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Abstract—We derive a signal processing framework, called transform is defined as the projection onto these eigenfunc-
space signal processing, that parallels time signal processing.tions. In summary, we obtain the basic framework for infinite

As such, it comes in four versions (continuous/discrete, infi- ; ; ; ; :
DAY >0 ; . ' continuous-time signal processing (Fig. 1, top left).
niteffinite), each with its own notion of convolution and Fourier 9 P g (Fig P )

transform. As in time, these versions are connected by sampling The other three C_a.ses of time IS|gnaI pro_cessmg Can be
theorems that we derive. In contrast to time, however, space derived through equidistant sampling. Sampling in the time
signal processing is based on and derived from a different notion domain yields infinite discrete-time signal processingnsa

of shift, space shift, which operates symmetrically. Our work pling in the frequency domain yields the finite continuoinset

rigorously connects known and novel concepts into a coherent _; ; P ; : .
framework; most importantly, it shows that the sixteen discrete signal processing, and sampling in both domains yieldsefinit

cosine and sine transforms are the space equivalent of the distee diSCrete-time signal processing. The Fourier transformitie

Fourier transform, and hence can be derived by sampling. The latter is called the discrete Fourier transform (DFT), ofie o

platform for our work is the algebraic signal processing theory, an  the most important tools in time signal processing; sangplin

axiomatic approach and generalization of linear signal processing s one way to derive the DFT.

that we recently introduced. Another important class of transforms used in signal

processing are the discrete cosine and sine transforms
|. INTRODUCTION (DCTs/DSTs), originally derived and thought of as appraim
The theory of time signal processing in one dimension t®ns to the Karhunen-Léve transform of a first-order Gauss-

the foundation of our discipline. It consists of four clgsel Markov process [2], [3].

related variants depending on the nature of the time domainin this paper, we ask the question: Can a signal processing

(see Fig. 1): infinite continuous, finite (meaning finite dima) framework analogous to time signal processing in Fig. 1 be

continuous and periodically extended, infinite discreteg a derived such that the DCTs/DSTs are obtained similarly ¢o th

finite discrete and periodically extended. Each case has RET? As we will show, the answer is positive. As an example,
own notion of filtering or convolution, spectrum, and Fouriea visualization of the framework underlying the most widely

transform. For example, infinite discrete-time signal psse used trigonometric transform, DCT type 2, is shown in Fig. 2.

ing has the discrete-time Fourier transform (DTFT) as FouriThe details will be explained later; here, we only want to

transform and the spectrum is periodic, that is, continuoysoint out two major differences with respect to time signal
finite, and periodically extended (see Fig. 1). Note that grocessing. First, the visualizations are now undirecteal (
visualizations in Fig. 1 are directed, representing thead@d inherent notion of past and future) and hence we refer to this
flow of time formally captured by the time shift discussedramework asspace signal processingecond, in time signal
next. processing, the four structures in the time domain are equal

The time signal processing framework for these four castssthe four structures in the frequency domain. In spaceasign
can be systematically derived from one basic concept: theocessing this is not the case unless all sixteen DCTs/DSTs
continuous-time shift. Assume a signalt) on R. For some are considered jointly.

T € R, the time shift is defined as follows: Based on the above discussion of time signal processing, it
. . ) becomes clear that space signal processing, if it existsida
time shift byT:  o(t) — «(t - T). (@) be based on a diﬁerznt notﬁ)n o? shift. Ingeed, the solution

Convolution can be viewed as a superposition of weightésl what we call thespace shift which operates undirected,

shifts and is defined as symmetrically to the left and the right:

h(t) * z(t) = /h(T)x(t — 7)dr. @) space shift byl  z(t) — %(az(t +T)+z(t-T)). (3)

The spectrum consists of the simultaneous eigenfunctio.ﬁs]e associated notion of convolution is now obtained as
exp(jwt), w € R, for this convolution, and the Fouriersuperposition of space shifts:
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Fig. 1. Four variants of time signal processing. Left: theicures of the time domains; right: the structures of the spwading Fourier domains. The
backwards arrow signifies a periodic signal extension béybe shown signal domain (interval).

infinite finite
continuous C—— o000 -— s . . . Y
SFT SFS coefficients
discrete ] L] L) ® muns L] L] ® =xx: @ ) o O o - o o
DSFT DCT, type 2 !
space domain frequency domain

Fig. 2. Four variants of space signal processing. Left: thecres of the space domains; right: the structures of tneesponding Fourier domains. The
first S in SFT, SFS, and DSFT stands for “space.” The loopimgvar signify different forms of symmetric and antisymmetric sigextensions. Details are
introduced later.

« we demonstrate that the DFT and DCTs/DSTs are equi®ur work ties these concepts, and others that we define, into
alent concepts with an equivalent underlying frameworne coherent framework that precisely parallels time digna
in the most rigorous sense; processing and that is held together by sampling theorems.

« we provide a novel way of deriving the DCTs/DSTSs; andJnser in [17] discusses the modern work in sampling theory,

« we show that a complete linear signal processing framiecluding generalizations which, instead of using banidéoh
work different from standard time signal processing caspaces spanned by sincs, use other approximation spaces,
be derived. spanned by splines and wavelets, for example.

The platform for our work is the algebraic signal processing Organization of the paper. In Section Il, we start by iden-
theory (ASP), a general axiomatic approach to signal psacetifying the general definitions of signals, filters, and filtg

ing built on the basic concept of a signal model [4], [5]. Fofconvolution) within the algebraic signal processing tiyed/e
example, the four cases in Fig. 1 are different signal modetben use these generic concepts to present infinite comtsruo
We showed already how to derive discrete-time and discre&pace signal processing in Section Ill and derive its sargpli
space signal models (in the sense used here) from the sHiforems in Section IV. The frequency domains of the so ob-
definition “bottom-up,” that is, without the use of contiruso tained discrete-space models give rise to four finite cootis-
signal processing and sampling [4], [6]. Here we complege tispace models that we define in Section V. Sampling those in
picture by showing the appropriate continuous-space rsod&lection VI finally yields the sixteen DCTs/DSTs as Fourier
and deriving sampling theorems. Our approach in this pagernsforms for finite discrete space models.

is meant to be general enough so as to be applicable to other

forms of nontime signal processing, such as 2-D hexagonal ||. ALGEBRAIC SIGNAL PROCESSINGTHEORY

Spgce?aZ]d 2\—NDor?(l.Jmgﬂvajgiceis[B]éIgg;;herr;.ated to both. We start with a short overview of the_ ASR introduced
Fourier analysis on symmetric or antisymmetriignals and in [4], [5], [6]. ASP is a general and axiomatic approach

prior work that establishes the close relationship betwe N linear signal processing (henceforth simply called aign

DCTs/DSTs and the DFT of various symmetric/antisymmetr&rocessmg)' For this paper, ASP provides the naturalgtatf

signals. For example, the Fourier cosine transform [3] svas or th? in_troducti_on of space _signal processing and _for the
ciated with symmetric infinite continuous signals and paido organization Of. signal processing concepts to clearlytidlen
functions with symmetries have Fourier series of a parailculpa;?”eg' gnd qmelrences. ing th 0 oW Two K

form [9], [10]. Further, DCTs/DSTs are closely related to a gebraic signal processing theory. LDVEIVIEW.TWO Key

DFT on a signal with symmetry [11], [12] and have Sloeciaﬁbse_rvations underlie ASP:_the algebraic natur_e of sigral p
associated convolutions. Along similar lines, continueqsiv- cessing and the concept obignal modela collection of three

alents of the discrete cosine transform were defined in [1:%?_J|_eths Sl:ﬁ'??.?tt o Qef|pe aIS|gnaI processing frelllmework. d
[14], [15], [16] to perform interpolation using zero-paddi € Set of TIters in signal processing I usually assume

in the frequency domain (similar to DFT-based interpolatio to b_e a vector spac_e_(ao_ld|t|on = parallel connection, scalar
multiplication = amplification), but also offers multiplition

