guaranteed; it depends4on

and M. See Fig. 1 for a visualization of the Fourier transform.

With respect to the fixed bastsof M and chosen bases
b, € M,,, we obtain the coordinate form df as

F: V. = @, ey ClimMe),

(SU)LUEW' (14)

S —

In infinite discrete time, fors = S(z) € M, i.e., s €
*(z), dim(M,) = 1, w € (-m, 7], ie., all modules
are of dimensionl, and the tuple(s,).ew iS a (scalar)
function F(s) = S(e’*), w € (—m, 7. This is in general
not the case; different may be associated with modules o
different dimensions. An example is the real discrete Fouri
transform (RDFT) discussed in Section V-C.

The Fourier transform is a-module homomorphism (see
Definition 9 in Appendix 1), which means thak(h - s) =
h-A(s) for h € A, s € M. In words, this means that filtering
in the signal spacé\V is equivalent to parallel filtering in the
spectrum (as visualized in Fig. 1):

(h-8)w="h"su,

forall w e W. (15)

A(h-s) = h-A(s) also yields a general convolution theorem:;

h-s=A"Yh-A(s)). (16)

5The spectral components,, of s should not be confused with the
coordinatess; of s.

B. Shift-Invariance

Section llI-A illustrated that once a signal model is given,
basic SP concepts are available. From a practical poinesd,vi
this means that we can construct a large number of distinct SP
frameworks with different notions of filtering, spectrumrmda
Fourier transform. In this section, we narrow down the cégic
by imposing shift-invariance on a signal model. For finite
(-dimensional) signal models, this will identify polynaahi
algebras as key structures in SP.

Shifts (generators of filter algebra). The shift operator is
a special filter, and thus is an element € A. Further, it is
common to require thagveryfilter h € A be expressed as a
polynomial or series in the shift operaterIn algebraic terms,
this means that the shift operator generfitbe algebraA.

The same holds if multiple shifts are available:

shift(s) chosen generator(s) &f

In the infinite discrete time model, the shiftdis= z~1.
Shift-invariant signal models. A key concept in SP ishift-
invariance In ASP this property takes a very simple form.
Namely, if z is a shift andh a filter, thenh is shift-invariant,

if for all signalss, h(xs) = x(hs), which is equivalent to

x-h=h-z, foralhe A a7

Since the shifts generatd, A is necessarily commutative in
is casé. Conversely, if4 is a commutative algebra then (17)

Egglds:

shift-invariant signal model < A is commutative

In 1-D SP only one shift is available, ih-D SP k shifts
are needed. We focus on the case of one shift and identify
possible commutative algebras. The discussion for mofesshi
is analogous.

Commutative algebras of infinite dimension are spaces of
series inx such asA in (2). Finite-dimensional commutative
algebras generated hyare exactly thegpolynomial algebras

A =Clz]/p(z), p a polynomial of degree.
fC[:z:]/p(z) is the set of all polynomials of degree less than
n with addition and multiplication modulp(z). As a vector
space, A has dimensiom.

Thus, imposing only shift-invariance, we have identified
one of the key players in ASP, namely polynomial algebras.
Indeed, as we will see, they provide the underlying strctur
for finite time SP and the DFT (Section V) and for finite
space SP and the DCTs/DSTs [1].

"We write = instead ofz—1 to emphasize the abstract nature of the
discussion. Later, this will enable us to introduce withadditional effort
other shifts as well.
8This is not entirely correct, as, in a strict sense, one elémeran only
generate polynomials i (and z~! if z is invertible), not infinite series.
However, by completing the space with respect to some norm dtiemof
generating can be expanded. We gloss over this detail t&focthe algebraic
nature of the discussion.

°The requirement of # generating.A” is indeed necessary as there are
linear shift-invariant systems that cannot be expressedagotutions, i.e.,
as series inc; see [31].



Further, by allowing more than one shift and hence polyngrocessing using these algebras. We do this by specializing
mial algebras in several variables, ASP enables the dinivatthe general theory from Section lll.
of 2-D (and higher-dimensional) SP frameworks including The mathematics of polynomial algebras is well-known
nonseparable ones [3], [2]. (e.g., [33]). The purpose of this section is to connect it to
Finally, we note that noncommutative algebras are allow&P using the general ASP framework.
in ASP but necessarily yield shiftariant SP. For example, We focus on regular models, i.ed, = M = Clz]/p(z). As
this is the case for Fourier analysis on noncommutativesfinitunning example, we will use what we call tfiaite discrete
groups [32], which, in ASP terms, considers regular signiime model The motivation for this notion will become clear
models with.A = M = C[G], the group algebra for a finite as we proceed.
groupG. Note that the set of polynomial algebras and the setPolynomial algebras in one variable.Let p(x) be a
of group algebras are different and intersect only for theecapolynomial of degreeleg(p) = n. Then, A = C[z|/p(z) =
of commutative groups. A more detailed discussion is in [9A(z) | deg(h) < n}, called the set of residue classes modulo
Visualization of a signal model. A given signal model p, is an algebra with respect to the addition of polynomials,
can be visualized by a graph, which provides an intuitivend the polynomial multiplication modulp. We call A a
understanding of the model. polynomial algebra (in one variable)4 can be generated by
one element, usually chosen to be
Definition 2 (Visualization of Signal ModePAssume that a As an example, considep(z) = 2" — 1, i.e., A =
signal model(A, M, ®) is given as in (8). Denote the choserC[z]/(z" — 1). In A, multiplying, for example and z™~!
shift operators, i.e., generators, gfby z1, ..., z,. Further, yieldsz - 2""! = 2" = 1 modz™ — 1. The last equality is
assume thap is the representation ol afforded by M with read as %™ is congruent 1 modula™ — 1.” Thus, we do
basisb. Then eachp(x;) is an infinite or finite matrix (which not use “mod” as an operator but to denote equality of two
we callshift matriy) and can be viewed as the adjacency matrixolynomials modulo a third polynomial.
of a weighted graply;. Each of these graphs has the same
vertices corresponding tb. Thus we can join these graphsa. Signal Model
by adding the adjacency matrices of tigto obtain a graph
G. We call this graph thevisualizationof the signal model deg(p) — n, and choose a basis = (po,....pn1) of

