Cory Thoma, Tao Cui and Franz Franchetti (Proc. IEEE Power and Energy Society General Meeting (PES-GM), 2013)
Privacy Preserving Smart Meter System Based Retail Level Electricity Market
Published paper (link to publisher)
Bibtex

Smart metering systems in distribution networks provide near real-time, two-way information exchange between end users and utilities, enabling many advanced smart grid technologies. However, the fine grained real-time data as well as the various market functionalities also pose great risks to customer privacy. In this work we propose a secure multi-party computation (SMC) based privacy preserving smart metering system. Using the proposed SMC protocol, a utility is able to perform advanced market based demand management algorithms without knowing the actual values of private end user consumption and configuration data. Using homomorphic encryption, billing is secure and verifiable. We implemented a demonstration system that includes a graphical user interface and simulates real-world network communication of the proposed SMC-enabled smart meters. The demonstration shows the feasibility of our proposed privacy preserving protocol for advanced smart grid technologies which includes load management and retail level electricity market support.

Keywords:
Smart grid, Power systems, Security, Privacy, Smart Metering