
(1)

IMPROVING FIXED-POINT ACCURACY OF FFT CORES IN O-OFDM SYSTEMS

Robert Koutsoyannis1, Peter A. Milder1, Christian R. Berger1, Madeleine Glick2, James C. Hoe1, and Markus Püschel3

1 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

2 APIC Corporation, Culver City, CA, USA
3 Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT

Optical OFDM communication systems operating at data rates in

the 40Gb/s (and higher) range require high-throughput/highly

parallel fast Fourier transform (FFT) implementations. These

consume a significant amount of chip resources; we aim to reduce

costs by improving the system’s accuracy per chip-area. For

OFDM signals, we characterize the growth of data within the FFT

and explore several cost-conscious methods for improving the

fixed-point format. Using ASIC synthesis and hardware accurate

simulations, we evaluate the corresponding system error and

stability of these methods. We introduce Directive Scaling, which

provides an average increase in overall accuracy without additional

runtime-adaptive mechanisms. ASIC synthesis results show

minimal overhead, and we explicitly evaluate and explain the

inherent tradeoffs. When applied to an 8-bit IFFT design, our

technique improves precision by approximately two bits with just a

4% area overhead, as opposed to the additional 32% area overhead

required using standard methods.

Index Terms—OFDM, Fixed-Point, FFT, Saturation

1. INTRODUCTION

Orthogonal frequency-division-multiplexing (OFDM) has become

ubiquitous in communications across frequency selective channels.

It boasts high spectral efficiency and resilience to channel

impairments. OFDM now dominates wireless communications,

e.g. WiFi (IEEE 802.11a/g), and is now considered for optical fiber

communication systems [5]. Unlike wireless however, optical

fiber systems have signal bandwidths in the 10-100GHz spectrum

and push for data rates higher than 40Gb/s. Such high throughput

demands are only achievable with highly parallel hardware.

Therefore, the cost of the DSP, particularly the fast Fourier

transform (FFT), rapidly becomes a first order issue.

For example, the FPGA-based OFDM transmitter developed

in [3] requires a throughput of one 128-point IFFT every clock

cycle at 167MHz to generate an 8.34 Gb/s QPSK-OFDM signal.

The 10-bit fixed-point FFT implementation consists of 2,308

parallel adders and 908 parallel multipliers—consuming over 75%

of the Virtex-4 FX100 FPGA’s resources. Current systems [4]

target even higher data rates with larger FFT sizes, faster clocks,

and even more data precision to handle higher QAM modulation

formats—each of which compound the cost.

By improving the efficiency of the fixed-point format within

the FFT, one can reduce the number of bits required, resulting in

decreased area and power consumption. For example, our 12-bit

FFT design (synthesized for 65nm ASIC) requires 26% more area

than a 10-bit design. The 12-bit FFT FPGA implementation in [3]

requires 20% more area than its 10-bit counterpart. Although the

rate of savings diminishes with higher bit-precision, the target

accuracy for O-OFDM systems is within this range. This is

because any added precision would be dominated by the error

introduced by the communications channel and limited resolution

DACs and ADCs.

As data is computed in the discrete stages of FFT, the largest

value increase (in magnitude) that can occur is a factor of two per

stage, while the average magnitude increases only by a factor of

 [2]. Conventional FFT implementations therefore employ

forced scaling, which scales the data by a factor of ½ (one bit-shift

right) after each stage to fully avoid overflow. However, relative

to the average magnitude, this reduces the fixed-point precision by

one half of a bit per stage.

Alternatively, at additional cost, adaptive hardware

mechanisms like block floating point can be used to conditionally

scale the data, i.e. scale data only when an overflow is detected [2].

So, when overflow does not occur in a stage, scaling will not be

performed, and the least significant bit for each value is preserved.

This adaptive method avoids overflow at all cost, even if just one

or very few data elements overflow.

For OFDM signal inputs to the FFT, there is a low probability

of overflow in nearly half the stages, while there is high probability

in the others. In this paper, we introduce directive scaling, a

technique that takes advantage of this predictable pattern.