(A, M, ). M. This defines a signal model fdr = C"™; namely, for

Intuitively, the graph provides the topology imposed by th&= (so, -, sn,—1)" € C", we can define the bijective linear
signal model. For example the infinite discrete time modsl hA'apPpINg® as
the visualization shown in Fig. 2. The vertices are the base n

) . o: C M, s . 18
elementsh, = z* = z7*, the edges show the shift operation. - - Z sepe (18)

General case.We considerA = M = C[z]/p(x) with

0<t<n

® in (18) is the equivalent of thez-transform for
c 0— P O0—PO—PO0O——PO0—P O o o . . . . . . T .
PN 1 0 1 9 3 this model. Filtering in this model is the multiplication
h(z)s(z) modp(z) for h € A ands € M. The shift in this
Fig. 2. Visualization of the infinite discrete time model (6). model isz € A. The basis elements; are the unit impulses
in M, i.e.,p, is a canonical base vector. The impulse response
of a filter h € A for the impulsep; is hp; € M.
C. Summary Example. Our running example will be the finite discrete

We summarize the correspondence between algebraic cée model defined as
cepts and signal processing concepts in Table |. The signal A= M =Clz]/(z" — 1),
processing concepts are given in the first colu_mn and their al B:C" o M, S e, st
gebraic counterparts in the second column. With respectteto t S
basis fixed by the signal model we obtain the correspondiige call @ the finite z-transform It fixes the basisb =
coordinate versions in the third column. In coordinateg, tH1,%,...,2"~ ") in M.
algebraic objects, operations, and mappings become gector
and matrices and thus allow for actual computation. This B Filtering

the form used in signal processing. However, the coordinateégeneral case As said above, filtering in the signal model
version hides the underlying algebraic structure, whiderof yefined in (18) is the multiplication of polynomials (filtér

cannot be easily recovered if it is not known beforehand. 54 signals) modulop. In coordinates, filtering becomes the
matrix-vector multiplication

hs € M < ¢(h)-se€ C", (20)

(19)

IV. FINITE, SHIFT-INVARIANT, 1-D SGNAL MODELS

In Section IlI-B, we have learned that, for finite shift-
invariant signal model§A, M, @), A is a polynomial algebra. where¢(h) € C**™. Theith column of¢(h) is exactly the
In particular, in the case of finite 1-D (one shift) signal mtsg coordinate vector of the impulse resporigg. The representa-
these algebras are necessarily of the fdfin]/p(x). With tion of A associated with the signal modelgs A — C™*™.
this motivation, we investigate what it means to do signal We call theg(h) filter matrices;$(x) is the shift matrix



TABLE |
CORRESPONDENCE BETWEEN DISCRETE SIGNAL PROCESSING CONCBPAND ALGEBRAIC CONCEPTS

signal processing concept algebraic concept (coordimat f in coordinates

filter h € A (algebra) ¢(h) € CIXI

signal s = ZS/[bl € M (A-module) S= (Si)ie] ec!

filtering h-s ¢(h)-s

impulse base vectdr; € M b;=(..,0,1,0,...)T e’
impulse response di € A h-b; e M ¢(h)-b; e Cl

Fourier transform A: M— @, cw Mo F:Cl 5@ e Cl & ¢ — B,enw o
spectrum of signal A(s) = (Sw)wew F(s) = (Sw)wew

frequency response ¢f € A  n.a. (P (h))wew

shift(s) generator(sy of A o(z)

shift-invariance A is commutative n.a.

Example. In our example, the filter matrix for a generic The Fourier transform, or spectral decomposition, of the
filtter 3., hxa" is readily computed as regular moduleM = C[z]/p(z) is given by the Chinese re-
- mainder theorem (CRT; stated in Theorem 10 in Appendix ).

ho  hnoy In coordinate-free form, the Fourier transform is given by
M ho  hn-1 oo he the mapping
oh)=1| h h h : . 21
(*) oo . @D A Cllpe) — Clal/@ - a0) @ ... Clal/ (@ — an_1),
: ' n—1 s=s(z) — (s(aw),...,s(an-1)).
Booi ...  ha hi  ho 0 ! 23)