LSometimes called even and odd. (serial connection), an operation outside the vector space



. . . TABLE |
framework. Thus, algebraically, the filter space is morétha  EssentiaL coNCEPTS FOR THE INFINITE CONTINUOUS TIME MODEL

vector space: it is aalgebra, a vector space that is also a
ring. Further, the set of signals is also typically assunteldet  |nfinite Continuous-Time Model
a vector space, and filters operate on this space via filterin
Algebraically, this means that the signal space igtamodule
S. These observations naturally place signal processing int
the context of representation theory of algebras well-
developed mathematical discipline (see [18], for example) Visualizafi
. . . . . isualization ... — ...,

ASP is axiomatically built on top of the concept oignal t
mode| defined as a tripl€,S, ®), where’H is a chosen Basic concepts
filter algebra,S an associated{-module of signals, and Multiplication in H  hi(t) * ha(t) :/ ha(T)ha(t — T)dr
a bijective mapping from a vector spage into the module o TER
S. The purpose ofd is to assign a module and an algebra Filtering  A(t) * (t) = /TER h(r)a(t = m)dr
to a signal (vector) space, so filtering and other concems ar
defined. ASP now asseri$a signal mode(H, S, ®) is given,
all the basic ingredients for signal processing are autamat

Kignal model (1, 5, ®)
Filter algebra{  L1(R)
Signal moduleS  L%(R)
Mapping® V = L2(R) — S = L2(R), z(t) — =(t)

Spectral concepts
Spectral basisS,, {¢w(t) = e7“t}, W ER

cally defined (if they exist) and provided by the represémtat Fourler transformiz.,  f _ 2(8)ei, (t)dt
theory of algebraThese basic ingredients include the notions Visualization .. ———»———— ...
of filtering, spectrum, and Fourier transform, and others| a Inversea(t) - / Fopu (t)dw
usually take different forms for different signal models. Pt

Example: Time signal processingln ASP, each of the four %ft) ¢
variants of time signal processing in Fig. 1 is a signal model Freauency response,  J h(&)yi (8)dt
for a different vector spac&. For example, in the infinite Inverseh(t) %/ st (£) e
continuous-time modely is typically assumed to be the space " Juwer

of finite energy functiond” = L?(R). The signal moduleS

is identical toV as a set, but not as an algebraic structure: o ) o

it possesses an algebra operating on it, typically chosén fers living on an interval, sayl = [0,1], and filtering

H = LY(R). @ is the identity mapping fromi’ to S. The IS circular convolutionxp (P stands for periodic). Given

Signal modekoncepts for the infinite continuous-time modef(t), z(t) defined onl, the circular convolution is computed

are summarized in Table 1. by extendingz(t) periodically toxp(t), performing ordinary
As discussed in the introduction, the infinite continuougonvelution, and viewing the (periodic) result as a functan

time model is based on the time shift (1). The visualizatioh

of the time model in Table | shows the domain on which time hxpx=hxzp viewed as function off. Q)
si_gnals Iiv_e; the (_Jlomain is directed due to the operatiornef t, ASP, we capture the required signal extension rigorobigly
directed time shift. viewing the signal domain as a circle (P for periodically

From the definition of the signal modeBasic concepts eytendedI) with circumferencel, instead of an interval.
follow, including the multiplication defined in the filtergegbra Intuitively, signals on the circlép are equivalent to periodic
(cascade of filters), and how filters operate on signals (th bosignals on the real line.
cases standard convolution). Bpectral concepfswe define  \we summarize this model in Table Il. Note that now we
spectral components,,, which are nothing but subspaces ofan choosd.! for both filter and signal spadeThe purpose
the signal module, invariant under the operation of therfiltgys g i again to assign a module and an algebra to a vector
algebra (in signal processing, we typically find these byifigd space. This time this includes “applying” the signal exiens
g|genfunct|ons). The Fourier transform (Iﬁ't))mques Projec- (py changing the domain of the signal frointo Ip). The
tions onto those subspaces. The spectral-domain vistiafiza model is well-defined since the convolution in (5) yieldsiaga
possesses the same structure as the time-domain one. 4 periodic signal, that is, a signal dp.

We then proceed to define the inverse FT, as well as thégne may imagine that different signal extensions could be
frequency response, found by f||ter|ng_th_e spectral Com@mepossible, which would require different mappings as will
and recording the eigenvalues. All this is well-known foe thjygeed be the case later when we consider space models.
infinite continuous-time model. The benefits of the concept The Fourier transform for this model is again found by
of a signal model and the general ASP framework becomgantifying the eigenspaces under filtering (now circulan-c

evident later when we consider different signal models.  yojution). It is well known that these are spanned by complex
We now briefly discuss the finite continuous-time modebynonentials: each

which helps understand the need for the mappingn the 2xk,
signal model. The finite time model is used for signals and Sk = {or(t) =¢ "7}, (6)

’Note that choosing.?(R) destroys the algebra property: the convolution/€ € Z’ IS a SImUItaneous elgens_pace for all f”t&rm H The
of two finite-energy functions is in general not finite energy Fourier transform of a signal(t) is hence the projection onto
SWe denote by FT the Fourier transform corresponding to tHimiie
continuous-time model. 4Since the domain is compadi,!' containsL?.



TABLE I
ESSENTIAL CONCEPTS FOR THE FINITE CONTINUOUS TIME MODEL

Finite Continuous-Time Model

Signal model (H, S, @)

Filter algebrart L (Ip)
Signal moduleS  L'(Ip)
Mapping® V =LY(1) — S = Li(Ip), z(t) — =(t)
Visualization

0 t I
Basic concepts
Multiplication in H  h1(t) *p ha(t) = / hi(T)ha(t — 7)dT
h(kI+1t) = h(t TEH
h(t) +p 2(t) /

Extension inH )
B Tel
z(kl +t) = z(t)

Filtering h(T)z(t — 7)dT
Extension inS
Spectral concepts

Spectral basisS;,  {px(t) = ej#t}, keZ

Fourier transformg, x(t) e (t)dt
tel
Visualization e
Inversex(t) Y &ren(t)
2
Pr(t) €T
Frequency responsey / h(t)y (t)dt
tel
Inverseh(t) > hxtn(t)
keZ

these spaces; it yields the coefficients of the Fourier serie

expansion ofz(t) (see Table II).
Structured signal domains through quotient sets.The
proper framework to formally define the circle. and other

Connecting to the prior discussion, the equivalence rati
~p on S =R defined as

ti~pty e (to—t)/I €L (7)

yields R/ ~p= Ip. Namely,I = [0,]) is a complete set of
pairwise nonequivalent points, add~p 0, which means the
end points ofl (0 and[) in Table Il can be identified as shown
by the backwards arrow of the visualization, creating thelei
structure.

For some signal extensions (in this paper: antisymmetric) a
more general version of the above construction is needed.

IIl. I NFINITE CONTINUOUS-SPACE MODELS

We now formally define two infinite continuous-space mod-
els. These models will be related to the DCTs/DSTSs in the
same way as the infinite continuous-time model in Table | is
related to the DFT.

As discussed in the introduction, these space models are
obtained from a different notion of shift, the symmetric apa
shift (3), which is equivalent to convolving(t) with (§(¢t —
T)+6(t+1T))/2. We define a space filter as superposition of
space shifts as

h(t) = / h(T)%(é(t CT) 4 5(t+ T))dr.

This implies thath(t) = h(—t) is symmetric and hence we
need to integrate ovék™ only. We viewh as a function oiR+
symmetrically extended; formally; is a function on]Rg: =
R//VS\Nnh

t1 ~g by & [ti] = [ta].

As signal space we could choo£é(RR); however, to obtain

the DCTs and DSTs through sampling, the right choice is to
restrict to the signal space of symmetric and of antisymimetr

structured signal domains needed later are equivalenee raiignals (in our framework to signals d& and R, where
tions and quotient sets [19]. While not strictly needed fdR’ denotes signals oR*, antisymmetrically extended). Note
understanding the paper, we briefly introduce this framkwothat if s € Rj, then necessarily:(0) = 0.

for completeness.

