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ABSTRACT visualizations are undirected. We thus call them space models. Fi-

. N . . nally, we briefly discuss the extension of our approach to 2-D SP
The assumptions underlying linear signal processing (SP) producefor separable and nonseparable time and space models.

more structure than vector spaces. We capture this structure by de- Organization. We introduce the concept of algebra and mod-
scribing the space offilters as an algebra and the space ofsignals agye in Section 2. In Section 3, we motivate why linear SP is al-
the associated module. We formulate an algebraic approach to S gebraic in nature and introduce the concept of a signal model that

thallt IS gx:orpatl_cally bas_ed Olr_' th; cog_cept iﬁgnal kr}no&\i/\t;.l Sig- underlies our algebraic approach. In Sections 4 and 5, we show the
nal models for time are visualized as directed graphs. We Construc[signal models for infinite and finite SP in time and space. Section 6

corresponding models for undirected graphs, which we hence Ca”br'efl discusses the extension to separable and nonseparable 2-D
space models, and show that, in particular, the 16 DCTs and DSTSSFI, F)i/na:IIyusection 7 c)(;ncluldes the ppaper P

are Fourier transforms for these finite space models. Finally, we

discuss the extension of our theory to separable and nonseparable
2-D SP. 2. BACKGROUND: ALGEBRAS AND MODULES

In this section, we introduce two concepts from abstract algebra:
1. INTRODUCTION Algebra and module. These are needed to identify the algebraic
) ) ] ) . structure in linear signal processing. Both are vector spaces, but
Linear signal processing (henceforth simply called SP) is a well- possess additional structure. In Section 3, we will explain that in
developed theory and a comprehensive set of tools for processinginear signal processing filter spaces are algebras and signal spaces
1-D time signals, continuous or discrete, of infinite or finite du- e modules. For every given pair of algebra and module, there is
ration. Each of these four cases has specific notions of filtering, 5 associated notion of Fourier transform that we introduce. We
Fourier transform, and other key concepts needed in SP. focus on regular modules (the algebra and the module are the same
Many other transforms are used in SP, most prominently the get put with different properties) of polynomial algebras, which are
class of trigonometric transforms that include the discrete cosine particularly relevant in signal processing, as we will explain later.
and sine transforms (DCTs and DSTSs). The_se compute a spec-  Algebra (filter space). An algebra A is a vector space that
trum of sorts, so conceptually they are Fourier transforms; but, js aiso a ring, i.e., it permits multiplication and the distributivity
questions remain: for which type of signals? what are their infi- |3 holds. Examples include the field of complex numb&rs
nite counterparts? and, just as for the DFT, what are the associthe space of polynomials in one variatilgz], and the space of
ated notions of filtering, convolution, and spectrum? The current | 5rent series i with absolute summable coefficient sequences.
derivation of the DCTs based on random processes, [1], or their in- Another example, particularly important in SP, is introduced next.
terpretation as Karhunen-kwe transforms of random fields, [2], | gt p(z) € Clz] be a fixed polynomial of degregeg(p) = n,

do not answer these questions. then the set of polynomials
In 2-D, SP is usually developed in a separable way, which as-
sumes the signal resides on a rectangular lattice. For many ap- Clz]/p(z) = {q(z) € Clz] | deg(q) < deg(p)} (1)

plications, this is appropriate. Mersereau et al. [3] provide some
answers for more general lattices. We would like, for example, to

explore generic questions including what are the DCT equwalentsAS a vector spaceC[z]/p(x) has dimensionleg(p) — n. We

on nlﬁ?liﬁspaa:aglrevlvagtlci\(/egénswers to these questions in an overviewwrite elements ofd ash, the common letter used for filters in SP.
paper, we g q Module (signal space).Assume that an algebrd has been

ety the Slgebraic sicture inheren {0 SP. that goss beyond IOSEN: ANA-TOUIB.M S 3 vector space that peris an ope-
9 9 y ?tion of the A on M, written as *” (multiplication), such that the

\;?Cetct))rr;szigskteo ﬂgﬁgéa?saﬂdsn;ogggﬁgvf,vzr?;iqtazttggyn;nn;z istributivity law holds (as well as some other properties that we
9 Y P ' ! 9 mit). Formally, forh € A, s, 51, s2 € M,

framework for SP, based on the notion ofignal modethat we
define as a triple of an algebra of filters, a module of signals, and h-seM, h-(si+s2)=h-s1+h-sa.

a mapping® that generalizes the-transform. Once a model is ) ) )

given, other concepts such as the Fourier transform are automati- ~ FOr @ given algebra, one choice of module isrtsgular mod-
cally defined. We describe the signal models for infinite and finite Ule M = A with the operation ofA on M being the multiplica-
time SP and visualize them as directed graphs. Then we identifytion in A. Almost all modules considered in this paper are regular.

the models underlying the DCTs and DSTs and show that their ~ We will focus on algebras and modules that@reector spaces
in this paper, but the theory extends to other basefields. We denote

This work was supported by NSF through award 0310941. signals inM ass.

of degree smaller than with addition and multiplication modulo
p is called apolynomial algebra In C[z]/p(z), p(z) = 0 holds.