Hence, the filter matrices in this model are precisely tHeaBchMi = Clz]/(z—ay) is of dimension 1. So the elements

circulant matrices. Filtering in coordinates(h)s, is exactly Of Clz]/(z—ax) are polynomials of degree 0, i.e., scalars
circular convolution. C. Further, each\;, is an.A-module, since foh = h(z) € A

andc € My,

C. Visualization h(z)-c=h(ag)-c mod (z — ay),
General case. The visualization of the signal model. . L . i i .
(A, M, ®) with ® in (18) is the graph witm vertices that has -€- the result is again ity Since M, is of dimension 1,
the shift matrix¢(z) as adjacency matrix (see Definition 2)it IS irreducible.
In the general case the graph has no apparent structure. _ 1he scalars(ay) in (23) are the spectral componentssof
Example. In our example (19), the shift matriz(z) is a The mapping in (23) simultaneously projects a signal (i.e.,

special case of (21), namely the cyclic shift polynomial) s € C[z]/p(x) into the modulesC[z]/(x — ay).
This projection is precisely the evaluation
0 1

1 0 s(z) = s(ay,) mod (z — ay).
o(z) o 7 22) (z) = s(ow) ( k)
o The set of the one-dimensional irreducible modules, =
Clz]/(x—a), 0 < k < n, is thespectrumof the signal space
This yields the visualization as a circle shown in Fig. 3. M. EachM; is an eigenspace simultaneously for all filters
(or linear systems) ind. The spectrum of a signale M is
the vectorA(s) = (s(ap), . - ., s(an—1)).
e b e—be e .. oe— > o—>e The pure frequencied; associated withM, are those
20 2l 2 pn=3 pn—2 pn-—l elements ofM that are mapped to a canonical base vector:
A(fx) = ek. This implies f;(«;) = 1 for i = k and= 0 for
i # k. This is an interpolation problem, and the solution is
well known and given by the Lagrange polynomial [33]

Fig. 3. Visualization of the finite discrete time model in (19).

D. Spectrum and Fourier Transform fiu = H(x — )/ H(ak — ;). (24)
General case.We assume thap(xz) has pairwise distinct i#k i#k
zeros:

With this we see thatA enables us to express a signal
as a linear combination of pure frequencies, namely=
p(l’) = H(x - O‘k)a Qg 7é ay, for k 7é ¢, 20§k<ns(ak)fk'
k=0 Example. In our examplez™ — 1 = 0 has pairwise distinct
and sete = (g, ..., 1) zerosay, = wP with w, = e~2™/", Thus, spectrum and

n

n—1



Fourier transform of the model (19) are given by irreducible modulesM;, = Clz]/(z — ax). If we choose
' N k generic baseb;, = (ax), ar, # 0, in My, 0 < k < n, then the
A Clal/(@" =1) = Dochen Clzl/(z —wp) (25) Fourier transform# becomes thecaledpolynomial transform

s=s(x) — (s(W2),...,s(wr1)).
( ) ( ( n) ( )) diag(l/ao,...,l/an—l)'Pb,a'

The pure frequency; is given by
Once F is chosen, the coordinate vectds of the pure

fio =[] —wi)/ [k —wh). (26)  frequencies in (24) are th& ey, i.e., the columns ofF 1.
i#k i£k Example. In our example, the (polynomial) Fourier trans-
This expression can be simplified as explained later. form associated with (25) is computed as
Pra = [wnlo<k,e<n = DFTy, (30)

E. Frequency Response ) o ) . . )
i.e., it is precisely the discrete Fourier transform, which

General case. Filtering n th_e rggular moduleM = . supports that we call (19) finite discrete time model and
Clz]/p(x) becomes parallel filtering in the frequency domair),, (19) finite z-transform. It also follows that thgth column
i.e., on the irreducibled-modulesM;.. Namely, leth € A be of DFT: ! is the coordinate vectds, of f; in (26)
any filter and lets(ay) € My, be a spectral component of the " A '

signal s. Then filtering byh yields ] o ] ]
G. Diagonalization Properties and Convolution Theorems
h(z)s(ax) = hlax)s(ar) mod (z — ax). General caseThe diagonalization property of any Fourier

This shows that\M,, affords the irreducible representation transform F of the regular moduleM = C[z]/p(z) is a
consequence of the CRT.
¢r 2 h=h(x)— h(ag). 27)

The collection of thegy(h), namely, (h(ag), . .., h(an_1)) Theorem 3 (Diagonalizatiop Propertiesk)gt F be a Fourier
is the frequency response of the filter This means that ransform for the regular signal model in (18). Then

the k_:th spectral component(ay,) of a signal s = s(x) is F-A-FL = diag(ao, ..., an_1), 31)
obtained in the same way as the frequency respdiiag) _ _ _

at oy, namely by evaluating polynomials. This is a specidl and only if A = ¢(h) for a filter h € A. In this case,

property of polynomial algebras. a, = h(ax), 0 <k <n, is the frequency response bf
Example. In our example (19), the frequency response of In particular, 7 diagonalizes the shift matrix(x), and the
h e Ais the collectionh(wk), 0 < k < n. shift operatorz has the frequency responéey, .. ., o, —1).
_ _ Proof: Let A = ¢(h). Then F¢(h)F~! is diagonal,
F. Fourier Transform as Matrix since it is the coordinate representation of the filterin

