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ABSTRACT 

 

Optical OFDM communication systems operating at data rates in 

the 40Gb/s (and higher) range require high-throughput/highly 

parallel fast Fourier transform (FFT) implementations.  These 

consume a significant amount of chip resources; we aim to reduce 

costs by improving the system’s accuracy per chip-area.  For 

OFDM signals, we characterize the growth of data within the FFT 

and explore several cost-conscious methods for improving the 

fixed-point format.  Using ASIC synthesis and hardware accurate 

simulations, we evaluate the corresponding system error and 

stability of these methods.  We introduce Directive Scaling, which 

provides an average increase in overall accuracy without additional 

runtime-adaptive mechanisms.  ASIC synthesis results show 

minimal overhead, and we explicitly evaluate and explain the 

inherent tradeoffs.  When applied to an 8-bit IFFT design, our 

technique improves precision by approximately two bits with just a 

4% area overhead, as opposed to the additional 32% area overhead 

required using standard methods. 
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1.  INTRODUCTION 

Orthogonal frequency-division-multiplexing (OFDM) has become 

ubiquitous in communications across frequency selective channels.  

It boasts high spectral efficiency and resilience to channel 

impairments.  OFDM now dominates wireless communications, 

e.g. WiFi (IEEE 802.11a/g), and is now considered for optical fiber 

communication systems [5].  Unlike wireless however, optical 

fiber systems have signal bandwidths in the 10-100GHz spectrum 

and push for data rates higher than 40Gb/s.  Such high throughput 

demands are only achievable with highly parallel hardware.  

Therefore, the cost of the DSP, particularly the fast Fourier 

transform (FFT), rapidly becomes a first order issue. 

For example, the FPGA-based OFDM transmitter developed 

in [3] requires a throughput of one 128-point IFFT every clock 

cycle at 167MHz to generate an 8.34 Gb/s QPSK-OFDM signal.  

The 10-bit fixed-point FFT implementation consists of 2,308 

parallel adders and 908 parallel multipliers—consuming over 75% 

of the Virtex-4 FX100 FPGA’s resources.  Current systems [4] 

target even higher data rates with larger FFT sizes, faster clocks, 

and even more data precision to handle higher QAM modulation 

formats—each of which compound the cost. 

By improving the efficiency of the fixed-point format within 

the FFT, one can reduce the number of bits required, resulting in 

decreased area and power consumption.  For example, our 12-bit 

FFT design (synthesized for 65nm ASIC) requires 26% more area 

than a 10-bit design.  The 12-bit FFT FPGA implementation in [3] 

requires 20% more area than its 10-bit counterpart.  Although the 

rate of savings diminishes with higher bit-precision, the target 

accuracy for O-OFDM systems is within this range.  This is 

because any added precision would be dominated by the error 

introduced by the communications channel and limited resolution 

DACs and ADCs. 

As data is computed in the discrete stages of FFT, the largest 

value increase (in magnitude) that can occur is a factor of two per 

stage, while the average magnitude increases only by a factor of 

   [2].  Conventional FFT implementations therefore employ 

forced scaling, which scales the data by a factor of ½ (one bit-shift 

right) after each stage to fully avoid overflow.  However, relative 

to the average magnitude, this reduces the fixed-point precision by 

one half of a bit per stage. 

Alternatively, at additional cost, adaptive hardware 

mechanisms like block floating point can be used to conditionally 

scale the data, i.e. scale data only when an overflow is detected [2].  

So, when overflow does not occur in a stage, scaling will not be 

performed, and the least significant bit for each value is preserved. 

This adaptive method avoids overflow at all cost, even if just one 

or very few data elements overflow. 

For OFDM signal inputs to the FFT, there is a low probability 

of overflow in nearly half the stages, while there is high probability 

in the others.  In this paper, we introduce directive scaling, a 

technique that takes advantage of this predictable pattern.  

Directive scaling works by using forced scaling in FFT stages 

likely to overflow; in the other stages we tolerate an occasional 

overflow by using saturating arithmetic.  We perform ASIC 

synthesis to quantify hardware costs and use hardware-accurate 

MATLAB simulations to quantify the numerical error of directive 

scaling and existing techniques.  We show that our strategy 

approaches the accuracy of conditional scaling but with 

implementation cost very close to the inexpensive forced scaling 

method. 