Directive scaling works by using forced scaling in FFT stages

likely to overflow; in the other stages we tolerate an occasional

overflow by using saturating arithmetic. We perform ASIC

synthesis to quantify hardware costs and use hardware-accurate

MATLAB simulations to quantify the numerical error of directive

scaling and existing techniques. We show that our strategy

approaches the accuracy of conditional scaling but with

implementation cost very close to the inexpensive forced scaling

method.

2. O-OFDM AND THE FFT HARDWARE

The fast Fourier transform (FFT) is the most expensive DSP

component in an Optical Orthogonal Frequency Division

Multiplexing (O-OFDM) transceiver. A simplified OFDM

transceiver is shown in Figure 1(a). The transmitter generates a

complex baseband signal by modulating data symbols, e.g.,

quadrature phase-shift keying (QPSK) or quadrature amplitude

modulation (QAM) (see Figure 1(b)) onto frequency subcarriers

using an inverse discrete Fourier transform (IDFT) of size n,

Several aspects of the fast Fourier Transform (FFT) hardware

implementation contribute to its fixed-point accuracy. The

following sections provide insight and arguments for several

design choices.

(a)

(b)

Figure 1. (a) Simplified OFDM Transceiver, (b) Complex Data

Constellations

Pease FFT Algorithm. Many FFT algorithms exist for

efficiently computing the discrete Fourier transform (DFT) and its

inverse (IDFT). In this paper we consider the Pease FFT [7],

which is frequently used in hardware implementations of the DFT

due to its regular structure. This algorithm can be realized as

several different types of datapaths, each with a different

cost/performance tradeoff [8].

Figure 2 shows an example of the dataflow of the Pease FFT

with n = 16 points and radix r = 4. The radix 4 Pease FFT on

n = r t points consists of t stages of parallel DFTr instances (each of

which perform an FFT on r points), data reordering stages

(permutations), and scaling by complex phasors (twiddle factors).

Each of the DFT4 blocks is further decomposed into DFT2 blocks

as shown. The DFT2 blocks, often called butterflies, contain only

one addition and one subtraction.

Each non-trivial (≠1) twiddle multiplication can contribute

significant error. The irrational root-of-unity twiddle values are

stored as p-bit values with added quantization error. As the radix

of an FFT algorithm increases, the number of nontrivial twiddle

factors decreases, but with quickly diminishing returns. For

example, a 256 point radix-4 FFT has 22.3% fewer significant

twiddles than a radix-2 FFT of the same size. Increasing the radix

further to 16 yields only an additional 4.4% reduction. Note

however, as the radix r of an algorithm increases, fewer problem

sizes rt can be directly represented with this manner of algorithm.

Therefore, this paper considers the radix 4 Pease FFT algorithm,

but it can be extended to a wider space of radices and algorithms.

Fixed-Point Representation. The fixed-point representation

and associated arithmetic of the data within the FFT

implementation dictate the numerical accuracy. Each complex

number is represented by two data words, one for each of the real

and imaginary portions of the number. Each word is a p-bit 2’s

complement value normalized to the bounds [–1,1) or more

accurately, [–1, 1–(½)(p–1)]. In this fractional 2’s complement

format, the most significant bit has a value of –1, followed by 0.5,

0.25,... and so on to the least significant bit (½)
(p–1)

. We assume

that all operations that result in a rounding of data are handled with

simple truncation, i.e. rounding towards negative infinity.

Scaling Options within the FFT. Regardless of the choice of

radix r, each data sample must pass through log2n DFT2 butterflies

(for example, 4 stages in Fig 2). Each time a pair of data elements

Figure 2. Radix 4 Pease FFT for n = 16

passes through one of these stages (also potentially including a

twiddle factor), its values grow in magnitude [2]. We write the

computation of one stage as

       ,1222 2iixixiy 

       1212212  iixixiy  (2)

where y is the output of the stage, x is the input, and the |ω| = 1

represent complex twiddle factors. Here, y[i] can never be larger

than twice the magnitude of x[i]. More specifically,

 . (3)

Therefore, to avoid overflow within a stage of the FFT, the most

common fixed-point hardware designs either increase the bit

precision p by one bit after each butterfly, e.g. [6], or shift all data

words right by one bit (scale by ½) as in [2].

