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ABSTRACT

The assumptions underlying linear signal processing (SP) produce
more structure than vector spaces. We capture this structure by de-
scribing the space of filters as an algebra and the space of signals as
the associated module. We formulate an algebraic approach to SP
that is axiomatically based on the concept of asignal model. Sig-
nal models for time are visualized as directed graphs. We construct
corresponding models for undirected graphs, which we hence call
space models, and show that, in particular, the 16 DCTs and DSTs
are Fourier transforms for these finite space models. Finally, we
discuss the extension of our theory to separable and nonseparable
2-D SP.

1. INTRODUCTION

Linear signal processing (henceforth simply called SP) is a well-
developed theory and a comprehensive set of tools for processing
1-D time signals, continuous or discrete, of infinite or finite du-
ration. Each of these four cases has specific notions of filtering,
Fourier transform, and other key concepts needed in SP.

Many other transforms are used in SP, most prominently the
class of trigonometric transforms that include the discrete cosine
and sine transforms (DCTs and DSTs). These compute a spec-
trum of sorts, so conceptually they are Fourier transforms; but,
questions remain: for which type of signals? what are their infi-
nite counterparts? and, just as for the DFT, what are the associ-
ated notions of filtering, convolution, and spectrum? The current
derivation of the DCTs based on random processes, [1], or their in-
terpretation as Karhunen-Loève transforms of random fields, [2],
do not answer these questions.

In 2-D, SP is usually developed in a separable way, which as-
sumes the signal resides on a rectangular lattice. For many ap-
plications, this is appropriate. Mersereau et al. [3] provide some
answers for more general lattices. We would like, for example, to
explore generic questions including what are the DCT equivalents
on nonseparable lattices.

In this paper, we give answers to these questions in an overview
on recent work [4, 5]. Our approach is in two steps. First, we
identify the algebraic structure inherent to SP that goes beyond
vector spaces to algebras and modules. We argue that polynomial
algebras are key concepts in SP. Second, we formulate a general
framework for SP, based on the notion of asignal modelthat we
define as a triple of an algebra of filters, a module of signals, and
a mappingΦ that generalizes thez-transform. Once a model is
given, other concepts such as the Fourier transform are automati-
cally defined. We describe the signal models for infinite and finite
time SP and visualize them as directed graphs. Then we identify
the models underlying the DCTs and DSTs and show that their
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visualizations are undirected. We thus call them space models. Fi-
nally, we briefly discuss the extension of our approach to 2-D SP
for separable and nonseparable time and space models.

Organization. We introduce the concept of algebra and mod-
ule in Section 2. In Section 3, we motivate why linear SP is al-
gebraic in nature and introduce the concept of a signal model that
underlies our algebraic approach. In Sections 4 and 5, we show the
signal models for infinite and finite SP in time and space. Section 6
briefly discusses the extension to separable and nonseparable 2-D
SP. Finally, section 7 concludes the paper.

2. BACKGROUND: ALGEBRAS AND MODULES

In this section, we introduce two concepts from abstract algebra:
Algebra and module. These are needed to identify the algebraic
structure in linear signal processing. Both are vector spaces, but
possess additional structure. In Section 3, we will explain that in
linear signal processing filter spaces are algebras and signal spaces
are modules. For every given pair of algebra and module, there is
an associated notion of Fourier transform that we introduce. We
focus on regular modules (the algebra and the module are the same
set but with different properties) of polynomial algebras, which are
particularly relevant in signal processing, as we will explain later.

Algebra (filter space). An algebraA is a vector space that
is also a ring, i.e., it permits multiplication and the distributivity
law holds. Examples include the field of complex numbersC,
the space of polynomials in one variableC[x], and the space of
Laurent series inx with absolute summable coefficient sequences.
Another example, particularly important in SP, is introduced next.
Let p(x) ∈ C[x] be a fixed polynomial of degreedeg(p) = n,
then the set of polynomials

C[x]/p(x) = {q(x) ∈ C[x] | deg(q) < deg(p)} (1)

of degree smaller thann with addition and multiplication modulo
p is called apolynomial algebra. In C[x]/p(x), p(x) = 0 holds.
As a vector space,C[x]/p(x) has dimensiondeg(p) = n. We
write elements ofA ash, the common letter used for filters in SP.

