
High Performance

Sparse Fast Fourier Transform

Master Thesis

Jörn Schumacher

Supervisor:
Prof. Markus Püschel

May 6, 2013

ETH Zurich
Department of Computer Science

Abstract

The Sparse Fast Fourier Transform is a recent algorithm developed by
Hassanieh et al. at MIT for Discrete Fourier Transforms on signals with
a sparse frequency domain. A reference implementation of the algorithm
exists and proves that the Sparse Fast Fourier Transform can be faster than
modern FFT libraries. However, the reference implementation does not
take advantage of modern hardware features like vector instruction sets or
multithreading.

In this Master Thesis the reference implementation’s performance will
be analyzed and evaluated. Several optimizations are proposed and im-
plemented in a high-performance Sparse Fast Fourier Transform library.
The optimized code is evaluated for performance and compared to the
reference implementation as well as the FFTW library.

The main result is that, depending on the input parameters, the opti-
mized Sparse Fast Fourier Transform library is two to five times faster than
the reference implementation.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Thesis Objective . 9
1.3 Related Work . 9
1.4 Contributions and Results . 10
1.5 Outline . 11

2 The Sparse Fast Fourier Transform 13
2.1 Notation . 14
2.2 Basic Principles . 14

2.2.1 Random Spectrum Permutation 14
2.2.2 Window Functions . 15
2.2.3 Fast Subsampling and DFT 17

2.3 SFFT Version 1 . 17
2.4 SFFT Version 2 . 23
2.5 SFFT Version 3 . 23
2.6 SFFT Version 4 . 25

3 Performance Analysis 29
3.1 Asymptotic Runtime . 29

3.1.1 Sparse Fast Fourier Transform Version 1 29
3.1.2 Sparse Fast Fourier Transform Version 3 32

3.2 Benchmarks . 33
3.3 Profiling . 36
3.4 Roofline Analysis . 37

4 Performance Optimizations 41
4.1 Instruction Reduction . 41

4.1.1 FFTW . 41
4.1.2 Inlining and explicit complex arithmetic 43
4.1.3 Fixed loop configurations 43
4.1.4 Optimizing Individual Instructions 45

3

4.2 Cache Usage Optimizations 46
4.2.1 Chunking . 46
4.2.2 Data Layout . 48
4.2.3 Stride-2 FFTs . 49

4.3 Vectorization . 50
4.3.1 SSE Support and Memory Alignment 50
4.3.2 SSE Implementations of Compute Intensive Functions 51
4.3.3 More Vectorization . 52

4.4 Multithreading . 55
4.4.1 Parallelizing Filters using OpenMP 55
4.4.2 Coarse Multithreading 55

4.5 Miscellaneous Optimizations 56
4.5.1 Compilers and Compiler Options 56
4.5.2 High-Performance Trigonometric Functions and Intel

IPP . 56
4.5.3 Result Storage Data structure 57

5 Results 59
5.1 Runtime Benchmarks . 59
5.2 Performance . 59
5.3 Cold-Cache Benchmarks . 62
5.4 Profiling . 64
5.5 Roofline Analysis . 66
5.6 Multithreading . 66

6 Conclusions 69
6.1 Evaluation . 69
6.2 Outlook . 70
6.3 Summary . 70

Acknowledgments 71

A Manual 73
A.1 Introduction . 73

A.1.1 When Should I use the SFFT library? 73
A.1.2 Target Platform . 73
A.1.3 Limitations and Known Bugs 73
A.1.4 Credits . 73

A.2 Installation . 74
A.2.1 Prerequisites . 74
A.2.2 Compiling From Source and Installation 74
A.2.3 Linking against the SFFT Library 75

4

A.3 Usage . 75
A.3.1 Computing Sparse DFTs 75
A.3.2 SFFT Versions . 77

A.4 Development . 78
A.4.1 Development and Benchmark Tools 78
A.4.2 An Overview of the Sourcecode 79

5

6

Chapter 1

Introduction

1.1 Motivation

The Fourier Transform is an important and well-known mathematical
method with a variety of applications in many scientific disciplines. In its
discrete (DFT) form it can be formulated as

x̂ = DFTn · x, (1.1)

where x and x̂ are n-dimensional complex input and output vectors and
DFTn = (ωkl

n)0≤k,l<n for an n-th primitive root of unity ωn = e−2πi/n.
There are many applications for the DFT; for example [RKH10] mentions
applications in signal processing, image compression, noise filtering or
numerical solution of PDEs, amongst others.

A straightforward evaluation of equation 1.1 involves O(n2) operations.
Since the DFT is such a useful tool for many applications, there is a need
for fast algorithms. The most well-known fast algorithm for DFTs is the
Fast Fourier Transform (FFT), originally described by Cooley and Tukey in
[CT65]1. The asymptotic runtime of this FFT is O(n log n) and it is therefore
much faster than the straightforward algorithm.

Reducing the runtime cost of the transform from O(n2) to O(n log n),
the FFT was a revolutionary algorithm. By the Computing in Science and
Engineering Journal, it was picked as one of the top 10 algorithms of the
20th century in [DS00], describing it as the “most ubiquitous algorithm in
use today to analyze and manipulate digital or discrete data”.

Though several improvements to the Cooley-Tukey-FFT were proposed,
like in-place algorithms or split-radix algorithms (refer to [RKH10] for
further information), no algorithm for general DFTs is currently known with

1Though previously discovered by Gauss, the method did not get much attention until
Cooley’s and Tukey’s paper

7

214 215 216 217 218 219 220 221 222 223 224

Signal size n

0.0

0.5

1.0

1.5

2.0

2.5

SFFT v3 (Reference Implementation)

FFTW (with FFTW_MEASURE)

SFFT v3 (Optimized)

Performance [GFlop/s]

Figure 1.1: Performance of DFTs of signals with k = 50 frequency compo-
nents.

a better asymptotic runtime than O(n log n). It is possible to define even
better algorithms by adding constraints on the input- and output-vectors x
and x̂, however. The Sparse Fast Fourier Transform (SFFT), recently proposed
by [HIKP12b], is such an algorithm. The SFFT can be applied to signals
x ∈ Cn with a sparse frequency domain x̂, i.e. only k < n unknown
elements of x̂ are nonzero (while the time domain signal x is still dense).

Besides the algorithmic improvements, new computer architectures
are constantly developed and improved. Modern general purpose CPUs
feature multi-level caches, instruction level parallelism or vector instruction
sets. Additionally, accelerator technologies like GPUs or FPGAs can be
used to boost program performance. Parallelism is becoming increasingly
important, as modern desktop CPUs typically package multiple cores, or
computers can be connected to compute clusters. With this variety of target
platforms it is hard for compilers to generate optimal machine code that
makes use of all features and runs at high performance. Thus, manually
optimized libraries for specific target platforms are being written for all
kinds of algorithms.

The original Cooley/Tukey-FFT and similar algorithms have been imple-
mented in such high-performance libraries like FFTW (see [FJ]) or CUFFT
(see [Nvi07]). These implementations make use of modern computer archi-
tecture features and are carefully designed to deliver the highest possible

8

performance. Due to the novelty of the method, no such high-performance
implementation existed for the SFFT. In this thesis I aim to address this
missing piece by developing a high-performance SFFT library.

Figure 1.1 shows the results of my work. Compared to the reference
implementation the SFFT’s performance has increased significantly, and it
is competitive to FFTW’s performance.

1.2 Thesis Objective

At the time of writing this thesis, 3 different SFFT algorithm versions
were implemented in two different reference implementations. The first
reference implementation including SFFT Version 1 and 2 was published
on the Sparse Fast Fourier Transform Website [KHPI], the second reference
implementation including SFFT Version 3 is still unpublished but was
kindly provided by the authors.

The reference implementations are written in standard C++ code, single-
threaded and without any hardware-specific modifications. The FFTW
library is used for internal DFT computations. On a recent Intel Sandy-
Bridge architecture, the measured performance of all algorithms was be-
tween 0.2 GFlop/s and 0.5 GFlop/s, which is 4.5 % − 11.4 % of the system’s
scalar, single-threaded peak performance, or less than 1 % of the system’s
vectorized, multi-threaded peak performance (see also Chapter 3).

The goal of this thesis is to take the SFFT reference implementations,
unify them into a single codebase, and optimize it to obtain a high-
performance library. Optimizations include the usage of vector instructions
sets like SSE, memory-hierarchy targeted improvements, and multithread-
ing.

The optimization is guided by a preceding performance analysis of the
original, unoptimized code, and the optimization outcome will be evaluated
and compared to other state-of-the art DFT implementations. This thesis
shall result in an easy-to-use, highly optimized library implementing the
various SFFT algorithms.

1.3 Related Work

Currently, 4 different SFFT algorithms exist. They are defined in [HIKP12b]
(SFFT v1 and v2) and [HIKP12a] (SFFT v3 and v4), where also some bench-
mark results are shown. SFFT v3 can only be applied to exactly k-sparse
signals, whereas SFFT v1, SFFT v2, and SFFT v4 can also be applied to noisy
signals. The algorithms’s asymptotic runtimes are O

(
log n

√
nk log(n)

)
9

for SFFT v1, O
(

log n 3
√

nk2 log(n)
)

for SFFT v2, O (k log n) for SFFT v3,
and O (k log n log(n/k)) for SFFT v4. The current implementation of SFFT
v1 and v2 only supports a limited set of input sizes, and no implementation
at all exists for SFFT v4.

Regarding high performance DFT libraries, the FFTW library [FJ] is
a well known and very fast FFT library. It uses different techniques like
codelet generation and runtime autotuning to achieve a high performance.
It will often be used as a reference in benchmarks throughout this thesis.
The key concepts of its implementation are discussed in [FJ05]. Currently,
no sparse DFT algorithm is implemented in FFTW.

There have been different previous approaches to implement DFTs by
exploiting signal sparsity. An overview of the different algorithms is given
in Table 1.1.

Pruning, as described in [Mar71], is a method that is applicable when a
large portion of an FFT’s input vector is known to be zero. With the pruning
technique, the FFT is reduced to the operations that actually contribute to
the result. Output pruning, i.e. parts of the output vector are known to
be zero, can also be done and was described in [SR79]. The asymptotic
runtime of the Pruned FFT is O(n · log k), where k is the number of nonzero
inputs or outputs. In [FP09], the pruning algorithm was reformulated in
terms of the Kronecker product notation, making it suitable for use with
the code generation tool Spiral. The paper reports up to 30 % speedup
over competing FFT implementations. A drawback of pruning is that the
signal’s sparsity pattern has to be known in advance, i.e. it has to be known
which signal coefficients are nonzero.

Another algorithm for sparse signals (sparse in the frequency represen-
tation) is FADFT-2, implemented in the AAFFT library [Iwe]. Using random
sampling, this algorithm achieves a runtime of O(k · polylog(n)), where k
is the number of Fourier coefficients to be reconstructed and n the signal
size. An evaluation of AAFFT is given in [IGS07]. The sampling algorithm
used in AAFFT, described in [GST08], is similar to the SFFT approach.

Various applications of the SFFT are thinkable. One particular applica-
tion is presented in [HAKI12], where it is shown how to apply the Sparse
Fast Fourier Transform to a specific algorithm in the GPS system.

In [IM], an SFFT extension to two-dimensional Fourier Transforms on
sparse signals is discussed.

1.4 Contributions and Results

My implementation is based on the sourcecode provided by Haitham
Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price, which was partly

10

SFFT v1 SFFT v2 SFFT v3

Asymptotic
Runtime

O
(

log n
√

nk log(n)
)

O
(

log n 3
√

nk2 log(n)
)

O (k log n)

Algorithm Probabilistic Probabilistic Probabilistic

Constraints Restricted set of
input parameters

Restricted set of
input parameters

Only exactly
k-sparse signals

Implementation [KHPI] [KHPI] Unpublished

SFFT v4 Pruning AAFFT

Asymptotic
Runtime

O (k log n log(n/k)) O(n · log k) O(k · polylog(n))

Algorithm Probabilistic Deterministic Probabilistic

Constraints — Sparsity pattern
must be known in
advance

—

Implementation No Implementation [FP09] [Iwe]

Table 1.1: Different DFT algorithms for sparse signals and their properties.

published on the website [KHPI]. During my thesis work I unified the
implementations of all three SFFT versions and merged them into a single
codebase. I developed a user-friendly, extensible, yet simple user interface.
The code was packaged into an easily installable and documented library.

I performed a detailed analysis of the library’s baseline performance and
identified hotspots and possible performance blockers. Various analysis
techniques were used, including the recently developed roofline analysis
method [WWP09].

I optimized the library where possible, leveraging modern CPU features
like SSE and multithreading. The implementation was tested on recent
Intel hardware.

The final implementation was benchmarked and its performance com-
pared to the reference implementation. Depending on the algorithm version
and input parameters, a two- to five-fold speedup was achieved and the op-
timized algorithm performance is competitive to high-performance libraries
like FFTW.

1.5 Outline

In chapter 2 the theory behind the Sparse Fast Fourier algorithms is ex-
plained in detail. Pseudocode of all relevant versions is given and some

11

implementation details are discussed.
A detailed performance analysis of the SFFT is given in chapter 3. This

includes a derivation of the algorithms’s asymptotic runtimes, runtime
benchmarks, performance estimations and roofline analysis. Based on
these metrics, claims about algorithm properties are made.

In chapter 4 several optimizations and their effects are briefly explained.
Some experiments investigating individual optimization’s influence are
described.

Evaluation of optimizations and the final SFFT implementation is de-
picted in chapter 5.

A final discussion of the algorithm’s performance in chapter 6, relating
it to other high-performance libraries, concludes this thesis.

The optimized implementation of the Sparse Fast Fourier Transform
algorithms is packaged in a library with a simple user interface. A software
manual with a detailed description of how to use this library is given in
appendix A.