Fourier transform. Assume that an algebrd and anA- ® ® ® * °
module M are given. Then the associated Fourier transform (if x T z x z T
it exists) is a linear mappirigthat decomposes into a direct
sum of smallest submodules invariant underWe omit a formal
definition, as we are only interested in one special case discussed
next.

Let A = Clz]/p(z) and letM = A be the regular mod-
ule. Further, assume(z) is of degreen and separable, i.e., it has
pairwise distinct zerog = (awo, ..., an—1). Then, the associated
Fourier transform is given by the Chinese remainder theorem as

Fig. 1. Visualization of the infinite discrete time model (4).

as explained below. Once a signal model is chosen, filtering is
well-defined (the operation ofl on M) and the main ingredients
for SP follow: spectrum, Fourier transform (see Section 2), fre-
quency response, as well as others [4].

Example. Consider the space of finite energy sequersces

A Cla]/p(z) — Cla]/(x —a0) @ ... & Clz]/(x — an_1), V = (2(Z). A signal model for/ is given by
@) = (s00) o sln-)) A = {Sehen | (he) € £ (D)),
SinceA is alinear mapping, we can express it as a matrix w.r.t. cho- M = {ZZEZ hext | (he) € 42(2)}, 4)
sen bases. Lét = (po,...,pn—1) be a basis of\, and choose O = VoM sos=s) =Y, seat.

(z°) as basis in ead[z]/(x — ax). ThenA corresponds to
The mapping® is the ordinaryz-transforni. For this reason we

Pooc = [pe(ar)lo<h e<n, ) call this signal model the infinite discrete time model. Note that
. , 4
which we also call a Fourier transform for themodule M with the module is not regular, sincé 7# M. .
basish. Choosing arbitrary basésa.z°), ax € C, in C[z]/(z — Shift. An important concept in our general framework is the
ax) yields the most general form of Fourier transform fet (with shift operator. We formally define the shift as the chosen generator
basisb): of the algebrad. For example, the 1-D model (4) has only one
F = diagy -, (1/ax)Po.a. 3) shift z. With this definition, we can classify all models that lead

to shift-invariant SP as those with commutative algebras. If the
algebra has only one shift, it is necessarily commutative as in the
case of (4).

In the case of finite sequences, eg¢ C", M and A are
finite-dimensional. Finite-dimensional commutative algebras are
precisely the polynomial algebras; in the case of one shiftey
have the form in (1).

In the remainder of the paper, we identify several signal mod-
els that occur in SP. Lacking space, we sketch only their derivation

addition = parallel connection) but is even an algeHiraince se- and focus on providing intuition about them. A detailed exposition

quential connection of filters, i.e., multiplication of filters, is per- is found in [4, 5].
missible. The set of signals is also a vector space in linear SP. Fur-

3. THE ALGEBRAIC STRUCTURE IN SIGNAL
PROCESSING

This section introduces thgignal modelhat formalizes the con-
nection between algebras and modules and SP.

SP is algebraic. We identify the basic assumptions imposed
on the filter and signal space in SP. Clearly, the set of filters is
a vector space (scalar multiplication = amplification dye C;

ther, filters operate on this space, i.e., filtering a signal produces a 4. 1-D TIME MODELS
signal, making the signal space @xmodule M, whereA is the . .
chosen set of filters. Infinite time. In (4), we presented the signal model adopted for

Signal model. Signals do not arise as elements of modules, infinite discrete time. The property of modelin.igu? is best ex-
but as sequencesof numbers. We treat the discrete case, where Plained by the operation of the shifton the basigz),cz of the
signals arise as infinite or finite sequences over an index dofain  Signal moduleM: x - z* = = 1. The operation is graphically
Examples include infinite signatse ¢2(Z) < CZ, or finite sig- displayed in Fig. 1. We ca_lll the grapr_vssuallzatlonof the S|gnal
nals ins € C™. In a natural way, one can impose a vector space Model (4). The graph is directed, an inherent property of time.
structure on these sequences; in contrast, there may be many pos- Finite time. For finite time, the model usually adopted is
sible choices of filter spacd and filtering operation. To assign n
such a choice, we introduce the concept of signal mbdel. A = Cla/@E" -1),