Accordingly, we define in both cases space convolution or

Intuitively, Ip is equal to the real line in which we identifyfiltering xg,*4 as

all points that are at multiples df from each other. This way,
the structure of a periodic signal dR is translated into the h(t) #s/a x(t) =
structure of the signal domain. The difference is a subtke on

yet crucial in ASP.

/ h(T)%(.’L’(ﬁ +7)4+x(t—7))dr, (8)
TERT

where z(t) is symmetrically or antisymmetrically extended

We briefly define equivalence relations and quotient sets {i0t€ that the extension of changes the actual computation

the simplest case using the above circle as example.
Let S be a set. Arequivalence relation- on S is a relation
that satisfies three properties, namely &ob, c € S,

(Na~a, (2a~b=>b~a, Bla~b&b~c=a~c.

Fora € S, [a] = {b € S| b~ a} is called theequivalence
classof a, and the set of all equivalence classes

S/ ~={la] | a € S}

is the quotient setof S with respect to~. The quotient
set partitionsS, that is, everya € S lies in exactly one
equivalence class.

SFor example, periodic signals viewed as functions orhave infinite
energy and usually their power is computed. However, the pdsvpist the
energy if the signal is viewed as function &p.

in (8), hence the subscript S/A). We can also state this
convolution in a form similar to (5). Namely, assuiiag), x(t)
are defined o™, then

1 . .
hxg/ax= 5(hS *xg/4) Viewed as function oRT. (9)

Thus, to compute, say, S convolution, one first extends the
signal symmetrically, computes the ordinary convolutiang
then retains the part o®". The factor1/2 simplifies the
associated notion of frequency response determined below.
Equation (9) also shows how to perform a convolution in-
volving Dirac delta functions ofR{, RY. Namely, fora > 0:

Ot —a)*xg/4 2(t) = %(-TS/A(t —a)+xg/4(t+a)),

h(t) =574 6(t — a) = § (hs(t —a) £ hs(t +a)),  (10)



TABLE Ill
ESSENTIAL CONCEPTS FOR THE INFINITE CONTINUOUS SPACE MODELS DENOTES A SYMMETRIC ANDA AN ANTISYMMETRIC EXTENSION.

Infinite Continuous-Space Models

Signal model (H, S, @) S A
Filter algebral — ......oveeeeiieie e LYRE) o
Signal moduleS  L2(RY) L2(RY)
Mapping® V = L*(Rt) - S=L2(RY), z(t) — z(t) V =L*Rt) —S=L2(R}), z(t) — z(t)
Visualization s ; 1Ce ;
Basic concepts
1
Multiplication in .~ ............ h1(t) *g ha(t) = / hl(r)i(hg (t—T)+ho(t+7))dr o
TERT
Extension inH ... h(—=t) =h(t) o
Filtering  «...ovveeen... h(t) %54 2(t) = / h(r)%(m(t ) 2t TAT
TeRT
Extension inS  z(—t) = z(¢) z(—t) = —x(t)
Spectral concepts
Spectral basisS,,  {¢w(t) = cos(wt)}, w € RT {pw(t) = sin(wt)}, w € RT
Fourier transforme., — ...vvvieii i (D) (E)dt o
teRt
Symmetries Z_,, = T T = —Tw
Visualization % " Co——— =
INVETSEZ(L)  «ovvveevi e eeeeeeeeieiins 1 / FwPw (D)AWL
weRt
Yo () COS(WE) v
Frequency reSPONTBy  «..vvvveerrnreeeeenieeeanns, / RE)YLE) dt oo
teRt
INVErSEA(t)  «oovvreriieiee e 1 Rt (D)dw o
weRT
and fora = 0 (note thatd(t) is not in RY): IV. SAMPLING INFINITE CONTINUOUS MODELS

1 1 We have already commented on the fact that the three dis-

0(t) xspaw(t) = galt),  hlt)xso(t) = 5h(t). (1) e and finite variants of time signal processing in Figad ¢

In summary, we get the two space models shown in The derived from the infinite continuous-time model (Table 1)
ble 11l. Note that they share the same filter algebra (symimetthrough sampling time, frequency, or both. To do the same
filters) but have different signal modules (symmetric anti-anfor the space models in Table Ill, we first need a sampling
symmetric signals). Also note that the notions of convoluti procedure that is general enough to be applicable to other,
are well-defined since the convolution of symmetric funesio nontime, signal models including space. We first establish
is again symmetric and the convolution of a symmetric artlis procedure using infinite continuous-time case as el@amp
an antisymmetric function is again antisymmetric. Along the way, we will point out subtleties, which, although

We now proceed by deriving all the other concepts in thebvious in time, might not feel that natural in space, and
table, and immediately see how the space models differ frafhus, the whole discussion in time is of educational valle T
the time models (compare Table | with Table Ill). For exampléormulation of the sampling theorem most often encountered
the invariant subspaces under filtering are spanned bye&osidue to Shannon [20]; the result is also attributed (by Shanno
for the S model as shown by (> 0) himself) to Whittaker [21], Kotelnikov [22] and Nyquist [23]
(12) The standard derivation of the sampling theorem can be found

] ) } in numerous texts ([24], [25], for example).
and by sines for the A model. The associated Fourier trans-

forms hence take two different forms we cafpace Fourier ) . , ,
transform S (SFT-Sandspace Fourier transform A (SFT-A) A- Sampling Infinite Continuous Time
In contrast, the frequency response for both models, foundWe derive the sampling theorem for the infinite continuous-
by computing the eigenvalues of the respective Fouriershatime model (Table 1) in steps and summarize the results in
under filtering as in (12), takes the same form in both cas€&able IV. We do it in a slightly nonstandard way; this is done
and is computed exactly as the SFT-S. so that the steps can be easily replicated in other signa¢lsod
Note that the SFT-S and SFT-A are equal to what is calledSelect the shift. We choose a shift among those in (1),
the Fourier cosine transform and the Fourier sine transfomrhich means fixingl'.
in [3]. Hence, as an aside, Table Ill establishes them asiérour Sample the signal and compute Fourier transform.We
transforms for properly chosen signal models, and identifiselect a set of locations, € R and require that it be
the associated notions of shift, convolution and others. closed under the selected shift @y Hence, thet,, have to

0(t — a) xg cos(wt) = cos(at) cos(wt)



TABLE IV . . L s
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE conTinvous Tive  1INd these symmetries and with it the largest non-redundant

interval that these symmetries extend to the entire domain
Sampling Infinite Continuous Time (here R). The signal can then be reconstructed from this
interval that we will callNyquist band
Inspecting (14) shows that

Sampling concepts
Sampling period T
Sampling pointst,,, n € Z nT

Sampled signak (¢ tn)o(t — tn . X . .
P gnakr (1) an:Zf’f( ) ) m € Z, which means that the resulting Fourier transform is

Visualization «++- e—>o——>e—so ... (2w /T)-periodic. As a consequence, any interval of length
nT (n+1)T . .
27 /T could be chosen as Nyquist band. The usual choice [24]
is the symmetric

xT,mz%er = TT,w,

Spectral concepts
Cwm  €IWin
Fourier transformir, . @(tn)@) Ongg = {w]0< |w| < %} (15)
nez

Symmetries - &, 2z 4o, = 7w andr /T is then called the Nyquist frequency. We will not use

Visualization this term in the remaining paper since the spectra of theespac

0 @ 2n/T models considered later are right-sided only: hence,\iater
Sampling theorem concepts symmetric around zero cannot be chosen since negative fre-
Nyquist bandQnyg  {w |0 < |w| < 7} quencies do not exist. To solve this problem, we will work
Sinc filterd, 4L ¢ € o with the notion of the Nyquist band, which is unambiguous.
0 otherwise In Table IV, [0,27/T] is shown as Nyquist band; the
It) Smgt) backwards arrow shows the periodic extensiorRtoFor the
Bandlimited subspac€p;, {z € S| 2w =0,w & Qnyq} space models considered later, other, non-periodic syrieaet
Basisb for Spr,  {l(t —tn) | n € Z} will occur.