12

Chapter 2

The Sparse Fast Fourier
Transform: An Overview

Given a time-domain signal x ∈ Cn with a k-sparse frequency domain x̂, the
Sparse Fast Fourier Transform (SFFT) will compute the k nonzero frequency
coefficients of x̂. The SFFT exists in different versions. For versions 1, 2,
and 4, x̂ does not need to be exactly k-sparse, i.e. the signal may be noisy.
Then, the algorithm output x̂′ fulfills the following guarantee:∥∥x̂ − x̂′

∥∥2
∞ ≤ ε ‖x̂ − y‖2

2 /k + δ ‖x‖2
1 ,

where ε and δ are accuracy parameters and y is the k-sparse vector mini-
mizing ‖x̂ − y‖2

2.
SFFT Versions 1 and 2 were first described in [HIKP12b]. Improvements

were introduced by the authors in their follow-up paper [HIKP12a], where
Version 3 and 4 are defined. The Sparse Fast Fourier Transform is a
probabilistic algorithm, i.e. the k significant frequency components of a
k-sparse signal are reconstructed with a finite probability. All of the 4
versions will be discussed in this chapter. Some common ideas are shared
by all versions:

• The input vector x is permuted with random parameters.

• Window functions are used as filters to extract a subset of the n el-
ements of the signal. This step is crucial to achieve a sub-linear
runtime: it allows extracting information out of the input vector
without touching all n elements.

• Using subsampling and a low-dimensional FFT, the signal’s Fourier
coefficients can be binned into a small number of bins.

13

• By repeating the above steps multiple times and combining the results,
the k nonzero Fourier coefficients can be found with high probability.

In the following sections the different versions of the SFFT are explained
in detail. But first some of the basic principles and methods that are shared
by all versions of the Sparse Fast Fourier Transform are explained. The
following nomenclature, definitions and reasoning follow very closely the
publications [HIKP12b] and [HIKP12a] by the inventors of the SFFT.

2.1 Notation

Several conventions and notations are used in this thesis. A time-domain
signal is written as x, the DFT of the signal is written as x̂. The notation
[n] is defined as the set {0, 1, . . . , n − 1}. All vector indices are implicitly
calculated modulo the vector size, e.g. xi of an n-dimensional x is actually
xi mod n. A set of vector elements can be written as a vector subscripted
with a set of indices, for example xI = {xi | i ∈ I}.

2.2 Basic Principles

In the following sections, I will use the following definition of the DFT
without the constant scaling factor:

x̂i = ∑
j∈[n]

ωijxj, i = 0, . . . , n − 1.

This makes some proofs easier, but is not relevant in practical implementa-
tions.

2.2.1 Random Spectrum Permutation

The first important tool for the SFFT is spectrum permutation as defined in
Definition 1:

Definition 1. Let σ be invertible modulo n, i.e. gcd(σ, n) = 1, and τ ∈ [n]. Then,
i 7→ σi + τ mod n is a permutation on [n]. The associated permutation Pσ,τ on
a vector x is then given by

(Pσ,τx)i = xσi+τ,

Pσ,τx is a permutation of x.

This permutation has an interesting property: when a permutation is
applied to a time-domain signal x, the signal’s frequency domain x̂ is also
permuted. This is derived in Lemma 1, and an example of a permutation
applied to a signal is shown in Figure 2.1.

14

Lemma 1. Let Pσ,τ be a permutation and x be an n-dimensional vector. Then(
P̂σ,τx

)
σi
= x̂iω

−τi.

Proof. Let i be arbitrary chosen from 1, . . . , n. Then,(
P̂σ,τx

)
i
= ∑

j∈[n]
ωijxσj+τ

= ∑
a∈[n]

ωiσ−1(a−τ)xa (with a = σj + τ)

= ω−iσ−1τ ∑
a∈[n]

ωσ−1iaxa

= x̂σ−1iω
−τσ−1i.

The Lemma follows by substituting i = σi. Note that ω−τi changes the
phase, but not the magnitude, of x̂iω

−τi.

The purpose of this permutation in the SFFT is to reorder a signal’s
frequency-domain x̂. This way nearby coefficients can be torn apart. In the
SFFT, however, we do not have access to the input signals Fourier spectrum
as that would involve performing a DFT. The permutation as defined in
Definition 1 allows to permute the signal’s Fourier spectrum by modifying
the signal’s time-domain x.

2.2.2 Window Functions

An important feature of the SFFT algorithm is that only a part of an input
signal is used for computations. Otherwise a sub-linear runtime could not
be achieved. Unfortunately, it is not possible to simply cut individual parts
out of a signal.

-16 -8 0 8 16
0
2
4
6
8

10
12
14
16
18

Original Permuted

(a) Amplitude spectrum of x̂ and P̂σ,τ x

0 8 16 24 32
-1.0

-0.5

0.0

0.5

1.0
Original Permuted

(b) Time domain plot of x and Pσ,τ x

Figure 2.1: A signal x before and after permutation.

15

-4096 -2048 0 2048 4096
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: Amplitude spectrum of a simple flat window function based on
a Gaussian function.

Discrete Fourier Analysis applies to signals that are periodic. If a part is
cut out of a periodic signal, discontinuities can appear at the part’s bound-
aries. In the frequency-domain these discontinuities appear as additional
frequency components. This effect is called spectral leakage.

To extract parts of a signal in a smooth way and avoid spectral leakage,
window functions are used.

Definition 2. A pair of n-dimensional vectors (G, Ĝ′) = (GB,δ,α, Ĝ′
B,δ,α) is a

(B, α, δ)-parameterized flat window function if |supp(G)| = O(B
α log n/δ) and

• Ĝ′
i = 1 for |i| ≤ (1 − α)n/(2B),

• Ĝ′
i = 0 for |i| ≥ n/(2B),

• Ĝ′
i ∈ [0, 1] for all i,

•
∥∥∥Ĝ′ − Ĝ

∥∥∥
∞
< δ.

These filters have a small pass region where Ĝ is 1 and a big region
where Ĝ is negligible. An example of a flat window function is shown in
Figure 2.2; an example where a flat window function is applied to a signal
is shown in Figure 2.3.

16

Using a window function (G, Ĝ′), a part of size |supp(G)| can be ex-
tracted out of a vector x by multiplying G and x and neglecting the co-
efficients with value zero. According to the convolution theorem, the
multiplication is equivalent to a convolution of Ĝ and x̂. Thus, with a smart
choice of Ĝ, one can reduce the spectral leakage effect. For more details,
refer to [Har78]. The window functions used in the SFFT algorithms are
based on Gaussian functions.

2.2.3 Fast Subsampling and DFT

A frequent step in the SFFT algorithms is computing the DFT of a low-
dimensional vector and then subsampling and summing up the result.
Lemma 2 shows that this computation can be done very efficiently by
reverting these steps.

Lemma 2. Let B ∈ N divide n, x be an n-dimensional vector and y be a
B-dimensional vector with yi = ∑n/B−1

j=0 xi+Bj for i = 1, . . . , B. Then, ŷi =

x̂i(n/B).

Proof.

x̂i(n/B) =
n−1

∑
j=0

xjω
ij(n/B)
n

=
B−1

∑
a=0

n
B−1

∑
j=0

xBj+aω
i(Bj+a)n/B
n

=
B−1

∑
a=0

n
B−1

∑
j=0

xBj+aωian/B
n

=
B−1

∑
a=0

yaωian/B
n

Note that when ωn is the n-th complex primitive root of unity, ωn/B
n is the

B-th complex primitive root of unity ωB. Thus, it follows x̂i(n/B) = ŷi.

Corollary 1. With the definitions as in Lemma 2, the asymptotic runtime to
calculate ŷ is O(|supp(x)|+ B log B).

With these definitions and Lemmas it is now possible to define the
Sparse Fast Fourier Transform.

2.3 SFFT Version 1

Version 1 of the SFFT consists multiple executions of two kinds of loops:
location loops and estimation loops. The purpose of the first kind, location

17

0 2048 4096 6144 8192
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

(a) A signal.

0 2048 4096 6144 8192
-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

(b) The signal after a window function was applied.

Figure 2.3: Gaussian Standard Window Function applied to a sample signal.

18

loops, is to generate a list of candidate coordinates I. Candidate coordinates
i ∈ I have a certain probability of being indices of one of the k significant,
nonzero coefficients in x̂. By running multiple iterations of the location
loops, this probability can be increased. The second type, estimation loops,
are used to exactly determine the frequency coefficients x̂I of a given set of
coordinates I.

Algorithm 1 SFFT v1.
Input: x ∈ Cn, k < n, L ∈ N. Output: A k-sparse vector x̂.

1. Run a number of L location loops, returning L sets of coordinates
I1, . . . , IL.

2. Count the number si of occurrences of each found coordinate i, that
is: si = |{r|i ∈ Ir}|.

3. Only keep the coordinates which occurred in at least half of the
location loops. I′ = {i ∈ I1 ∪ · · · ∪ IL|si > L/2}.

4. Run a number of L estimation loops on I′, returning L sets of frequency
coefficients x̂r

I′ .

5. Estimate each frequency coefficient x̂i as x̂i = median{xr
i |r ∈

{1, . . . , L}}. The median is taken in real and imaginary components
separately.

This is an overview of the steps that are performed in location loops:

1. Random spectrum permutation. Randomly choose a σ invertible modn
and τ ∈ [n]. Permute the input vector x with the permutation Pσ,τ:
(Pσ,τx)i = xσi+τ.

2. Apply filter. Using a flat window function G, compute the filtered and
permuted vector y = G · (Pσ,τx).

3. Subsampling and FFT. With B dividing n, compute ẑ with ẑi = ŷi(n/B)
for i ∈ [B]. Using Lemma 2, ẑ can be computed as the B-dimensional
DFT of z, where zi = ∑n/B−1

j=0 yi+Bj for i ∈ [B].

4. Cutoff. Only keep the d · k coordinates of maximum magnitude in ẑ.
Those are the so-called bins where the non-negligible coefficients were
hashed to. Call the set of coordinates that are kept J. d is a parameter
of SFFT v1.

5. Reverse hash function. Steps 1 – 3 describe a hash function hσ : [n] →
[B] that maps each of the n coordinates of the input signal to one

19

of B bins. hσ can be defined by hσ(i) = round(σiB/n). This hash
function has to be reversed for the coordinates in J. The output of a
location loop is the set of coordinates mapping to one of the bins in J:
I = {i ∈ [n] | hσ(i) ∈ J}.

The random permutation of the spectrum is performed to get different
results in subsequent location loop runs. This is necessary for two reasons.
First, the output of a single location loop is only guaranteed to contain the
correct k nonzero frequencies at a constant probability. Multiple location
loop executions increase this probability. Second, in a single location loop
many coordinates map to the same bin. Using multiple runs, each with a
different random spectrum permutation, it is unlikely that a non-significant
frequency (where x̂i is very small or zero) maps to one of the nonzero
bins J each time and is therefore falsely considered as one of the candidate
coordinates.

The flat window function in step 2 is used as a filter to extract a certain
set of elements of x. Note that although the filter consists of n elements,
most of these elements are negligible and it is sufficient to multiply with w
significant elements.

In step 3 the permuted and filtered input y is now hashed to a set
of B bins. Therefore y is subsampled, summed up, and a B-dimensional
FFT is performed. With high probability, each bin contains at most one
non-negligible coefficient.

After subsampling, B-dimensional FFT and removing non-significant
parts of the signal, the original signal coefficients have to be reconstructed.
This is done by reverting the hash function hσ. This generates more than k
outputs, but, after all location loops were executed, only the k coefficients
with highest occurrence numbers in all location loops are kept.

The purpose of estimation loops, the second type of loops in SFFT v1, is
to reconstruct the exact coefficient values given a set of coordinates I. The
implementation of estimation loops is similar to location loops: they share
the first 3 steps. The fourth and last step in an estimation loop is “Given
a set of coordinates I, estimate x̂i as x̂′i = ẑhσ(i)ω

τi/Ĝσ(i)”, which basically
removes the phase change due to the permutation and the effect of the
filter.

When multiple frequencies hash to the same bin, a hash collision occurs
and the estimation fails. To compensate this, the value of x̂′i can be set to
the median of the corresponding outputs of all estimation loops.

Figure 2.4 shows the various signal manipulations that are performed
in the location and estimation loops. Algorithm 1 shows pseudocode for
SFFT v1.0 using location- and estimation loops. Figure 2.5 shows a flow
diagram of SFFT v1.

20

0 2048 4096 6144 8192
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(a) Original Signal

0 2048 4096 6144 8192
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(b) Permuted Signal

0 2048 4096 6144 8192
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(c) Permuted and Filtered Signal

0 2048 4096 6144 8192
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(d) Permuted, Filtered, Subsampled Signal

Figure 2.4: Effects of the individual signal manipulation steps in the fre-
quency domain.

21

Subsampling + FFT

Reverse Hash Function

Permute

Cutoff

Filter

Location Loop

Subsampling + FFT

Reverse Hash Function

Permute

Cutoff

Filter

Location Loop

...

Keep coordinates

that occured in at least half

of the location loops

Subsampling + FFT

Permute

Estimate Coefficient

Filter

Estimation Loop

Subsampling + FFT

Permute

Filter

Estimation Loop

...

For each coordinate

output the median of

coefficients from all estimation loops

Estimate Coefficient

Coordinates

CoordinatesCoordinates

Input Signal Input Signal

Input SignalInput Signal

Figure 2.5: A simplified flow diagram of SFFT v1.

22

SFFT v1 depends on several parameters, e.g., the number of location and
estimation loops, parameters for the Gaussian filter or the number of bins.
Each of these parameters is highly dependent on the algorithm’s input, i.e.,
the signal size n and the number of nonzero coefficients k. Unfortunately,
this complicates practical implementations. The reference implementation
from [HIKP12b] therefore hard-codes parameter settings for a number of
input scenarios. Since it is based on this reference implementation, my
implementation suffers from the same problems The same problem applies
to SFFT v2, but SFFT v3 does not have this restriction.