M = Clz]/(=" - 1), ®)

Definition 1 (Signal model)lLet V < C’ be a vector space. We .
call the triple(A, M, ®) a signal model fol/, if A is an algebra, e = C"—>M,s—s5=5()=> e, 50T -
M an A-module of the same dimension Esand with basi$ =

(be)ec1, andd® is the bijective (one-to-one) mapping We call @ the finite z-transform. Filtering in this model is mul-

tiplication of polynomials modula:™ — 1, which is equivalent to

d - Vo = M, circular convolution [6]. The Fourier transform is obtained from
S=(se)eer = S=3,0; 5t €M 2 _anc_i is_theDFTn. 'I_'he periodic boundary c_onditiop, and the
periodic signal extension, known to be associated with the DFT,
This definition shows that, with the chosen signal modeabe- are encoded in the polynomial' — 1. Namely,z™ — 1 = 0 im-
comes the coordinate vector o M w.r.t. the chosen bastsof pliesz™ = 1. The visualization of the model is the circle in Fig. 2.
M. The bijective mappin@ generalizes the idea ofzatransform It is a time model since the graph is directed.
IMore specifically and-module homomorphism. SWe setz = z~1 for notational convenience later when considering
2The definition can be stated without explicitly giving thesisa but it more general models.

is more intuitive for the purpose of this paper in this form. 4Convolving two¢? sequences does in general not yieldasequence.



Fig. 2. Visualization of the finite discrete time model (5).

Table 1. Four types of Chebyshev polynomials. The range for the
zeros i) < k < n. In the trigonometric closed forros 6 = .

n=0,1 closed form symmetry zeros
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Fig. 5. Visualization of the finite discrete space model (8) associ-
ated with theDCT-2,,.

The models in the previous section were termed time models; their

graph visualizations are directed. In this section, we consider mod-

els with no inherent direction, i.e., visualized by undirected graphs.
We call such models space mod&lk.turns out that the 16 DCTs
and DSTs are Fourier transforms for space models.
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-
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Fig. 3. The space shift - p,.

Infinite case. To construct a space model, we choosesyra-
metricshift operatorr shown in Fig. 3. We now consider the poly-
nomialsp,. Fig. 3 implieszpe = (pe—1 + pe+1)/2 Or

(6)

which is exactly the recurrence for the Chebyshev polynomials [7].
The exact form is determined by the choicepgfandp as initial
polynomials of degree 0 and 1. Then is a polynomial of de-
greel. Running (6) in the other direction yields also polynomials
for the negative indices. Thus, only the polynomials with positive

Det1 = 2xpe — pe—1,

subscripts are linearly independent: The model is for rightsided se-
guences and has a left boundary. The left side (hegative subscript)

is the signal extension. We normalige = 1 and choose; such

that the resulting signal extension is simple, i.e., has a symmetry.
This happens exactly in the four cases shown in Table 1 (see the

symmetry column§.
In summary, we get four infinite space models for rightsided

sequences, which we collectively state as follows. To ensure con-

vergence in all cases, we require= ¢* (N).

A {ZZGN heTe | (hf) € Zl(N)}a
M= {EenheCe| (he) € €(N)}, @)
® = VoM, s—s=s(x)=7>,5Ct

We call® theC-transform forC' € {T, U, V, W}, i.e.,C is one of

the four Chebyshev polynomials in Table 1. There is a degree of

5This differs from current practice in which the distinctibetween
time and space is one of 1-D versus 2-D.
6See [5] for a more rigorous explanation of “simple” signal esien.

freedom regarding the basis to choosedinBecause of the known
property7,Ce = (Ce—r+Cetr)/2, we choose th& polynomials
for simpler computation. Filtering, or convolution, in this model is
the multiplication

h-s= (Z heTy) (Z 50Ce),

LeN £eN

which yields again a series @, or a signal.

The four models are visualized in Fig. 4. The graphs are undi-
rected (since these are space models) and the left boundary con-
dition (third column in Table 1) is expressed through redirecting
the arrow that would go t6'_;, based on the boundary condition
(second column in Table 1).