2.  O-OFDM AND THE FFT HARDWARE 

 

The fast Fourier transform (FFT) is the most expensive DSP 

component in an Optical Orthogonal Frequency Division 

Multiplexing (O-OFDM) transceiver.  A simplified OFDM 

transceiver is shown in Figure 1(a).  The transmitter generates a 

complex baseband signal by modulating data symbols, e.g., 

quadrature phase-shift keying (QPSK) or quadrature amplitude 

modulation (QAM) (see Figure 1(b)) onto frequency subcarriers 

using an inverse discrete Fourier transform (IDFT) of size n, 
 

                
  

   

   

 

 

Several aspects of the fast Fourier Transform (FFT) hardware 

implementation contribute to its fixed-point accuracy.  The 

following sections provide insight and arguments for several 

design choices.  
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Figure 1. (a) Simplified OFDM Transceiver, (b) Complex Data 

Constellations 

 

Pease FFT Algorithm. Many FFT algorithms exist for 

efficiently computing the discrete Fourier transform (DFT) and its 

inverse (IDFT).  In this paper we consider the Pease FFT [7], 

which is frequently used in hardware implementations of the DFT 

due to its regular structure.  This algorithm can be realized as 

several different types of datapaths, each with a different 

cost/performance tradeoff [8].   

Figure 2 shows an example of the dataflow of the Pease FFT 

with n = 16 points and radix r = 4.  The radix 4 Pease FFT on 

n = r t points consists of t stages of parallel DFTr instances (each of 

which perform an FFT on r points), data reordering stages 

(permutations), and scaling by complex phasors (twiddle factors).  

Each of the DFT4 blocks is further decomposed into DFT2 blocks 

as shown.  The DFT2 blocks, often called butterflies, contain only 

one addition and one subtraction. 

Each non-trivial (≠1) twiddle multiplication can contribute 

significant error.  The irrational root-of-unity twiddle values are 

stored as p-bit values with added quantization error.  As the radix 

of an FFT algorithm increases, the number of nontrivial twiddle 

factors decreases, but with quickly diminishing returns.  For 

example, a 256 point radix-4 FFT has 22.3% fewer significant 

twiddles than a radix-2 FFT of the same size.  Increasing the radix 

further to 16 yields only an additional 4.4% reduction.  Note 

however, as the radix r of an algorithm increases, fewer problem 

sizes rt can be directly represented with this manner of algorithm.  

Therefore, this paper considers the radix 4 Pease FFT algorithm, 

but it can be extended to a wider space of radices and algorithms. 

Fixed-Point Representation.  The fixed-point representation 

and associated arithmetic of the data within the FFT 

implementation dictate the numerical accuracy.  Each complex 

number is represented by two data words, one for each of the real 

and imaginary portions of the number.  Each word is a p-bit 2’s  

complement  value normalized to the bounds [–1,1) or more 

accurately, [–1, 1–(½)(p–1)].  In this fractional 2’s complement 

format, the most significant bit has a value of –1, followed by 0.5, 

0.25,... and so on to the least significant bit (½)
(p–1)

.  We assume 

that all operations that result in a rounding of data are handled with 

simple truncation, i.e. rounding towards negative infinity.   

Scaling Options within the FFT. Regardless of the choice of 

radix r, each data sample must pass through log2n DFT2 butterflies 

(for example, 4 stages in Fig 2). Each time a pair of data elements   

 
Figure 2. Radix 4 Pease FFT for n = 16 

 

passes through one of these stages (also potentially including a 

twiddle factor), its values grow in magnitude [2].  We write the 

computation of one stage as 
 

       ,1222 2iixixiy 
     

       1212212  iixixiy   (2) 

 

where y is the output of the stage, x is the input, and the |ω| = 1 

represent complex twiddle factors.  Here, y[i] can never be larger 

than twice the magnitude of x[i].  More specifically, 
 

                                        .            (3) 
 

Therefore, to avoid overflow within a stage of the FFT, the most 

common fixed-point hardware designs either increase the bit 

precision p by one bit after each butterfly, e.g. [6], or shift all data 

words right by one bit (scale by ½) as in [2]. 

On the other hand, from the variance of the values,  
 

                        , (4) 
 

where we assume that the x[i] are zero-mean and independent and 

identically distributed (i.i.d.) OFDM symbols.  This means that the 

standard deviation, or the average magnitude of the values, will 

grow with a factor of only    per stage.  Thus while the maximum 

possible magnitude grows with a factor of two per stage, the 

average only grows “half as fast” in a logarithmic sense. 

Considering this, most values will not need scaling at every 

stage to avoid overflow—in fact, it’s often the case that none do.  

Thus, by forcing scaling, i.e. avoiding overflow at all cost, 

precision is unnecessarily lost. 

