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Abstract—We derive a signal processing framework, called
space signal processing, that parallels time signal processing.
As such, it comes in four versions (continuous/discrete, infi-
nite/finite), each with its own notion of convolution and Fourier
transform. As in time, these versions are connected by sampling
theorems that we derive. In contrast to time, however, space
signal processing is based on and derived from a different notion
of shift, space shift, which operates symmetrically. Our work
rigorously connects known and novel concepts into a coherent
framework; most importantly, it shows that the sixteen discrete
cosine and sine transforms are the space equivalent of the discrete
Fourier transform, and hence can be derived by sampling. The
platform for our work is the algebraic signal processing theory, an
axiomatic approach and generalization of linear signal processing
that we recently introduced.

I. I NTRODUCTION

The theory of time signal processing in one dimension is
the foundation of our discipline. It consists of four closely
related variants depending on the nature of the time domain
(see Fig. 1): infinite continuous, finite (meaning finite duration)
continuous and periodically extended, infinite discrete, and
finite discrete and periodically extended. Each case has its
own notion of filtering or convolution, spectrum, and Fourier
transform. For example, infinite discrete-time signal process-
ing has the discrete-time Fourier transform (DTFT) as Fourier
transform and the spectrum is periodic, that is, continuous,
finite, and periodically extended (see Fig. 1). Note that all
visualizations in Fig. 1 are directed, representing the directed
flow of time formally captured by the time shift discussed
next.

The time signal processing framework for these four cases
can be systematically derived from one basic concept: the
continuous-time shift. Assume a signalx(t) on R. For some
T ∈ R, the time shift is defined as follows:

time shift byT : x(t) → x(t− T ). (1)

Convolution can be viewed as a superposition of weighted
shifts and is defined as

h(t) ∗ x(t) =

∫

h(τ)x(t− τ)dτ. (2)

The spectrum consists of the simultaneous eigenfunctions
exp(jωt), ω ∈ R, for this convolution, and the Fourier
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transform is defined as the projection onto these eigenfunc-
tions. In summary, we obtain the basic framework for infinite
continuous-time signal processing (Fig. 1, top left).

The other three cases of time signal processing can be
derived through equidistant sampling. Sampling in the time
domain yields infinite discrete-time signal processing, sam-
pling in the frequency domain yields the finite continuous-time
signal processing, and sampling in both domains yields finite
discrete-time signal processing. The Fourier transform for the
latter is called the discrete Fourier transform (DFT), one of
the most important tools in time signal processing; sampling
is one way to derive the DFT.

Another important class of transforms used in signal
processing are the discrete cosine and sine transforms
(DCTs/DSTs), originally derived and thought of as approxima-
tions to the Karhunen-Lòeve transform of a first-order Gauss-
Markov process [2], [3].

In this paper, we ask the question: Can a signal processing
framework analogous to time signal processing in Fig. 1 be
derived such that the DCTs/DSTs are obtained similarly to the
DFT? As we will show, the answer is positive. As an example,
a visualization of the framework underlying the most widely
used trigonometric transform, DCT type 2, is shown in Fig. 2.
The details will be explained later; here, we only want to
point out two major differences with respect to time signal
processing. First, the visualizations are now undirected (no
inherent notion of past and future) and hence we refer to this
framework asspace signal processing. Second, in time signal
processing, the four structures in the time domain are equal
to the four structures in the frequency domain. In space signal
processing this is not the case unless all sixteen DCTs/DSTs
are considered jointly.

Based on the above discussion of time signal processing, it
becomes clear that space signal processing, if it exists, has to
be based on a different notion of shift. Indeed, the solution
is what we call thespace shift, which operates undirected,
symmetrically to the left and the right:

space shift byT : x(t) →
1

2
(x(t+ T ) + x(t− T )). (3)

The associated notion of convolution is now obtained as
superposition of space shifts:

h(t) ∗S/A x(t) =

∫

h(τ)
1

2
(x(t+ τ) + x(t− τ))dτ, (4)

where∗S/A denotes this new convolution, which comes in two
flavors: S and A. After defining these, we derive the necessary
sampling theorems to obtain the complete framework partially
shown in Fig. 2. We achieve here several goals:



2

infinite finite

continuous

discrete

FT

DTFT

FS coefficients

DFT

time domain frequency domain

Fig. 1. Four variants of time signal processing. Left: the structures of the time domains; right: the structures of the corresponding Fourier domains. The
backwards arrow signifies a periodic signal extension beyond the shown signal domain (interval).
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Fig. 2. Four variants of space signal processing. Left: the structures of the space domains; right: the structures of the corresponding Fourier domains. The
first S in SFT, SFS, and DSFT stands for “space.” The looping arrows signify different forms of symmetric and antisymmetric signal extensions. Details are
introduced later.

• we demonstrate that the DFT and DCTs/DSTs are equiv-
alent concepts with an equivalent underlying framework
in the most rigorous sense;

• we provide a novel way of deriving the DCTs/DSTs; and,
• we show that a complete linear signal processing frame-

work different from standard time signal processing can
be derived.

The platform for our work is the algebraic signal processing
theory (ASP), a general axiomatic approach to signal process-
ing built on the basic concept of a signal model [4], [5]. For
example, the four cases in Fig. 1 are different signal models.
We showed already how to derive discrete-time and discrete-
space signal models (in the sense used here) from the shift
definition “bottom-up,” that is, without the use of continuous
signal processing and sampling [4], [6]. Here we complete the
picture by showing the appropriate continuous-space models
and deriving sampling theorems. Our approach in this paper
is meant to be general enough so as to be applicable to other
forms of nontime signal processing, such as 2-D hexagonal
space [7], 2-D quincunx space [8], or others.

Related work. Our work is closely related to both
Fourier analysis on symmetric or antisymmetric1 signals and
prior work that establishes the close relationship between
DCTs/DSTs and the DFT of various symmetric/antisymmetric
signals. For example, the Fourier cosine transform [3] is asso-
ciated with symmetric infinite continuous signals and periodic
functions with symmetries have Fourier series of a particular
form [9], [10]. Further, DCTs/DSTs are closely related to a
DFT on a signal with symmetry [11], [12] and have special
associated convolutions. Along similar lines, continuousequiv-
alents of the discrete cosine transform were defined in [13],
[14], [15], [16] to perform interpolation using zero-padding
in the frequency domain (similar to DFT-based interpolation).

1Sometimes called even and odd.

Our work ties these concepts, and others that we define, into
one coherent framework that precisely parallels time signal
processing and that is held together by sampling theorems.
Unser in [17] discusses the modern work in sampling theory,
including generalizations which, instead of using bandlimited
spaces spanned by sincs, use other approximation spaces,
spanned by splines and wavelets, for example.

Organization of the paper. In Section II, we start by iden-
tifying the general definitions of signals, filters, and filtering
(convolution) within the algebraic signal processing theory. We
then use these generic concepts to present infinite continuous-
space signal processing in Section III and derive its sampling
theorems in Section IV. The frequency domains of the so ob-
tained discrete-space models give rise to four finite continuous-
space models that we define in Section V. Sampling those in
Section VI finally yields the sixteen DCTs/DSTs as Fourier
transforms for finite discrete space models.

II. A LGEBRAIC SIGNAL PROCESSINGTHEORY

We start with a short overview of the ASP introduced
in [4], [5], [6]. ASP is a general and axiomatic approach
to linear signal processing (henceforth simply called signal
processing). For this paper, ASP provides the natural platform
for the introduction of space signal processing and for the
organization of signal processing concepts to clearly identify
parallels and differences.

Algebraic signal processing theory: Overview.Two key
observations underlie ASP: the algebraic nature of signal pro-
cessing and the concept of asignal model, a collection of three
objects sufficient to define a signal processing framework.

The set of filters in signal processing is usually assumed
to be a vector space (addition = parallel connection, scalar
multiplication = amplification), but also offers multiplication
(serial connection), an operation outside the vector space
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framework. Thus, algebraically, the filter space is more than a
vector space: it is analgebraH, a vector space that is also a
ring. Further, the set of signals is also typically assumed to be
a vector space, and filters operate on this space via filtering.
Algebraically, this means that the signal space is anH-module
S. These observations naturally place signal processing into
the context of representation theory of algebras, a well-
developed mathematical discipline (see [18], for example).

ASP is axiomatically built on top of the concept of asignal
model, defined as a triple(H,S,Φ), whereH is a chosen
filter algebra,S an associatedH-module of signals, andΦ
a bijective mapping from a vector spaceV into the module
S. The purpose ofΦ is to assign a module and an algebra
to a signal (vector) space, so filtering and other concepts are
defined. ASP now asserts:If a signal model(H,S,Φ) is given,
all the basic ingredients for signal processing are automati-
cally defined (if they exist) and provided by the representation
theory of algebra.These basic ingredients include the notions
of filtering, spectrum, and Fourier transform, and others, and
usually take different forms for different signal models.