Module (signal space).Assume that an algebraA has been
chosen. AnA-module,M is a vector space that permits an oper-
ation of theA onM, written as “·” (multiplication), such that the
distributivity law holds (as well as some other properties that we
omit). Formally, forh ∈ A, s, s1, s2 ∈ M,

h · s ∈ M, h · (s1 + s2) = h · s1 + h · s2.

For a given algebra, one choice of module is theregular mod-
uleM = A with the operation ofA onM being the multiplica-
tion inA. Almost all modules considered in this paper are regular.

We will focus on algebras and modules that areC-vector spaces
in this paper, but the theory extends to other basefields. We denote
signals inM ass.



Fourier transform. Assume that an algebraA and anA-
moduleM are given. Then the associated Fourier transform (if
it exists) is a linear mapping1 that decomposesM into a direct
sum of smallest submodules invariant underA. We omit a formal
definition, as we are only interested in one special case discussed
next.

Let A = C[x]/p(x) and letM = A be the regular mod-
ule. Further, assumep(x) is of degreen and separable, i.e., it has
pairwise distinct zerosα = (α0, . . . , αn−1). Then, the associated
Fourier transform is given by the Chinese remainder theorem as

∆ : C[x]/p(x) → C[x]/(x − α0) ⊕ . . . ⊕ C[x]/(x − αn−1),
s(x) 7→ (s(α0), . . . , s(αn−1)).

Since∆ is a linear mapping, we can express it as a matrix w.r.t. cho-
sen bases. Letb = (p0, . . . , pn−1) be a basis ofM, and choose
(x0) as basis in eachC[x]/(x − αk). Then∆ corresponds to

Pb,α = [pℓ(αk)]0≤k,ℓ<n, (2)

which we also call a Fourier transform for theA-moduleM with
basisb. Choosing arbitrary bases(akx0), ak ∈ C, in C[x]/(x −
αk) yields the most general form of Fourier transform forM (with
basisb):

F = diag0≤k<n(1/ak)Pb,α. (3)

3. THE ALGEBRAIC STRUCTURE IN SIGNAL
PROCESSING

This section introduces thesignal modelthat formalizes the con-
nection between algebras and modules and SP.

SP is algebraic.We identify the basic assumptions imposed
on the filter and signal space in SP. Clearly, the set of filters is
a vector space (scalar multiplication = amplification byα ∈ C;
addition = parallel connection) but is even an algebraA, since se-
quential connection of filters, i.e., multiplication of filters, is per-
missible. The set of signals is also a vector space in linear SP. Fur-
ther, filters operate on this space, i.e., filtering a signal produces a
signal, making the signal space anA-moduleM, whereA is the
chosen set of filters.

Signal model. Signals do not arise as elements of modules,
but as sequencess of numbers. We treat the discrete case, where
signals arise as infinite or finite sequences over an index domainI.
Examples include infinite signalss ∈ ℓ2(Z) ≤ C

Z, or finite sig-
nals ins ∈ C

n. In a natural way, one can impose a vector space
structure on these sequences; in contrast, there may be many pos-
sible choices of filter spaceA and filtering operation. To assign
such a choice, we introduce the concept of signal model.2

Definition 1 (Signal model)Let V ≤ C
I be a vector space. We

call the triple(A,M, Φ) a signal model forV , if A is an algebra,
M anA-module of the same dimension asV and with basisb =
(bℓ)ℓ∈I , andΦ is the bijective (one-to-one) mapping

Φ : V → M,
s = (sℓ)ℓ∈I 7→ s =

∑

ℓ∈I sℓbℓ ∈ M

This definition shows that, with the chosen signal model,s be-
comes the coordinate vector ofs ∈ M w.r.t. the chosen basisb of
M. The bijective mappingΦ generalizes the idea of az-transform

1More specifically anA-module homomorphism.
2The definition can be stated without explicitly giving the basis, but it

is more intuitive for the purpose of this paper in this form.
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Fig. 1. Visualization of the infinite discrete time model (4).

as explained below. Once a signal model is chosen, filtering is
well-defined (the operation ofA onM) and the main ingredients
for SP follow: spectrum, Fourier transform (see Section 2), fre-
quency response, as well as others [4].