2.4 SFFT Version 2

Version 2 of the SFFT is very similar to version 1. The only difference is
that a heuristic is used to find the signal’s significant coefficients quickly.
The heuristic based on a special filter, a modified version of the algorithm
described in [Man95]. Here, it will be referred to as Mansour filter.

Mansour filter loops can be implemented as follows. Let wM be the size
of the filter. Then:

1. Choose a random offset τ ∈ [n/wM].

2. Subsample the input vector by computing zi = xτ+i·wM for i ∈ [wM].

3. Compute ẑ as the DFT of z.

4. Return the coordinates of maximum magnitude in ẑ.

Remember that the window functions are used to extract parts of the
signal and keep spectral leakage minimal. The Mansour filter has no
spectral leakage at all. This is a major advantage since the error is reduced,
and thus, the Mansour filter can speed up the execution of the SFFT. But
there are also some drawbacks. One problem is that permutations cannot
be used to resolve hash collisions, since only the offset is random. However,
according to [HIKP12b] this is not an issue in practical implementations.

2.5 SFFT Version 3

While the core ideas of version 3 of the SFFT are still similar to version 1
and 2, this version introduces two major improvements.

The first improvement is based on the observation that once a frequency
coefficient of the signal was found and estimated, it can be removed from
the signal. This fact can be used to reduce the amount of work to be
done in subsequent steps. Unfortunately updating the whole signal would

23

Algorithm 2 SFFT v2.
Input: x ∈ Cn, k < n, L ∈ N. Output: A k-sparse vector x̂.

1. Run a number of L1 Mansour loops, returning L1 sets of coordinates
I1, . . . , IL1 .

2. Run a number of L2 location loops, returning L sets of coordinates
IL1+1, . . . , IL1+L2 . Let L = L1 + L2.

3. Count the number si of occurrences of each found coordinate i, that
is: si = |{r|i ∈ Ir}|.

4. Only keep the coordinates which occurred in at least half of the
location loops. I′ = {i ∈ I1 ∪ · · · ∪ IL|si > L/2}.

5. Run a number of L estimation loops on I′, returning L sets of frequency
coefficients x̂r

I′ .

6. Estimate each frequency coefficient x̂i as x̂i = median{xr
i |r ∈

{1, . . . , L}}. The median is taken in real and imaginary components
separately.

require O(n) operations and is therefore too costly. However, it is not
necessary to update the input signal. Instead, it is sufficient to update the
B-dimensional output of a measurement (that is: application of filter, DFT
and subsampling). This way the removal of the effects of already found
coefficients can be done in O(B) time.

The second important addition in SFFT v3 is an improved scheme
for finding the signal’s significant frequency coordinates using individual
measurements. In SFFT v1 and v2, multiple location loops were run and
their results combined in order to get correct candidate coordinates at a
high probability. [HIKP12a] proves that two distinct measurements (calls
to HashToBins) are enough.

The idea here is to perform the measurements with similar permutations
that only differ in the phase-altering parameter. Permutations, as defined
in Definition 1, have two parameters τ and σ. As it was mentioned in
Lemma 1 the parameter τ changes the phase of the signal because a term
ωτ j is implicitly multiplied to each coordinate j of the frequency-domain
signal. The two calls to HashToBins are performed with the same σ, but
one time with τ = 0 and one time with τ = 1.

When no hash collision occurs only a single nonzero frequency coeffi-
cient maps to a bin. Since the phase change in the second measurement

24

also depends on the bin’s coordinate, the coordinate can be reconstructed
out of the phase difference of the two measurements.

The drawback of this approach is that it is only applicable to exact
k-sparse signals, i.e. k-sparse signals which are not affected by any noise.

The complete SFFT v3 algorithm, including all improvements, is shown
in Algorithm 3. A flow diagram is depicted in Figure 2.6.

2.6 SFFT Version 4

Version 4 of the SFFT algorithm uses the same ideas as version 3, but elimi-
nates the restriction that only exact k-sparse signals can be used. It does
this by using the same scheme for finding finding candidate coordinates as
version 3, but allowing again more than two distinct measurements and
reconstructing a finite number of bits of the coordinates in each measure-
ment. This approach is similar to a binary search, in each step the region
of a frequency is further reduced. The details of this algorithm are very
complex, and at the time of this writing no implementation of SFFT v4
exists. Therefore it is not treated in this thesis. The details of the algorithm
are described in [HIKP12a].

25

Subsampling + FFT

Permute with

phase change

Subtract reconstructed signal

Filter

Hash To Bins

Input Signal

Subsampling + FFT

Subtract reconstructed signal

Filter

Hash To Bins

Cutoff

Phase Difference

Reconstruct Frequency

Add to result

Output

Iterate O(log k) times

After all iterations

When a frequency

hashes to a bin

without collision,

the phase difference

of the coefficient in

the two measurements

is linear in the

frequency

Permute without

phase change

Same random

parameters

Figure 2.6: A simplified flow diagram of SFFT v3.

26

Algorithm 3 SFFT v3.
Input: x ∈ Cn, k < n, parameters B, α, β, δ. Output: A k-sparse vector x̂.

1. Initialize z ∈ Cn to 0.

2. For t = 1 . . . log k do

(a) Randomly choose an odd number σ and any number b from [n],
and generate the permutations Pσ,0,b and Pσ,1,b.

(b) Perform two measurements with the function HashToBins using
the two permutations on the input signal. Assume the output of
the individual measurements are û and û′.
The function HashToBins works like this:

i. Let B = k/(2t · β).
ii. Compute ŷjn/B for j ∈ [B], where y = GB,α,δ · (Pσ,a,bx).

iii. Remove the effects of the already found frequencies by com-
puting ŷ′jn/B = ŷjn/B −

(
Ĝ′

B,α,δ ∗ P̂σ,a,bz
)

jn/B
for j ∈ [B].

iv. Return v̂j = ŷ′jn/B.

HashToBins works very similar to some steps of SFFT v1 location
loops. Constants α, β, δ have to be set appropriately.

(c) For every nonzero bin ûj:

i. Set a = û/û′.
ii. Assuming there is no hash collision (i.e. only one frequency

coordinate was hashed to bucket j), the phase of a is now
linear in the frequency coordinate. One can reconstruct it
using i = σ−1(round(phase(a) n

2π)) mod n.
iii. ûj can be used as estimate for the magnitude of the coeffi-

cient of frequency i. Thus, set ẑi = ẑi + round(ûj).

3. ẑ is an approximation to the DFT of the k-sparse signal x̂.

27

28

Chapter 3

Performance Analysis

3.1 Asymptotic Runtime

In this section, asymptotic runtime bounds for the Sparse Fast Fourier
Transform algorithms are derived. Table 3.1 shows an overview. The
derivations are based on [HIKP12b] and [HIKP12a].

Table 3.1: The different versions of the Sparse Fast Fourier Transform and
their asymptotic runtimes.

Algorithm Version Cost

SFFT 1 O
(

log n
√

nk log(n)
)

SFFT 2 O
(

log n 3
√

nk2 log(n)
)

SFFT 3 O (k log n)
SFFT 4 O (k log n log(n/k))

3.1.1 Sparse Fast Fourier Transform Version 1

The Sparse Fast Fourier Transform algorithm in Version 1 consists of mul-
tiple location and estimation loops. The runtime cost of these loops is
O(B log n) as it will be shown in Lemma 4. First, another useful Lemma
will be proved.

Lemma 3. Let L be the number of SFFT v1 location loops and an SFFT v1 run.
Let Ir be the output of location loop r. Let I ′ be the set of coordinates that occur in
at least half of the location loops. Then, I ′ ≤ 2dkn/B.

29

Proof. The coordinates in I′ occur in at least L/2 location loop outputs. If
Ir is the output of location loop r, we have

L

∑
r=1

|Ir| ≥
L
2
|I′|

Since |Ir| = dkn/B it is

L · dk
n
B
≥ L

2
|I′|

⇒|I′| ≤ 2 · dkn/B.

Using this Lemma one can now proof Lemma 4.

Lemma 4. Let w = O(B log n
δ) and δ = O(n−c). Let B ∈ N divide n. Then,

SFFT Version 1 location and estimation loops run in O(B log n
δ).

Proof. The first few steps are common in location- and estimation loops.
They are:

• Permuting the input vector with a random permutation.

• Multiplying a part of the permuted input vector with the support of
the filter G.

• Subsampling the result of the multiplication.

• And performing a DFT on the B-dimensional result vector.

The input vector does not actually have to be permuted, but the filter
multiplication can be implemented so that the vector is accessed in the
correct, permuted order. The cost of this step is then O(w), since w is the
size of the support of G. The subsampling step takes again time O(w), since
w elements have to be summed up. The resulting vector is B-dimensional.
A B-dimensional FFT takes time O(B log B). The overall asymptotic cost
for these steps is therefore:

cinner = O(w) +O(w) +O(B log B)

= O(w + B log B)

Substituting w into the above equation results in

cinner = O(B log
n
δ
+ B log B)

= O(B log
n
δ
)

30

a) Location Loops
In location loops two steps are performed additionally to the steps above:

• Given the B-dimensional result vector, determine the d · k coordinates
of maximum magnitude,

• and compute the elements mapping to these coordinates.

Determining the d · k coordinates is a straightforward computation and
requires O(B) operations. As mentioned before, location loops implement
a hash function hσ : [n] → [B]. For each coordinate i of the d · k coordinates,
there are n/B coordinates jr with hσ(jr) = i. The overall running time to
compute the location loop output is therefore O(dkn/B).

For location loops, we can estimate the computational cost as

cloc = cinner +O(dk
n
B
)

= O(B log
n
δ
+ dk

n
B
).

b) Estimation Loops
The last step in estimation loops is to compute estimates of x̂I′ for a given
set of coordinates I′. The cost of this operation is O(|I′|) = O(dkn/B)
(Lemma 3). Thus, the total cost of estimation loops is

cest = cinner +O(dkn/B)

= O(B log
n
δ
+ dkn/B).

The asymptotic runtime of SFFT v1 can now be derived, as it is shown
in the next theorem:

Theorem 1. Let w = O(B log n
δ), δ = O(n−c), B = O(

√
nk

ε log n/δ), L =

O(log n) and d = O(1/ε). The SFFT Version 1 has an asymptotic runtime cost
of

cSFFTv1 = O
(

log(n)
√

nk log(n)
)

.

Proof. The cost of a SFFT 1 execution is determined by L inner loops, plus
the cost of combining the results of these inner loops:

cSFFTv1 = L · cloc + L · cest + coutput.

31

Computing the output involves computing medians of L-element sets for
all coordinates in I′, so the cost of constructing the output can be estimated
as

coutput = O(L · |I′|).

Combining this with Lemmas 3 and 4, the cost of SFFT v1 can be estimated
as

cSFFTv1 = O(L · cloc + L · cest + coutput)

= O(L · (B log
n
δ
+ dk

n
B
) + L · (B log

n
δ
+ dk

n
B
) + L · dk

n
B
))

= O(L · B log
n
δ
+ L · dk

n
B
).)

Substituting the parameters in the equation results in

cSFFTv1 = O

log(n)

√
nk

ε log(n
δ)

log(
n
δ
) + log(n)kn

1
ε

√
ε log(n

δ)

nk


= O

log(n)

√
nk log(n

δ)

ε
+ log(n)

√
nk log(n

δ)

ε


= O

(
log(n)

√
1
ε

nk log(
n
δ
)

)

= O
(

log(n)
√

nk log(n)
)

.

3.1.2 Sparse Fast Fourier Transform Version 3

SFFT v3 consists of log k executions of an inner loop. The inner loop of
SFFT v3 consists of two executions of the HashToBins function. HashTo-
Bins is similar to the inner loop of SFFT Version 1, but it has an addi-
tional step where the already reconstructed solution is subtracted from the
B-dimensional result vector. This requires an additional O(B) operation.
The complexity of HashToBins is still O(B log n). This observation can be
used to prove the next theorem:

Theorem 2. The asymptotic runtime of SFFT version 3 is

cSFFTv3 = O (k log n) .

32

Proof. In the t-th iteration of SFFT v3’s outer loop, B is chosen as B = k
β2t .

Therefore the runtime of the t-th iteration of the inner loop can be estimated
as

cHashToBins(t) = O
(

k
β2t log n

)
Summing up over log k iterations results in

cSFFTv3 = O
(

log k

∑
t=0

cHashToBins(t)

)

= O
(

log k

∑
t=0

k
β2t log n

)

= O
(

log n
log k

∑
t=0

k
β2t︸ ︷︷ ︸

geometric series

)

= O (k log n.)

3.2 Benchmarks

In this section some benchmarks of the non-optimized SFFT implemen-
tations are presented. All benchmarks are warm-cache measurements
performed on an Intel(R) Xeon(R) E5-2660 CPU at 2.20 GHz with the Sandy
Bridge micro-architecture, consisting of 8 physical cores or 16 virtual cores
(using Hyper-Threading technology). Each core contains a 64 KB L1-cache
and a 256 KB L2-cache. An additional 20 MB L3-cache is shared among the
cores. Error bars in plots show 95 % confidence intervals.

The first benchmarks are runtime experiments reproducing the results
found by [HIKP12b] and [HIKP12a], where the runtime of SFFT v1, v2, v3
is compared to the runtime of an equivalent FFTW call, which does not
exploit the signal’s sparsity. First, the signal sparsity k was kept constant
(k = 50) and the signal size n was varied. Results of this experiment are
shown in Figure 3.1. Second, the signal sparsity k was varied and the signal
size n was kept constant to 222. Results of this experiment are shown in
Figure 3.2. FFTW’s runtime is constant in the second experiment, since
FFTW’s runtime only depends on the signal size, not on the signal sparsity.

All SFFT algorithms beat FFTW when the sparsity-size quotient k/n
is small enough. Especially Version 3 is almost always better, which was
expected because of its small asymptotic runtime cost.

33

214 215 216 217 218 219 220 221 222 223 224

Signal size n

10−4

10−3

10−2

10−1

100

101
Time [s]

SFFT v1
SFFT v2
SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 3.1: Runtime of different non-optimized SFFT versions versus signal
size n (k = 50).