Example: Time signal processing.In ASP, each of the four
variants of time signal processing in Fig. 1 is a signal model
for a different vector spaceV . For example, in the infinite
continuous-time model,V is typically assumed to be the space
of finite energy functionsV = L2(R). The signal moduleS
is identical toV as a set, but not as an algebraic structure:
it possesses an algebra operating on it, typically chosen as2

H = L1(R). Φ is the identity mapping fromV to S. The
Signal modelconcepts for the infinite continuous-time model
are summarized in Table I.

As discussed in the introduction, the infinite continuous-
time model is based on the time shift (1). The visualization
of the time model in Table I shows the domain on which time
signals live; the domain is directed due to the operation of the
directed time shift.

From the definition of the signal model,Basic concepts
follow, including the multiplication defined in the filter algebra
(cascade of filters), and how filters operate on signals (in both
cases standard convolution). InSpectral concepts, we define
spectral componentsSω, which are nothing but subspaces of
the signal module, invariant under the operation of the filter
algebra (in signal processing, we typically find these by finding
eigenfunctions). The Fourier transform (FT)3 computes projec-
tions onto those subspaces. The spectral-domain visualization
possesses the same structure as the time-domain one.

We then proceed to define the inverse FT, as well as the
frequency response, found by filtering the spectral components
and recording the eigenvalues. All this is well-known for the
infinite continuous-time model. The benefits of the concept
of a signal model and the general ASP framework become
evident later when we consider different signal models.

We now briefly discuss the finite continuous-time model,
which helps understand the need for the mappingΦ in the
signal model. The finite time model is used for signals and

2Note that choosingL2(R) destroys the algebra property: the convolution
of two finite-energy functions is in general not finite energy.

3We denote by FT the Fourier transform corresponding to the infinite
continuous-time model.

TABLE I
ESSENTIAL CONCEPTS FOR THE INFINITE CONTINUOUS TIME MODEL.

Infinite Continuous-Time Model

Signal model (H,S,Φ)

Filter algebraH L1(R)

Signal moduleS L2(R)

MappingΦ V = L2(R) → S = L2(R), x(t) 7→ x(t)

Visualization
t

Basic concepts

Multiplication in H h1(t) ∗ h2(t) =

Z

τ∈R

h1(τ)h2(t− τ)dτ

Filtering h(t) ∗ x(t) =

Z

τ∈R

h(τ)x(t− τ)dτ

Spectral concepts

Spectral basisSω {ϕω(t) = ejωt}, ω ∈ R

Fourier transform̂xω

Z

t∈R

x(t)ϕ∗
ω(t)dt

Visualization
ω

Inversex(t) 1
2π

Z

ω∈R

x̂ωϕω(t)dω

ψω(t) ejωt

Frequency responsêhω

Z

t∈R

h(t)ψ∗
ω(t)dt

Inverseh(t) 1
2π

Z

ω∈R

ĥωψω(t)dω

filters living on an interval, say,I = [0, I], and filtering
is circular convolution∗P (P stands for periodic). Given
h(t), x(t) defined onI, the circular convolution is computed
by extendingx(t) periodically toxP (t), performing ordinary
convolution, and viewing the (periodic) result as a function on
I:

h ∗P x = h ∗ xP viewed as function onI. (5)

In ASP, we capture the required signal extension rigorouslyby
viewing the signal domain as a circleIP (P for periodically
extendedI) with circumferenceI, instead of an interval.
Intuitively, signals on the circleIP are equivalent to periodic
signals on the real line.

We summarize this model in Table II. Note that now we
can chooseL1 for both filter and signal space.4 The purpose
of Φ is again to assign a module and an algebra to a vector
space. This time this includes “applying” the signal extension
(by changing the domain of the signal fromI to IP ). The
model is well-defined since the convolution in (5) yields again
a periodic signal, that is, a signal onIP .

One may imagine that different signal extensions could be
possible, which would require different mappingsΦ, as will
indeed be the case later when we consider space models.

The Fourier transform for this model is again found by
identifying the eigenspaces under filtering (now circular con-
volution). It is well known that these are spanned by complex
exponentials: each

Sk = {ϕk(t) = ej 2πk

I
t}, (6)

k ∈ Z, is a simultaneous eigenspace for all filtersh in H. The
Fourier transform of a signalx(t) is hence the projection onto

4Since the domain is compact,L1 containsL2.
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TABLE II
ESSENTIAL CONCEPTS FOR THE FINITE CONTINUOUS TIME MODEL.

Finite Continuous-Time Model

Signal model (H,S,Φ)

Filter algebraH L1(IP )

Signal moduleS L1(IP )

MappingΦ V = L1(I) → S = L1(IP ), x(t) 7→ x(t)

Visualization
t0 I

Basic concepts

Multiplication in H h1(t) ∗P h2(t) =

Z

τ∈I

h1(τ)h2(t− τ)dτ

Extension inH h(kI + t) = h(t)

Filtering h(t) ∗P x(t) =

Z

τ∈I

h(τ)x(t− τ)dτ

Extension inS x(kI + t) = x(t)

Spectral concepts

Spectral basisSk {ϕk(t) = ej 2πk

I
t}, k ∈ Z

Fourier transform̂xk

Z

t∈I

x(t)ϕ∗
k(t)dt

Visualization
k k+1

Inversex(t) 1
I

X

k∈Z

x̂kϕk(t)

ψk(t) ej 2πk

I
t

Frequency responsêhk

Z

t∈I

h(t)ψ∗
k(t)dt

Inverseh(t) 1
I

X

k∈Z

ĥkψk(t)

these spaces; it yields the coefficients of the Fourier series
expansion ofx(t) (see Table II).

Structured signal domains through quotient sets.The
proper framework to formally define the circleIP and other
structured signal domains needed later are equivalence rela-
tions and quotient sets [19]. While not strictly needed for
understanding the paper, we briefly introduce this framework
for completeness.

Intuitively, IP is equal to the real line in which we identify
all points that are at multiples ofI from each other. This way,
the structure of a periodic signal onR is translated into the
structure of the signal domain. The difference is a subtle one
yet crucial in ASP.5

We briefly define equivalence relations and quotient sets in
the simplest case using the above circle as example.

Let S be a set. Anequivalence relation∼ onS is a relation
that satisfies three properties, namely fora, b, c ∈ S,

(1) a ∼ a, (2) a ∼ b⇒ b ∼ a, (3) a ∼ b& b ∼ c⇒ a ∼ c.

For a ∈ S, [a] = {b ∈ S | b ∼ a} is called theequivalence
classof a, and the set of all equivalence classes

S/ ∼= {[a] | a ∈ S}

is the quotient setof S with respect to∼. The quotient
set partitionsS, that is, everya ∈ S lies in exactly one
equivalence class.

5For example, periodic signals viewed as functions onR have infinite
energy and usually their power is computed. However, the power is just the
energy if the signal is viewed as function onIP .

Connecting to the prior discussion, the equivalence relation
∼P on S = R defined as

t1 ∼P t2 ⇔ (t2 − t1)/I ∈ Z (7)

yields R/ ∼P = IP . Namely, I = [0, I) is a complete set of
pairwise nonequivalent points, andI ∼P 0, which means the
end points ofI (0 andI) in Table II can be identified as shown
by the backwards arrow of the visualization, creating the circle
structure.

For some signal extensions (in this paper: antisymmetric) a
more general version of the above construction is needed.

III. I NFINITE CONTINUOUS-SPACE MODELS

We now formally define two infinite continuous-space mod-
els. These models will be related to the DCTs/DSTs in the
same way as the infinite continuous-time model in Table I is
related to the DFT.

As discussed in the introduction, these space models are
obtained from a different notion of shift, the symmetric space
shift (3), which is equivalent to convolvingx(t) with (δ(t −
T )+ δ(t+T ))/2. We define a space filter as superposition of
space shifts as

h(t) =

∫

h(τ)
1

2
(δ(t− T ) + δ(t+ T ))dτ.

This implies thath(t) = h(−t) is symmetric and hence we
need to integrate overR+ only. We viewh as a function onR+

symmetrically extended; formally,h is a function onR
+
S =

R/ ∼S with
t1 ∼S t2 ⇔ |t1| = |t2|.

As signal space we could chooseL2(R); however, to obtain
the DCTs and DSTs through sampling, the right choice is to
restrict to the signal space of symmetric and of antisymmetric
signals (in our framework to signals onR+

S and R
+
A, where

R
+
A denotes signals onR+, antisymmetrically extended). Note

that if s ∈ R
+
A, then necessarilyx(0) = 0.