Extract the original spectrum. Assuming that the signal
is bandlimited to the Nyquist band, for reconstruction, we
need to extract only that band by applying an ideal lowpass
filter supported in the Nyquist band. In the time domain, this
be equidistant. The relative placement with respec tis is equivalent to filtering the signal by the inverse frequenc

irrelevant, and thus, we assume that the signal is sampledrea?p(_msez of t_hi_s I_owpass filter. This is the sinc filté(t) we

integer multiples ofl’, t,, = nT,n € Z. Sampling can then be give in (16);_” Is indeed exactly atfo = 0 apd() at all other

described as follows, resulting in the sampled signa(t): sampllmg points,, = nT’, or,I(tn) = 0n, @s given in Table IV.
The sinc filter and its frequency response are:

zp(t) = Zw(tn)é(t —tn). (13) . {T w € {nyg,

Sampling theoremFor z(t) € Spr :  @(t) = > a(ta)l(t — tn)
nez

) = sin(%t)

€z l )
! 0 otherwise 7t

(16)

Usually, the sampling process is described as multipboati . _ . _
of the signal by a train of Dirac delta functionsy(t) = ~ Sampling theorem.The above extraction process is equiv-
2(t) (3,,ez 0(t — t,)), and then the Poisson summation foralent to filtering the sampled signal witky):

mula is used to obtain the sampling theorem. Since the
multiplication of signals is strictly speaking outside tignal- a(t) = U(t)xzr(t) = / . Wr)er(t —T)dr
model framework and since we do not want to derive a Poisson 7
formula for every signal model, instead, we compute the FT = / (1) Z:E(tn)5(t =T —ty)dr (17)
of the sampled signal directly: TER nez
/ which, after exchanging integral and sum, leads to the expre
tr, = / wp(t)e 7 dt sion for the sampling theorefn:
teR
= / Zx(tn)é(t —t,)e ¥t Theorem 1 (Sampling theorem: ICT Modé&lpr a signale(t)
LER pez bandlimited to the Nyquist band:
= 2 wlta)e 1) v(t) = 3 w(t)it— t). (18)
nez neEZ
In the above, we used thdf_, 6(t — To)z(t)dt = 2(Ty), and  Theorem 1 shows that the spadys, = {z € S |

tn = nT. Settingz, = xz(t,), we recognize the above as the; , — 0, w ¢ Qyyq} of bandlimited signals is spanned by the
discrete-time Fourier transform (DTFT) of the sequen(g,)
in (%(Z). 6Note that here, we are making the distinction between Fotragsform,
Find the symmetries in the Fourier transform. The applied to signals, and frequency response, applied tesiilta continuous
. . time, these two are identical; however, this will not be theecéor all the
spectrum of the sampled signal contains redundancy thghal models we are considering, as we will see later.

manifests itself as symmetries. The purpose of this step is t7we will denote by I: infinite, F: finite, C: continuous, T: tim8; space.



\ T i i \ mi T L \ is the one associated with the space model S from Table IlI:

Trw = / xr(t) cos(wt)dt
t

ERF
Fig. 3. Two ways (W on the left and H on the right) of sampling ithfinite 00
space model S. Left: Start ap = 0 and sampleT” apart. Right: Start at - / Z 2(tn)0(t — 1) | cos(wt)dt
to = T/2 and samplel” apart. teR+ \
1 o0
= ix(to) + Z x(ty,) cos(wty,). (20)
orthogonal set(t) «d(t,,) = I(t —t,,), n € Z. Note that these =t

I(t —t,), as used in (18), are signals now and not filters. The factorl /2 associated with the first sample appears for the

Comment. Sampling infinite time yields the infinite discrete>3Me rI(:a:sc_)ns as '? (11?; xVe could call the ab;m(?sarete—
model and the finite continuous model as its spectral domafif@ce Fourier transfornof the sequence(t,), n > 0.

This motivates the introduction of the latter, but, more émp Fi(;wd t?e dsyhmnllletrie_s ig thg FfOlrj]rier tranlsf((j)rm.AWe now
tantly, it is needed to obtain the finite discrete model (aiitt w heed to fin .t e Nyquist ando the sample .S'm’ €.,
it the DFT) again by sampling. the largest interval on which the spectrum is nonredundant.

. L . As before, this is done by finding the symmetries.
By sampling the infinite continuous-space model, we thuslnspecting (20) reveals the symmetry

expect to not only find infinite discrete-space models, bsw al
the proper finite continuous models that need to be sampled to Tpomemy, = I1w, MmEL
obtain the sixteen DCTs/DSTs as the Fourier transforms fﬂ

e T ence, we can visualize the spectrum as living on the interva
the corresponding finite discrete-space models.

[0,7/T), extended symmetrically to the left and to the right. In

Table V, this domain is visualized as a line betwe@nr/T")

with loops on the left and right with weights The Nyquist

band is accordinglfdnyg = {w|0<w < T}

B. Sampling Infinite Continuous Space Extract the original spectrum. We extract the Nyquist

band by applying an ideal lowpass filter with frequency

We now repeat the above process for the two infinite spamsponsel,, supported only in the Nyquist band. Applying

models defined in Table Ill. We cover S in detail and onlthe inverse frequency response from Table Il yields theesam

briefly point out differences in A. The results are summatizeesult as in the time case (16), only the filter is viewed as a

in Tables V and VI. function onR;:
In the infinite space model S, both the signals and the filters o
X . . . ~ T € Onygs &t
are defined o} visualized in Table III. l, = {O zthervviy; I(t) = Sm;? ). (21)
Select the shift.We select a space shift among those in (3), ¢ T
which means fixingl". As in time, the interpolating sinc is indeddat t, = 0 and0

Sample the signal and compute Fourier transform.We at all oth.er sampling points, = nT . .
select a set of sampling locations closed under the space Sampling theorem.The extraction process which results in

shift by 7', required to be equidistant, just as for the timi€ Original signal, is pointwise multiplication of the spled
model. It turns out there are only two possible choice§!9N@lZr.. with the sinc filterl, in the Fourier domain, or,
depicted in Fig. 3, namely starting &tor T/2. For every equivalently, S convolution in the original domain:

other choice, the leftmost point will not have the distance i

of a multiple of T to itself (walking left and being reflected  @(t) = 1(t) xsar(t) = U(t) x5 Y w(tn)(t — t,)
due to the boundary condition). We refer to the two choices - n=0

as whole-point sampling (Wand half-point sampling (H) o B

following [11]. In the former case, samples are taken at N Zx(t”)(l(t) 55 0(t=tn)),

n=0
t, = nT,n > 0; in the the latter case, samples are taken . . . .
" j = P where we have used linearity of the convolution. Using (10)
att, =nT+T/2,n>0. !
. . ) .. .and (11) we get the sampling theorem:
We proceed by considering the W case in detail; H is similar
and also given in Table V. Theorem 2 (Sampling theorem: ICS-S Model with B¢y a

We sample the signal(t) att, = nT, n > 0 and get signal z(¢) bandlimited to the Nyquist band:

1 > 1

o 2(t) = Sx(to)lt)+ Y x(tn)5 (Ut —tn) +1(t +1n)).

B 2 2
or(t) = D a(tn)d(t —tn). (19) n=1

n=0 Theorem 2 shows that the set of signals bandlimited to the

Nyquist band is spanned by th&) xs 6(t — t,,), which are
As in the time case, we proceed by directly computing thepace-shifted copies of the sinc filter in (21). As in timesi
Fourier transform ofc(t). The Fourier transform to be usedare signals (not filters) and orthogonal.