General case.The Fourier transform\ in (23) is a linear the frequency domain, which is the diagonal matrix with the
mapping, which is expressed by a matrk after bases are frequency response on the diagonal.
chosen. We will call this matrix also a Fourier transform Conversely, the set of diagonal matrieisg(ao, . . ., an—1)
for M. To compute this matrix, we choose the bakis= is ann-dimensional vector space. Singeis invertible, the set
(po, - .,pn_1) IN M, fixed by the signal model (18), and theof matricesA diagonalized byF is alson-dimensional. Since
basisb, = (1) (the list containing the polynomiat® = 1) A is of dimensionr, andg¢ is injective, the set of all matrices
for each summand:[z]/(z — ax). The columns ofF are ¢(h) is a vector space of dimensionand thus the set of all

precisely the coordinate vectors 0f(p,), 0 < ¢ < n. Since matrices diagonalized by. ]
pe(z) = pe(ag) mod (z — ax), we get We also note that, using Theorem 3, we get immediately
the characteristic polynomial, trace, and determinantefor
F = Poa = [pe(ar)lozr,e<n- (28) ery matrix ¢(h), since it is similar to the diagonal ma-
We call P, ., apolynomial transformit is uniquely determined trix diag(h(ao), .. ., h(an—1)). In particular, the characteristic
by the signal model. polynomial of () is p(A).

This definition coincides with the notion of a polynomial Theorem 3 is the convolution theorem for the signal model
transform in [34], [35] and is related but different from thge Under consideration. Namely, it states that filteripg,)s in
in [36]. In [37], polynomial transforms are called polynahi the signal domain becomes pointwise multiplication by the
Vandermonde matrices. frequency reponsdiag(h(ay))(Fs). in the spectral domain.
Note thatP, . can have entries equal to zero, but, as an Example. For our example (19), Theorem 3 yields the well-
isomorphism (as stated by the CRT), it is necessarily ifviert known fact that théDFT,, diagonalizes the circulant matrices.
Let s = s(x) = > sepe(x) € M be a signal. Then, in
coordinatesA in (23) becomes a matrix-vector product: V. 1-D TIME MODELS
_ T n We presented two signal models as examples of the general
A(s) © Py -S= (s(),...,s(ap—1))" €C".  (29) algebraic theory: the infinite time model in (6) and the finite
The matrix formF of A in (23) is not uniquely determined. time model in (19). The former bore no surprises, but the
The degree of freedom is in the choice of bases in thatter is, as formulated, non-standard in SP and ASP pratluce



TABLE I

a first small benefit: the proper notion of a finiteransform.
REALIZATION OF THE ABSTRACT TIME MODEL.

To develop new SP frameworks, not directly related to stethda
time SP, we present in this section a methodology to derive

: . o . concept abstract realized
signal models from basic principles, namely, from the shift .
operator. This will further shed light on why, for exampleet shift operator a x
. . . . . shift operation o
time models look exactly as in (6) and, in particular, as @)(1 time mark X o
In the process, we get a deeper appreciqtion of the differenc k-fold shift operator g = ¢ ok
between the filter and signal spaces (a difference thatvisllo shift qotn =tni1 -z = anH
from the axioms of ASP). We also understand the necessity signal S sntn S spa”
for boundary conditions, the impact of different choicesd a filter S higk S hyak

how they relate to the problem of signal extension. We use

this methodology to derive 1-D and 2-D space signhal models

in [1] and [3]. filters. Convergence of the filter operation is handled as$ par
For notational convenience, we set as before = 271, of the next step.

The construction of the infinite and finite time models follow Realization. To obtain the signal model, we first consider

three basic steps: definition of the shift, linear extensamd the “realization” of the abstract model. We replace theralost

realization. objectst,, andq and the operation by objects we can compute
with. To this end, we choose a variableand setq = z,
A. Constructing the Infinite Time Model and ¢ = -, the ordinary multiplication of series. Then, (32)
becomes
Definition of the shift. Following Kalman [23], when o1 =2 - ty. (33)
considering discrete time, we need two ingredietitse marks
t,, and ashift operatorg. Thjs two-term recurrence, when started with= 1, has the
The time marks are symbolic independent variabjes, ¢ Unique solution
Z; t, is associated to “time:.” However, time marks alone tn = ™. (34)

capture neither the equidistance of the time points nor ¢ gther words, the realization is essentially (up to a commo
directed nature of time. This problem is resolved by thetshi{;qjing factor for all:") unique.

operatorg and the shift operation defined as As a result, we obtaigM = {s = Y s,2"} and A =
{h =" hi*}. Since the series are infinite, we have to ensure
convergence as part of the realization; namely, that filtgri

Fig. 4 shows a graphical representation of the time shift. the operation of4 on M, is well-defined. This is achieved, for
example, by requiring € ¢(Z) andh € (*(Z), as explained

q< tn = tn+17 n € 7. (32)

qo qo in Section IlI-A.
_______ o No Ny . Table Il shows the correspondence between the abstract
tho1  tn tnit and the realized concepts. Note that signals and filters are

conceptually different (as pointed out several times t&for
Fig. 4. The time shiftg o ¢;,. but look the same (both are Laurent serieszipbecause the
realization maps botls™ and ¢, to ™.
Next, we extend the operator domain from the shift operator Resumng Signa| model As a result of the above procedure,
q to k-fold shift operatorsy, defined by we obtain the infinite discrete time model in (6).