Accordingly, we define in both cases space convolution or
filtering ∗S , ∗A as

h(t) ∗S/A x(t) =

∫

τ∈R+

h(τ)
1

2
(x(t+ τ) + x(t− τ))dτ, (8)

where x(t) is symmetrically or antisymmetrically extended
(note that the extension ofx changes the actual computation
in (8), hence the subscript S/A). We can also state this
convolution in a form similar to (5). Namely, assumeh(t), x(t)
are defined onR+, then

h ∗S/A x =
1

2
(hS ∗ xS/A) viewed as function onR+. (9)

Thus, to compute, say, S convolution, one first extends the
signal symmetrically, computes the ordinary convolution,and
then retains the part onR+. The factor1/2 simplifies the
associated notion of frequency response determined below.
Equation (9) also shows how to perform a convolution in-
volving Dirac delta functions onR+

S ,R
+
A. Namely, fora > 0:

δ(t− a) ∗S/A x(t) =
1

2
(xS/A(t− a) + xS/A(t+ a)),

h(t) ∗S/A δ(t− a) =
1

2
(hS(t− a) ± hS(t+ a)), (10)



5

TABLE III
ESSENTIAL CONCEPTS FOR THE INFINITE CONTINUOUS SPACE MODELS. S DENOTES A SYMMETRIC ANDA AN ANTISYMMETRIC EXTENSION.

Infinite Continuous-Space Models

Signal model (H,S,Φ) S A

Filter algebraH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L1(R+
S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signal moduleS L2(R+
S ) L2(R+

A)

MappingΦ V = L2(R+) → S = L2(R+
S ), x(t) → x(t) V = L2(R+) → S = L2(R+

A), x(t) → x(t)

Visualization
t0

-1
t0

Basic concepts

Multiplication in H . . . . . . . . . . . . h1(t) ∗S h2(t) =

Z

τ∈R+
h1(τ)

1

2
(h2(t− τ) + h2(t+ τ))dτ . . . . . . . . . . . .

Extension inH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .h(−t) = h(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Filtering . . . . . . . . . . . . . . h(t) ∗S/A x(t) =

Z

τ∈R+
h(τ)

1

2
(x(t− τ) + x(t+ τ))dτ . . . . . . . . . . . . . .

Extension inS x(−t) = x(t) x(−t) = −x(t)

Spectral concepts

Spectral basisSω {ϕω(t) = cos(ωt)}, ω ∈ R
+ {ϕω(t) = sin(ωt)}, ω ∈ R

+

Fourier transform̂xω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Z

t∈R+
x(t)ϕ∗

ω(t)dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symmetries x̂−ω = x̂ω x̂−ω = −x̂ω

Visualization ω0
-1 ω0

Inversex(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
π

Z

ω∈R+
x̂ωϕω(t)dω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψω(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cos(ωt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frequency responsêhω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Z

t∈R+
h(t)ψ∗

ω(t) dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inverseh(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
π

Z

ω∈R+
ĥωψω(t)dω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and fora = 0 (note thatδ(t) is not in R
+
A):

δ(t) ∗S/A x(t) =
1

2
x(t), h(t) ∗S δ(t) =

1

2
h(t). (11)

In summary, we get the two space models shown in Ta-
ble III. Note that they share the same filter algebra (symmetric
filters) but have different signal modules (symmetric and anti-
symmetric signals). Also note that the notions of convolution
are well-defined since the convolution of symmetric functions
is again symmetric and the convolution of a symmetric and
an antisymmetric function is again antisymmetric.

We now proceed by deriving all the other concepts in the
table, and immediately see how the space models differ from
the time models (compare Table I with Table III). For example,
the invariant subspaces under filtering are spanned by cosines
for the S model as shown by (a > 0)

δ(t− a) ∗S cos(ωt) = cos(at) cos(ωt) (12)

and by sines for the A model. The associated Fourier trans-
forms hence take two different forms we callspace Fourier
transform S (SFT-S)andspace Fourier transform A (SFT-A).

In contrast, the frequency response for both models, found
by computing the eigenvalues of the respective Fourier basis
under filtering as in (12), takes the same form in both cases
and is computed exactly as the SFT-S.

Note that the SFT-S and SFT-A are equal to what is called
the Fourier cosine transform and the Fourier sine transform
in [3]. Hence, as an aside, Table III establishes them as Fourier
transforms for properly chosen signal models, and identifies
the associated notions of shift, convolution and others.

IV. SAMPLING INFINITE CONTINUOUS MODELS

We have already commented on the fact that the three dis-
crete and finite variants of time signal processing in Fig. 1 can
be derived from the infinite continuous-time model (Table I)
through sampling time, frequency, or both. To do the same
for the space models in Table III, we first need a sampling
procedure that is general enough to be applicable to other,
nontime, signal models including space. We first establish
this procedure using infinite continuous-time case as example.
Along the way, we will point out subtleties, which, although
obvious in time, might not feel that natural in space, and
thus, the whole discussion in time is of educational value. The
formulation of the sampling theorem most often encounteredis
due to Shannon [20]; the result is also attributed (by Shannon
himself) to Whittaker [21], Kotelnikov [22] and Nyquist [23].
The standard derivation of the sampling theorem can be found
in numerous texts ([24], [25], for example).

A. Sampling Infinite Continuous Time

We derive the sampling theorem for the infinite continuous-
time model (Table I) in steps and summarize the results in
Table IV. We do it in a slightly nonstandard way; this is done
so that the steps can be easily replicated in other signal models.

Select the shift. We choose a shift among those in (1),
which means fixingT .

Sample the signal and compute Fourier transform.We
select a set of locationstn ∈ R and require that it be
closed under the selected shift byT . Hence, thetn have to
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TABLE IV
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS TIME.

Sampling Infinite Continuous Time

Sampling concepts

Sampling period T

Sampling pointstn, n ∈ Z nT

Sampled signalxT (t)
X

n∈Z

x(tn)δ(t− tn)

Visualization
nT (n+1)T

Spectral concepts

ϕω,n ejωtn

Fourier transform̂xT,ω

X

n∈Z

x(tn)ϕ∗
ω,n

Symmetries x̂T,m 2π

T
+ω = x̂T,ω

Visualization
0 2̟/Tω

Sampling theorem concepts

Nyquist bandΩNyq {ω | 0 ≤ |ω| ≤ π
T
}

Sinc filter l̂ω

(

T ω ∈ ΩNyq,

0 otherwise.

l(t)
sin( π

T
t)

π

T
t

Bandlimited subspaceSBL {x ∈ S | x̂ω = 0, ω /∈ ΩNyq}

Basisb for SBL {l(t− tn) | n ∈ Z}

Sampling theoremFor x(t) ∈ SBL : x(t) =
X

n∈Z

x(tn)l(t− tn)

be equidistant. The relative placement with respect to0 is
irrelevant, and thus, we assume that the signal is sampled at
integer multiples ofT , tn = nT, n ∈ Z. Sampling can then be
described as follows, resulting in the sampled signalxT (t):

xT (t) =
∑

n∈Z

x(tn)δ(t− tn). (13)

Usually, the sampling process is described as multiplication
of the signal by a train of Dirac delta functions,xT (t) =
x(t)

(∑

n∈Z
δ(t− tn)

)
, and then the Poisson summation for-

mula is used to obtain the sampling theorem. Since the
multiplication of signals is strictly speaking outside thesignal-
model framework and since we do not want to derive a Poisson
formula for every signal model, instead, we compute the FT
of the sampled signal directly:

x̂T,ω =

∫

t∈R

xT (t)e−jωtdt

=

∫

t∈R

∑

n∈Z

x(tn)δ(t− tn)e−jωtdt

=
∑

n∈Z

x(tn)e−jωnT , (14)

In the above, we used that
∫

t∈R
δ(t−T0)x(t)dt = x(T0), and

tn = nT . Settingxn = x(tn), we recognize the above as the
discrete-time Fourier transform (DTFT) of the sequencex(tn)
in ℓ2(Z).

Find the symmetries in the Fourier transform. The
spectrum of the sampled signal contains redundancy that
manifests itself as symmetries. The purpose of this step is to

find these symmetries and with it the largest non-redundant
interval that these symmetries extend to the entire domain
(here R). The signal can then be reconstructed from this
interval that we will callNyquist band.