On the other hand, from the variance of the values,

 , (4)

where we assume that the x[i] are zero-mean and independent and

identically distributed (i.i.d.) OFDM symbols. This means that the

standard deviation, or the average magnitude of the values, will

grow with a factor of only per stage. Thus while the maximum

possible magnitude grows with a factor of two per stage, the

average only grows “half as fast” in a logarithmic sense.

Considering this, most values will not need scaling at every

stage to avoid overflow—in fact, it’s often the case that none do.

Thus, by forcing scaling, i.e. avoiding overflow at all cost,

precision is unnecessarily lost.

Existing adaptive scaling mechanisms (such as block floating

point) greatly improve accuracy by determining at run-time

whether or not scaling is necessary for each stage, ultimately

avoiding unnecessary truncation [2]. Several variations of

adaptive mechanisms can be realized based on the conditions for

scaling and they each have unique accuracy/cost tradeoffs.

In this paper, we will consider the two most common methods

of scaling data to avoid overflow (one fixed, and one adaptive):

1. Forced Scaling (FS): Data words are shifted right or

equivalently scaled by a factor of ½ after each butterfly.

2. Conditional Scaling (CS): After each stage of butterflies all n

values are compared to a threshold; if one or more values

exceed this bound, all values are scaled by a factor of ½.

 Scaling decisions are only made at the output of the

butterflies. Therefore, we must be careful in avoiding overflow at

the complex multipliers due to rotations. This is easily prevented

by limiting the input data size and CS threshold to or less—

keeping the values within ‘region A’ of Figure 3. Figure 3 shows

DAC
Data

1010001 QAM
Modulation IFFT

Complex Data (a+Bi)

Analog
Components

& Fiber
QAM

DemodulationFFT
Data

1010001

Frequency Domain Time Domain Frequency DomainTime Domain

TX RX

ADC

QPSK Symbols 64-QAM Symbols

imaginary imaginary

real real

DFT4

i

i

i

i

Stage 2 & 3Stage 0 & 1

input output

i

i

i

i

(5)

Figure 3. Fixed-Point and Overflow Regions, similar to [2]

how a complex twiddle multiplication can rotate values out of the

fixed-point bounds, causing overflow. Alternatively, this paper

also reports results with a threshold of 0.5 because in hardware,

comparing every individual data word to a power of 2 constant

requires less logic than a p-bit constant representing . We

demonstrate this later where we explicitly compare the hardware

cost of the two boundary conditions.

3. FFT FIXED-POINT ACCURACY IN OFDM SYSTEMS

The numerical error introduced by the fixed-point implementation

of FFTs depends significantly on the considered input data. In this

paper we are particularly interested in the error introduced by an

IFFT as part of an optical orthogonal frequency-division-

multiplexing (O-OFDM) communications system; here the inputs

are i.i.d. randomly drawn QAM symbols, (see Figure 1(b)).

As a measurement setup, we compare our p-bit fixed-point

IFFT designs with an ideal (double-precision floating point) IFFT.

The mean-square error (MSE) of the signal is then, following from

eqn. (1),

 ,

which we assume independent of k. The normalized MSE

corresponds to the inverse signal-to-noise ratio at the transmitter.

We created a hardware-accurate MATLAB simulation to

evaluate the normalized MSE caused by a p-bit fixed-point IFFT,

and show its results in Figure 4. In general all error curves

decrease by about one decade per two bits of resolution. We show

errors to 10-5, because below this the error is dominated by the

signal converters and the communications channel.

From Figure 4, by comparing the curves at an identical

NMSE value, we can see that up to two bits of precision can be

gained by using CS. Since CS fully avoids overflows, its

performance will strictly be better than that of the conventional FS

implementation (we are only making better use of the available

fixed-point representation). Our goal is to then capitalize on the

obvious room for improvement, but without resorting to the

additional complexity of run-time methods. The additional

overhead of CS incurs a non-trivial hardware cost which we

present later. Accordingly, any adaptive method that determines

the optimum bit representation of data at run-time would incur a

similar cost.