Existing adaptive scaling mechanisms (such as block floating 

point) greatly improve accuracy by determining at run-time 

whether or not scaling is necessary for each stage, ultimately 

avoiding unnecessary truncation [2].  Several variations of 

adaptive mechanisms can be realized based on the conditions for 

scaling and they each have unique accuracy/cost tradeoffs.   

In this paper, we will consider the two most common methods 

of scaling data to avoid overflow (one fixed, and one adaptive): 

1. Forced Scaling (FS): Data words are shifted right or 

equivalently scaled by a factor of ½ after each butterfly. 

2. Conditional Scaling (CS): After each stage of butterflies all n 

values are compared to a threshold; if one or more values 

exceed this bound, all values are scaled by a factor of ½.  

 Scaling decisions are only made at the output of the 

butterflies.  Therefore, we must be careful in avoiding overflow at 

the complex multipliers due to rotations.  This is easily prevented 

by limiting the input data size and CS threshold to      or less—

keeping the values within ‘region A’ of Figure 3. Figure 3 shows 
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Figure 3. Fixed-Point  and Overflow Regions, similar to [2]  

 

how a complex twiddle multiplication can rotate values out of the 

fixed-point bounds, causing overflow.  Alternatively, this paper 

also reports results with a threshold of 0.5 because in hardware, 

comparing every individual data word to a power of 2 constant 

requires less logic than a p-bit constant representing     .  We 

demonstrate this later where we explicitly compare the hardware 

cost of the two boundary conditions. 

3.  FFT FIXED-POINT ACCURACY IN OFDM SYSTEMS 

 

The numerical error introduced by the fixed-point implementation 

of FFTs depends significantly on the considered input data.  In this 

paper we are particularly interested in the error introduced by an 

IFFT as part of an optical orthogonal frequency-division-

multiplexing (O-OFDM) communications system; here the inputs 

are i.i.d. randomly drawn QAM symbols, (see Figure 1(b)). 

As a measurement setup, we compare our p-bit fixed-point 

IFFT designs with an ideal (double-precision floating point) IFFT.  

The mean-square error (MSE) of the signal is then, following from 

eqn. (1), 

                    , 
 

which we assume independent of k.  The normalized MSE 

corresponds to the inverse signal-to-noise ratio at the transmitter. 

We created a hardware-accurate MATLAB simulation to 

evaluate the normalized MSE caused by a p-bit fixed-point IFFT, 

and show its results in Figure 4.  In general all error curves 

decrease by about one decade per two bits of resolution.  We show 

errors to 10-5, because below this the error is dominated by the 

signal converters and the communications channel. 

From Figure 4, by comparing the curves at an identical 

NMSE value, we can see that up to two bits of precision can be 

gained by using CS.  Since CS fully avoids overflows, its 

performance will strictly be better than that of the conventional FS 

implementation (we are only making better use of the available 

fixed-point representation).  Our goal is to then capitalize on the 

obvious room for improvement, but without resorting to the 

additional complexity of run-time methods.  The additional 

overhead of CS incurs a non-trivial hardware cost which we 

present later.  Accordingly, any adaptive method that determines 

the optimum bit representation of data at run-time would incur a 

similar cost. 

4.  DIRECTIVE SCALING 

 

Figure 5 illustrates the run-time decisions made by CS while 

computing 100 IFFTs with (a) QPSK and (b) 64-QAM input  

 
Figure 4. NMSE of Forced and Conditional Scaling IFFT1024 

 
 

  
 

(a) n = 1024, QPSK  (b) n = 1024, 64-QAM 
 

Figure 5. Conditional Scaling Decisions per Stage 

 

signals.  Each bar shows the percentage of time the IFFT needed to 

scale in each of the 10 stages.  For example, we see that with 

QPSK inputs, the CS unit always needed to scale in stage 1, but 

rarely in stage 10.  Note that the result for each stage is dependent 

on all previous stages.  After several stages of scaling, the values 

are reduced so they rarely overflow in a particular stage (e.g. 

Figure 5(a), stage 6).  Then, in subsequent stages, due to the 

average growth per stage of   , the data begin a pattern where 

they must be scaled in every other stage only.  Notice how the 

pattern begins at an earlier stage for 64-QAM.  This is because the 

average magnitude of the input signal is lower for 64-QAM than 

QPSK.   

As shown in [1], OFDM signals begin to look Gaussian as 

they progress through the IFFT.  At that point, we characterize the 

signals in terms of their standard deviation which correlates with 

the maximum fixed-point representation.  Furthermore, since we 

know the IFFT grows by    per stage, scaling essentially becomes 

predictable with a probabilistic confidence. 