Qk ©tn = tntk- . .. .
" B. Constructing the Finite Time Model

_ - .

Clearly, g = ¢". . _ . In real applications, usually only a finite subsequence
At this point of the construction, working only with, and g _ (5, .. s, ;) is available, not the entire (sampled)
qx, there is no notion of linearity. _ sequencés;)rez. Thus, for time SP, the question arises how
Linear extension. To obtain alinear signal model, we tq construct dinite time model(A, M, ®). Here ASP and in
consider two extensions: 1) we extend linearly the opematio particular polynomial algebras provide a very detailedgs

of the shift operator from the set of the',, to the set of all hig the possible choices.

formal sums} _ sntn: gos =3 sn(gotn); and 2) we extend  por our investigation we first need a formal notionsignal
linearly the set ofk-fold shift operatorsg® to the set of all gytension

formal sums_ hiq*. The first set will become the module

of signals, while the second set will become the algebra pffinition 4 (Signal Extension)et s = (sz)rc; be a signal
given on an index sef C Z. A (linear) signal extension of
10Note that the choice ok~! instead ofz in the definition (4) is a

convention, not a mathematical necessity; choosintpads to equivalent sis the sequence of linear combinations (onIy flmtely many

properties and an equivalent theory for thransform. In fact, the choice of SUMmMands are nonzero)

z~1in SP is in contrast to the original mathematical work on Latisamies.

The reason may lie on the fact that the shift operatot causes a delay of S = Z Brisi, fork ¢l
the signal. However; ~! advancesvhat we call below the time marks. icl
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The signal extension is callemhonomia) if, for eachk, the Case 1 | r(z). Then alsar|(z™ — r(z)), and thuse (the
sum has only one summand. shift operator) is not invertiblé in A = Clz]/(2™ — r(z))

and (36) does not need to be considered: the signal has no

In other words, in a monomial signal extension, every signglg boundary, since “the past’ is not accessible without an
value outside the signal scogeis assumed to be a multiple, artiple

of a signal value inside the signal scope. For example, thec qe 2. fr(zx). Then, from (37), we get
periodic signal extension is monomial.
Note that we consider onliinear signal extensions (e.g., P *i(ﬁl 4 Box 4+ Pprz™ 2 — gL,
polynomial signal extensions are excluded). The reasdmais t Bo '
with nonlinear signal extensions it is not possible to m&imt which is the left boundary condition. Similar to above, thé |
filtering as a linear operation. Thus, we are outside linégr Signal extension can be determined by multiplyingy and
and hence outside ASP as developed here. reducing modula:™ — (). Thus, the signal extension both
Shift, linear extension, realization. To construct a finite directions is determined byne equation (37), which provides
time signal model, we follow the exact same steps as in Sege left and the right boundary condition:

tion V-A, but start from dinite set of time markg, ..., t,_1. . ) ) .
The construction seems to lead to the following definition Poundary conditior=- right and left signal extension.
of a “finite” z-transform, which maps € C" to By assuming the generic boundary conditioh = r(z),
s = s(z) = Z spa we obtain a valid signal model. However, the corresponding
0<hen ’ signal extension (38) has in general no simple structure. To

. obtain a module that is reasonable for applications, we thus
Clearly, the setC,[z] of the polynomialss(z) of degree require

less thann is a vector space with the natural basis=
(2°,...,2""1). The problem, however, arises from the op-
eration of the (realized) time shift: the set of polynomials
of degree less than is not closedunder multiplication byz.
More precisely, the root of the problem is

« the shift operator: € A to be invertible; and
« the signal extension to be monomial (see Definition 4).

These requirements lead to the signal model for the DFT in
the finite time case (explained below) and for the 16 DCTs
and DSTs in thdinite spacecase [1].
z-a" ! =2" ¢ C,lal, (35) We can now explicitly determine the polynomial® —r(z)
and, if z is invertible, that satisfy the above two conditions.

2% =27t ¢ Clz). (36) Lemma 5The boundary conditionr™ = r(z) makesA =

Thus, the time shift as defined is not a valid operation o(%[x]/(m — r(z)) an algebra in whichv is invertible and

T RS i ial signal i = if
C,[z], which implies that we cannot define filtering @, [x], de;ermllnei ﬁ morllomla_ ?gna_ extension A, !
or, algebraically,C,,[x] is not a module. Without filtering and only if the polynomia () 'S a nonzero constant, 1.e.,
TS T _o ’_Iréx) = a # 0. The signal extension in this case is given by
there is also no notion of spectrum or Fourier transform. X

_ K ; — :
resolve this, we need to take care of the problems rais <_ka isle wherek € Z is expressed as = ki + kyn, With
by (35) and (36), which we do now by introducing boundary — ! '

conditions. Proof: Let r(z) = a, a # 0, and letk € Z. We
Boundary conditions and signal extensionTo remedy the write k& = k; + kon, with 0 < k; < n, and thusz® =
first problem (35), we have to make sure thdtcan again be 2351 mod (2™ — a), which is a monomial signal extension.