4. DIRECTIVE SCALING

Figure 5 illustrates the run-time decisions made by CS while

computing 100 IFFTs with (a) QPSK and (b) 64-QAM input

Figure 4. NMSE of Forced and Conditional Scaling IFFT1024

(a) n = 1024, QPSK (b) n = 1024, 64-QAM

Figure 5. Conditional Scaling Decisions per Stage

signals. Each bar shows the percentage of time the IFFT needed to

scale in each of the 10 stages. For example, we see that with

QPSK inputs, the CS unit always needed to scale in stage 1, but

rarely in stage 10. Note that the result for each stage is dependent

on all previous stages. After several stages of scaling, the values

are reduced so they rarely overflow in a particular stage (e.g.

Figure 5(a), stage 6). Then, in subsequent stages, due to the

average growth per stage of , the data begin a pattern where

they must be scaled in every other stage only. Notice how the

pattern begins at an earlier stage for 64-QAM. This is because the

average magnitude of the input signal is lower for 64-QAM than

QPSK.

As shown in [1], OFDM signals begin to look Gaussian as

they progress through the IFFT. At that point, we characterize the

signals in terms of their standard deviation which correlates with

the maximum fixed-point representation. Furthermore, since we

know the IFFT grows by per stage, scaling essentially becomes

predictable with a probabilistic confidence.

It should also be pointed out that when determining a priori

whether a particular stage should scale, the following stages will

be affected by a “ripple effect” compared to the CS behavior. For

example, in Figure 5(b), if we fix stage 4 to always scale, we

antedate one scaling decision for about 20% of trials, which will

lead them to skipping their next scaling decision instead. Hence

stage 5 would no longer need to scale and every data element

would preserve the least significant bit.

From these observations we introduce Directive Scaling (DS),

where we a priori determine for each stage whether or not to scale.

In order to tolerate the rare occasions where a value grows too

large in a non-scaling stage, we use saturating adders to clip values

to their maximum—incurring instead a small saturation error as

opposed to a 2’s complement overflow error. For a given system

we choose a directive strategy, a length log2n vector of scaling

i2
2

i2
2

2
2

2
2

i1

1

1

i1

B

A

A’

Overflow
due to
twiddle

Safe from
Overflow

Figure 6. IFFT designs comparing scaling techniques

decisions, where 1 indicates a scaling stage and 0 indicates a

saturating stage, e.g. [110101...]. The choice of scaling pattern

depends on several factors, including the bit precision, number of

(non-zero) IFFT inputs, input signal average magnitude, IFFT size,

and QAM modulation format. Given these system parameters, the

directive is easily found from running simulations at design time,

producing the scaling graphs like Figure 5.

Saturating logic must be added to mitigate the rare overflows

in DS, adding cost to the baseline FS hardware design.

Nevertheless, the cost is significantly less than the adaptive

mechanisms used in CS. Like CS, saturating logic allows choices

for a threshold value. DS can use a threshold of ~0.707 to prevent

overflow in the complex multipliers, or it can use the full fixed-

point boundary, [–1, 1) if saturating logic is included in the

multipliers in addition to the adders.

5. EVALUATION

In this section we evaluate the numerical error and chip area cost

of IFFT designs using directive scaling, and compare the results

with forced and conditional scaling. We find chip area by creating

RTL Verilog implementations of each design (based on FFTs

generated with Spiral [8]) and synthesizing them using Synopsys

Design Compiler targeting a 65nm standard cell library. Each

design successfully met all timing constraints at 200MHz, which

provides sufficient throughput for real-time transceivers (e.g., [3,

4]). Then for each design we use the previously mentioned bit-

accurate simulation to find the normalized mean square error

(NMSE) using 1000 trials with QAM-64 input signals.

Figure 6 shows the ASIC area (x-axis) vs. numerical error (y-

axis) of several scaling strategies for 256-point, 8-bit IFFTs. First,

the black line with triangles shows our baseline: forced scaling

with 8, 9, and 10 bits of precision (from left to right). As expected,

we see that increasing precision reduces error while increasing

area. Next, we show two red squares for conditional scaling (with

two different thresholds). We observe that these points improve

upon forced scaling; the 8-bit CS designs provide lower error than

forced scaling with lower area.