25 26 27 28 29 210 211 212

Number of nonzero frequencies k

10−4

10−3

10−2

10−1

100

101
Time [s]

SFFT v1
SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 3.2: Runtime of different non-optimized SFFT versions versus signal
sparsity k (n = 222).

34

214 215 216 217 218 219 220 221 222 223 224

Signal size n

0.0

0.5

1.0

1.5

2.0

2.5
Performance [GFlop/s]

SFFT v1
SFFT v2
SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 3.3: Performance of SFFT v1, v2 and v3 (non-optimized, k = 50) and
FFTW. Note that each algorithm has a different operations count, so the plot
does not serve as runtime comparison but only as efficiency comparison.

Performance is a useful metric to evaluate the implementation of an
algorithm on a particular system. In this thesis, performance is measured
in measured in GFlop/s, since the SFFT mainly consists of floating point
operations.

The amount of floating point operations is measured with an instrumen-
tation in the sourcecode implemented with C macros. The instrumentation
has to be activated explicitly with a configuration parameter at compile
time, so it does not influence timing benchmarks. The instrumentation
counts scalar arithmetic floating point operations. Simple operations (e.g.
ADD, MULT) are counted as 1 Flop. Complex operations are counted as the
amount of equivalent real operations, for example a complex multiplication
involves 4 real multiplications, 1 real addition and 1 real subtraction. The
operation count of standard library functions like sin were measured using
performance counters on Intel CPUs using the PCM library. Operation
counts for FFTW plans can be computed with FFTW’s fftw_flops function.

Figure 3.3 shows performance measurements for the SFFT algorithms.
The benchmark system’s scalar single-core peak performance can be com-
puted as

35

Function Runtime [s] % of Total Time Performance
[GFlop/s]

Inner Loops 1.18e-02 88.51 0.23
Estimate Values 1.53e-03 11.49 0.01

Table 3.2: Profile of an SFFT v1 run (non-optimized).

Function Runtime [s] % of Total Time Performance
[GFlop/s]

Mansour Filter 2.61e-03 22.67 0.76
Inner Loops 4.61e-03 40.27 0.35
Estimate Values 4.27e-03 37.07 0.01

Table 3.3: Profile of an SFFT v2 run (non-optimized).

Peak Perf. = 1 Flop/Instr.︸ ︷︷ ︸
Scalar Instructions

× 2 Instr./Cycle︸ ︷︷ ︸
Instruction Level Parallelism

× 2.2 × 109 Cycle/s︸ ︷︷ ︸
CPU Frequency

= 4.4 GFlop/s.

However, peak performance is hard to reach, for example when algo-
rithms are memory-bound (i.e., the performance is limited by the memory
bandwidth). The benchmark shows that there is room for improvement.
For comparison, FFTW’s performance was added to the benchmark, but
note that the higher performance of FFTW does not imply smaller runtime
– the instruction count of the algorithms is fundamentally different.

3.3 Profiling

Tables 3.2–3.4 show runtime profiles for the different non-optimized SFFT
versions. Fixed input parameters n = 220 and k = 50 were chosen.

The profiles show that the algorithms’ most costly parts are filter ap-
plications. In SFFT v1 and v2 filter applications are implemented in the
Inner Loops part; in SFFT v2 an additional Mansour Filter is applied. SFFT
v3 implements a Mansour Filter, a Gaussian Filter without spectrum per-
mutation, and a Gaussian Filter with spectrum permutation. In all 3 SFFT
versions at least 60 % of the runtime consist of filter applications.

Comparison between SFFT v1 and SFFT v2 proves the Mansour Filter
heuristic successful (while maintaining about the same accuracy, refer to the
robustness-to-noise experiment in [HIKP12b]). The inner loop runtime and

36

Function Runtime [s] % of Total Time Performance
[GFlop/s]

Mansour Filter 7.71e-05 19.81 0.20
Estimate Frequencies 7.33e-05 18.83 0.12
Gauss Filter 1.01e-04 26.01 0.14
Estimate Frequencies 2.46e-05 6.34 0.16
Permuted Gauss Filter 6.72e-05 17.25 0.14
Estimate Frequencies 5.87e-06 1.51 0.13
Loop Between Filters 3.99e-05 10.25 0.15

Table 3.4: Profile of an SFFT v3 run (non-optimized).

the overall runtime could be reduced significantly; the estimation phase
duration, however, increased.

Using the callgrind profiling tool it was also checked how much time
was spent in the internal FFTW calls for the same input parameters (n = 220

and k = 50). For SFFT v1, about 3.2 % of the runtime was inside FFTW
calls; for SFFT v2 it was 13.8 %, and for SFFT v3 about 1.9 % of the runtime
was inside FFTW calls. This means that the internal DFT computations are
not the main bottlenecks of the implementation.

3.4 Roofline Analysis

Roofline Analysis is a novel method for investigating an algorithm’s perfor-
mance on particular hardware (see [WWP09]). The method’s core idea is
to relate the algorithm’s operational intensity, measured in Flop/Byte, to
its performance, measured in Flop/s or Flop/Cycle. Operational intensity
is defined as follows:

Definition 3 (Operational Intensity). The operational intensity I of an algorithm
Ai with input i on a particular system is defined as the ratio

I =
W
M

,

where W is the operations count of Ai, and M is the memory traffic between the
system’s last-level cache and the system’s main memory.

Here, the work W is measured as the number of arithmetic floating
point operations (additions, multiplications, but also comparisons), as in
the SFFT mainly floating point operation are performed. Other applications
could define work differently.

37

Operational Intensity [Flop/Byte]

Performance [GFlop/s]

Peak Performace

Pe
ak

 Ban
dw

idth

memory-bound

region

compute-bound

region

1/21/41/8 1 2 4 8

8

4

2

16

32

Figure 3.4: An exemplary roofline plot.

In Roofline Analysis, algorithm performance is plotted against oper-
ational intensity in a log-log plot. Two additional system-specific perfor-
mance ceilings are inserted to the plot. The first ceiling is the system’s
maximum peak performance, i.e. the maximum amount of work that can
be performed per unit of time. The second ceiling is a memory bandwidth
limit. That is, for an algorithm with operational intensity I Flop/Byte and
a system with a maximum bandwidth of B Byte/s, the memory induced
performance limit is I · B Flop/s. Thus, when Pmax is the system’s peak
performance, algorithm performance P is bound by

P ≤ max{I · B, Pmax}.

Roofline Analysis allows to define exactly when an implementation is
memory-bound, and when it is compute-bound. Implementations with
an operational intensity below the crossing point of the two ceiling are
memory-bound, implementations with a higher operational intensity are
compute-bound (see Figure 3.4).

Computing the necessary quantities for Roofline Analysis, memory
traffic, work, and runtime, can be easily done for simple algorithms. For
complex algorithms like the Sparse Fast Fourier Transform, however, the
task is more involved. While work and runtime can be easily determined

38

1 10 100
Operational Intensity [Flops/Byte]

0.01

0.1

1

10

214
220

214
220

SSE Peak Performance (4.0 F/C)

Random
Acce

ss
(6.

3 B/C
)

Performance [Flops/Cycle]

SFFT v1
SFFT v2
SFFT v3

Figure 3.5: Roofline plots of SFFT v1, v2 and v3 (non-optimized, n =

214 . . . 220, k = 50).

(this has already been done for the performance measurements), it is not
clear how to gather reliable memory traffic data. The tool perfplot [per13]
has been developed for exactly this purpose. It accesses performance
counters on recent Intel CPUs using Intel’s PCM library, giving data for all
necessary quantities. The advantage of this approach is that no knowledge
about algorithm nor the underlying hardware is necessary; all data are
simply measured.

Using perfplot I analyzed all SFFT versions. The measurements were
performed on an Intel(R) Xeon(R) X5680 CPU clocked at 3.33 GHz with a
12 MB L3-cache. All measurements were cold-cache measurements, i.e., the
memory traffic also contains compulsory cache misses.

Figure 3.5 shows a roofline plot of all SFFT versions. The analysis
proves that there is room for optimizations.

For input sizes larger than 218 (SFFT v1, v2) respectively larger than 215

(SFFT v3) all versions are memory-bound, therefore optimizations targeting
cache utilization should improve performance.

The performance measured by perfplot is slightly lower than the perfor-
mance that was previously estimated. The reason for this are the different
methods to obtain operations counts. The perfplot data are gathered from
CPU performance counters, while the data from previous performance

39

measurements were counted within the library using an instrumentation
framework.

40

Chapter 4

Performance Optimizations

In this chapter the various optimizations that were applied to the reference
implementation are presented. The optimizations are grouped by the
specific issue that they address, though sometimes an optimization can
belong to more than one category. All optimizations were tested in the
implementation, and sometimes micro-benchmarks were developed to
compare different strategies.

4.1 Instruction Reduction

The first step in optimizing the SFFT algorithms was to establish a clear
separation between a planning and an execution phase. This approach
is similar to FFTW’s approach. In the planning phase, every possible
pre-computation is performed that can be reused across different DFT
computations of the same input size (and is thus amortized). This involves
the allocation of storage, generation of filter vectors and creation of FFTW
plans. The execution phase contains every task that cannot be shared
among multiple SFFT executions, like generating random numbers and
execution of the actual algorithm. Once a plan is created it can be executed
repeatedly with different inputs of the same size, so that the planning cost
is only a one-time cost.

4.1.1 FFTW

Internally, all SFFT algorithms perform several DFTs, for example in the
SFFT v1 location and estimation loops, or in SFFT v3’s HashToBins routine.
In the original, non-optimized implementation FFTW is used for this
purpose. FFTW is a high-performance library with a good performance,
but by using some features of the library the performance of the FFTs can
still be increased.

41

214 215 216 217 218 219 220 221 222 223 224

Signal size n

10−5

10−4

10−3

10−2

10−1
Time [s]

SFFT v1
SFFT v2
SFFT v3

SFFT v1 (w/ FFTW_MEASURE)
SFFT v2 (w/ FFTW_MEASURE)
SFFT v3 (w/ FFTW_MEASURE)

Figure 4.1: A comparison of the different FFTW options for the internal use
in the SFFT algorithms.

The first optimization was already mentioned: FFTW plans can be
pre-computed in the SFFT planning phase. Even though FFTW does reuse
already computed data from previous plans to some extent, there is no
need to create the same FFTW plans multiple times.

In the SFFT algorithms, often multiple equally sized FFTs are computed
in a row, or the implementation can be adapted to do this. For example,
the FFTs of all SFFT v1 location loops can be computed at once. Instead
of computing each of the FFTs separately, FFTW supports an interface
(fftw_plan_many) to compute all of the FFTs within a single call. This way,
FFTW has more freedom to schedule operations and optimize the execution;
for example, the FFTW twiddle factors only have to be computed once.

FFTW supports multiple optimization levels that can be configured
by flags, the most important are FFTW_ESTIMATE and FFTW_MEASURE. For
the SFFT, in most cases it is sufficient to use FFTW_ESTIMATE, because the
FFTs computed are relatively small and the higher optimization level of
FFTW_MEASURE only pays off for large input sizes.

Figure 4.1 shows an experiment investigating the impact of the different
FFTW parameters in the SFFT. There is no difference at all between the
usage of FFTW_ESTIMATE and FFTW_MEASURE. Thus, it is sufficient to use the
faster FFTW_ESTIMATE in the SFFT planning phase.

42

A last optimization to the FFTW calls is to use in-place FFTs. After the
DFT step in the filters, the time-domain of the computed vector is not used
anymore. So an in-place FFT can be used to improve FFTW’s performance
and reduce SFFT’s memory consumption. FFTW supports this natively by
simply passing the same vector as input and output argument.

4.1.2 Inlining and explicit complex arithmetic

To reduce function call overhead, non-public functions can be inlined or
declared static so that the compiler can effectively inline them. For example,
a profile of an SFFT run showed many calls to the function __muldc, the C
standard library’s implementation of complex multiplication. The complex
vectors were replaced with real vectors of twice the size. Complex numbers
are stored now as tuples of real and imaginary part. This is byte-compatible
to the C standard library’s complex data type. This overhead was removed
by replacing this function call with an own implementation of complex
multiplication.

Before the optimization, inner location loops in SFFT v1 and v2 looked
like this:

int index=b;

for(int i = 0; i < filter.sizet; i++)

{

x_sampt[i%B] += origx[index] * filter.time[i];

index = (index+ai) %n;

}

After the optimization, the code changed to:

for(int i = 0; i < 2* filter.sizet; i+=2)

{

double ac = d_orig_x[index] * d_filter[i];

double bd = d_orig_x[index +1] * d_filter[i+1];

double ad = d_orig_x[index] * d_filter[i+1];

double bc = d_orig_x[index +1] * d_filter[i];

d_x_sampt[i%(2*B)] += ac-bd;

d_x_sampt[i%(2*B)+ 1] += ad+bc;

index = (index + 2*ai)%(2*n);

}

4.1.3 Fixed loop configurations

The SFFT algorithms use many parameters controlling accuracy and run-
time. This fact required the baseline implementation to be very generic: all
possible parameter combinations have to be considered. A very successful

43

optimization is to fix some of the parameters and specialize the implemen-
tation to only support the fixed parameters. The generic implementation
can be kept as a fallback.

This was done for the measurement loop counts in SFFT v3. Running
two inner loops in each filter (Mansour Filter, Gaussian Filter and Permuted
Gaussian Filter) is usually sufficient to reconstruct the signal coefficients
with a high probability. The code of SFFT v3 was greatly simplified by
specializing for fixed loop counts. Many functions became much simpler,
like expensive median calculations, which could be removed entirely (the
median of 2 values is trivial to compute).