Inspecting (14) shows that

x̂T,m 2π

T
+ω = x̂T,ω,

m ∈ Z, which means that the resulting Fourier transform is
(2π/T )-periodic. As a consequence, any interval of length
2π/T could be chosen as Nyquist band. The usual choice [24]
is the symmetric

ΩNyq = {ω | 0 ≤ |ω| ≤
π

T
}. (15)

andπ/T is then called the Nyquist frequency. We will not use
this term in the remaining paper since the spectra of the space
models considered later are right-sided only: hence, intervals
symmetric around zero cannot be chosen since negative fre-
quencies do not exist. To solve this problem, we will work
with the notion of the Nyquist band, which is unambiguous.

In Table IV, [0, 2π/T ] is shown as Nyquist band; the
backwards arrow shows the periodic extension toR. For the
space models considered later, other, non-periodic symmetries
will occur.

Extract the original spectrum. Assuming that the signal
is bandlimited to the Nyquist band, for reconstruction, we
need to extract only that band by applying an ideal lowpass
filter supported in the Nyquist band. In the time domain, this
is equivalent to filtering the signal by the inverse frequency
response6 of this lowpass filter. This is the sinc filterl(t) we
give in (16); it is indeed exactly1 at t0 = 0 and0 at all other
sampling pointstn = nT , or, l(tn) = δn, as given in Table IV.
The sinc filter and its frequency response are:

l̂ω =

{

T ω ∈ ΩNyq,

0 otherwise,
l(t) =

sin( π
T t)

π
T t

. (16)

Sampling theorem.The above extraction process is equiv-
alent to filtering the sampled signal withl(t):

x(t) = l(t) ∗ xT (t) =

∫

τ∈R

l(τ)xT (t− τ)dτ

=

∫

τ∈R

l(τ)
∑

n∈Z

x(tn)δ(t− τ − tn)dτ (17)

which, after exchanging integral and sum, leads to the expres-
sion for the sampling theorem:7

Theorem 1 (Sampling theorem: ICT Model)For a signalx(t)
bandlimited to the Nyquist band:

x(t) =
∑

n∈Z

x(tn)l(t− tn). (18)

Theorem 1 shows that the spaceSBL = {x ∈ S |
x̂ω = 0, ω /∈ ΩNyq} of bandlimited signals is spanned by the

6Note that here, we are making the distinction between Fouriertransform,
applied to signals, and frequency response, applied to filters. In continuous
time, these two are identical; however, this will not be the case for all the
signal models we are considering, as we will see later.

7We will denote by I: infinite, F: finite, C: continuous, T: time,S: space.



7

T TT/2

Fig. 3. Two ways (W on the left and H on the right) of sampling theinfinite
space model S. Left: Start att0 = 0 and sampleT apart. Right: Start at
t0 = T/2 and sampleT apart.

orthogonal setl(t) ∗ δ(tn) = l(t− tn), n ∈ Z. Note that these
l(t− tn), as used in (18), are signals now and not filters.

Comment.Sampling infinite time yields the infinite discrete
model and the finite continuous model as its spectral domain.
This motivates the introduction of the latter, but, more impor-
tantly, it is needed to obtain the finite discrete model (and with
it the DFT) again by sampling.

By sampling the infinite continuous-space model, we thus
expect to not only find infinite discrete-space models, but also
the proper finite continuous models that need to be sampled to
obtain the sixteen DCTs/DSTs as the Fourier transforms for
the corresponding finite discrete-space models.

B. Sampling Infinite Continuous Space

We now repeat the above process for the two infinite space
models defined in Table III. We cover S in detail and only
briefly point out differences in A. The results are summarized
in Tables V and VI.

In the infinite space model S, both the signals and the filters
are defined onR+

S visualized in Table III.

Select the shift.We select a space shift among those in (3),
which means fixingT .

Sample the signal and compute Fourier transform.We
select a set of sampling locationstn closed under the space
shift by T , required to be equidistant, just as for the time
model. It turns out there are only two possible choices,
depicted in Fig. 3, namely starting at0 or T/2. For every
other choice, the leftmost point will not have the distance
of a multiple ofT to itself (walking left and being reflected
due to the boundary condition). We refer to the two choices
as whole-point sampling (W)and half-point sampling (H)
following [11]. In the former case, samples are taken at
tn = nT, n ≥ 0; in the the latter case, samples are taken
at tn = nT + T/2, n ≥ 0.

We proceed by considering the W case in detail; H is similar
and also given in Table V.

We sample the signalx(t) at tn = nT , n ≥ 0 and get

xT (t) =

∞∑

n=0

x(tn)δ(t− tn). (19)

As in the time case, we proceed by directly computing the
Fourier transform ofxT (t). The Fourier transform to be used

is the one associated with the space model S from Table III:

x̂T,ω =

∫

t∈R+

xT (t) cos(ωt)dt

=

∫

t∈R+

(
∞∑

n=0

x(tn)δ(t− tn)

)

cos(ωt)dt

=
1

2
x(t0) +

∞∑

n=1

x(tn) cos(ωtn). (20)

The factor1/2 associated with the first sample appears for the
same reasons as in (11). We could call the above adiscrete-
space Fourier transformof the sequencex(tn), n ≥ 0.

Find the symmetries in the Fourier transform. We now
need to find the Nyquist band of the sampled signalx̂T,ω, i.e.,
the largest interval on which the spectrum is nonredundant.
As before, this is done by finding the symmetries.

Inspecting (20) reveals the symmetry

x̂T,2m 2π

T
±ω = x̂T,ω, m ∈ Z.

Hence, we can visualize the spectrum as living on the interval
[0, π/T ), extended symmetrically to the left and to the right. In
Table V, this domain is visualized as a line between[0, π/T )
with loops on the left and right with weights1. The Nyquist
band is accordinglyΩNyq = {ω | 0 ≤ ω ≤ π

T }.
Extract the original spectrum. We extract the Nyquist

band by applying an ideal lowpass filter with frequency
responsêlω supported only in the Nyquist band. Applying
the inverse frequency response from Table III yields the same
result as in the time case (16), only the filter is viewed as a
function onR

+
S :

l̂ω =

{

T ω ∈ ΩNyq,

0 otherwise,
l(t) =

sin( π
T t)

π
T t

. (21)

As in time, the interpolating sinc is indeed1 at t0 = 0 and0
at all other sampling pointstn = nT .

Sampling theorem.The extraction process which results in
the original signal, is pointwise multiplication of the sampled
signal x̂T,ω with the sinc filter l̂ω in the Fourier domain, or,
equivalently, S convolution in the original domain:

x(t) = l(t) ∗S xT (t) = l(t) ∗S

∞∑

n=0

x(tn)δ(t− tn)

=

∞∑

n=0

x(tn)(l(t) ∗S δ(t− tn)),

where we have used linearity of the convolution. Using (10)
and (11) we get the sampling theorem:

Theorem 2 (Sampling theorem: ICS-S Model with W)For a
signalx(t) bandlimited to the Nyquist band:

x(t) =
1

2
x(t0)l(t) +

∞∑

n=1

x(tn)
1

2
(l(t− tn) + l(t+ tn)) .

Theorem 2 shows that the set of signals bandlimited to the
Nyquist band is spanned by thel(t) ∗S δ(t − tn), which are
space-shifted copies of the sinc filter in (21). As in time, these
are signals (not filters) and orthogonal.
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TABLE V
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS SPACE WITH EXTENSION S.

Sampling Infinite Continuous Space: Model S (Symmetric Extension)

W H

Sampling concepts

Sampling period T T

Sampling pointstn, n ≥ 0 nT nT + T
2

Sampled signalxT (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∞

X

n=0

x(tn)δ(t− tn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visualization
0 T 2T T/2 3T/2 5T/2

Spectral concepts

ϕω,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cos(ωtn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fourier transform̂xT,ω
1
2
x(t0) +

∞
X

n=1

x(tn)ϕ∗
ω,n

∞
X

n=0

x(tn)ϕ∗
ω,n

Symmetries x̂T,2m 2π

T
±ω = x̂T,ω x̂T,2m 2π

T
±ω = (−1)mx̂T,ω

Visualization
0 ̟/Tω 0 ̟/Tω

-1

Sampling theorem concepts

Nyquist bandΩNyq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{ω | 0 ≤ ω ≤ π
T
} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sinc filter l̂ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(

T ω ∈ ΩNyq,

0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sin( π

T
t)

π

T
t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bandlimited subspaceSBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {x ∈ S | x̂ω = 0, ω /∈ ΩNyq} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basisb for SBL { 1
2
l(t)} ∪ { 1

2
(l(t− tn) + l(t+ tn)) | n = 1, . . .} { 1

2
(l(t− tn) + l(t+ tn)) | n = 0, . . .}

Sampling theoremFor x(t) ∈ SBL : x(t) =
1

2
x(t0)l(t) +

∞
X

n=1

x(tn)
1

2
(l(t− tn) + l(t+ tn)) x(t) =

∞
X

n=0

x(tn)
1

2
(l(t− tn) + l(t+ tn))

TABLE VI
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS SPACE WITH EXTENSION A.