Next, the diamonds, triangles, and squares show three different DS

designs. Each group uses different thresholds (.5, .707, or 1, as

explained in Section 4). Within a group, the differences between

the points correspond to different choices of directive (e.g.

[11101010] vs. [11110101]). We see that the DS designs improve

upon both forced and conditional scaling; they can provide higher

accuracy at lower cost.

Figure 7 shows a more in-depth error analysis for a subset of

designs. Each point now has error bars representing 1 standard

Figure 7. IFFT designs showing stability of error

deviation in error and a star showing the worst observed error in

1,000 trials. Here we show how DS designs are on par with the

error of CS, yet have more relative stable error. This is because

although CS adaptively performs better than FS, occasionally a

combination of inputs forces additional error. The stable error

seen for the FS designs makes sense considering there’s no

variability when scaling at each stage.

Although we show DS operating on the IFFT, we have also

successfully applied the technique to the FFT (receiver). Here the

directives are reversed, where the initial stages alternate scaling

and saturation, while the later stages require scaling throughout.

6. CONCLUSION

When generating OFDM signals, the growth of data in the IFFT

follows a predictable pattern. This paper introduced directive

scaling, which exploits this predictability to produce an IFFT

design that scales data in stages where overflow is likely and

tolerates occasional overflow elsewhere. This technique improves

on forced and conditional scaling, matching or exceeding their

accuracy at lower cost.

7. REFERENCES

[1] J. Armstrong, H. A. Suraweera, S. Brewer, R. Slaviero, “Effect of

Rounding and Saturation in Fixed-Point DSP Implementation of IFFT

and FFT for OFDM Applications,” The Embedded Signal Processing

Conference (GSPx 2004), Sept. 2004.
[2] P. D. Welch, “A fixed-point fast Fourier transform error analysis,”

IEEE Trans. Audio and Electroacoustics, vol. AU-17, no. 2, pp. 151-

157, June 1969.
[3] Y. Benlachtar, P. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J.

Hoe, M. Püschel, M. Glick, and R. Killey, “Real-time digital signal

processing for the generation of optical orthogonal frequency-division-
multiplexed signals,” IEEE J. Select. Topics Quantum Electronics, vol.

16, no. 5, pp. 1235-1244, Sept. 2010.

[4] R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra,
J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W.

Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100

Gbit/s,” Opt. Express, vol. 19, no. 13, pp. 12740-12749, Jun. 2011
[5] J. Armstrong, “OFDM for optical communcations,” J. Lightwave

Technol., vol. 27, no. 3, pp. 189–204, Feb. 2009.

[6] W.-H. Chang and T. Q. Nguyen, “On the fixed-point accuracy analysis
of FFT algorithms,” IEEE Trans. Signal Processing, vol. 56, no. 10,

pp. 4673–4682, Oct. 2008.

[7] M. C. Pease, “An adaptation of the fast Fourier transform for parallel
processing,” J. of the ACM, vol. 15, no. 2, April 1968.

[8] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal

datapath representation and manipulation for implementing DSP
transforms,” in Proc. Design Automation Conference (DAC), 2008, pp.

385–390.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
10

-3

10
-2

10
-1

256-pt IFFTs, Error VS. Chip-Area, QAM-64

Chip Area (mm
2
)

E
rr

o
r

(N
M

S
E

)

FS, 8, 9, & 10-bit IFFTs

CS, 8-bit IFFT, [-0.5,0.5)

CS, 8-bit IFFT, [-0.707, 0.707)

DS, 8-bit IFFT, [-0.5,0.5)

DS, 8-bit IFFT, [-0.707, 0.707)

DS, 8-bit IFFT, [-1,1)

1

2

1

2

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
10

-3

10
-2

10
-1

256-pt IFFTs, Error VS. Chip-Area, QAM-64

Chip Area (mm
2
)

E
rr

o
r

(N
M

S
E

)

FS, 8, 9, & 10-bit IFFTs

CS, 8-bit IFFT, [-0.5,0.5)

CS, 8-bit IFFT, [-0.707, 0.707)

[10101010] DS, 8-bit IFFT, [-0.5,0.5)

[11110101] DS, 8-bit IFFT, [-1,1)

[11101010] DS, 8-bit IFFT, [-1,1)