expressed as a polynomial of degree- 1. This is achieved Conversely, letz" = r(z) determine a monomial signal
by introducing an equation extension. This implies” = az!, for some0 < ¢ < n. Since
n k n x is by assumption invertible modulo™ — az?, it follows
" = = ; or — =0. 37 .
@ =) Z Brz, = () (37 /=0 anda # 0 as desired. [ |

0<k . . .
shen Resulting signal model. In summary, the signal model

This equation implicitly defines the right boundary cormiti optained is forl’ = C" and given by
Sn = Y o<pen Brsk. Further, (37) determines the entire right
signal extension obtained by reduciag™, k > 0, modulo A =M =Clz]/(z" —a), ®: s> > sz* € M. (39)
" —r(z): 0<k<n

n+k _ n For a = 1, this is exactly the finite model in (19), which we

# = rx) mod (@ —r(z)). 38) " ctudied in Section IV. ’ o)

Algebraically, the boundary condition replaces the vector For other values of, it is an easy exercise to specialize the
spaceC, [z] by the vector space\t = C[z]/(z" — r(z)), general results from Section IV. In short, the visualizatie
which is of the same dimension, batosedunder multipli- as in Fig. 3 with the backwards edge weighted witthe filter
cation by the time shift operator and thus a module. The

corresponding algebral, generated by, is identical toM. ~ “A polynomial g(z) is invertible in Clz]/p(z) if and only if
. . . N cd(q(z),p(x)) = 1, since in this case there are polynomiais), s(x)
The remaining question to consider is (36). There are tvﬁgch that1 = s(z)q(@) + r(z)p(z), which implies thats(z) =

cases. q(z)~t mod p(z).
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matrices are skew-circulant matrices, filtering is henoaask a constant right signal extension, singg = z"~! implies
circular convolution, and the polynomial Fourier transfidnas  z"* = "~ for all k£ > 0. In this case, the CRT yields
the formDFT,, -D, with a suitable diagonal matrix [9]. n el o "
In particular, this class includes the generalized DFTefro Cla]/ (2" —a"™") = Cla]/(z — 1) & C[z] /=",
[38], [39] defined as and the rightmost module, of dimension — 1, is again
Fog = [WHOEHD) indecomposable. I_n contrast, in [1] we will see that finite
' = space models (which have DCTs/DST as Fourier transforms)
wherec,d € R. We briefly investigate the 4 special casedo permit symmetric boundary conditions.
given byc,d € {0,1/2}, which in [39] are called DFTs of If we relax the requirement of a monomial signal extension
types 1-4, written a®FT-1,... , DFT-4. Namely, and only require that the Fourier transform approaches the
DTFT asn — oo, then choices nontrivially different from the

DFT-1, = Fo,0 = DI, (40) DFT are indeed possible [40].
DFT-2, = Fy1/2 = diagy< o, (wF/?) DFT,,, (41)
DFT-3, = Fi2,0, (42) c. Real Finite Time Model

DFT-4, = Fi /212 = diagoc e, (wh/?)DFT-3,.  (43) AP naturally extends to base fields other th@nand

We identify the signal models for which these transforms aflves .|nS|ght .|nto th.e necessary changes in the SP conc.epts
Fourier transforms. ThBFT-1, = DFT, is, as seen above aassomated with a signal model. As an example, we consider

polynomial transform fo€[z]/(z™ — 1). The DFT-2,, in (41) real finite time models in this section. In particular, we
is also a Fourier transform, but not the polynomial transfor will explain why the real DFTs (RDFTSs) or discrete Hartley
for Clz]/(z" — 1). The DF'T-3 in (42) is the polynomi.lsll transforms (DHTS) are now the associated Fourier transform

vansiom forCl (7 1), et %0 < 1 <, re T A0S nerretaton of he DY n i secon
isely th " 4+ 1. Finally, the DFT-4,, in (4 AR .
precisely the zeros of" + nally, the n N (43) an ADFT (algebraic discrete Fourier transform), a general

is also a Fourier transform, but not the polynomial transfor . . ) .
for C[z]/(x«™ 4 1). This means that these DFTs cover the twﬁpncept mtroduged in [41], [42] and rediscovered (using a
ifferent name) in [43].

qucoritant cases of boundary conditions = s or p(x) = Real finite time model. If only real signals and filters are

Other boundary conditions and effect on spectrum.At ts(')mbel Croenslfci.'g% a%d_nalrli th'eecr:)?pr?;?t:sgje?rfoqueegr\:]veb
this point it is instructive to investigate what problemsaurif r']e F;eyal ep uivalen)t/ of '(19) %'C;/V B ]En is iven 'b xample,
we slightly relax the conditions in Lemma 5 by dropping thé q - 9 y

requirement of monomial signal extension or the requirdmenyg — 4 — R[z]/(z2" —1), ®: s— Z spx® € M. (44)
that the shift operator: is invertible in the resulting algebra. 0<k<n
If we allow any signal extension and hengéx), we obtain

the genericfinite time model Compared to its complex counterpart in (19), (44) has the

same notions of filtering (only restricted ®), visualization,
A=M=Clz]/p(z), ®: s Z spa®. and signal extension.
0<k<n Spectrum and Fourier transform. The difference arises

If p(z) has pairwise distinct zeros, then the polynomial trangv—hen computing the spectrum. Since only real numbers are

; . . . available, and the roots of” — 1 are complex,M cannot
form is precisely a Vandermonde matrix and the shift matrix . . . . i