TABLE V
ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS SPACE IWH EXTENSION S.

Sampling Infinite Continuous Space: Model S (Symmetric Extesion)

w H
Sampling concepts
Sampling period T T
Sampling pointg,, n >0 nT nT+ L
o0
Sampled SIgNAET (E) .+ v vt D @(ta)S(E=tn)
n=0
Visualization 3 ——s—s7—"" T2 3T/2 5T72
Spectral concepts
(DU e et e e COS(WER) ottt e e e
o0 o0
Fourier transformir,, — $2(to) + Y (tn)el > atn)eh
n=1 n=0
Symmetrles IT,2m2T"iw = TTw ZT,QmQT‘”iw = (_1)mxTaW
o ,
Visualization ; > gy ; > 7

Sampling theorem concepts
Nyquist bandQnyq

......................................... {Wl0SWw ST

SINC MBI Ly e et OT L;t:ef\?vNi;Z .........................................
sin( 5 t)
UE) oo T

Bandlimited subspac&p,
Basisb for Spr,

................................... {r eS| 2w =0,w¢ Qnyq}
{3t —ta) +1Ut+1tn)) [ n=0,...}

Sampling theoremFor z(t) € Spy, :

z(t) = (Ut —tn) + 1t +tn))

N =

S i)y Ul — ta) + 1o+ 1)) w(t) = Y ltn)

n=1 n=0

TABLE VI

ESSENTIAL CONCEPTS FOR SAMPLING INFINITE CONTINUOUS SPACEIWH EXTENSION A.

Sampling Infinite Continuous Space Model A (Antisymmetric Exension)

W H
Sampling concepts
Sampling period T T
Sampling pointg,, n >0 nT +7T nT + L
oo
Sampled signabp ()  .oiii D @(ta)d(E—tn) e
n=0
Visualization - 5——s7——"*" T2 312 5122
Spectral concepts
P e SIN(WER) e
o0 o0
Fourier transformir., Y @(tn)@ , > alta)el,
n=0 n=0
Symmetries chgmg%iw =+(-1)"2r,, £T72m2%iw =di7,
. e a9 -1
Visualization -7 ; > o ; - o
Sampling theorem concepts
Nyquist bandQnyg — .oovoeveeiii {Wl0Sw < FE
P T Q
Sincfilterly, ..o wESNye
0 otherwise
sin(Z5t)
L) e %Tt ...............................
Bandlimited subspac&py, ...t {r €S20 =0,w0¢& Onyg} -vvivvirrreiiiannnns
Basisb for Sz, ...iiiiiiiinn. {%(l(t—tn)—l(t-i-tn))) [m=0,...} ..o,
> 1

Sampling theoremFor z(t) € Spr :  z(t) = » w(tn)5 (Ut = tn) = Ut +tn))




-1 T \ \ i T T/Zi T \ i (obtaining the sixteen DCTs/DSTs as one outcome) we first
—_—— ] —_——

formally define the four finite continuous-space models.yThe
are the space equivalent of the finite continuous-time model
. , A in Table II.
Fig 4. Two iays O on he leftand 4 on e righy ofsampinginie r Te e slmmarized in Table VIl Note that the
to = T/2 and samplel’ apart. visualizations of the signal models correspond to the Vsua
izations of the spectra in Tables V and VI. The signal domains
are intervals that on each side are either symmetrically or
Half-point sampling. Half-point sampling starts samplingantisymmetrically extended yielding the four choices dedo
att = T7/2, which is at distancé’ from its mirror image with SS, SA, AS, AA. The filter algebra is the same in
—T/2. This choice changes the associated discrete-spafecases. Note that all models are well-defined since space-
Fourier transform and also the symmetry in the spectrum éhifting (3) an SS/SA/AS/AA signal yields a signal with the
the Samp|6d Signal: same Symmetry_
We cover only the SS model in detail; we briefly touch upon
others.

- o m A
xT,Qm%":I:w - (71) TTw, ME Z.

We depict the spectral domain as a lidgo =/T where the
loop on the right side has weight1 for the antisymmetric A. Finite Space Model SS

extension (Table V, column H). Beside the inherent “beauty” of both extensions being
The Nyquist band is exactly the same as for the W case ag\thmetric, we have a practical reason for dealing with this
hence the sinc filtef(¢) is also identical to the W case. Thuscase in detail. As we will see later, one of its sampled models
the sampling theorem takes the following form: leads to the well-known DCT (of type 2), which has been used
in image processing for a long time.
Theorem 3 (Sampling theorem: ICS-S Model withFéy a  Signal model and basic conceptsSignal and filter space

signal z(t) bandlimited to the Nyquist band: are L'(Igs), which consist of functions on the intervil=
0 1 [0, I] symmetrically extended in both directions. Formally, a
x(t) = Zm(t")§(l<t —tn) + Ut +tn)). (22) signalz(t) onTis SS extended as
=0 zs5s(2kl ) = 2(t), ke (23)

The space of bandlimited signals is again spanne
P d d P by INote that this is the same as first S-extendirtg) to [, I]

o(t,), that is, signals obtained from the template sinc, no > :
(£n) 9 P and then periodically extending the resilts) p = zsg, that

space-shifted by the half integers. . . : .
Sampling the infinite space model A.We now briefly is, SS signals have the peri@d. Filters for the model have the

discuss sampling the other infinite space model, that wih tﬁalmedextens(;(_)n. SS con\fol_utlon, gegned n lT"’Fb'e V”]; %in be
antisymmetric extension from Table IIl. As we noted beford® ated to ordinary convolution an convolution as fosow

first big differences occur here: filter ans signal space are

different and the Fourier transform of a signal is computed

differently than the frequency response of a filter. Note &tla where in the last termzgg is viewed as a function o™

signals ard att = 0, which can thus be omitted as a samplingnd in all cases the result is viewed as a functioril.on

point. The two equidistant choices are shown in Fig. 4. As in Section lll, we have to pay particular attention to
The sampling process is summarized in Table VI; as tl@nvolving with Dirac delta functions; the results are ded

steps are identical to what we have just seen, we only briefiging (24). Fora € (0, I), as expected,

point out the differences. First, we get two additional @rs 1

of a discrete-space Fourier transform and two new forms of ~ d(t —a) *ss @(t) = 5 (rss(t — a) +wss(t + a)),

symmetry in the frequency domain. However, the Nyquist 1

band is the same as before, and since the filter spaces for /(t) ss d(t —a) = 5 (hss(t —a) + hss(t + a)).

S and A are the same (Table Ill), the sinc filter is the same as

before. However, the space of bandlimited signals now takes

a different form: it is again spanned by signals obtainednfroFor a = 0,1, the result is analogous to (11) and for the same

the template sinc filter convolved with adl(t — ¢,,) which, réasons.

1
h>|<ssgc:i(hs*acss):h*gglcss7 (24)

using (10), evaluates to 5(t) *55 it(t) _ %x(t), (S(t _ I) *55 ZL’(t) _ %.T(t _ I),
I(t) %A 6(t—t,) = %(l(t —tn) — Lt + 1)) : : (25)

h(t) xss 0(t) = §h(t)’ h(t) xss 0(t —T) = §h(t —1I).
V. FINITE CONTINUOUS-SPACE MODELS (26)

Sampling the the infinite continuous-space models in the
previous section yielded four infinite discrete-space nsd
and their corresponding finite continuous spectra visadliz kn
in Tables V and VI. Since our goal is to sample those St = {pn(t) = cos(—t

Spectral concepts.The eigenspaces under the above filter-
ng are

)} (27)
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TABLE VI
ESSENTIAL CONCEPTS FOR THE FINITE CONTINUOUS SPACE MODELS

Finite Continuous-Space Models

Signal model (H, S, @) SS SA AS AA
Filter algebralt ... oo LE(I88) ettt et
Signal moduleS  L'(Igs) L'(Isa) L'(I4s) L'(Taa)
Mapping®  L'(I) — L'(Iss) LY(I) — L' (Isa) LY(I) — L' (Ias) LYI) — L' (Iaa)
Visualization