Sampling Infinite Continuous Space Model A (Antisymmetric Extension)

W H

Sampling concepts

Sampling period T T

Sampling pointstn, n ≥ 0 nT + T nT + T
2

Sampled signalxT (t) . . . . . . . . . . . . . . . . . . . . . . . . .
∞

X

n=0

x(tn)δ(t− tn) . . . . . . . . . . . . . . . . . . . . . . . . .

Visualization
T 2T

-1

T/2 3T/2 5T/2

Spectral concepts

ϕω,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sin(ωtn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fourier transform̂xT,ω

∞
X

n=0

x(tn)ϕ∗
ω,n

∞
X

n=0

x(tn)ϕ∗
ω,n

Symmetries x̂T,2m 2π

T
±ω = ±(−1)mx̂T,ω x̂T,2m 2π

T
±ω = ±x̂T,ω

Visualization
0 ̟/Tω

-1

0 ̟/Tω
-1-1

Sampling theorem concepts

Nyquist bandΩNyq . . . . . . . . . . . . . . . . . . . . . . . . . . {ω | 0 ≤ ω ≤ π
T
} . . . . . . . . . . . . . . . . . . . . . . . . . .

Sinc filter l̂ω . . . . . . . . . . . . . . . . . . . . . . . . . . .

(

T ω ∈ ΩNyq,

0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . .

l(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sin( π

T
t)

π

T
t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bandlimited subspaceSBL . . . . . . . . . . . . . . . . . . . . . {x ∈ S | x̂ω = 0, ω /∈ ΩNyq} . . . . . . . . . . . . . . . . . . . . .

Basisb for SBL . . . . . . . . . . . . . . . { 1
2

(l(t− tn) − l(t+ tn))) | n = 0, . . .} . . . . . . . . . . . . . . .

Sampling theoremFor x(t) ∈ SBL : x(t) =
∞

X

n=0

x(tn)
1

2
(l(t− tn) − l(t+ tn))
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T-1 T-1

-1

T/2

Fig. 4. Two ways (W on the left and H on the right) of sampling theinfinite
space model A. Left: Start att0 = T and sampleT apart. Right: Start at
t0 = T/2 and sampleT apart.

Half-point sampling. Half-point sampling starts sampling
at t = T/2, which is at distanceT from its mirror image
−T/2. This choice changes the associated discrete-space
Fourier transform and also the symmetry in the spectrum of
the sampled signal:

x̂T,2m 2π

T
±ω = (−1)mx̂T,ω, m ∈ Z.

We depict the spectral domain as a line0 to π/T where the
loop on the right side has weight−1 for the antisymmetric
extension (Table V, column H).

The Nyquist band is exactly the same as for the W case and
hence the sinc filterl(t) is also identical to the W case. Thus,
the sampling theorem takes the following form:

Theorem 3 (Sampling theorem: ICS-S Model with H)For a
signalx(t) bandlimited to the Nyquist band:

x(t) =

∞∑

n=0

x(tn)
1

2
(l(t− tn) + l(t+ tn)). (22)

The space of bandlimited signals is again spanned byl(t) ∗S

δ(tn), that is, signals obtained from the template sinc, now
space-shifted by the half integerstn.

Sampling the infinite space model A.We now briefly
discuss sampling the other infinite space model, that with the
antisymmetric extension from Table III. As we noted before,
first big differences occur here: filter ans signal space are
different and the Fourier transform of a signal is computed
differently than the frequency response of a filter. Note that all
signals are0 at t = 0, which can thus be omitted as a sampling
point. The two equidistant choices are shown in Fig. 4.

The sampling process is summarized in Table VI; as the
steps are identical to what we have just seen, we only briefly
point out the differences. First, we get two additional versions
of a discrete-space Fourier transform and two new forms of
symmetry in the frequency domain. However, the Nyquist
band is the same as before, and since the filter spaces for
S and A are the same (Table III), the sinc filter is the same as
before. However, the space of bandlimited signals now takes
a different form: it is again spanned by signals obtained from
the template sinc filter convolved with allδ(t − tn) which,
using (10), evaluates to

l(t) ∗A δ(t− tn) =
1

2
(l(t− tn) − l(t+ tn)).

V. FINITE CONTINUOUS-SPACE MODELS

Sampling the the infinite continuous-space models in the
previous section yielded four infinite discrete-space models
and their corresponding finite continuous spectra visualized
in Tables V and VI. Since our goal is to sample those

(obtaining the sixteen DCTs/DSTs as one outcome) we first
formally define the four finite continuous-space models. They
are the space equivalent of the finite continuous-time model
in Table II.

The four models are summarized in Table VII. Note that the
visualizations of the signal models correspond to the visual-
izations of the spectra in Tables V and VI. The signal domains
are intervals that on each side are either symmetrically or
antisymmetrically extended yielding the four choices denoted
with SS, SA, AS, AA. The filter algebra is the same in
all cases. Note that all models are well-defined since space-
shifting (3) an SS/SA/AS/AA signal yields a signal with the
same symmetry.

We cover only the SS model in detail; we briefly touch upon
others.

A. Finite Space Model SS

Beside the inherent “beauty” of both extensions being
symmetric, we have a practical reason for dealing with this
case in detail. As we will see later, one of its sampled models
leads to the well-known DCT (of type 2), which has been used
in image processing for a long time.

Signal model and basic concepts.Signal and filter space
areL1(ISS), which consist of functions on the intervalI =
[0, I] symmetrically extended in both directions. Formally, a
signalx(t) on I is SS extended as

xSS(2kI ± t) = x(t), k ∈ Z. (23)

Note that this is the same as first S-extendingx(t) to [−I, I]
and then periodically extending the result:(xS)P = xSS , that
is, SS signals have the period2I. Filters for the model have the
same extension. SS convolution, defined in Table VII, can be
related to ordinary convolution and S convolution as follows:

h ∗SS x =
1

2
(hS ∗ xSS) = h ∗S xSS , (24)

where in the last term,xSS is viewed as a function onR+

and in all cases the result is viewed as a function onI.
As in Section III, we have to pay particular attention to

convolving with Dirac delta functions; the results are derived
using (24). Fora ∈ (0, I), as expected,

δ(t− a) ∗SS x(t) =
1

2
(xSS(t− a) + xSS(t+ a)),

h(t) ∗SS δ(t− a) =
1

2
(hSS(t− a) + hSS(t+ a)).

For a = 0, I, the result is analogous to (11) and for the same
reasons:

δ(t) ∗SS x(t) =
1

2
x(t), δ(t− I) ∗SS x(t) =

1

2
x(t− I),

(25)

h(t) ∗SS δ(t) =
1

2
h(t), h(t) ∗SS δ(t− I) =

1

2
h(t− I).

(26)

Spectral concepts.The eigenspaces under the above filter-
ing are

Sk = {ϕk(t) = cos(
kπ

I
t)}, (27)
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TABLE VII
ESSENTIAL CONCEPTS FOR THE FINITE CONTINUOUS SPACE MODELS.

Finite Continuous-Space Models

Signal model (H,S,Φ) SS SA AS AA

Filter algebraH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L1(ISS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signal moduleS L1(ISS) L1(ISA) L1(IAS) L1(IAA)

MappingΦ L1(I) → L1(ISS) L1(I) → L1(ISA) L1(I) → L1(IAS) L1(I) → L1(IAA)

Visualization
t0 I t0 I

-1

t0 I
-1

t0 I
-1-1

Basic concepts

Multiplication in H . . . . . . . . . . . . . . . . . . . . . . h1(t) ∗SS h2(t) =

Z

τ∈I

h1(τ)
1

2
(h2(t− τ) + h2(t+ τ))dτ . . . . . . . . . . . . . . . . . . . . . .

Extension inH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .h(2kI ± t) = h(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Filtering . . . . . . . . . . . . . . . . . . . . h(t) ∗SS/SA/AS/AA x(t) =

Z

τ∈I

h(τ)
1

2
(x(t− τ) + x(t+ τ))dτ . . . . . . . . . . . . . . . . . . . .