Example. Consider the space of finite energy sequencess ∈
V = ℓ2(Z). A signal model forV is given by

A = {
∑

ℓ∈Z
hℓx

ℓ | (hℓ) ∈ ℓ1(Z)},

M = {
∑

ℓ∈Z
hℓx

ℓ | (hℓ) ∈ ℓ2(Z)},

Φ = V → M, s 7→ s = s(x) =
∑

ℓ∈Z
sℓx

ℓ.

(4)

The mappingΦ is the ordinaryz-transform3. For this reason we
call this signal model the infinite discrete time model. Note that
the module is not regular, sinceA 6= M.4

Shift. An important concept in our general framework is the
shift operator. We formally define the shift as the chosen generator
of the algebraA. For example, the 1-D model (4) has only one
shift x. With this definition, we can classify all models that lead
to shift-invariant SP as those with commutative algebras. If the
algebra has only one shift, it is necessarily commutative as in the
case of (4).

In the case of finite sequences, e.g.,s ∈ C
n, M andA are

finite-dimensional. Finite-dimensional commutative algebras are
precisely the polynomial algebras; in the case of one shiftx they
have the form in (1).

In the remainder of the paper, we identify several signal mod-
els that occur in SP. Lacking space, we sketch only their derivation
and focus on providing intuition about them. A detailed exposition
is found in [4, 5].

4. 1-D TIME MODELS

Infinite time. In (4), we presented the signal model adopted for
infinite discrete time. The property of modelingtime is best ex-
plained by the operation of the shiftx on the basis(xℓ)ℓ∈Z of the
signal moduleM: x · xℓ = xℓ+1. The operation is graphically
displayed in Fig. 1. We call the graph avisualizationof the signal
model (4). The graph is directed, an inherent property of time.

Finite time. For finite time, the model usually adopted is

A = C[x]/(xn − 1),

M = C[x]/(xn − 1),

Φ = C
n → M, s 7→ s = s(x) =

∑

0≤ℓ<n sℓx
ℓ.

(5)

We call Φ the finitez-transform. Filtering in this model is mul-
tiplication of polynomials moduloxn − 1, which is equivalent to
circular convolution [6]. The Fourier transform is obtained from
(2) and is theDFTn. The periodic boundary condition, and the
periodic signal extension, known to be associated with the DFT,
are encoded in the polynomialxn − 1. Namely,xn − 1 = 0 im-
pliesxn = 1. The visualization of the model is the circle in Fig. 2.
It is a time model since the graph is directed.

3We setx = z−1 for notational convenience later when considering
more general models.

4Convolving twoℓ2 sequences does in general not yield anℓ2 sequence.
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Fig. 2. Visualization of the finite discrete time model (5).

Table 1. Four types of Chebyshev polynomials. The range for the
zeros is0 ≤ k < n. In the trigonometric closed formcos θ = x.

n = 0, 1 closed form symmetry zeros

Tn 1, x cos(nθ) T−n = Tn cos
(k+ 1

2
)π

n

Un 1, 2x sin(n+1)θ
sin θ

U−n =−Un−2 cos (k+1)π
n+1

Vn 1, 2x − 1
cos(n+ 1

2
)θ

cos 1

2
θ

V−n = Vn−1 cos
(k+ 1

2
)π

n+ 1

2

Wn 1, 2x + 1
sin(n+ 1

2
)θ

sin 1

2
θ

W−n =−Wn−1 cos (k+1)π

n+ 1

2

5. 1-D SPACE MODELS

The models in the previous section were termed time models; their
graph visualizations are directed. In this section, we consider mod-
els with no inherent direction, i.e., visualized by undirected graphs.
We call such models space models.5 It turns out that the 16 DCTs
and DSTs are Fourier transforms for space models.
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Fig. 3. The space shiftx · pℓ.