Basic concepts

Multiplication in 4 ... hi(t) *ss ha(t) = /TEH ha (T)%(hz(t — ) dha(t+T))AT
EXIeNSION iNH oot h2KI £6) = h(E) oo
Filtering  +ovoveeeeeo) h(t) *s5/5.4/5/44 () = /Teﬂ h(’r)%(m(t ) b @t AT e
Extension inS  x(2kI +t) = z(t) x(2kI £t) = (=D)*z(t) 22kl +1t) = £(-1D)Fx(t) z(2kI £1t) = £2(t)

Spectral concepts
. . ke . (k+3)m (kD) Iy
Spectral basisSy, k>0 {¢p(t) = cos(EE )} {on(t) = cos(“2T0}  {er(t) =sin(“T2T0} {pp(t) = sin(Ere)}

Fourier transforme, ... T(B)pp(B)dt o
te
Visualization -, =95 (g1 57 T T s
Inversex(t) %5}() + % Z TrPk (t) % Z Trpk(t) % Z Zrpk(t) % Z Trpk(t)
k=1 k=0 k=0 k=1
Symmetries T_p = Tg T_p =T T_p = —Tp_1 T_p = —Tp
Y (t) cos(kT”t) Cos((k+1%)7rt) cos((k+1%)ﬁt) cos(kT'"t)
FreqUeNCY FESPONTB  «.vvvvveeeene et e e e e, / RYEE)AE oo
o0 o0 tEH o0 oo
Inverseh(t)  $ho+ 2> hitr(t) 2 hapr(t) 2> htp(t) tho + 2> hetpr(t)
k=1 k=0 k=0 k=1
ke Z. Let z(t) = i (t) € Sy andh(t) any filter, then Convolution can be related to ordinary convolution as
1 1 k k 1
h(t) xss pr(t) = i / h(T)i(COS(Tﬂ—(t - 7))+ Cos(Tﬂ(t +7)))dh *55/54/45/4A T = §(hs *TS5/5A/AS/AA)- (28)
el
1 km kn This equation can be used to compute the convolution with
=7 /Teﬂh(T) COS(TT) COS(Tt)dT Dirac delta functions. For example, fare (0, 1),
k 1
— oulte [ hir)cos(Tr)dr horssyandlt —a) = (hss(t —a) & hss(t +a)),  (29)
Tel
1
_ wk(t)c/ h(T)(pZ(T))dT = hyon(t). h*SA/AS 5(15*(1):i(hSA(tfa):I:hSA(t+a)), (30)
sk and fora = 0,1,
b,

1 1
This conforms with the well-known fact that periodic fursts ~ 71(£) *s4 0(t) = Sh(?),  h(t) *as 6(t = 1) = = h(t = ).

that are also symmetric (heress = (z5)p) have a Fourier  gpaciral conceptsThe subspaces invariant under filtering
series consisting of cosines only. The derivation alsalgiéhe 5yq gitferent forms for the four models as shown in Table VII
frequency respo_ngek, computed the same way as the Fou”quowever, the frequency response takes only two different
transform. This is not the case for the SA/AS/AA models. s it is the same for SS and AA and for SA and AS.

Note that in (27)5_, = Sy is whole-point symmetric; thus gy e for SS and SA, it is computed differently than the

the structure of the spectrum is as shown in Table VII. Thif'ourier transform

is expected since it corresponds to the W column of Table V. Interestingly, the inverse frequency response for the S an
AS model will yield an SA function (since alb;, have this

B. Other Models property in this case), which hence satisftég) = 0. Hence
We briefly discuss the other models in Table VII. it will reconstructh(t) only on [0, I) if the sum converges.
Signal model and basic conceptd=irst, we note that due to

the antisymmetric extension, the AS model requiré®) = 0, VI. SAMPLING FINITE CONTINUOUS MODELS

the SA modelz(/) = 0, and the AA model both. The AA Inthis section we sample finite continuous models following
model has perio@/ and the SA and AS model the peridd. the same steps as before. For illustration, we start with the



TABLE VI
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS TIME

Sampling Finite Continuous Time Model (yields DFT)

Sampling concepts
Sampling periodl’
Sampling pointg,,

Sampled signakr(t)

Visualization
Spectral concepts

Pk,n
Fourier transformz ;,

Symmetries

Visualization
Sampling theorem concepts
Nyquist bandQnyq

Sinc filter [,

I(t)

Bandlimited subspac&p;,

o—>o—» o—o

0 T 2T (N-1)T
kn2x

el

N-1

Z z(tn)Ps,p

n=0

2T mN+k = 2Tk

P Y ———

o 12 N-1
{k|0<k<N-1}

T ke QNyq,

0 otherwise

sin(Ft)
sin(xpt)

{:EES‘@;C:O,RQQNN}

L N-—1
1 gt
S NT
~N€

Basisb for Spr,  {l(t—tn)|n=0,...,N -1}
N-1
Sampling theoremFor z(t) € Spr :  @(t) = > a(tn)l(t — tn)
n=0

11

The above process yields the structure of the finite discrete
time model (bottom right in Fig. 1). The signal lives on a &rc
with N points (it is discrete periodic with a fundamental period
of length N) and the shift moves the signal by one sample
clockwise. The DFT diagonalizes the adjacency matrix of the
circle (the cyclic shift).
Find the symmetries in the Fourier transform. From (32),
we see that after sampling, the spectrum becomes periodic:

T mN+k = Tk, ™M E L.

Again, this means that we can choose any interval of ledgth
as Nyquist band. To be consistent with the infinite contirsdou
time case (15), théV points should be symmetric aroutid
However, this would yield a non-standard definition of the
DFT. We choose the Nyquist bardnyg = {k | 0 <
k < N — 1} to obtain the DFT as defined in almost every
signal processing book. Interestingly, this is not coesitt
with (15), and often produces confusion as our inherenbnoti
of what the natural ordering of frequencies should be (low
to high) is disturbed; with this definition of the DFT, the
highest frequency is in the middle of the spectrum. Remember
however, that this is just the question of ordering, as any
interval of lengthV would do the trick. This is one reason that
in this paper we abandon the teriNgquist rateand Nyquist
frequencyin favor of Nyquist band The other is that space
models have no negative frequencies; hence, a symmetrit ban
is inherently not possible.

Extract the original spectrum. Again, assuming a signal

familiar finite time model in Table Il and obtain, besides thBandlimited to the Nyquist band, for reconstruction, we use
sampling theorem, the DFT. The same procedure applied!®s appropriate sinc filtef(z):

the four finite space models in Table VII will later yield the

sixteen DCTs/DSTs.

A. Sampling Finite Continuous Time
The main concepts we discuss here are summarizedWltiples of 7', including 7" = 0. The denominator i%) at

Table VIII.

ie-]ﬂ—tN 1 sin(%t)

#) = N sin(gpt)”

"7 Yo otherwise’

Inspecti(t): the numerator provides the zeros at all integer

t = 0 and is then nonzero until= £NT, that is, its period

Select the shift.We select a time shift on the circle, whichis N times larger than that of the numerator. Together they

means fixingT'.

Sample the signal and compute Fourier transform.The
sampling pointst,, have to be closed under the shift @y

give a value ofl at¢ = 0 and zeros at all integer multiples of
T, as an interpolating sinc should.
Sampling theorem.The above extraction process is point-

hence they have to be equidistant on the circle of length Wise multiplication of the sampled signalr . with the sinc

We start at0,2 and chooseN samples, that is] = I/N.