Extension inS x(2kI ± t) = x(t) x(2kI ± t) = (−1)kx(t) x(2kI ± t) = ±(−1)kx(t) x(2kI ± t) = ±x(t)

Spectral concepts

Spectral basisSk, k ≥ 0 {ϕk(t) = cos( kπ
I
t)} {ϕk(t) = cos(

(k+ 1
2
)π

I
t)} {ϕk(t) = sin(

(k+ 1
2
)π

I
t)} {ϕk(t) = sin( kπ

I
t)}

Fourier transform̂xk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Z

t∈I

x(t)ϕ∗
k(t)dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visualization
k=0 1 2 k=0 1 2

-1

k=0 1 2 k=0 1 2

Inversex(t) 1
I
x̂0 + 2

I

∞
X

k=1

x̂kϕk(t) 2
I

∞
X

k=0

x̂kϕk(t) 2
I

∞
X

k=0

x̂kϕk(t) 2
I

∞
X

k=1

x̂kϕk(t)

Symmetries x̂−k = x̂k x̂−k = x̂k−1 x̂−k = −x̂k−1 x̂−k = −x̂k

ψk(t) cos( kπ
I
t) cos(

(k+ 1
2
)π

I
t) cos(

(k+ 1
2
)π

I
t) cos( kπ

I
t)

Frequency responsêhk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Z

t∈I

h(t)ψ∗
k(t)dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inverseh(t) 1
I
ĥ0 + 2

I

∞
X

k=1

ĥkψk(t) 2
I

∞
X

k=0

ĥkψk(t) 2
I

∞
X

k=0

ĥkψk(t) 1
I
ĥ0 + 2

I

∞
X

k=1

ĥkψk(t)

k ∈ Z. Let x(t) = ϕk(t) ∈ Sk andh(t) any filter, then

h(t) ∗SS ϕk(t) =
1

I

∫

τ∈I

h(τ)
1

2
(cos(

kπ

I
(t− τ)) + cos(

kπ

I
(t+ τ)))dτ

=
1

I

∫

τ∈I

h(τ) cos(
kπ

I
τ) cos(

kπ

I
t)dτ

= ϕk(t)c

∫

τ∈I

h(τ) cos(
kπ

I
τ)dτ

= ϕk(t) c

∫

τ∈I

h(τ)ϕ∗
k(τ))dτ

︸ ︷︷ ︸

ĥk

= ĥkϕk(t).

This conforms with the well-known fact that periodic functions
that are also symmetric (herexSS = (xS)P ) have a Fourier
series consisting of cosines only. The derivation also yields the
frequency responsêhk, computed the same way as the Fourier
transform. This is not the case for the SA/AS/AA models.

Note that in (27)S−1 = S1 is whole-point symmetric; thus
the structure of the spectrum is as shown in Table VII. This
is expected since it corresponds to the W column of Table V.

B. Other Models

We briefly discuss the other models in Table VII.
Signal model and basic concepts.First, we note that due to

the antisymmetric extension, the AS model requiresx(0) = 0,
the SA modelx(I) = 0, and the AA model both. The AA
model has period2I and the SA and AS model the period4I.

Convolution can be related to ordinary convolution as

h ∗SS/SA/AS/AA x =
1

2
(hS ∗ xSS/SA/AS/AA). (28)

This equation can be used to compute the convolution with
Dirac delta functions. For example, fora ∈ (0, I),

h ∗SS/AA δ(t− a) =
1

2
(hSS(t− a) ± hSS(t+ a)), (29)

h ∗SA/AS δ(t− a) =
1

2
(hSA(t− a) ± hSA(t+ a)), (30)

and fora = 0, I,

h(t) ∗SA δ(t) =
1

2
h(t), h(t) ∗AS δ(t− I) = −

1

2
h(t− I).

Spectral concepts.The subspaces invariant under filtering
take different forms for the four models as shown in Table VII.
However, the frequency response takes only two different
forms: it is the same for SS and AA and for SA and AS.
Except for SS and SA, it is computed differently than the
Fourier transform.

Interestingly, the inverse frequency response for the SA and
AS model will yield an SA function (since allψk have this
property in this case), which hence satisfiesh(I) = 0. Hence
it will reconstructh(t) only on [0, I) if the sum converges.

VI. SAMPLING FINITE CONTINUOUS MODELS

In this section we sample finite continuous models following
the same steps as before. For illustration, we start with the
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TABLE VIII
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS TIME.

Sampling Finite Continuous Time Model (yields DFT)

Sampling concepts

Sampling periodT I
N

Sampling pointstn nT

Sampled signalxT (t)

N−1
X

n=0

x(tn)δ(t− tn)

Visualization
0 T 2T (N-1)T

Spectral concepts

ϕk,n ej kn2π

N

Fourier transform̂xT,k

N−1
X

n=0

x(tn)ϕ∗
k,n

Symmetries x̂T,mN+k = x̂T,k

Visualization
k=0 1 2 N-1

Sampling theorem concepts

Nyquist bandΩNyq {k | 0 ≤ k ≤ N − 1}

Sinc filter l̂k

(

T k ∈ ΩNyq,

0 otherwise.

l(t) 1
N
ejπt N−1

NT
sin( π

T
t)

sin( π

NT
t)

Bandlimited subspaceSBL {x ∈ S | x̂k = 0, k /∈ ΩNyq}

Basisb for SBL {l(t− tn) | n = 0, . . . , N − 1}

Sampling theoremFor x(t) ∈ SBL : x(t) =

N−1
X

n=0

x(tn)l(t− tn)

familiar finite time model in Table II and obtain, besides the
sampling theorem, the DFT. The same procedure applied to
the four finite space models in Table VII will later yield the
sixteen DCTs/DSTs.

A. Sampling Finite Continuous Time

The main concepts we discuss here are summarized in
Table VIII.

Select the shift.We select a time shift on the circle, which
means fixingT .

Sample the signal and compute Fourier transform.The
sampling pointstn have to be closed under the shift byT ,
hence they have to be equidistant on the circle of lengthI.
We start at0,8 and chooseN samples, that is,T = I/N .
Sampling yields

xT (t) =
N−1∑

n=0

x(tn)δ(t− tn) (31)

and the Fourier transform ofxT (t) (defined in Table II) is

x̂T,k =

∫

t∈I

xT (t)e−j 2πk

I
tdt =

N−1∑

n=0

x(tn)e−j kn2π

N . (32)

SettingWN = ej 2π

N andxn = x(tn), this is precisely the DFT
of a sequence of lengthN :

x̂T,k =

N−1∑

n=0

xnW
−kn
N . (33)

8Different starting points lead to slightly different versions of the DFT.

The above process yields the structure of the finite discrete-
time model (bottom right in Fig. 1). The signal lives on a circle
with N points (it is discrete periodic with a fundamental period
of lengthN ) and the shift moves the signal by one sample
clockwise. The DFT diagonalizes the adjacency matrix of the
circle (the cyclic shift).

Find the symmetries in the Fourier transform. From (32),
we see that after sampling, the spectrum becomes periodic:

x̂T,mN+k = x̂T,k, m ∈ Z.

Again, this means that we can choose any interval of lengthN
as Nyquist band. To be consistent with the infinite continuous-
time case (15), theN points should be symmetric around0.
However, this would yield a non-standard definition of the
DFT. We choose the Nyquist bandΩNyq = {k | 0 ≤
k ≤ N − 1} to obtain the DFT as defined in almost every
signal processing book. Interestingly, this is not consistent
with (15), and often produces confusion as our inherent notion
of what the natural ordering of frequencies should be (low
to high) is disturbed; with this definition of the DFT, the
highest frequency is in the middle of the spectrum. Remember,
however, that this is just the question of ordering, as any
interval of lengthN would do the trick. This is one reason that
in this paper we abandon the termsNyquist rateandNyquist
frequencyin favor of Nyquist band. The other is that space
models have no negative frequencies; hence, a symmetric band
is inherently not possible.

Extract the original spectrum. Again, assuming a signal
bandlimited to the Nyquist band, for reconstruction, we use
the appropriate sinc filterl(t):

l̂k =

{

T k ∈ ΩNyq,

0 otherwise.
, l(t) =

1

N
ejπt N−1

NT

sin( π
T t)

sin( π
NT t)

.

Inspect l(t): the numerator provides the zeros at all integer
multiples of T , including T = 0. The denominator is0 at
t = 0 and is then nonzero untilt = ±NT , that is, its period
is N times larger than that of the numerator. Together they
give a value of1 at t = 0 and zeros at all integer multiples of
T , as an interpolating sinc should.

Sampling theorem.The above extraction process is point-
wise multiplication of the sampled signalx̂T,k with the sinc
filter l̂k in the Fourier domain. This is equivalent to the
convolution

x(t) = (l(t) ∗P xT (t)) =
1

I

∫

τ∈I

l(τ)xT (t− τ)dτ,

=
1

I

∫

τ∈I

l(τ)

N−1∑

n=0

x(tn)δ(t− τ − tn)dτ, (34)

which leads to the expression for the sampling theorem:

Theorem 4 (Sampling theorem: FCT Model)For a signal
x(t) bandlimited to the Nyquist band:

x(t) =

N−1∑

n=0

x(tn)l(t− tn). (35)

The spaceSBL of those signals bandlimited exactly to the
Nyquist band (see Table VIII), that is, the space of signals
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TABLE IX
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE MODEL WITH EXTENSION SS.