For example, this is the routine for applying the Gaussian filter in SFFT
v3 with a variable loop count:

int Gauss_Filt(sfft_v3_data* data , complex_t *origx , int n,

complex_t *filter , int w, int B,

complex_t *x_gauss , int init_G_offset)

{

// [...]

for(int j = 0; j < 2; j++)

{

for(int i = 0; i < 2*w; i+=2)

{

index = (2* init_G_offset +2*j+i) % (2*n);

double ac = d_orig_x[index] * d_filter[i];

double bd = d_orig_x[index +1] * d_filter[i+1];

double ad = d_orig_x[index] * d_filter[i+1];

double bc = d_orig_x[index +1] * d_filter[i];

d_x_sampt [2*B*j + i%(2*B)] += ac -bd;

d_x_sampt [2*B*j + i%(2*B) + 1] += ad+bc;

}

}

fftw_execute(tl_data ->fftw_plan_gauss);

return 0;

}

The loop over j was unrolled and removed. Then, it was easy to adjust
the iteration scheme so that the filter is only traversed once; note that in
each inner loop only a single filter value is loaded:

int Gauss_Filt_loops2(sfft_v3_data* data , complex_t *origx , int n,

complex_t *filter , int w, int B,

complex_t *x_gauss , int init_G_offset)

{

// [...]

44

double a1 = d_orig_x [2* init_G_offset];

double b1 = d_orig_x [2* init_G_offset + 1];

for(int i = 0; i < 2*w; i+=2)

{

double a0 = a1;

double b0 = b1;

double a1 = d_orig_x [(2* init_G_offset + i) % (2*n)];

double b1 = d_orig_x [(2* init_G_offset + i + 1) % (2*n)];

double c = d_filter[i];

double d = d_filter[i + 1];

double a0c = a0 * c;

double b0d = b0 * d;

double a0d = a0 * d;

double b0c = b0 * c;

double a1c = a1 * c;

double b1d = b1 * d;

double a1d = a1 * d;

double b1c = b1 * c;

d_x_sampt[i%(2*B)] += a0c -b0d;

d_x_sampt[i%(2*B) + 1] += a0d+b0c;

d_x_sampt [2*B + i%(2*B)] += a1c -b1d;

d_x_sampt [2*B + i%(2*B) + 1] += a1d+b1c;

}

fftw_execute(tl_data ->fftw_plan_gauss);

return 0;

}

4.1.4 Optimizing Individual Instructions

There are some expensive operations that are very common for the SFFT
and occur in inner loops of the algorithms. Especially some modulo
calculations turned out to be very expensive. There are a few tricks to get
rid of these.

Modulo operations like x mod n can be computed fast when n is
a power of 2. For example, when n = 2k, then x mod n can then be
computed by only keeping the lower k bits of x and setting all other bits
to zero. This can be implemented by an AND instruction, which is typically
very fast on modern CPUs.

Another trick to remove modulo operations entirely can be applied

45

when the result of the modulo operation is only used as an argument of
a trigonometric function like sin or cos. The sin function is periodic, so
sin(x) = sin(x + t · 2π) for all integers t. A typical computation in the SFFT
is sin(2π/n · (x mod n)). Here, the modulo operation can be removed:

sin(2π/n · (x mod n)) = sin(2π/n · (x mod n) + bx/nc · 2π)

= sin(2π · ((x mod n)/n + bx/nc))
= sin(2π · x/n)

Computations similar to sin(2π
n · (x mod n)) occur in various places

of the SFFT algorithms, e.g., in SFFT v3’s update and estimate functions.
Since 2π/n is a constant that can be pre-computed, the expensive modulo
computation can be replaced by a simple and fast multiplication.

Another trick is to avoid expensive modulo operations for array indices
is to adjust loop structure and orders. This is discussed in 4.2.1.

4.2 Cache Usage Optimizations

4.2.1 Chunking

A simplified inner Gauss Filter loop in SFFT v1 can roughly be implemented
as shown in the following code snippet:

for(unsigned j = 0; j < loops; j++)

{

int index=b_vec[j];

for(int i = 0; i < 2*w; i+=2)

{

double ac = d_orig_x[index] * d_filter[i];

double bd = d_orig_x[index +1] * d_filter[i+1];

double ad = d_orig_x[index] * d_filter[i+1];

double bc = d_orig_x[index +1] * d_filter[i];

d_x_sampt[j][i % (2*B)] += ac -bd;

d_x_sampt[j][i % (2*B) + 1] += ad+bc;

index = (index + 2*ai[j]) & n2_m_1;

}

}

// Apply DFT , ...

Obviously the filter vector is traversed several times, once for each loop.
Since the filter can be relatively big this might lead to unsatisfactory cache
utilization. Changing the loop order would lead to a bad access pattern on
x_sampt. The solution to this problem is to iterate in chunks:

46

for(unsigned chunk = 0; chunk < chunks; chunk ++)

{

unsigned start = chunk*chunksize;

unsigned end = std::min((chunk +1)*chunksize , 2*w);

for(unsigned j = 0; j < loops; j++)

{

int index=b_vec[j];

for(int i = start; i < end; i+=2)

{

double ac = d_orig_x[index] * d_filter[i];

double bd = d_orig_x[index +1] * d_filter[i+1];

double ad = d_orig_x[index] * d_filter[i+1];

double bc = d_orig_x[index +1] * d_filter[i];

d_x_sampt[j][i % (2*B)] += ac -bd;

d_x_sampt[j][i % (2*B) + 1] += ad+bc;

index = (index + 2*ai[j]) & n2_m_1;

}

}

}

The parameter chunksize can be freely chosen, e.g., to match the CPU’s
cache size appropriately, but in experiments it was shown that the fastest
implementation can be done with the chunksize B (the size of the subsam-
pled vector), so that the expensive index computation can be simplified:

// ...

chunksize = B;

for(unsigned chunk = 0; chunk < chunks; chunk ++)

{

unsigned start = chunk*chunksize;

unsigned end = std::min((chunk +1)*chunksize , w);

for(int j = 0; j < loops; j++)

{

int index=b_vec[j];

i2_mod_B = 0;

for(int i = 0; i < 2* filter.sizet; i+=2)

{

double ac = d_orig_x[index] * d_filter[i];

double bd = d_orig_x[index +1] * d_filter[i+1];

double ad = d_orig_x[index] * d_filter[i+1];

double bc = d_orig_x[index +1] * d_filter[i];

d_x_sampt[j][i2_mod_B] += ac -bd;

d_x_sampt[j][i2_mod_B + 1] += ad+bc;

47

index = (index + 2*ai[j]) & n2_m_1;

i2_mod_B += 2;

}

}

}

The implementation runs at the highest performance when using an
iteration scheme similar to the one above. Changing the loop order (making
the j-loop the innermost loop) showed no effect. When the loop count is
fixed (which is usually the case for SFFT v3), it is often a good idea to
unroll the j-loop and load the filter value only once.

4.2.2 Data Layout

The original SFFT implementations contained many complex data struc-
tures like nested arrays. Nested data structures create an additional level
indirection, and this can be deficient for cache utilization. Instead, flat
arrays, where all data is stored sequentially, are much simpler and can
yield higher locality when accessing them, therefore leading to better cache
usage. An additional benefit is that some computations can become easier.
For example, traversing all elements in order can be implemented by simply
iterating over the flat array, without the need of any index computation.

Changing the data layout was also a necessary pre-step to take advan-
tage of some of FFTW’s features; external libraries like FFTW often expect
the data layout to be a continuous array.

Before the optimization, inner location loops in SFFT v1 and v2 were
implemented like this:

for(unsigned chunk = 0; chunk < chunks; chunk ++)

{

unsigned start = chunk*chunksize;

unsigned end = std::min((chunk +1)*chunksize , w);

for(int j = 0; j < loops; j++)

{

int index=b_vec[j];

i2_mod_B = 0;

for(int i = 0; i < 2* filter.sizet; i+=2)

{

double ac = d_orig_x[index] * d_filter[i];

double bd = d_orig_x[index +1] * d_filter[i+1];

double ad = d_orig_x[index] * d_filter[i+1];

double bc = d_orig_x[index +1] * d_filter[i];

d_x_sampt[j][i2_mod_B] += ac-bd;

d_x_sampt[j][i2_mod_B + 1] += ad+bc;

index = (index + 2*ai[j]) & n2_m_1;

48

i2_mod_B += 2;

}

}

}

The optimized code looks like this:

double* d_x_sampt = (double *) x_sampt;

double* d_orig_x = (double *)origx;

/* Permutation and filter application */

int offset = 0;

for(int j = 0; j < loops; j++)

{

int index=b[j];

int i2_mod_B = 0;

for(int i = 0; i < 2* filter.sizet; i+=2)

{

double ac = d_orig_x[index] * d_filter[i];

double bd = d_orig_x[index +1] * d_filter[i+1];

double ad = d_orig_x[index] * d_filter[i+1];

double bc = d_orig_x[index +1] * d_filter[i];

d_x_sampt[i_mod_B+offset] += ac -bd;

d_x_sampt[i_mod_B+offset + 1] += ad+bc;

index = (index + 2*ai[j]) & n2_m_1;

i2_mod_B += 2;

}

offset += 2*B;

}

4.2.3 Stride-2 FFTs

It was already discussed that it is advantageous to store the outputs of
measurements in a continuous array. The first, straight-forward approach
was to store them sequentially, one after the other, i.e., the j-th location
loop output is stored at x_sampt[j · B . . . (j + 1) · B − 1]. Alternatively, the
outputs could also be stored interleaved. Figure 4.2 shows an illustration
of both approaches.

This storage scheme increases locality in the inner loops of the measure-
ments. In fact experiments showed an increase in performance when this
other storage scheme was applied. To make this work, the FFTW plans have
to be adapted. The FFTW interface supports this storage format directly
via a stride parameter:

fftw_plan

fftw_plan_many_dft(int rank , const int *n, int howmany ,

fftw_complex *in , const int *inembed ,

49

... ...

Original Data Layout

Interleaved Data Layout

...

Filter Output 1 Filter Output 2

Filter
Output

1

Filter
Output

2

Filter
Output

1

Filter
Output

2

Filter
Output

1

Filter
Output

2

Figure 4.2: An illustration of the different storage formats.

int istride , int idist ,

fftw_complex *out , const int *onembed ,

int ostride , int odist ,

int sign , unsigned flags);

4.3 Vectorization

4.3.1 SSE Support and Memory Alignment

Vectorization allows to speed up simple data parallel tasks by allowing
CPU instructions to work on multiple data at once (the so-called SIMD
approach: single instruction, multiple data).

To vectorize the the SFFT library I used the SSE2 instruction set, which
is available on many modern x86 CPUs. More precisely, I used compiler
intrinsics of the GNU and Intel compilers to explicitly emit specific instruc-
tions.

For successful vectorization it is necessary to work with aligned memory.
Since input vectors are allocated by the user, the user has to take care of this.
To ensure proper alignment, the method sfft_malloc was implemented as
a replacement for malloc.

50

4.3.2 SSE Implementations of Compute Intensive Functions

The profiling in chapter 3 showed that the filter applications in all al-
gorithm versions are very expensive. The measurement routines of all
SFFT algorithms, i.e., the inner loops in SFFT v1 and v2 as well as the
Mansour-, Gauss- and Permuted Gauss-Filters in SFFT v3 can be vector-
ized in a straightforward way. These routines mainly consist of complex
multiplications and additions.

There are two kinds of approaches for SSE-based vectorization of double
precision floating point operations, where exactly two values fit into a
vector. The first one is to treat one 128 Byte vector as a single complex
number. The second approach is to unpack the complex data into vectors
of real and imaginary data. The first approach is slightly simpler, but the
second approach showed a better performance. Plus, the second approach
can be extended to 4-way vectorization with AVX or other vectorization
technologies with even bigger vectors. The following code example shows
a vectorized SFFT v3 filter (other previously discussed optimizations are
included as well):

int Gauss_Filt_loops2(sfft_v3_data* data , complex_t *origx , int n,

complex_t *filter , int w, int B,

complex_t *x_gauss , int init_G_offset)

{

// [...]

const unsigned n2_m_1 = 2*n - 1;

const unsigned origx_offset = (2* init_G_offset +2) & n2_m_1;

const unsigned chunksize = 2*B;

const unsigned chunks = 2*w/chunksize;

for(unsigned chunk = 0; chunk < chunks; chunk ++)

{

unsigned start = chunk*chunksize;

unsigned end = std::min((chunk +1)*chunksize , (unsigned)2*w);

__m128d a2b2 = _mm_load_pd(d_origx +((2* init_G_offset+start)&

n2_m_1));

unsigned i2_mod_B = 0;

for(unsigned i = start; i < end; i+=2)

{

__m128d ab = a2b2;

a2b2 = _mm_load_pd(d_origx +((origx_offset+i)&n2_m_1));

__m128d cd = _mm_load_pd(d_filter+i);

__m128d cc = _mm_unpacklo_pd(cd, cd);

__m128d dd = _mm_unpackhi_pd(cd, cd);

51

__m128d a0a1 = _mm_unpacklo_pd(ab, a2b2);

__m128d b0b1 = _mm_unpackhi_pd(ab, a2b2);

__m128d ac = _mm_mul_pd(cc , a0a1);

__m128d ad = _mm_mul_pd(dd , a0a1);

__m128d bc = _mm_mul_pd(cc , b0b1);

__m128d bd = _mm_mul_pd(dd , b0b1);

__m128d ac_m_bd = _mm_sub_pd(ac, bd);

__m128d ad_p_bc = _mm_add_pd(ad, bc);

__m128d ab_times_cd = _mm_unpacklo_pd(ac_m_bd , ad_p_bc);

__m128d a2b2_times_cd = _mm_unpackhi_pd(ac_m_bd , ad_p_bc);

__m128d xy = _mm_load_pd(d_x_sampt+i2_mod_B);

__m128d x2y2 = _mm_load_pd(d_x_sampt+i2_mod_B +2);

__m128d st = _mm_add_pd(xy , ab_times_cd);

__m128d s2t2 = _mm_add_pd(x2y2 , a2b2_times_cd);

_mm_store_pd(d_x_sampt+i2_mod_B , st);

_mm_store_pd(d_x_sampt+i2_mod_B+2, s2t2);

i2_mod_B += 4;

}

}

fftw_execute(tl_data ->fftw_plan_gauss);

return 0;

}

4.3.3 More Vectorization

Other functions were also vectorized, but it was not always possible in a
straightforward way. A typical code construct that blocks vectorization are
branches. For example, SFFT v3’s estimate functions consist of loops with
several branches. Some important checks are performed in these branches,
like a check if the current buck is empty or a check if a hash collision
occurred, and it is not possible to skip them. Sometimes techniques like
masking can help to vectorize such code anyway, but it was not possible in
this case. Masking works by first ignoring the branches and performing
the relevant computations on all data. Later, some of the data that are
not desired can be filtered out. This only works when relatively few data
are filtered out, so that the overhead of the additional computations is
negligible. Unfortunately this is not the case in the functions described
above.