Sampling yields

filter I in the Fourier domain. This is equivalent to the
convolution

N-1 7 - _ 1 o
wr(t) = Y a(tn)d(t —tn) (31) z(t) = (UI(t) xp 27 (1)) I/Tenl( Yar(t — 7)dr,

n=0 N-1
and the Fourier transform ofy(t) (defined in Table II) is = / Z 6(t =7 —tn)dr,  (34)
N-1
Z 2(tn)e™ Br2w (32) which leads to the expression for the sampling theorem:

. _i2rk
Tk = / xT(t>€ JoT tdt =
tel n=0

Theorem 4 (Sampling theorem: FCT Modé&ipr a signal
SettingiWy = ¢/ ¥ andx,, = z(t,), this is precisely the DFT (t) bandlimited to the Nyquist band:
of a sequence of lengthv: N1
N-1 x(t) = x(ty)l(t —tn). (35)
= > @M (33) Zg
n=0

The spaceSp; of those signals bandlimited exactly to the

8Different starting points lead to slightly different vesas of the DFT. Nyquist band (see Table VIII), that is, the space of signals
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TABLE IX
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE M@ WITH EXTENSION SS.

Sampling Finite Continuous Space Model SS (Symmetric/Symnéc Extension)

WW (yields DCT-1) WH (yields DCT-5) HW (yields DCT-6) HH (yields DCT-2)

Sampling concepts

; ; I I I I
Sampling periodl" = N1 NI N
Sampling pointst, nT nT nT+ 2 nT+ 2
N-1
Sampled SIgNaET(£) . oeeee D @(t)S(E=tn) e
n=0
Visualization - 5==4—3 - *=y )7 e Tt S s I R AT Y
Spectral concepts
R k(n+i)w k(n+i)m
Pkon cos(llf]"jrl) cos(%) cos( N—i ) cos(———x=2—)
2 2
N—1
FOUMEr trANSOMMET 1+ vv ettt et et et ettt et D ()P e
n=0
Symmetries lemNHi 1+(,12)m+1 =  Er N4k = TP mN+k = xT,mNJrkf H(,lz)mﬂ =
jT,mN—k— 1+<,12)m+1 iT,mN—k— 1+(,12)m+1 (_l)miT,mN—k— 1+(,12)m+1 (_l)miT,mN—k— 1+(,12)m+1
Visualization  j==—3 " "T web 12 TUUTRY b 12T I I R
Sampling theorem concepts
Nyquist bandnyg o ovveve {EJO< k<N — 1} o
o T ke O,
SINCfIErfy, o Ny
0 otherwise
. 2N —1)m
LE) o L s
sin( g t)
Bandlimited subspacSpr,  ......iiiiiii e {2 €S2 =0,k & QNygl  covvviei i
. 1/2 fort¢, =0 1/2 fort, =1
Basisb for S oo {Lene (It —t (t+t n=0,...,N—-1}, e, = e = 7
BL {genen (Ut —tn) +1(t +10)) | b {1 otherwise " 1 otherwise
N-1 1
Sampling theorem Foraz(t) € Spr: a(t) = Y z(tn)?ne; (Ut = tn) + Ut + tn))
n=0

which can be reconstructed from their sampled versions, 7§ +7/2, n=0,...,N — 1. The sampled signal is

SBL = {$€S|.ﬁk:0,k¢QNyq}. N—1
er(t) = Y w(ta)d(t — tn), (36)
B. Sampling Finite Continuous Space n=0

For each of the four finite space models in Table VIl w@Nd a@pplying the Fourier transform from Table VII, column
have four choices of equidistant sampling, which arise from>: W€ g€t

the treatment of the two boundaries (each one is either S or N-1 k(n + Lr

A). Namely, for an S boundary we have the two choices W Ery = Z x(tn)COS(TQL (37)
and H shown in Fig. 3 and for an A boundary the two choices n=0

W and H shown in Fig. 4. This means that each of the foyghich, with z,, = (nT + T/2), is nothing else but the DCT,
finite continuous models will spawn four sampled versiongpe 2, ofz, ..., zy_1. After sampling we obtain the graph

(WW, WH, HW, HH) for a total of sixteen finite discretestrycture shown under “Visualization.” This shows that the

space models. As we will show, these have exactly the sixteg@ T, type 2, is a Fourier transform for the finite space model

DCTs/DSTs as their corresponding Fourier transforms.  wjith this visualization, that is, HH extensions on both side
We derive in detail the case of HH sampling the SS model The adjacency matrix of the visualization is indeed diago-

(Table VII), which will yield the most widely used DCT nalized by the DCT, type 2, [6], which confirms the correctnes

of type 2. Then we briefly discuss the other three cases &four construction.

sampling SS and collect the results in Table IX. Finally, we Find the symmetries in the Fourier transform. The

discuss the sampling of the other finite space models.  sampled signal spectrum in (37) has the following symmetry
Select the shift.We fix a space shift by". properties: i, = &7, on the left, andiry = 0,
Sample the signal and compute Fourier transformWe ;. v, = —i7 y_; On the right. Taken together, for € Z,

sample HH, that is, the first sampling point1%¥2 and the

last one isI — T'/2. To getN samplesT = I/N andt, = By ppottepmin = (=1)7E

L 14(—1 m—+1
T,mN—k— DT
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ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE M@D WITH EXTENSION SA.

Sampling Finite Continuous Space Model SA (Symmetric/Antigmmetric Extension)

WW (yields DCT-3)

WH (yields DCT-7) HW (yields DCT-8)

HH (yields DCT-4)

Sampling concepts

; ; I I I I
Sampling periodl" & N1 Nl N
Sampling pointst, nT nT nT+ 2 nT+ L
N-1
Sampled SIgNAET (£)  «vvvre et DT @(ta)S(E—tn) e
n=0
Visualization  s=——s—3 - DT o1 o T wr 72 312 512 (N-lT T2 g2 ste T eir
Spectral concepts
1 1 1 1 Ly(nyd
ko COS( (kJFJ%)"”T) COS( (k;i)inw) COS(%) COS(W)
2 N1 2
FOUNEr trANSIOMMET i+« v e eve ettt ettt D () Ph e
n=0
Symmetries  Z7 nNtk—1 = T Nk Lenm = 2 Nk L™ = T mNtk—1 =
BT mN—k T mN—k (=1)™MZ1 mN—k (=1)™Z1 mN—k
Visualization  Co——s—s om0 Grm—p—s oS0y Gt T k=0 1 2T
Sampling theorem concepts
Nyquist bandQnyg — ..ooovi {E|O<ESN =1} o
. ) A T keQ
SINCAIlteriy, oo C Ny
0 otherwise
1 sin(%t)
L FmrdDy
Bandlimited subspacpy, ... {2 €S2 =0,E € QNygl cvvorrrrriiii i
. 1/2 fort, =0
Basisb for S, ... le, (It —t I(t+t =0,...,N—1 = i
BL {zen (t—tn) +U(t+1tn)) In=0,..., b, en {1 othermise
N-1 1
Sampling theorem Foraz(t) € Spr: =(t) = Y w(tn) 5 en (Ut = tn) + 1t + tn))
n=0

which yields the spectrum structure shown in Table IX, undés always, the spacép; of bandlimited signals consists of
the heading HH. Note that in our visualization of the speautru those whose spectral support is limitedtgyq. The sampling
there is no loop of weight-1 on the right side; this is becausetheorem reveals the basis for this space. As expected, #ie ba
the value ofzr;, atk = N is 0, and hence the node vanishesiunctions are perfect interpolators as we show in the Append
The Nyquist band is agaifinyg = {k |0 <k < N —1}. for this case.