Sampling Finite Continuous Space Model SS (Symmetric/Symmetric Extension)

WW (yields DCT-1) WH (yields DCT-5) HW (yields DCT-6) HH (yields DCT-2)

Sampling concepts

Sampling periodT I
N−1

I
N− 1

2

I
N− 1

2

I
N

Sampling pointstn nT nT nT + T
2

nT + T
2

Sampled signalxT (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−1
X

n=0

x(tn)δ(t− tn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visualization
0 T 2T (N-1)T 0 T 2T (N-1)T T/2 3T/2 5T/2 (N-1/2)T T/2 3T/2 5T/2 (N-1/2)T

Spectral concepts

ϕk,n cos( knπ
N−1

) cos( knπ
N− 1

2

) cos(
k(n+ 1

2
)π

N− 1
2

) cos(
k(n+ 1

2
)π

N
)

Fourier transform̂xT,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−1
X

n=0

x(tn)ϕ∗
k,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symmetries x̂
T,mN+k−

1+(−1)m+1

2

= x̂T,mN+k = x̂T,mN+k = x̂
T,mN+k−

1+(−1)m+1

2

=

x̂
T,mN−k−

1+(−1)m+1

2

x̂
T,mN−k−

1+(−1)m+1

2

(−1)mx̂
T,mN−k−

1+(−1)m+1

2

(−1)mx̂
T,mN−k−

1+(−1)m+1

2

Visualization
k=0 1 2 N-1 k=0 1 2 N-1 k=0 1 2 N-1

-1

k=0 1 2 N-1

Sampling theorem concepts

Nyquist bandΩNyq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{k | 0 ≤ k ≤ N − 1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sinc filter l̂k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(

T k ∈ ΩNyq,

0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
N

sin(
(2N−1)π

2NT
t)

sin( π

2NT
t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bandlimited subspaceSBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{x ∈ S | x̂k = 0, k /∈ ΩNyq} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basisb for SBL . . . { 1
2
ǫnǫ′n (l(t− tn) + l(t+ tn)) | n = 0, . . . , N − 1}, ǫn =

(

1/2 for tn = 0,

1 otherwise.
ǫ′n =

(

1/2 for tn = I,

1 otherwise.
. . .

Sampling theorem For x(t) ∈ SBL : x(t) =

N−1
X

n=0

x(tn)
1

2
ǫnǫ

′
n (l(t− tn) + l(t+ tn))

which can be reconstructed from their sampled versions, is
SBL = {x ∈ S | x̂k = 0, k /∈ ΩNyq}.

B. Sampling Finite Continuous Space

For each of the four finite space models in Table VII we
have four choices of equidistant sampling, which arise from
the treatment of the two boundaries (each one is either S or
A). Namely, for an S boundary we have the two choices W
and H shown in Fig. 3 and for an A boundary the two choices
W and H shown in Fig. 4. This means that each of the four
finite continuous models will spawn four sampled versions
(WW, WH, HW, HH) for a total of sixteen finite discrete
space models. As we will show, these have exactly the sixteen
DCTs/DSTs as their corresponding Fourier transforms.

We derive in detail the case of HH sampling the SS model
(Table VII), which will yield the most widely used DCT
of type 2. Then we briefly discuss the other three cases of
sampling SS and collect the results in Table IX. Finally, we
discuss the sampling of the other finite space models.

Select the shift.We fix a space shift byT .
Sample the signal and compute Fourier transform.We

sample HH, that is, the first sampling point isT/2 and the
last one isI − T/2. To getN samples,T = I/N and tn =

nT + T/2, n = 0, . . . , N − 1. The sampled signal is

xT (t) =

N−1∑

n=0

x(tn)δ(t− tn), (36)

and applying the Fourier transform from Table VII, column
SS, we get

x̂T,k =
N−1∑

n=0

x(tn) cos(
k(n+ 1

2 )π

N
), (37)

which, with xn = x(nT +T/2), is nothing else but the DCT,
type 2, ofx0, . . . , xN−1. After sampling we obtain the graph
structure shown under “Visualization.” This shows that the
DCT, type 2, is a Fourier transform for the finite space model
with this visualization, that is, HH extensions on both sides.

The adjacency matrix of the visualization is indeed diago-
nalized by the DCT, type 2, [6], which confirms the correctness
of our construction.

Find the symmetries in the Fourier transform. The
sampled signal spectrum in (37) has the following symmetry
properties: x̂T,−k = x̂T,k on the left, and x̂T,N = 0,
x̂T,N+k = −x̂T,N−k on the right. Taken together, forn ∈ Z,

x̂
T,mN+k−

1+(−1)m+1

2

= (−1)mx̂
T,mN−k−

1+(−1)m+1

2

,
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TABLE X
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE MODEL WITH EXTENSION SA.

Sampling Finite Continuous Space Model SA (Symmetric/Antisymmetric Extension)

WW (yields DCT-3) WH (yields DCT-7) HW (yields DCT-8) HH (yields DCT-4)

Sampling concepts

Sampling periodT I
N

I
N− 1

2

I
N+ 1

2

I
N

Sampling pointstn nT nT nT + T
2

nT + T
2

Sampled signalxT (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−1
X

n=0

x(tn)δ(t− tn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visualization
0 T 2T (N-1)T 0 T 2T (N-1)T

-1

T/2 3T/2 5T/2 (N-1/2)T T/2 3T/2 5T/2 (N-1/2)T
-1

Spectral concepts

ϕk,n cos(
(k+ 1

2
)nπ

N
) cos(

(k+ 1
2
)nπ

N− 1
2

) cos(
(k+ 1

2
)(n+ 1

2
)π

N+ 1
2

) cos(
(k+ 1

2
)(n+ 1

2
)π

N
)

Fourier transform̂xT,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−1
X

n=0

x(tn)ϕ∗
k,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symmetries x̂T,mN+k−1 = x̂
T,mN+k−

1+(−1)m

2

= x̂
T,mN+k−

1+(−1)m

2

= x̂T,mN+k−1 =

x̂T,mN−k x̂T,mN−k (−1)mx̂T,mN−k (−1)mx̂T,mN−k

Visualization
k=0 1 2 N-1 k=0 1 2 N-1 k=0 1 2 N-1 k=0 1 2 N-1

-1

Sampling theorem concepts

Nyquist bandΩNyq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {k | 0 ≤ k ≤ N − 1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sinc filter l̂k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(

T k ∈ ΩNyq,

0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
N

sin( π

T
t)

sin( π

2NT
t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bandlimited subspaceSBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {x ∈ S | x̂k = 0, k /∈ ΩNyq} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basisb for SBL . . . . . . . . . . . . { 1
2
ǫn (l(t− tn) + l(t+ tn)) | n = 0, . . . , N − 1}, ǫn =

(

1/2 for tn = 0,

1 otherwise.
. . . . . . . . . . . .

Sampling theorem For x(t) ∈ SBL : x(t) =

N−1
X

n=0

x(tn)
1

2
ǫn (l(t− tn) + l(t+ tn))

which yields the spectrum structure shown in Table IX, under
the heading HH. Note that in our visualization of the spectrum,
there is no loop of weight−1 on the right side; this is because
the value ofx̂T,k at k = N is 0, and hence the node vanishes.
The Nyquist band is againΩNyq = {k | 0 ≤ k ≤ N − 1}.

Extract the original spectrum. Similarly to what we
did in the time case, and again assuming that the signal is
bandlimited to the Nyquist band, we extract only that band by
the suitable box and compute the inverse frequency response
using its definition in Table VII, column SS.

l̂k =

{

T k ∈ ΩNyq,

0 otherwise.
, l(t) =

1

N

sin( (2N−1)π
2NT t)

sin( π
2NT t)

. (38)

Sampling theorem.As before, the extraction process which
results in the original signal, is pointwise multiplication of
the sampled signal̂xT,k and the sinc filter̂lk in the Fourier
domain, or, equivalently, convolution (from Table VII, column
SS) of the sampled signal by the inverse frequency response
of the filter in the original domainl(t) ∗SS xT (t).