52

Other routines, like the update functions in SFFT v3, can be vectorized,
but have complex memory access patterns. The performance of these func-
tions is mainly dependent on the caching strategy and memory bandwidth
of the CPU. Therefore SSE vectorization does not always show the expected
2x speedups.

This is a version of SFFT v3’s estimate_freq_gauss function, where
only little parts could be vectorized:

static int estimate_freq_mansour_loops2(sfft_v3_data* data ,

int BUCKETS , complex_t *SAMP ,

int init_offset , int LOOPS , int n, int a, int b, int

jump ,

complex_t *filterf , int *EST_FREQS , complex_t *

EST_VALUES)

{

// [...]

double zero_buck_check [2];

__m128d norm2vec = _mm_set1_pd(NORM2);

for(int i = 0; i < BUCKETS; i+=2)

{

__m128d a0b0 = _mm_load_pd(d_SAMP +4*i);

__m128d a1b1 = _mm_load_pd(d_SAMP +4*i+2);

__m128d a2b2 = _mm_load_pd(d_SAMP +4*i+4);

__m128d a3b3 = _mm_load_pd(d_SAMP +4*i+6);

__m128d a0b0_sq = _mm_mul_pd(a0b0 , a0b0);

__m128d a1b1_sq = _mm_mul_pd(a1b1 , a1b1);

__m128d a2b2_sq = _mm_mul_pd(a2b2 , a2b2);

__m128d a3b3_sq = _mm_mul_pd(a3b3 , a3b3);

__m128d c0c1 = _mm_hadd_pd(a0b0_sq , a1b1_sq);

__m128d c0c1_normed = _mm_mul_pd(c0c1 , norm2vec);

__m128d c2c3 = _mm_hadd_pd(a2b2_sq , a3b3_sq);

__m128d c2c3_normed = _mm_mul_pd(c2c3 , norm2vec);

__m128d zbc = _mm_hadd_pd(c0c1_normed , c2c3_normed);

_mm_store_pd(zero_buck_check , zbc);

for(unsigned j = 0; j < 2; j++)

{

if(zero_buck_check[j] > ZERO_BUCK_CHECK_CUTOFF)

{

real_t a0 = d_SAMP [4*i+4*j];

real_t b0 = d_SAMP [4*i+4*j+1];

real_t a1 = d_SAMP [4*i+4*j+2];

real_t b1 = d_SAMP [4*i+4*j+3];

53

real_t c0 = (a0*a0+b0*b0)*NORM2;

real_t c1 = (a1*a1+b1*b1)*NORM2;

real_t atan_real [] = { a0*NORM , a1*NORM };

real_t atan_imag [] = { b0*NORM , b1*NORM };

real_t atan_result [2];

approx_atan2_vec2(atan_imag , atan_real , atan_result)

;

real_t d0 = (real_t)atan_result [0];

real_t d1 = (real_t)atan_result [1];

real_t collision_threshold = 1e-10, median_phase =0;

double slope =0;

real_t median_abs = c0;

real_t median_abs_inv = 1./ median_abs;

real_t b = (c1*median_abs_inv) - 1;

real_t error = b*b;

if((error < n*collision_threshold) && (median_abs >

0.01))

{

slope = d1 -d0;

freq1 = lrint(slope * N_OVER_PI2);

freq2 = freq1 & FREQ_MASK;

freq3 = freq2 | (i+j);

int freq_offset = freq3 * init_offset;

median_phase = d0 - PI2_OVER_N * freq_offset;

approx_sqrt (& median_abs);

real_t median_phase_cos;

real_t median_phase_sin;

approx_sincos (& median_phase , &median_phase_sin ,

&median_phase_cos);

real_t median_value_real = median_abs *

median_phase_cos;

real_t median_value_imag = median_abs *

median_phase_sin;

EST_FREQS[found] = freq3;

d_EST_VALUES [2* found] = median_value_real;

d_EST_VALUES [2* found +1] = median_value_imag;

found ++;

}

}

}

}

return found;

}

54

4.4 Multithreading

4.4.1 Parallelizing Filters using OpenMP

The first approach towards multi-threaded SFFT algorithms was to exploit
data-parallelism in the compute-intensive parts, e.g., in the filter applica-
tions in all SFFT versions (which were shown to be very compute-intensive).
OpenMP was used to distribute the loop iterations of these measurements
onto the different cores of the CPU. Unfortunately, this simple approach
did not work: no speedup was achieved. The overhead of multithreading
here is too big compared to the relatively small loops, even though GCC’s
OpenMP implementation is implemented using thread pools to avoid fre-
quent spawning of new threads. This could be verified with Intel’s VTune
performance analysis tool.

Parallelizing FFTW calls does not work, either. FFTW supports parallel
FFT algorithms, but this only pays off with relatively long vectors.

Another possible explanation for the performance drop is that in the
given scenario all threads are writing to one relatively short output vector.
This can lead to false sharing, i.e., individual core caches are frequently
invalidated due to writes by other cores. This can be resolved by giving
each thread its own output vector and combining the individual results
later. However, the combination step generates an overhead, and the
performance was still below the single core performance.

Other compute-intensive functions like the update and estimate steps
in SFFT v3 need careful synchronization in several parts. Each synchro-
nization approach comes with an overhead, and unfortunately none of the
parallelization attempts increased performance.

Since exploiting simple data-parallelism does not seem to work, task-
based parallelism could be a way to distribute work among the processor
cores. Due to the dependencies between the individual tasks in the algo-
rithms this approach is limited. Experiments showed that this approach is
still not successful.

4.4.2 Coarse Multithreading

Since no approach to parallelize a single SFFT call work, the question arises
if there are other ways to benefit from modern multi-core architectures.
A simple way to use parallelism is to run several SFFTs in parallel with
different input data.

The trivial way of implementing this would be to allocate memory for t
SFFT calls (when t is the number of threads) and then call the algorithm
parallel in t threads.

55

This is obviously not an elegant way since a lot of memory is allocated
and some computations are performed multiple times. A smarter imple-
mentation should share as much data as possible among the threads (but
avoid problems like false sharing). For example, the Gauss filter only need
to be computed and stored once. This is especially useful on architectures
with a shared cache, since the shared vectors only have to be transferred
once (assuming a big enough cache).

Experiments shows that this approach with shared data slightly better
than simple parallelism without any data sharing (see experiment in next
chapter).

4.5 Miscellaneous Optimizations

4.5.1 Compilers and Compiler Options

The cheapest optimization is to tell the compiler to do it. Initially, GCC
was used to compile the SFFT library. Additionally, I ported the library to
the Intel compiler suite. On a Core 2 Duo test machine, it showed slightly
better performance. Compiler options used were:

• -O3 to enable full optimization in gcc and icc (was only -O2 initially).

• -march=native to use all available architecture features. For example,
this is important to use SSE-optimized standard library functions.

• -ffast-math to allow the compiler to ignore IEEE 754 standard com-
pliance. This is not needed in the SFFT algorithms, and by enabling
this option the compiler can do additional optimizations, e.g., reorder
floating point operations.

Compiler versions used were GCC 4.4.7 and ICC 13.

4.5.2 High-Performance Trigonometric Functions and Intel IPP

In many places in the algorithms compute-intensive trigonometric functions
like sin, cos or atan2 are called. For such functions, Intel offers some very
optimized, vectorized methods in the IPP library. The approximation
accuracy is also adjustable, and it turned out that the lowest approximation
level is sufficient for the SFFT algorithms.

Often in the algorithm one of the trigonometric functions has to be
computed on multiple values at once. In this scenario the IPP routines
show even higher performance, since vectorized code can be used.

IPP also offers a function sincos to compute both sine and cosine at
once, which is useful in various places of the algorithm.

56

4.5.3 Result Storage Data structure

The return type of an SFFT call is an associative array mapping the found
frequencies to the corresponding coefficients. This supports the sparse
nature of the result very well. The original implementation used std::map

from the C++ standard template library as data type. std::map is imple-
mented as binary tree, and therefore has an access time of O(log k) (when
k is the number of elements in the tree). Binary trees are useful when the
data has to be traversed in a specific, sorted order. But this is not the case in
the SFFT. Therefore, a real hash map with O(1) access time is a much better
choice. Using std::unordered_map, the performance of the algorithm could
be increased significantly. Other special high-performance data structures
like Google’s sparse_hash [Sil] did not increase the performance further
(and even decreased the performance slightly), so std::unordered_map was
kept as data structure.

57

58

Chapter 5

Results

In the previous chapter various performance optimizations were described.
In this chapter the performance of the optimized SFFT library will be
evaluated and compared to the analysis results of chapter 3.

5.1 Runtime Benchmarks

Figure 5.1 shows the results of a runtime benchmark of the optimized
SFFT implementations and FFTW. Compared to Figure 3.1, the runtime of
the SFFT versions has reduced significantly. The speedup plot in Figure
5.2 illustrates the difference more clearly. Especially SFFT Version 3 has
improved, as it often shows a speedup above 5. Versions 1 and 2 have
also improved, though the achieved speedup is smaller (it is usually in the
range 1.5–3).

The speedup decreases for larger n. For larger n the memory consump-
tion increases and thus the CPU’s cache sizes become a more and more
significant factor. Thus, the optimizations are less successful for large n
and this explains the decrease.

SFFT v1 now beats FFTW for n > 216, while in the original imple-
mentation a signal size of n > 217 was necessary. Thus, the minimum
sparsity-signal ratio for which SFFT v1 becomes useful has doubled.

A benchmark measuring algorithm runtime against signal sparsity k is
shown in Figure 5.3. Like the other benchmarks, this one has also improved
compared to the results of chapter 3 (Figure 3.2).

5.2 Performance

The performance benchmarks of chapter 3 (Figure 3.3) were repeated on
the same hardware. The results are shown in Figure 5.4. The performance

59

214 215 216 217 218 219 220 221 222 223 224

Signal size n

10−5

10−4

10−3

10−2

10−1

100

101
Time [s]

SFFT v1
SFFT v2
SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 5.1: Runtime of different non-optimized SFFT versions versus signal
size n (k = 50).

214 215 216 217 218 219 220 221 222 223 224

Signal size n

1

2

3

4

5

6
Speedup

SFFT v1
SFFT v2
SFFT v3

Figure 5.2: Speedup of the optimized SFFT implementation compared to
the reference implementation (k = 50).

60

25 26 27 28 29 210 211 212

Number of nonzero frequencies k

10−4

10−3

10−2

10−1

100

101
Time [s]

SFFT v1
SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 5.3: Runtime benchmark with varying signal sparsity k (n = 222).

214 215 216 217 218 219 220 221 222 223 224

Signal size n

0.0

0.5

1.0

1.5

2.0

2.5
Performance [GFlop/s]

SFFT v1
SFFT v2
SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 5.4: Performance of optimized SFFT v1, v2 and v3 (k = 50).

61

215 216 217 218 219 220 221 222 223 224

Signal size n

0.5

1.0

1.5

2.0

2.5
Performance [GFlop/s]

SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 5.5: Performance of SFFT v3 with k = 2000.

of the algorithms has improved significantly. In the particular scenario
with k = 50 and input sizes larger than n = 219, SFFT v3’s performance is
competitive to FFTW’s performance. SFFT v1 and v2 performance has also
improved, though the improvement is slightly smaller compared to SFFT
v3. SFFT v3’s performance is even higher for a larger number of nonzero
Fourier coefficients, e.g., for k = 2000 as shown in Figure 5.5.

Note that performance comparison of different algorithms is diffi-
cult. An n-dimensional SFFT calls much lower-dimensional FFTs, where
FFTW’s performance is much better than FFTW’s performance with an
n-dimensional input vector. The performance measurements here are
intended as efficiency comparisons.

5.3 Cold-Cache Benchmarks

The benchmarks shown so far are warm-cache measurements, i.e., it is
assumed that much of the data is already present in the cache. This makes
sense for applications where the SFFT is only one of many steps. For
comparison, Figure 5.6 shows cold-cache performance measurements, and
Figure 5.7 shows the speedup of the optimized SFFT implementation in a
cold-cache scenario. The cold-cache performance of the SFFT algorithms is
lower, especially for SFFT v3.

62

214 215 216 217 218 219 220 221 222 223 224

Signal size n

0.0

0.5

1.0

1.5

2.0

2.5
Performance [GFlop/s]

SFFT v1
SFFT v2
SFFT v3
FFTW (w/ FFTW_ESTIMATE)
FFTW (w/ FFTW_MEASURE)

Figure 5.6: Cold-cache performance of SFFT v1, v2, v3 and FFTW (k = 50).

214 215 216 217 218 219 220 221 222 223 224

Signal size n

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Speedup

SFFT v1
SFFT v2
SFFT v3

Figure 5.7: Speedup of the optimized SFFT library compared to the refer-
ence implementation (cold-cache measurements).

63

Function Runtime [s] % of Total Time Performance
[GFlop/s]

Inner Loops 6.16e-03 86.21 0.41
Estimate Values 9.74e-04 13.64 0.10

Table 5.1: Profile of an SFFT v1 run (optimized).