Infinite case.To construct a space model, we choose thesym-
metricshift operatorx shown in Fig. 3. We now consider the poly-
nomialspℓ. Fig. 3 impliesxpℓ = (pℓ−1 + pℓ+1)/2 or

pℓ+1 = 2xpℓ − pℓ−1, (6)

which is exactly the recurrence for the Chebyshev polynomials [7].
The exact form is determined by the choice ofp0 andp1 as initial
polynomials of degree 0 and 1. Thenpℓ is a polynomial of de-
greeℓ. Running (6) in the other direction yields also polynomials
for the negative indices. Thus, only the polynomials with positive
subscripts are linearly independent: The model is for rightsided se-
quences and has a left boundary. The left side (negative subscript)
is the signal extension. We normalizep0 = 1 and choosep1 such
that the resulting signal extension is simple, i.e., has a symmetry.
This happens exactly in the four cases shown in Table 1 (see the
symmetry column).6

In summary, we get four infinite space models for rightsided
sequences, which we collectively state as follows. To ensure con-
vergence in all cases, we requireV = ℓ1(N).

A = {
∑

ℓ∈N
hℓTℓ | (hℓ) ∈ ℓ1(N)},

M = {
∑

ℓ∈N
hℓCℓ | (hℓ) ∈ ℓ1(N)},

Φ = V → M, s 7→ s = s(x) =
∑

ℓ∈N
sℓCℓ.

(7)

We callΦ theC-transform forC ∈ {T, U, V, W}, i.e.,C is one of
the four Chebyshev polynomials in Table 1. There is a degree of

5This differs from current practice in which the distinctionbetween
time and space is one of 1-D versus 2-D.

6See [5] for a more rigorous explanation of “simple” signal extension.
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Fig. 4. Visualization of the four infinite space models (7).
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Fig. 5. Visualization of the finite discrete space model (8) associ-
ated with theDCT-2n.

freedom regarding the basis to choose inA. Because of the known
propertyTkCℓ = (Cℓ−k+Cℓ+k)/2, we choose theT polynomials
for simpler computation. Filtering, or convolution, in this model is
the multiplication

h · s =
(

∑

ℓ∈N

hℓTℓ

)(

∑

ℓ∈N

sℓCℓ

)

,

which yields again a series inCℓ, or a signal.
The four models are visualized in Fig. 4. The graphs are undi-

rected (since these are space models) and the left boundary con-
dition (third column in Table 1) is expressed through redirecting
the arrow that would go toC−1, based on the boundary condition
(second column in Table 1).

Finite space. We introduce the finite space models using an
example. We start with the infiniteV -transform (7), which im-
plies a left boundary condition ofV−1 = V0. We cut the ba-
sis to lengthn: b = (V0, . . . , Vn−1) and introduce (choose) the
mirrored boundary condition on the right side:Vn = Vn−1 or
Vn − Vn−1 = 2(x − 1)Un−1 = 0 (the 2 can be omitted). This
yields the signal model (forV = C

n)

A = C[x]/(x − 1)Un−1,

M = C[x]/(x − 1)Un−1,

Φ = C
n → M, s 7→ s = s(x) =

∑

ℓ∈N
sℓVℓ.

(8)

The model is visualized in Fig. 5.
The Fourier transform (2) for this model is given by

Pb,α =
[ cos k(ℓ+1/2)π/n

cos kπ/(2n)

]

0≤k,ℓ<n
,

using Table 1 to find the zerosαk = cos(k + 1/2)π/n. Proper
scaling shows that the DCT, type 2, is also a Fourier transform for
this model of the form (3):

DCT-2n = diag0≤k<n(cos kπ/(2n))Pb,α.