Theorem 5 (Sampling theorem: FS Model-SS-HH)For a sig-
nal x(t) bandlimited to the Nyquist band:

x(t) =

N−1∑

n=0

x(tn)
1

2
(l(t− tn) + l(t+ tn)) . (39)

As always, the spaceSBL of bandlimited signals consists of
those whose spectral support is limited toΩNyq. The sampling
theorem reveals the basis for this space. As expected, the basis
functions are perfect interpolators as we show in the Appendix
for this case.

Sampling SS: WW, WH, HW. Since the underlying con-
tinuous model is the same, the sinc takes the same form in all
cases. The only difference to HH sampling is that the sampling
locations include one (WH and HW) or two (WW) boundary
points, which affectsl(t)∗xT (t) due to (26). We accommodate
this in Table IX by introducing the correction factorsǫn, ǫ′n.

Sampling SA, AS, AA.S boundaries are sampled as before
(H or W; see Fig. 3), and A boundaries as shown in Fig. 4,
that is, the boundary point is always omitted since the signal
value is know to be zero.

The AA model shares the frequency response (and its
inverse) with the SS model; hence the sinc is the same as
for SS.

Similarly, the SA and AS model share the sinc, which now
takes a different form, computed, as usual, as the inverse
frequency response of the box:

l̂k =

{

T k ∈ ΩNyq,

0 otherwise.
, l(t) =

1

N

sin( π
T t)

sin( π
2NT t)

. (40)
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TABLE XI
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE MODEL WITH EXTENSION AS.

Sampling Finite Continuous Space Model AS (Antisymmetric/Symmetric Extension)

WW (yields DST-3) WH (yields DST-7) HW (yields DST-8) HH (yields DST-4)

Sampling concepts

Sampling periodT I
N

I
N+ 1

2

I
N− 1

2

I
N

Sampling pointstn nT + T nT + T nT + T
2

nT + T
2

Sampled signalxT (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−1
X

n=0

x(tn)δ(t− tn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visualization
T 2T NT T 2T NT

-1

T/2 3T/2 5T/2 (N-1/2)T T/2 3T/2 5T/2 (N-1/2)T

Spectral concepts

ϕk,n sin(
(k+ 1

2
)(n+1)π

N
) sin(

(k+ 1
2
)(n+1)π

N+ 1
2

) sin(
(k+ 1

2
)(n+ 1

2
)π

N− 1
2

) sin(
(k+ 1

2
)(n+ 1

2
)π

N
)

Fourier transform̂xT,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−1
X

n=0

x(tn)ϕ∗
k,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symmetries x̂T,mN+k−1 = x̂
T,mN+k−

1+(−1)m

2

= x̂
T,mN+k−

1+(−1)m

2

= x̂T,mN+k−1 =

−x̂T,mN−k −x̂T,mN−k (−1)m+1x̂T,mN−k (−1)m+1x̂T,mN−k

Visualization -1

k=0 1 2 N-1
-1 -1

k=0 1 2 N-1
-1

k=0 1 2 N-1
-1

k=0 1 2 N-1

Sampling theorem concepts

Nyquist bandΩNyq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{k | 0 ≤ k ≤ N − 1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sinc filter l̂k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(

T k ∈ ΩNyq,

0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
N

sin( π

T
t)

sin( π

2NT
t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bandlimited subspaceSBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{x ∈ S | x̂k = 0, k /∈ ΩNyq} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basisb for SBL . . . . . . . . . . . . . . { 1
2
ǫ′n (l(t− tn) + l(t+ tn)) | n = 0, . . . , N − 1}, ǫ′n =

(

1/2 for tn = I,

1 otherwise.
. . . . . . . . . . . . . .

Sampling theorem For x(t) ∈ SBL : x(t) =

N−1
X

n=0

x(tn)
1

2
ǫ′n (l(t− tn) + l(t+ tn))

All other concepts are shared with the SS case. The results
are summarized in Tables IX–XII.

Finally, we note that the tables reveal which DCTs and
DSTs are (close to be) inverses of each other. To find the
inverse for a given DCT or DST, we first look up the visualiza-
tion of its spectral domain and then retrieve the transform that
has the same visualization for its space domain. For example,
the spectral domain visualization associated with theDCT-2
in Table IX corresponds to the space domain visualization
associated with theDCT-3 in Table X and vice-versa.

To obtain the exact relationships, more tools are needed
[12], [6].

VII. C ONCLUSIONS

In this paper we developed the complete continuous signal
processing framework, called space signal processing, which
underlies the sixteen discrete cosine and sine transform, and, in
doing so, a novel way of deriving them through sampling. To
organize the framework in exactly the same way as standard
time signal processing, several key insights were needed. First,
the realization that a different shift operation, namely the
symmetric space shift, was needed as starting point. Second, a
viewpoint that replaces signals with symmetries (for example,
periodic) by signals on a compact domain with structure (for

example, a circle). Third, the rigorous decoupling of filter
space and signal space, multiplication of filters and filtering,
and of Fourier transform and frequency response. All these are
naturally provided by the algebraic signal processing theory of
which this paper is an application.

This paper complements our prior, bottom-up derivation of
the finite space models in [6]. The latter had the advantage
that it also revealed the “z-transforms” and the polynomial
algebras associated with the DCTs/DSTs. These algebras are
the key to deriving their fast algorithms [26]. Together with
this paper, [6], [26] provide a complete linear, nonstochastic
theory of the DCTs/DSTs, which also may prove amenable to
teaching this material.

APPENDIX

Let l(t) be as defined in (38), and lettn = nT + T/2,
0 ≤ n < N . We show that{rn(t) = (l(t− tn)+ l(t+ tn))/2 |
0 ≤ n < N} are perfect interpolators, that is,rn(tm) = 0 for
n 6= m andrn(tn) = 1.

As the first set we computel(pT ), for p ∈ Z, |p| < 2N . If
p = 0, L’H ôpital’s rule yieldsl(pT ) = l(0) = (2N − 1)/N .
For p 6= 0,

l(pT ) =
1

N

sin(pπ − p
2N π)

sin p
2N π

= (−1)p+1 1

N
.
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TABLE XII
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE MODEL WITH EXTENSION AA.

Sampling Finite Continuous Space Model AA (Antisymmetric/Antisymmetric Extension)

WW (yields DST-1) WH (yields DST-5) HW (yields DST-6) HH (yields DST-2)

Sampling concepts

Sampling periodT I
N+1

I
N+ 1

2

I
N+ 1

2

I
N

Sampling pointstn nT + T nT + T nT + T
2

nT + T
2

Sampled signalxT (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−1
X

n=0

x(tn)δ(t− tn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visualization
T 2T NT T 2T NT

-1 -1

T/2 3T/2 5T/2 (N-1/2)T
-1

T/2 3T/2 5T/2 (N-1/2)T
-1

Spectral concepts

ϕk,n sin(
(k+1)(n+1)π

N+1
) sin(

(k+1)(n+1)π

N+ 1
2

) sin(
(k+1)(n+ 1

2
)π

N+ 1
2

) sin(
(k+1)(n+ 1

2
)π

N
)

Fourier transform̂xT,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
N−1
X

n=0

x(tn)ϕ∗
k,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Symmetries x̂
T,mN+k−

1+(−1)m+1

2

= x̂T,mN+k = x̂T,mN+k = x̂
T,mN+k−

1+(−1)m+1

2

=

−x̂
T,mN−k−

1+(−1)m+1

2

−x̂
T,mN−k−

1+(−1)m+1

2

(−1)m+1x̂
T,mN−k−

1+(−1)m+1

2

(−1)m+1x̂
T,mN−k−

1+(−1)m+1

2

Visualization
k=0 1 2 N-1 k=0 1 2 N-1

-1

k=0 1 2 N-1 k=0 1 2 N-1

Sampling theorem concepts

Nyquist bandΩNyq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{k | 0 ≤ k ≤ N − 1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sinc filter l̂k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

(

T k ∈ ΩNyq,

0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

l(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
N

sin(
(2N−1)π

2NT
t)

sin( π

2NT
t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Bandlimited subspaceSBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{x ∈ S | x̂k = 0, k /∈ ΩNyq} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basisb for SBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{ 1
2

(l(t− tn) + l(t+ tn)) | n = 0, . . . , N − 1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sampling theorem For x(t) ∈ SBL : x(t) =

N−1
X

n=0

x(tn)
1

2
(l(t− tn) + l(t+ tn))

Now we can computern(tm) = (l((m− n)T ) + l((m+ n+
1)T )/2 assuming0 ≤ n,m < N . For n = m,

rn(tn) =
1

2
(l(0) + l((2n+ 1)T ) =

1

2
(
2N − 1

N
+

1

N
) = 1.

For n 6= m,

rn(tn) =
1

2
(
(−1)m−n

N
+

(−1)m+n+1

N
) = 0,

as desired.
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