Function Runtime [s] % of Total Time Performance
[GFlop/s]

Mansour Filter 2.58e-03 50.08 0.82
Inner Loops 2.04e-03 39.56 0.54
Estimate Values 5.27e-04 10.22 0.10

Table 5.2: Profile of an SFFT v2 run (optimized).

5.4 Profiling

Comparing algorithm profiles before and after optimization shows some
interesting characteristics of the algorithms and optimizations. This kind
of analysis gives insight into which optimizations have been successful and
which parts of the algorithms could be optimized well. The profiles are
based on cold-cache measurements.

In SFFT v1 (Table 5.1), the runtime distribution has only changed
slightly. The inner loops part is still dominating. The runtime of each part
has decreased, and thus, the performance of each part has increased. The
performance of the estimate values routine has increased by a whole order
of magnitude (0.1 GFlop/s vs. 0.012 GFlop/s). This can only partly be
explained by the decreased runtime; the algorithm also performs more
floating point operations in the optimized variant.

The SFFT v2 profile (Table 5.2) changed in a similar way. There is one
major difference to SFFT v1, though. The Mansour Filter part, which is an
addition in SFFT v2 and not present in SFFT v1, did not improve much.
This is because there is not much to improve in the Mansour Filter. The
filter performs the following operations:

• It copies data while traversing a vector in large steps. Because of the
large step size this part of the algorithm yields a bad spatial locality.

• It performs a DFT on the copied data, which is implemented as
a call to FFTW. Besides some minor improvements on the FFTW
call (in-place FFT, pre-planning), there is no room for additional
optimizations.

64

Function Runtime [s] % of Total Time Performance
[GFlop/s]

Mansour Filter 1.45e-05 9.67 1.04
Estimate Frequencies 7.36e-05 48.97 0.10
Gaussian Filter 7.39e-06 4.91 1.44
Update Gaussian 9.77e-06 6.50 0.50
Estimate Frequencies 4.05e-06 2.69 0.54
Update Mansour and Gaussian 3.10e-06 2.06 0.50
Permuted Gaussian Filter 4.53e-06 3.01 0.96
Update Gaussian 1.03e-05 6.81 0.56
Estimate Frequencies 5.72e-06 3.80 0.16
Update All 1.91e-06 1.27 0.42
Loop Between Filter 1.55e-05 10.30 0.61

Table 5.3: Profile of an SFFT v3 run (optimized).

Thus, it is no surprise that the Mansour Filter takes about 50 % of the
runtime in the optimized SFFT v2 call. Because the other functions could
be optimized well, the Mansour Filter has become the most time-consuming
part of the algorithm.

The profile of the optimized SFFT v3 is shown in Table 5.3. Compared
to the original profile from chapter 3 (Table 3.4), especially the filters have
improved. In the original profile the filters made up more than 63 % of the
runtime (Mansour Filter 19.81 %, Gauss Filter 26 %, Permuted Gauss Filter
17.25 %). In the optimized version the filters sum up to less than 18 % of the
runtime (Mansour Filter 9.67 %, Gauss Filter 4.91 %, Permuted Gauss Filter
3.01 %). Thus, all filters, especially the Gaussian Filters, could be improved
significantly.

The Gaussian Filters in SFFT v3 are well suited for vectorization, since
mainly arithmetic operations on vectors are performed. This, in combi-
nation with an improved data layout, a different iteration scheme and
other optimizations (see chapter 4 for details), lead to a well performing
implementation of these filters.

It may be surprising that the Mansour Filter in SFFT v3 could be
optimized so well compared to the Mansour Filter in SFFT v2. In SFFT
v3, the Mansour Filter can be implemented with a fixed loop count of 2,
which is usually enough (see section 4.1.3). Additionally, both loops access
the same elements of the vector, but with an offset of 1. Thus, always two
neighboring elements are accessed. This can be exploited by loading the
two neighboring elements at once, so that the spatial locality of the memory
access pattern is increased.

65

1 10 100
Operational Intensity [Flops/Byte]

0.01

0.1

1

10

214
220

214220

SSE Peak Performance (4.0 F/C)

Random
Acce

ss
(6.

3 B/C
)

Performance [Flops/Cycle]

SFFT v1
SFFT v2
SFFT v3

Figure 5.8: Roofline plots of SFFT v1, v2 and v3 (optimized, n = 214 . . . 220,
k = 50).

The Estimate and Update functions have been split in the optimized
version, so more parts show up in the profile. With a relative runtime of
48.97 %, the first Estimate part is clearly the new bottleneck of the imple-
mentation. For various reasons, discussed in section 4.3.3, this part is hard
to optimize.

5.5 Roofline Analysis

The roofline analysis gives insight in the success of optimizations specifi-
cally targeting CPU caches; these optimizations were discussed in section
4.2. Figure 5.8 shows the roofline plots of the optimized SFFT versions. In a
first order approximation the operational intensity, regardless of the version,
has nearly doubled. Thus, the applied optimizations can be considered
successful. However, especially SFFT v3 is still memory-bounded.

5.6 Multithreading

As discussed in section 4.4, it is hard to take advantage of multi-core
processors when implementing SFFT algorithms. The only approach that
works sufficiently well is to run multiple SFFTs in parallel. To implement

66

214 215 216 217 218 219 220 221

Signal size n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Time [s]

SFFT v1 (parallel, data-sharing)
SFFT v2 (parallel, data-sharing)
SFFT v3 (parallel, data-sharing)
SFFT v1 (simple parallelism)
SFFT v3 (simple parallelism)
SFFT v3 (simple parallelism)

Figure 5.9: An experiment comparing the different multithreading imple-
mentations.

this method as good as possible, a data-sharing method was described in
chapter 4. Figure 5.9 shows the difference between the simple approach
(running multiple SFFTs in parallel without data-sharing) and the more
involved approach (running multiple SFFTs in parallel with data-sharing).

The benefit of the data-sharing approach is only very small, and some-
times even non-significant (within error bounds). Nonetheless, there is no
reason not to share data between the different threads.

67

68

Chapter 6

Conclusions

6.1 Evaluation

In the last few chapters the SFFT algorithms were analyzed in detail, possi-
ble optimizations were described and the optimized SFFT implementation
has been benchmarked. Now, the results of this thesis will be evaluated.

One question to answer is whether the SFFT library’s performance is
competitive to other high-performance DFT libraries. As seen in section 5.2,
SFFT v3’s performance is generally above 1 GFlop/s or higher, especially
for larger k. SFFT v1 and v2’s performance is more dependent on the signal
size n than SFFT v3, and typically lower than SFFT v3’s performance. For
smaller input sizes, however, the measured performance was still above
1 GFlop/s on the particular machine.

Compared to the benchmark system’s peak performance (4.4 GFlop/s
single-threaded, scalar execution), this seems small. The roofline analysis
revealed that the algorithms are typically memory-bounded for big input
sizes. The high-performance library FFTW is also memory-bounded for big
input sizes and its maximum performance on the same machine for such
big input sizes is also around 1 GFlop/s. Thus, the SFFT implementation’s
performance can be regarded competitive.

Analysis of the algorithms and the optimizations revealed that some
parts of the algorithms can be optimized very successfully, whereas other
parts tend to be performance blockers. The Gaussian filter applications,
consisting of random spectrum permutation, multiplication with a window
function, computing subsamplings and a DFT, belong to the first group.
These filters occur in different variations in all SFFT algorithms, and will
certainly also be part of improved SFFT algorithms in the future. Other
algorithm parts, like the estimation functions in SFFT v3, are particularly
hard to optimize, because of their memory access patterns, short nested
loops with many branches, or the kind of operations that occur in them.

69

There are some drawbacks, however. SFFT v1 and v2 implementations
only work reliably for very specific input parameters and involve a very
fine grained configuration. SFFT v3 does not have this restriction and gives
reliable results for all input configurations, but it can only be applied to
noiseless signals. Therefore SFFT v3 can only be used in certain scenarios.
SFFT v4, which eliminates this last issue, is so complex that at the time of
this writing no implementation of it exists.

6.2 Outlook

Future work on the SFFT can concentrate on theoretical improvements of the
algorithms as well as implementation-targeted performance improvements.

Theoretical work could further reduce the lower asymptotic runtime
bound for general signals. At the moment, the lower bound for this is
O(k log(n) log(n/k)) for SFFT v4.

Another project could investigate the possibilities of defining SFFT
algorithms without those parts that turned out to be performance blockers.
An implementation of such an algorithm could then be further improved,
based on the results found in this thesis.

Implementation-targeted work could port the SFFT algorithms to spe-
cific hardware or make use of accelerator technologies. The implementation
presented in this thesis was optimized towards high performance on gen-
eral modern x86-based CPUs, and more specifically on Intel CPUs (the
implementation can optionally use the Intel specific IPP library). Future
work could address specific hardware platforms like GPUs, FPGAs, DSPs
or other (co-)processors.

6.3 Summary

The SFFT algorithms are a fast way of performing Discrete Fourier Trans-
forms on signals with only a few nonzero Fourier coefficients. While the
reference implementations of these algorithms are already faster than state-
of-the-art FFT libraries, performance analysis in this thesis showed that the
existing implementations can be improved. Guided by this analysis various
performance optimization strategies were developed and packaged in a
high-performance C++ library. An evaluation of the resulting optimized
SFFT library quantified the performance improvements.

70

Acknowledgments

I would like to thank Professor Markus Püschel, whose supervision and
guidance helped to form this thesis.

The analysis tool perfplot was of great use in this thesis. I would like to
acknowledge Georg Ofenbeck for his help on installation and usage of the
tool.

Furthermore, I would like to express my gratitude to Haitham Has-
sanieh, Piotr Indyk, Dina Katabi and Eric Price from MIT. Without their
work on the Sparse Fast Fourier Transform, this thesis would not have been
possible. I am especially grateful for getting access to the unpublished
reference implementation of SFFT v3.

71

72

Appendix A

Manual

A.1 Introduction

The Sparse Fast Fourier Transform is a DFT algorithm specifically designed for
signals with a sparse frequency domain. This library is a high-performance
C++ implementation of versions 1, 2, and 3 of the different SFFT variants.

A.1.1 When Should I use the SFFT library?

You should use the SFFT library when you want to compute the Discrete
Fourier Transform of a signal and only a few frequency components occur
in the signal. Your signal may be noisy or not, but currently there are some
limitations for noisy signals (see Limitations and Known Bugs).

A.1.2 Target Platform

The SFFT library was optimized to run on modern x86 desktop CPUs with
SSE support (at least SSE2). Optionally the implementation can use the
Intel IPP library, which is only available on Intel platforms.

A.1.3 Limitations and Known Bugs

The SFFT library features implementations of SFFT v1, v2, and v3. SFFT v1
and v2 currently only work with a few specific input parameters. SFFT v3
cannot handle signals with noise.

There are no known bugs so far.

A.1.4 Credits

The SFFT algorithms were invented by Haitham Hassanieh, Piotr Indyk,
Dina Katabi and Eric Price. The implementation of this library is based on

73

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform

their reference implementation of the SFFT. Their results and publications
are found on the Sparse Fast Fourier Transform Website.

A.2 Installation

A.2.1 Prerequisites

The SFFT library was only tested on Linux systems and is only guaranteed
to work there. However, the library should also be able to compile on other
platforms and operating systems.

The following packages have to be installed to compile the library:

• Python (any version > 2.3, including Python 3), used by the waf build
system

• FFTW 3

• (optionally) Intel Integrated Performance Primitives

If you want to build benchmark tools, also install

• Valgrind

The SFFT library is known to work the following compilers:

• GCC (tested with GCC 4.4 and 4.7)

• Intel C++ Compiler (only versions >= 13, does NOT work with ICC
12)

A.2.2 Compiling From Source and Installation

Unpack the tarball and change into the newly created directory (sfft-version).
Then, the SFFT library can be built with a simple:

$./ configure

$ make

and installed with:

$ make install

Some configuration options can be passed to the configuration script.
The most important are:

$./ configure --help

[...]

--debug compile in debug mode

74

http://groups.csail.mit.edu/netmit/sFFT/index.html
https://code.google.com/p/waf/
http://www.fftw.org/
http://software.intel.com/intel-ipp
http://valgrind.org/
http://gcc.gnu.org/
http://software.intel.com/en-us/intel-compilers

--profile add source -level profiling to instruction

counting programs

--without -ipp do not the Intel Performance Primitives

library

[...]

Use --debug and --profile are only useful when developing (see De-
velopment). The option --without-ipp is to be used when you do not have
Intel IPP installed.

When these steps succeded, you should be ready to use the SFFT library.

A.2.3 Linking against the SFFT Library

Two versions of the SFFT library are built when compiling the sourcecode:
a static library (libsfft.a) and a shared library (libsfft.so). You can link these
libraries in your programs like any other library, but you have to make sure
that you link dependencies as well.

Do not forget to link:

• FFTW, for example via pkg-config: pkg-config --cflags --libs fftw3

• Intel IPP (if not disabled via --without-ipp), e.g. -lippvm -lipps

-pthread

• Your compilers OpenMP library, for example -lgomp for GCC

• libm and librt (-lm -lrt)

A.3 Usage

All types and functions of the SFFT library are defined in the header sfft.h.
Include it at the beginning of your program.

A.3.1 Computing Sparse DFTs

Creating Plans

SFFT executions consist of two seperate steps: planning and execution. The
planning phase is only executed once for specific input parameters. After
that, many Sparse DFTs with these input parameters can be computed (on
different input vectors). This concept is similar to FFTW’s concept of plans.

You can create a plan with a call to sfft_plan:

sfft_plan* sfft_make_plan(int n, int k, sfft_version version ,

int fftw_optimization);

75

The call returns a pointer to a struct of type sfft_plan, which has to be
manually freed with sfft_free_plan. Parameters of sfft_make_plan are:

n The size of the input vector.

k The number of frequencies in the signal, i.e. the signal’s sparsity.

version The SFFT algorithm version to use. This must be one of the values
SFFT_VERSION_1, SFFT_VERSION_2, or SFFT_VERSION_3.

fftw_optimization FFTW optimization level. Usually one of FFTW_MEASURE
and FFTW_ESTIMATE. Since experiments showed that there is little
benefit in using the more expensive FFTW_MEASURE, the best choice is
typically FFTW_ESTIMATE.