Finite space. We introduce the finite space models using an
example. We start with the infinit&’-transform (7), which im-
plies a left boundary condition of_; = V4. We cut the ba-
sis to lengthn: b = (Vo,...,V,—1) and introduce (choose) the
mirrored boundary condition on the right sid&;,, = V,,_1 or
Vo — Vo1 = 2(x — 1)Un—1 = 0 (the 2 can be omitted). This
yields the signal model (fov" = C™)

A = Clz]/(x —1)Un-1,
M = Clal/(z— 1)U, ®)
D C" - M, s s=s(x) =) ,cy5Ve-

The model is visualized in Fig. 5.
The Fourier transform (2) for this model is given by

cosk(l+1/2)7/n
cos km/(2n)

Poa = [ }ng,€<n’

using Table 1 to find the zeras, = cos(k + 1/2)7/n. Proper
scaling shows that the DCT, type 2, is also a Fourier transform for
this model of the form (3):

DCT-2, = diagy< <, (cos km/(2n))Ps,a-

All possible choices of the left boundary conditions in Fig. 7
with their mirrored versions for the right side yield a total of 16
finite space models, corresponding to the 16 types of DCTs and



Table 2. Signal models associated with the 16 DCTs and DSTs.

C Cpn—Chn2 Cy Cpn—Cn-1 Cp+Cra
T DCT-1 DCT-3 DCT-5 DCT-7
(22 = V)Un—2 Tn (- 1VD)Wot  (2+1) Voot
U DST-3 DST-1 DST-7 DST-5
T, Un Vi, W
Vv DCT-6 DCT-8 DCT-2 DCT-4
(1‘ — 1)Wn71 Vn (CL‘ — 1)Un71 QTn
W DST-8 DST-6 DST-4 DST-2
(z+ 1)V Wa 2T, (x+1)Up—1

DSTs. An overview is provided in Table 2. For a given DCT or
DST, letp(x) be the polynomial below it, and It € {T, U, V, W}
be the type of Chebyshev polynomial given in the first column.
Then the associated model is givendy= M = C[z]/p(x), and
d: s— E(Kkn s0Cy, which we call a finiteC-transform. The

........... oe— >0 °

A o<———0—>e0
o———e V
[ ]
(a) 2-D time (b) 2-D space

Fig. 6. Shifts for the separable 2-D time (directed) and 2-D space
(undirected) models. Both yield rectangular lattices.

7N

(a) 2-D space (hexagonal lattice) (b) 2-D space (quincunx lattice)

choice ofC encodes the left b.c., and the choice of a column fixes Fig. 7. Shifts for non-separable 2-D space (undirected) models.
the right b.c. In some cases a scaling diagonal is necessary, i.e.They yield a hexagonal and a quincunx lattice, respectively.

the DCT/DST is of the form (3). More details are in [5, 8].
We note that, once the signal model is explicitly known, many

known, and also new, algorithms can be derived easily by mamipu_bijective mapping (a generalization of theransform). Instanti-

lating the polynomial algebra rather than the transform matrix [8]. &tions of the signal model give rise to infinite and finite discrete
time and discrete space linear signal processing models with the

corresponding linear transforms and other basic concepts.

6. 2-D TIME AND SPACE MODELS

The introduced algebraic approach to 1-D SP is readily extended to
higher-dimensional SP, and can be used to derive new SP schemeq1]
for nonseparable SP. We briefly discuss the 2-D case.

Separable 2-D signal modelsUsually, 2-D SP is done in a 2
separable way, which assumes the signal resides on a rectangular
lattice with two shift operators operating orthogonally. In the time
case (directed, Fig. 6(a)), the signal model consists of Laurent se-
ries in two variables (infinite case) or of the polynomial algebra
Clz,y]/(z™ — 1,y™ — 1) (finite case) with basi§z"y*)x . In
the space case (undirected, Fig. 6(b)), the signal model consists (4]
analogously of series (infinite case) or polynomials (finite case)
in Cr(z)C:(y). In the finite case, the polynomials are elements
of polynomial algebras in two variables. For example, applying
a 2-DDCT-2 to ann x n image (as done in JPEG image com-
pression), assumes the space made= M = Clz,y]/{(z —
DUn—1(2), (y = DUn—1(y)), ® = S 3 pcn Skt ViVer

Nonseparable 2-D signal modelsin 2-D, there are lattices
that do not have 1-D counterparts. Examples include the hexago-
nal lattice or quincunx lattice. Time (directed) SP in these cases
was developed by Mersereau et al. [3]. The algebraic approach
enables the derivation of infinite and finite space signal models for
these lattices. This includes the proper choice of boundary condi-
tions, the exact form of the associated Fourier transform, and the
derivation of its fast algorithm. See [9, 10, 11] for more details.

(3]

5]
(6]
(7]
(8]

9]

(10]
7. CONCLUSION

The paper presents an algebraic theory of signal processing in[1 1
which the basic building block is the signal model: a triple of a
space of filters (an algebra), a space of signals (a module), and a
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