It should also be pointed out that when determining a priori 

whether a particular stage should scale, the following stages will 

be affected by a “ripple effect” compared to the CS behavior.  For 

example, in Figure 5(b), if we fix stage 4 to always scale, we 

antedate one scaling decision for about 20% of trials, which will 

lead them to skipping their next scaling decision instead.  Hence 

stage 5 would no longer need to scale and every data element 

would preserve the least significant bit.  

From these observations we introduce Directive Scaling (DS), 

where we a priori determine for each stage whether or not to scale.  

In order to tolerate the rare occasions where a value grows too 

large in a non-scaling stage, we use saturating adders to clip values 

to their maximum—incurring instead a small saturation error as 

opposed to a 2’s complement overflow error.  For a given system 

we choose a directive strategy, a length log2n vector of scaling 
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Figure 6. IFFT designs comparing scaling techniques 

decisions, where 1 indicates a scaling stage and 0 indicates a 

saturating stage, e.g. [110101...].  The choice of scaling pattern 

depends on several factors, including the bit precision, number of 

(non-zero) IFFT inputs, input signal average magnitude, IFFT size, 

and QAM modulation format.  Given these system parameters, the 

directive is easily found from running simulations at design time, 

producing the scaling graphs like Figure 5. 

Saturating logic must be added to mitigate the rare overflows 

in DS, adding cost to the baseline FS hardware design.  

Nevertheless, the cost is significantly less than the adaptive 

mechanisms used in CS.  Like CS, saturating logic allows choices 

for a threshold value.  DS can use a threshold of ~0.707 to prevent 

overflow in the complex multipliers, or it can use the full fixed-

point boundary, [–1, 1) if saturating logic is included in the 

multipliers in addition to the adders. 

5.  EVALUATION 

 

In this section we evaluate the numerical error and chip area cost 

of IFFT designs using directive scaling, and compare the results 

with forced and conditional scaling.  We find chip area by creating 

RTL Verilog implementations of each design (based on FFTs 

generated with Spiral [8]) and synthesizing them using Synopsys 

Design Compiler targeting a 65nm standard cell library.  Each 

design successfully met all timing constraints at 200MHz, which 

provides sufficient throughput for real-time transceivers (e.g., [3, 

4]).  Then for each design we use the previously mentioned bit-

accurate simulation to find the normalized mean square error 

(NMSE) using 1000 trials with QAM-64 input signals. 

Figure 6 shows the ASIC area (x-axis) vs. numerical error (y-

axis) of several scaling strategies for 256-point, 8-bit IFFTs.  First, 

the black line with triangles shows our baseline: forced scaling 

with 8, 9, and 10 bits of precision (from left to right).  As expected, 

we see that increasing precision reduces error while increasing 

area.  Next, we show two red squares for conditional scaling (with 

two different thresholds).  We observe that these points improve 

upon forced scaling; the 8-bit CS designs provide lower error than 

forced scaling with lower area. 

Next, the diamonds, triangles, and squares show three different DS 

designs.  Each group uses different thresholds (.5, .707, or 1, as 

explained in Section 4).  Within a group, the differences between 

the points correspond to different choices of directive (e.g. 

[11101010] vs. [11110101]).  We see that the DS designs improve 

upon both forced and conditional scaling; they can provide higher 

accuracy at lower cost. 

Figure 7 shows a more in-depth error analysis for a subset of 

designs.  Each point now has error bars representing 1 standard 

 
 

Figure 7. IFFT designs showing stability of error 

deviation in error and a star showing the worst observed error in 

1,000 trials.  Here we show how DS designs are on par with the 

error of CS, yet have more relative stable error.  This is because 

although CS adaptively performs better than FS, occasionally a 

combination of inputs forces additional error.  The stable error 

seen for the FS designs makes sense considering there’s no 

variability when scaling at each stage. 

Although we show DS operating on the IFFT, we have also 

successfully applied the technique to the FFT (receiver).  Here the 

directives are reversed, where the initial stages alternate scaling 

and saturation, while the later stages require scaling throughout.  

6.  CONCLUSION 

 

When generating OFDM signals, the growth of data in the IFFT 

follows a predictable pattern.  This paper introduced directive 

scaling, which exploits this predictability to produce an IFFT 

design that scales data in stages where overflow is likely and 

tolerates occasional overflow elsewhere.  This technique improves 

on forced and conditional scaling, matching or exceeding their 

accuracy at lower cost. 
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