Creating Input Vectors

The storage for SFFT input vectors has to allocated using sfft_malloc:

void* sfft_malloc(size_t s);

The reason for this is that the implementation requires a specific mem-
ory alignment on the input vectors. You can use sfft_malloc as a drop-in
replacement for malloc.

Input vectors should be of type complex_t, which is a typedef to the C
standard library’s type double complex.

Storage allocated with sfft_malloc must be freed with this function:

void sfft_free(void*);

Creating the Output Datastructure

The output of the SFFT is stored in an associative array that maps frequency
coordinates to coefficients. The array should be of type sfft_output, which
is a typedef to an std::unordered_map. Before executing the SFFT plans,
you need to create the output datastructure. A pointer to it is passed to the
SFFT execution call and the datastructure filled with the result.

Computing a Single Sparse DFT

Once a plan is created, input vectors are created filled with data, and an
output object was allocated, the SFFT plans can be executed. The function
for this is:

void sfft_exec(sfft_plan* plan , complex_t* in , sfft_output* out);

Parameters should be self-explanatory. After execution of this function,
the output of the DFT is stored in *out.

76

Signal size n # frequencies k Signal size n # frequencies k

8192 50 8388608 50
16384 50 16777216 50
32768 50 4194304 50
65536 50 4194304 100

131072 50 4194304 200
262144 50 4194304 500
524288 50 4194304 1000

1048576 50 4194304 2000
2097152 50 4194304 2500
4194304 50 4194304 4000

Table A.1: Valid input parameter combinations for SFFT v1 and v2.

Computing Multiple Sparse DFTs

If you want to run multiple SFFT calls on different inputs (but with the
same input sizes), you can use sfft_exec_many to run the calls in parallel:

void sfft_exec_many(sfft_plan* plan ,

int num , complex_t ** in , sfft_output* out);

The function is very similar to sfft_exec, but you can pass it put num
input-vectors and num output-objects. The SFFT library used OpenMP
for parallelization; thus, you can use either the environment variable
OMP_NUM_THREADS or OpenMP library functions to adjust the number of
threads. Be careful: do not use different thread number configuration for
the call to sfft_make_plan and sfft_exec_many. Otherwise your program
will crash!

A.3.2 SFFT Versions

Currently, three different SFFT versions are implemented: SFFT v1, v2, and
v3.

SFFT v3 is the algorithm of choice when your input signals are exactly-
sparse; that is, there is no additional noise in the signals. SFFT v3 will not
work with noisy signals.

SFFT v1 and v2 can also be applied to noisy signals, but they only
work with certain input parameter combinations. Valid input parameters
combinations are shown in Table A.1.

77

A.4 Development

A.4.1 Development and Benchmark Tools

The SFFT library includes some useful tools for development and bench-
marking. To enable them, you have to configure with the --develop flag.
Then, the following programs will be built additionally:

sfft-cachemisses Runs an SFFT on random input. The tool is handy
when used with Valgrind’s cachegrind tool. The program includes
some instructions to disable valgrind during the input-generation
and planning phases. Thus, when the program is analyzed with
cachegrind, only the execution phase will be observed.

sfft-instruction_count Counts the floating point instructions of the spec-
ified SFFT call (configured with program parameters, see below) and
prints them. When the configuration option --profile was defined,
this will also print a profile of the SFFT call.

sfft-profiling Another program that runs a configurable SFFT call. This
program will be compiled with the profiling flags pg, so that it can be
analyzed with the gprof profiling tool.

sfft-timing A program that accurately measures the runtime of the speci-
fied SFFT call. This can be used by benchmark scripts.

sfft-timing_many Similar to sfft-timing, but measures the parallel exe-
cution of multiple SFFT calls.

sfft-verification This program runs the specified SFFT call and checks
that the output is correct. This is useful for testing.

All of the programs run one or many SFFT executions. Random input
data is generated automatically. The programs share the following common
options:

-n SIZE The size of the input signal.

-k NUMBER Number of frequencies generated in the random input signal.

-r REPETITIONS NOT available for sfft-timing_many. Allows to compute
multiple SFFTs. Default: 1.

-i NUM Only available for sfft-timing_many. Generate NUM inputs.

-s Only available for sfft-timing_many. Do not share data between threads.
This is slower.

78

-v VERSION Selects the algorithm version to use. VERSION is either 1, 2, or
3. “

-o When -o is used, FFTW_MEASURE is used for FFTW calls instead of
FFTW_ESTIMATE.

-h Displays help.

A.4.2 An Overview of the Sourcecode

Here is an overview of the purpose of different sourcefiles:

cachemisses.cc, timing.cc, timing_many.cc, instruction_count.cc,

instruction_count.cc, verification.cc, simulation.[cc,h]
The main routines and some support code for all development tools
are located in these files.

computefourier-1.0-2.0.[cc,h] Algorithm sourcecode for SFFT v1 and v2.

computefourier-3.0.[cc,h] Algorithm sourcecode for SFFT v3.

fft.h, common.[cc,h], utils.[cc,h] Some common code and datatypes.

fftw.[cc,h] Interface code for FFTW calls.

filters.[cc,h] The routines to generate filter vectors are in here.

intrinsics.h Some compiler-specific abstractions to include the correct in-
trinsics header.

parameters.[cc,h] Parameter configuration for SFFT v1, v2.

profiling_tools.h Some preprocessor tools to allow profiling, used when
compiled with --profile.

roofline.cc A program to use with the roofline tool perfplot. Can be built
with tools/build-roofline.sh.

sfft.[cc,h] User interface code and basic datastructures. The headerfile is
to be included by users.

timer.[cc,h] Functions for accurate timing, used by sfft-timing.

flopcount/ Files in this directory are used to count floating point operations,
used by sfft-instruction_count.

79

80

List of Figures

1.1 Performance of DFTs of signals with k = 50 frequency com-
ponents. 8

2.1 A signal x before and after permutation. 15
2.2 Amplitude spectrum of a simple flat window function based

on a Gaussian function. 16
2.3 Gaussian Standard Window Function applied to a sample

signal. 18
2.4 Effects of the individual signal manipulation steps in the

frequency domain. 21
2.5 A simplified flow diagram of SFFT v1. 22
2.6 A simplified flow diagram of SFFT v3. 26

3.1 Runtime of different non-optimized SFFT versions versus
signal size n (k = 50). 34

3.2 Runtime of different non-optimized SFFT versions versus
signal sparsity k (n = 222). 34

3.3 Performance of SFFT v1, v2 and v3 (non-optimized, k = 50)
and FFTW. 35

3.4 An exemplary roofline plot. 38
3.5 Roofline plots of SFFT v1, v2 and v3 (non-optimized, n =

214 . . . 220, k = 50). 39

4.1 A comparison of the different FFTW options for the internal
use in the SFFT algorithms. 42

4.2 An illustration of the different storage formats. 50

5.1 Runtime of different non-optimized SFFT versions versus
signal size n (k = 50). 60

5.2 Speedup of the optimized SFFT implementation compared
to the reference implementation (k = 50). 60

5.3 Runtime benchmark with varying signal sparsity k (n = 222). 61
5.4 Performance of optimized SFFT v1, v2 and v3 (k = 50). . . . 61

81

5.5 Performance of SFFT v3 with k = 2000. 62
5.6 Cold-cache performance of SFFT v1, v2, v3 and FFTW (k = 50). 63
5.7 Speedup of the optimized SFFT library compared to the

reference implementation (cold-cache measurements). . . . 63
5.8 Roofline plots of SFFT v1, v2 and v3 (optimized, n = 214 . . . 220,

k = 50). 66
5.9 An experiment comparing the different multithreading im-

plementations. 67

82

List of Tables

1.1 Different DFT algorithms for sparse signals and their proper-
ties. 11

3.1 The different versions of the Sparse Fast Fourier Transform
and their asymptotic runtimes. 29

3.2 Profile of an SFFT v1 run (non-optimized). 36
3.3 Profile of an SFFT v2 run (non-optimized). 36
3.4 Profile of an SFFT v3 run (non-optimized). 37

5.1 Profile of an SFFT v1 run (optimized). 64
5.2 Profile of an SFFT v2 run (optimized). 64
5.3 Profile of an SFFT v3 run (optimized). 65

A.1 Valid input parameter combinations for SFFT v1 and v2. . . 77

83

84

Bibliography

[CT65] James W. Cooley and John W Tukey. An algorithm for the
machine calculation of complex Fourier series. Mathematics of
Computation, 19(90):297–297, May 1965.

[DS00] J. Dongarra and F. Sullivan. Guest Editors Introduction to
the top 10 algorithms. Computing in Science & Engineering,
2(1):22–23, January 2000.

[FJ] M. Frigo and S.G. Johnson. FFTW Library. http://fftw.org.

[FJ05] M. Frigo and S.G. Johnson. The Design and Implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, February 2005.

[FP09] Franz Franchetti and Markus Puschel. Generating high per-
formance pruned FFT implementations. In 2009 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pages
549–552. IEEE, April 2009.

[GST08] AC Gilbert, MJ Strauss, and JA Tropp. A tutorial on fast fourier
sampling. . . . Processing Magazine, IEEE, (March 2008):57–66,
2008.

[HAKI12] Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk.
Faster GPS via the sparse fourier transform. Proceedings of
the 18th annual international conference on Mobile computing and
networking - Mobicom ’12, page 353, 2012.

[Har78] Fredric J Harris. On the use of windows for harmonic analysis
with the discrete fourier transform. Proceedings of the IEEE,
66(1):51–83, 1978.

[HIKP12a] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price.
Nearly Optimal Sparse Fourier Transform. Arxiv preprint
arXiv:1201.2501, (1):28, January 2012.

85

http://fftw.org

[HIKP12b] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price.
Simple and practical algorithm for sparse Fourier transform.
In SODA ’12 Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1183–1194. SIAM
©2012, January 2012.

[IGS07] MA Iwen, A Gilbert, and M Strauss. Empirical evaluation of
a sub-linear time sparse DFT algorithm. Communications in
Mathematical . . . , 5(4):981–998, 2007.

[IM] Piotr Indyk and D S Mar. Sample-Optimal Average-Case Sparse
Fourier Transform in Two. pages 1–30.

[Iwe] Mark Iwen. AAFFT. http://aafftannarborfa.sourceforge.

net/.

[KHPI] Dina Katabi, Haitham Hassanieh, Eric Price, and Piotr Indyk.
The SFFT Algorithms. http://groups.csail.mit.edu/netmit/
sFFT/.

[Man95] Y Mansour. Randomized interpolation and approximation of
sparse polynomials. SIAM Journal on Computing, 1995.

[Mar71] J. Markel. FFT pruning. IEEE Transactions on Audio and Electroa-
coustics, 19(4):305–311, December 1971.

[Nvi07] Nvidia. CUDA CUFFT Library. https://developer.nvidia.

com/cufft, 2007.

[per13] Perfplot Roofline Analysis Tool. https://github.com/

GeorgOfenbeck/perfplot, 2013.

[RKH10] K.R. Rao, D.N. Kim, and J.-J. Hwang. Fast Fourier Transform -
Algorithms and Applications. Signals and Communication Tech-
nology. Springer Netherlands, Dordrecht, 2010.

[Sil] Craig Silverstein. The Google SparseHash Library. https:

//code.google.com/p/sparsehash/.

[SR79] T. Sreenivas and P. Rao. FFT algorithm for both input and
output pruning. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 27(3):291–292, June 1979.

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson.
Roofline. Communications of the ACM, 52(4):65, April 2009.

86

http://aafftannarborfa.sourceforge.net/
http://aafftannarborfa.sourceforge.net/
http://groups.csail.mit.edu/netmit/sFFT/
http://groups.csail.mit.edu/netmit/sFFT/
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://github.com/GeorgOfenbeck/perfplot
https://github.com/GeorgOfenbeck/perfplot
https://code.google.com/p/sparsehash/
https://code.google.com/p/sparsehash/

	Introduction
	Motivation
	Thesis Objective
	Related Work
	Contributions and Results
	Outline

	The Sparse Fast Fourier Transform
	Notation
	Basic Principles
	Random Spectrum Permutation
	Window Functions
	Fast Subsampling and DFT

	SFFT Version 1
	SFFT Version 2
	SFFT Version 3
	SFFT Version 4

	Performance Analysis
	Asymptotic Runtime
	Sparse Fast Fourier Transform Version 1
	Sparse Fast Fourier Transform Version 3

	Benchmarks
	Profiling
	Roofline Analysis

	Performance Optimizations
	Instruction Reduction
	FFTW
	Inlining and explicit complex arithmetic
	Fixed loop configurations
	Optimizing Individual Instructions

	Cache Usage Optimizations
	Chunking
	Data Layout
	Stride-2 FFTs

	Vectorization
	SSE Support and Memory Alignment
	SSE Implementations of Compute Intensive Functions
	More Vectorization

	Multithreading
	Parallelizing Filters using OpenMP
	Coarse Multithreading

	Miscellaneous Optimizations
	Compilers and Compiler Options
	High-Performance Trigonometric Functions and Intel IPP
	Result Storage Data structure

	Results
	Runtime Benchmarks
	Performance
	Cold-Cache Benchmarks
	Profiling
	Roofline Analysis
	Multithreading

	Conclusions
	Evaluation
	Outlook
	Summary

	Acknowledgments
	Manual
	Introduction
	When Should I use the SFFT library?
	Target Platform
	Limitations and Known Bugs
	Credits

	Installation
	Prerequisites
	Compiling From Source and Installation
	Linking against the SFFT Library

	Usage
	Computing Sparse DFTs
	SFFT Versions

	Development
	Development and Benchmark Tools
	An Overview of the Sourcecode