. : . e decomposed into one-dimensional irreducible moddles.
¢(x) is the transpose of the companion matrixpof

: L : Over R, the irreducible factors of™ — 1 are polynomials of
If we require a monomial signal extension, but allow for

itk n—k i
non-invertible shift, then the proof of Lemma 5 shows thglegree Lor 2. Namely, &, ™", k # 0,n/2, are conjugated

. n y . T complex roots ofr™ — 1, then
necessarilyp(z) = z™ — az®. A simple choice isa = 0
yielding A = M = C[z]/2", which realizes a right zero (. — W) (@ — ™) = 2% — 2z + 1,
extension £” = 0 impliesz"** = 0 for k£ > 0). The problem o )
with this model is that it does not permit spectral analysi¥ith ck.n = cos(2km/n) is irreducible overR.
Clz]/2" cannot be decomposed by the Chinese Remaindefi€nce the spectral decomposition is now given by
Theorem (CRT). This can also be seen from the shift matrix n
é(z), which is the lower Jordan block (and hence cannot be™ * Rlz]/(z" = 1) = R[z}/(z 1) &

block-diagonalized) P Rpl/(@® - 20kn +1) @ Rz]/(x + 1), (45)
0 1<k<n/2
() = L0 where the last summand appears only for evgnr1 = wﬁ/Q).
o . . ' We want to compute the matrix ford of (45). The situ-
1 0 ation is slightly outside the scope of Section IV; in part&u

) o ) __there is no notion of polynomial transform. Still, the thgor
Another simple choice is the symmetric boundary condition

2" = 2" Y ie., p(xr) = 2™ — 2"~ L. This choice implies  2in algebraic termsR is not asplitting field for the .A-module M.
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is readily extended. To comput&, we choose a basis in The above derivation extends to the DFTs of type 1-
each spectral component. It turns out that the natural etisic 4 in (40)—(43) and allows us to define DHTs and RDFTs
(1,&(39 — Ckn))s Skn = sin(2km/n). Namely, this choice of type 1-4 in parallel to (40)—(43). Namely, the types
associates the matrig _7] with the decomposition t = 1,2,3,4 correspond, respectively, to the parameters

(¢,d) = (0,0),(0,1/2),(1/2,0),(1/2,1/2) in the following
Cla]/(2® = 2¢pn + 1) — Cla]/(z — wy;) ® Cla]/(x —wpi™")  definitions.

and hence shows that the coordinates of the real spectrum are RDFT-t = [r.elo<k. r<n

the real and imaginary parts of the complex spectrum. Furthgjith
the irreducible representation (i.e., frequency respprsge cos w, 0<k<m,
afforded by a two-dimensional spectral component in (45) Tkt = in 2D -y <o,
maps the shift to a rotation:

d)k’ . ./4 N ]R2><27 T — [ck,n 78;6,”],

Sk,n Ck,n

—S
wherem =n/2 fort =1,2 andm = (n —1)/2 for ¢t = 3, 4.

. DHT-t,, = [cas 72(k+d)(€+c)ﬂ]o<k,e,n~
and hence, as a homomorphist,(h(z)) = h(¢i(z)). The " -

matrix F is now computed by reducing’ modulo z — 1, The relations (46) and (47) hold for all four types.

z? — 2¢,, + 1, and x + 1. Further, to precisely match the The four transformaHT-t were introduced (in their or-
common definition of the real DFT, we order the spectral badigogonal form) in [44], [45], [46], [47], where they were leal
such that first come all the 1's (bases of the one-dimensiosgcrete W transforms (DWTs) of type 1-4. We suggest to
components and first half of bases of two-dimensional corféname these transforms to DHTs of type 1-4 since: 1) the

ponents) and then the remaining. The result is name DHT (for type 1) is much more commonly used than
DWT, and the types 2—4 are just variants; and 2) even though
F =RDFT, = [reco<k,e<n the DHT and the DWT were introduced at about the same time
with ([48] and [47]), the continuous counterpart was introdubgd
cos 27771%7 0<k<n/2, Hartley much earlier in 1942 [49].
Tke = Csin 27 /2 < k<. Diagonalization properties. The above discussion gives
n immediately the “diagonalization” properties of the RDRida
From the above it follows that DHT. We use double quotes, since these properties are not
1 0 - - 0 actually a diagonalization. Ik € A = R[z]/(z" — 1) is any
0 1 j filter, then¢(h) is a real circulant matrix, i.e, of the form (21)
. . ) with @ = 1. Then
DFT, = | : o -RDFT,,.  (46)
: RDFT, ¢(h)RDFT,' = X, (48)
0 1 —j where X is real and has the same x-shaped structure as the

F\trix in (46). Convolution theorems can be similarly dedy
Finally, we note that other basefields th@randR can be
considered. For example, the rational finite time model can
F =X, - RDFT,, be studied by decomposing” — 1 over Q. Interestingly, this

) _ _ o ields the rationalized Haar transform as one possiblei€our
where X, is any invertible matrix with the same X'Shape%ransform choice. See [9] for further details.
pattern as the matrix in (46). An example is

Since the only degree of freedom is in choosing a spectrrg
basis in (45), a generic real DFT has the form