All possible choices of the left boundary conditions in Fig. 7
with their mirrored versions for the right side yield a total of 16
finite space models, corresponding to the 16 types of DCTs and



Table 2. Signal models associated with the 16 DCTs and DSTs.

C Cn − Cn−2 Cn Cn − Cn−1 Cn + Cn−1

T DCT-1 DCT-3 DCT-5 DCT-7
(x2 − 1)Un−2 Tn (x − 1)Wn−1 (x + 1)Vn−1

U DST-3 DST-1 DST-7 DST-5
Tn Un Vn Wn

V DCT-6 DCT-8 DCT-2 DCT-4
(x − 1)Wn−1 Vn (x − 1)Un−1 2Tn

W DST-8 DST-6 DST-4 DST-2
(x + 1)Vn−1 Wn 2Tn (x + 1)Un−1

DSTs. An overview is provided in Table 2. For a given DCT or
DST, letp(x) be the polynomial below it, and letC ∈ {T, U, V, W}
be the type of Chebyshev polynomial given in the first column.
Then the associated model is given byA = M = C[x]/p(x), and
Φ : s 7→

∑

0≤ℓ<n sℓCℓ, which we call a finiteC-transform. The
choice ofC encodes the left b.c., and the choice of a column fixes
the right b.c. In some cases a scaling diagonal is necessary, i.e.,
the DCT/DST is of the form (3). More details are in [5, 8].

We note that, once the signal model is explicitly known, many
known, and also new, algorithms can be derived easily by manipu-
lating the polynomial algebra rather than the transform matrix [8].

6. 2-D TIME AND SPACE MODELS

The introduced algebraic approach to 1-D SP is readily extended to
higher-dimensional SP, and can be used to derive new SP schemes
for nonseparable SP. We briefly discuss the 2-D case.

Separable 2-D signal models.Usually, 2-D SP is done in a
separable way, which assumes the signal resides on a rectangular
lattice with two shift operators operating orthogonally. In the time
case (directed, Fig. 6(a)), the signal model consists of Laurent se-
ries in two variables (infinite case) or of the polynomial algebra
C[x, y]/〈xn − 1, yn − 1〉 (finite case) with basis(xkyℓ)k,ℓ. In
the space case (undirected, Fig. 6(b)), the signal model consists
analogously of series (infinite case) or polynomials (finite case)
in Ck(x)Cℓ(y). In the finite case, the polynomials are elements
of polynomial algebras in two variables. For example, applying
a 2-DDCT-2 to ann × n image (as done in JPEG image com-
pression), assumes the space modelA = M = C[x, y]/〈(x −
1)Un−1(x), (y − 1)Un−1(y)〉, Φ : s 7→

∑

0≤k,ℓ<n sk,ℓVkVℓ.
Nonseparable 2-D signal models.In 2-D, there are lattices

that do not have 1-D counterparts. Examples include the hexago-
nal lattice or quincunx lattice. Time (directed) SP in these cases
was developed by Mersereau et al. [3]. The algebraic approach
enables the derivation of infinite and finite space signal models for
these lattices. This includes the proper choice of boundary condi-
tions, the exact form of the associated Fourier transform, and the
derivation of its fast algorithm. See [9, 10, 11] for more details.

7. CONCLUSION

The paper presents an algebraic theory of signal processing in
which the basic building block is the signal model: a triple of a
space of filters (an algebra), a space of signals (a module), and a
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Fig. 6. Shifts for the separable 2-D time (directed) and 2-D space
(undirected) models. Both yield rectangular lattices.
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(a) 2-D space (hexagonal lattice)
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(b) 2-D space (quincunx lattice)

Fig. 7. Shifts for non-separable 2-D space (undirected) models.
They yield a hexagonal and a quincunx lattice, respectively.

bijective mapping (a generalization of thez-transform). Instanti-
ations of the signal model give rise to infinite and finite discrete
time and discrete space linear signal processing models with the
corresponding linear transforms and other basic concepts.
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[9] M. Püschel and M. R̈otteler, “The Discrete Triangle Trans-
form,” in Proc. ICASSP, 2004.
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