Extract the original spectrum. Similarly to what we  Sampling SS: WW, WH, HW. Since the underlying con-
did in the time case, and again assuming that the signaltisuous model is the same, the sinc takes the same form in all
bandlimited to the Nyquist band, we extract only that band lases. The only difference to HH sampling is that the samgplin
the suitable box and compute the inverse frequency respofssations include one (WH and HW) or two (WW) boundary
using its definition in Table VII, column SS. points, which affecté(t)«xr(t) due to (26). We accommodate

) T keQy 1 Sin((QN_l)Tr ) this in Table IX by introducing the correction factors, €/, .
ly = {O otherw?sq;a’ ) = N Sin(ﬁt) . (38) Sampling SA, AS, AA.S boundaries are sampled as before
2NT (H or W; see Fig. 3), and A boundaries as shown in Fig. 4,

Sampling theorem.As before, the extraction process whichhat is, the boundary point is always omitted since the signa
results in the original signal, is pointwise multiplicati®f yalue is know to be zero.
the sampled signatr,; and the sinc filter;, in the Fourier  The AA model shares the frequency response (and its
SS) of the sampled signal by the inverse frequency respopgess.
of the filter in the original domai(t) +ss w7 (). Similarly, the SA and AS model share the sinc, which now

Theorem 5 (Sampling theorem: FS Model-SS-Hid) a sig- ]'Eakes a different fom;, hcorgnpu.ted, as usual, as the inverse
nal z(¢) bandlimited to the Nyquist band: requency response of the box:

N-1 .

1 - T k€ Qnygs 1 sin(%t)
t) = ta)= (It —t,) + 1t +1,)). 39 Iy = ) = ——L—. (40
z(®) HZ:O o )2 (i€ )+ U ) (39) g {0 otherwise N sin(gzppt) (40)
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TABLE XI
ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE M@D WITH EXTENSION AS.

Sampling Finite Continuous Space Model AS (Antisymmetric/$mmetric Extension)

WW (yields DST-3) WH (yields DST-7) HW (yields DST-8) HH (yields DST-4)
Sampling concepts
Sampling periodl’” £ #—% Tié L
Sampling pointe, nT + T nT+T nT + L nT + L
Sampled Signakr(£) .o e NEI Z(En)0(E = En) oot
n=0

i i ¢ ——@ rrr g—— @ . ] ® saxn 1 e @@ @@ *—e ® srss @—— @
Visualization T 2T NT T 2T NT T2 312 5T72 (N-1/2)T T2 312 5T72 (N-172)T
Spectral concepts

(k+3)(n+ )7 (k+3)(n+3)m

(kD (D o (k) (D) ; i
Pkn  Sin(—2x—) sm(Ni%) sm(?) sin(—2F—2)
N-1
FOUNEr traNSIOMMET i e ettt et ettt et et D () Pr e
n=0
Symmetries  Er,Nik—1 = S VNS EUES L VPRI EY S IS BT mN+k—1 =
o o 14 14
—ET mN—k —Z7 mN—k (=)™ 2p Nk (=)™ 2p Nk
Visualization @ T S— . . . R . e . _
=0 1 2 N1 k=01 2 N1 k=0 1 2 N1 =0 1 2 NT

Sampling theorem concepts

Nyquist bandQnyg ..o {EJO<KE<SN =1} o
SINC filtEr Il oo TokEeOng,
0 otherwise
l(t) 1 sin(frt)
.............................................. N S(Gad) et
Bandlimited subspac&py, ... {2 €S2k =0,E € QNygl  +ovvrrrrriiii i
T (Ll (Ut —ta) +1(t+2) [n=0,...,N—1}, ¢, = 1/2 Lot[]é:wfs; ..............
N-1 1
Sampling theorem Foraz(t) € Spr: =(t) = > :Jc(1tn)5e;1 (It —tn) + U(E + tn))
n=0

All other concepts are shared with the SS case. The resdimample, a circle). Third, the rigorous decoupling of filter

are summarized in Tables IX-XII. space and signal space, multiplication of filters and fitigyi
Finally, we note that the tables reveal which DCTs anand of Fourier transform and frequency response. All these a

DSTs are (close to be) inverses of each other. To find thaturally provided by the algebraic signal processing heb

inverse for a given DCT or DST, we first look up the visualizawhich this paper is an application.

tion of its spectral domain and then retrieve the transfdrat t  This paper complements our prior, bottom-up derivation of

has the same visualization for its space domain. For examglee finite space models in [6]. The latter had the advantage

the spectral domain visualization associated withiH&T-2 that it also revealed thez*transforms” and the polynomial

in Table IX corresponds to the space domain visualizati@igebras associated with the DCTs/DSTs. These algebras are

associated with th®CT-3 in Table X and vice-versa. the key to deriving their fast algorithms [26]. Together twit
To obtain the exact relationships, more tools are needts paper, [6], [26] provide a complete linear, nonstotbas
[12], [6]. theory of the DCTs/DSTs, which also may prove amenable to

teaching this material.
VII. CONCLUSIONS

APPENDIX

In this paper we developed the complete continuous signal i .
processing framework, called space signal processing;hwhi Let i(t) be as defined in (38), and lef, = nT + T/2,
underlies the sixteen discrete cosine and sine transfordy jia 0<n<N.We show tha}t{rn (1) = (It~ t")_+l(t+t"))/2 |
doing so, a novel way of deriving them through sampling. TQJS n < N} are perfect interpolators, that is, (t.m) = 0 for
organize the framework in exactly the same way as standé?rc?'é m anql rn(tn) = 1.
time signal processing, several key insights were needest, F /'S (he first set we computépT), for p € Z, [p| < 2N. If
the realization that a different shift operation, namelg th” ~ 0, LHopital's rule yieldsl(pT') = 1(0) = (2N — 1)/N.
symmetric space shift, was needed as starting point. Seaongorp #0,
viewpoint that replaces signals with symmetries (for exemp (pT) = iSiH(P7r ) — (=1)P*! 1
periodic) by signals on a compact domain with structure (for P

N sin 557 N
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ESSENTIAL CONCEPTS FOR SAMPLING FINITE CONTINUOUS SPACE M@D WITH EXTENSION AA.

Sampling Finite Continuous Space Model AA (Antisymmetric/Antisymmetric Extension)

WW (yields DST-1)

WH (yields DST-5)

HW (yields DST-6) HH (yields DST-2)

Sampling concepts

; ; I I I I
Sampling periodl’ i1 Nl N+ N
Sampling pointst, nT + T nT +T nT+ 2 nT+ L
N—1
Sampled SIgNaET () «o.nrt e D @(Er)S(E = tn) e
n=0
Visualization T or T T ror T 72 312 st (NeyT 2 312 st NIAT
Spectral concepts
(Rt 1 . (kt1 1 (k1) (n+3) (k1) (n+1)
Ckm Sm(%) Sm(%) Sm(%) sin (2T
2 2
N—1
FOUMEr trANSOMMET, fr  « e ve ettt ettt ettt ettt et anees D 1
n=0
Symmetries lemNHi 1+(,12)m,+1 = Z7mN+k = TP MmNtk = xT’mNH% 1+(,12)m+1 =
— 5 _ —+1 2 _ +1 4
;UTA,mN—k— 1+(,12)m+1 xT,mN—k— 1+(,12)m+1 (=™ xT,mN—k— 1+(,12)m+1 (-1)™ xT,mN—k— 1+(,12)m+1
Visualization , _j—j—3 =+ [ s R ™ e e R [ s R
Sampling theorem concepts
Nyquist bandnyg . .ovvoee {E|0< k<N — 1}
. s T ke
SINCfIEr I} e Ny
0 otherwise
1) 1 sy
................................................... N D)
Bandlimited subSPac&pr, ...t {2 €S| 2 =0,k & Qnyg} -+ orvriee
BaSISDh fOr SBL  «vvvreeeeeeee e {3t —tn) +1t+tn) [ n=0,...,N =1} ...
N—1 )
Sampling theorem Forz(t) € Spr: =(t) = sa(tn)5 (Ut —tn) + Ut +tn))
n=0

Now we can compute,, (t,,) = (I((m —n)T) + I((m +n +
1)T)/2 assuming) < n,m < N. Forn =m,

1 1 2N -1 1
n(tn) = =((0 1((2 Nl =-(——+—)=1.
Faltn) = 5((0) + 12+ DT) = S(F— + +)
Forn # m,
1 (_1)m—n (_1)m+n+l

nltn) = = =Y,

Faltn) = 5 (5 + ) =0
as desired.
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