DHT, = |[cos % +sin 2270 g g D. Overview of Finite Time Models
= [cas = ok, In Table 11l we list the finite time models that we introduced

wherecas(z) = cos(z) + sin(z). Obviously, in this paper, and their associated Fourier transforms tdthie
10 oo o0 is divided into complex and real time models. In each row
we list in the first two columns the signal modell, M, ),
0 1 1 . . . - . .
in the third column the associated unique polynomial Faurie
DHT, = | : -RDFT,,. (47) transform, and in the fourth column other possible relevant
Fourier transforms for the model. Note that the notion of

(‘) ) a - ) polynomial transform does not exist for the real time models

since the spectral components are not all one-dimensional.
Both transforms, the RDFT and the DHT, are special among
the class of all possible real DFTs. The RDFT appears to have VI. CONCLUSIONS

the lowest arithmetic complexity and the DHT is equal to

o . Wi ted the algebraic signal ing th ASP),
its inverse (up to a scaling factor) e presented the algebraic signal processing theory (ASP)

a new approach to linear signal processing.
3we do not have a proof. The assertion is based on the best knownASP IS an ax'omaF'c theory of SP. It_ is developed from
algorithms. the concept of the signal model, the triplel, M, ®). We



TABLE Il .
OVERVIEW OF FINITE TIME MODELS AND ASSOCIATEDFOURIER [ ]
TRANSFORMS DISCUSSED IN THIS PAPER
[8]
Complex finite z-transform
A=M P F =P other F
Clz]/(a" —a) s S sgz* DFT, D — (9]
Clz]/(z™ —=1) s~ S.sxgz® DFT, =DFT-1, DFT-2, [10]
Clz]/(z™ 4+1) s— Y spz¥ DFT-3, DFT-4,
Real finite z-transform (11]
A=M ) F
[12]
Rlz]/(z™ —1) s+ > spz® RDFT-1/2,, DHT-1/2,
Rlz]/(z™ +1) s+ > spz® RDFT-3/4,, DHT-3/4, [13]
[14]
showed that basic concepts such as filtering, spectrumid?ou[ls]

transform, shift, and shift-invariance can be defined (dyth
exist) for any signal model, just like basis, dimension, arde]
linear mapping can be defined for any vector space. 171

ASP is a very general platform for SP. In this paper, V\}e
focused on capturing time SP in ASP; reference [1] preserits]
ASP for space dependent signals.

ASP gives deep insight into the structure and choices [iy)
SP. For example, for finite time SP, we derived the periodic
boundary condition from basic principles but also showexd th{20]
other choices are possible. We also considered DFT variapig
and showed that they are Fourier transforms in ASP for a
properly chosen signal model. This understanding is ctuc'@z]
when we leave the familiar domain of time SP.

ASP is constructive. For example, we showed how to derive
the time signal models from the shift operation. This ermblﬁe,]
the derivation of novel signal models for other, non-stadda
shifts. Further, in [5], [7] we use ASP to present concisié4]
derivations of existing and new fast algorithms for linear
transforms. [25]

Besides the derivation of other SP frameworks, or signal
models, a future research direction is to capture “advdnc
SP concepts abstractly within ASP including sampling, down
sampling, filter banks, multiresolution analysis, framasd [27]
others. Eg]
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APPENDIX |
ALGEBRAIC BACKGROUND

We provide here formal definitions for the most important
algebraic concepts used in this paper. For an introduction t
algebra we refer to [28].

Definition 6 (Algebra)A C-algebraA is aC-vector space that
is also a ring (multiplication is defined and the distribatlaw
holds), such that the addition in the ring and the addition in
the vector space coincide. Further, fore C andg, h € A:

a(gh) = (ag)h = g(ah).
Definition 7 (Module)Let A be a C-algebra. A (left) A-
module is aC-vector spaceM with operation
AXM—= M, (a,m)— am,
which satisfies, for,b,1 € A andm,n € M,
alm+n)=am+ an (ab)ym = a(bm) Markus Puschel (M'99-SM'05) is an Associate

(a+b)m =am+bm Im =m neering at Carnegie Mellon University (CMU). He

Research Professor of Electrical and Computer Engi-

Definition 8 (Homomorphism of algebratet A,5 be C-
algebras. A homomorphism of algebras is a mappgingd —
B that satisfies, forn,b € A, o € C:

ola+b) = 6(a) + 6(b), d(ab) = (a)é(b), d(aa) = a(a). gl

received his Diploma (M.Sc.) in Mathematics and

his Doctorate (Ph.D.) in Computer Science, in 1995

and 1998, respectively, both from the University of

Karlsruhe, Germany. From 1998-1999 he was a Post-
doctoral Researcher at Mathematics and Computer
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An isomorphism is a bijective homomorphism. and was an Associate Editor for tHEEE Signal Processing Lettersa

Guest Editor of theJournal of Symbolic Computatipmnd theProceedings

Definition 9 (Homomorphism of modulels)et M. N be A- of the IEEE He holds the title of Privatdozent of Applied Informatics at
)

modules. An.4-module homomorphism is a mapping :

the Department of Computer Science, University of Techngldggnna,
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theory/software/hardware, scientific computing, compilepplied mathemat-
o(m+n) = ¢(m) + ¢(n) and g(am) = ap(m). ics and algebra.
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