Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Marcela Zuluaga, Andreas Krause, Peter A. Milder and Markus Püschel (Proc. Languages, Compilers, Tools and Theory for Embedded Systems (LCTES), pp. 119-128 , 2012)
"Smart" Design Space Sampling to Predict Pareto-Optimal Solutions
Comment: Best paper award nominee (3 out of 18)
Preprint (1.1 MB)
Published paper (link to publisher)
Bibtex
Many high-level synthesis tools offer degrees of freedom in mapping high-level specifications to Register-Transfer Level descriptions. These choices do not affect the functional behavior but span a design space of different cost-performance tradeoffs. In this paper we present a novel machine learning-based approach that efficiently determines the Pareto-optimal designs while only sampling and synthesizing a fraction of the design space. The approach combines three key components: (1) A regression model based on Gaussian processes to predict area and throughput based on synthesis training data. (2) A “smart” sampling strategy, GP-PUCB, to iteratively refine the model by carefully selecting the next design to synthesize to maximize progress. (3) A stopping criterion based on assessing the accuracy of the model without access to complete synthesis data. We demonstrate the effectiveness of our approach using IP generators for discrete Fourier transforms and sorting networks. However, our algorithm is not specific to this application and can be applied to a wide range of Pareto front prediction problems.
Keywords: IP cores for FPGA/ASIC, Search/Learning for optimizationMore information: