2021 IEEE High Performance Extreme Computing Conference
(HPEC)

Delayed Asynchronous Iterative Graph Algorithms

Mark P. Blanco*, Scott McMillanf, Tze Meng Low*

*Dept. of Electrical and Computer Engineering

tSoftware Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, United States
{markbl, scottmc, lowt} @cmu.edu

Abstract—TIterative graph algorithms often compute intermedi-
ate values and update them as computation progresses. Updated
output values are used as inputs for computations in current or
subsequent iterations; hence the number of iterations required
for values to converge can potentially reduce if the newest values
are asynchronously made available to other updates computed in
the same iteration. In a multi-threaded shared memory system,
the immediate propagation of updated values can cause memory
contention that may offset the benefit of propagating updates
sooner. In some cases, the benefit of a smaller number of
iterations may be diminished by each iteration taking longer.
Our key idea is to combine the low memory contention that
synchronous approaches have with the faster information shar-
ing of asynchronous approaches. Our hybrid approach buffers
updates from threads locally before committing them to the global
store to control how often threads may cause conflicts for others
while still sharing data within one iteration and hence speeding
convergence. On a 112-thread CPU system, our hybrid approach
attains up to 4.5% - 19.4% speedup over an asynchronous
approach for Pagerank and up to 1.9% - 17% speedup over
asynchronous Bellman Ford SSSP. Further, our hybrid approach
attains 2.56x better performance than the synchronous approach.
Finally, we provide insights as to why delaying updates is not
helpful on certain graphs where connectivity is clustered on the
main diagonal of the adjacency matrix.

I. INTRODUCTION

Many graph operations perform updates on the same ver-
tices repeatedly. In such algorithms a vertex’s value is set,
used as inputs in future computations, and later updated to a
more ‘correct’ value. Through multiple iterations, or rounds,
the vertex values converge to some stopping point and the
algorithm terminates. In this paper, we refer to these as
iterative graph algorithms.

Excluding algorithms that require some strict ordering
on work performed such as parent-list Breath First Search
(BFS) and Dijkstra’s SSSP [1]], iterative graph algorithms
may be implemented with either synchronous or asynchronous
approaches. Operating synchronously, information generated
during one iteration is made available only at the start of
the next iteration. The advantage of such an approach is that
it simplifies multi-threaded implementations. As long as the
output vertex values are computed by different threads, each
thread can perform the work assigned to it in a particular
iteration without requiring synchronization with other threads.
Only a single synchronization between all threads at the
end of each iteration is required. The drawback of such an
implementation is that the vertex values in a single iteration are
all restricted to the “stale” values obtained in the last iteration.

TABLE I: Number of rounds and average round time for Page
Rank on GAP benchmark graphs, 32-thread Intel Haswell.

Rounds Avg. Time per Round (s)

Graph ~ Synch Asynch Hybrid Synch Asynch Hybrid
Kron 7 5 5 2.94 3.02 2.92
Road 39 18 20 0.02 0.02 0.02
Twitter 22 18 18 0.87 0.86 0.78
Urand 6 4 4 4.06 4.11 4.02
Web 29 19 22 0.16 0.15 0.14

This slows down the propagation of newly generated vertex
values, as the new values are only available at the start of the
next iteration.

In contrast, asynchronous implementations make informa-
tion generated during a round immediately available to subse-
quent computations in the same iteration. Data is propagated
as fast as the underlying computer architecture and the graph
topology allow. Hence, the algorithm may converge to a stop
in fewer total iterations. A comparative work of multiple graph
algorithms implemented across multiple graph libraries in part
showed that asynchronous versions of Page Rank tended to
out-perform synchronous versions [2]]. Past and recent works
also corroborate this observation [3]], [4].

However, the very property of sharing information im-
mediately in asynchronous algorithms may correspondingly
increase the time to compute each iteration in a multi-
threaded implementation. For multi-threaded implementations
on shared memory machines, newly computed data will be
stored to a memory location that can be accessed by all
threads. This may invalidate previously loaded cache lines,
forcing threads reading data from those cache lines to reload.
As such, while the number of iterations tends to be lower, the
average time per iteration may increase.

In this paper, we discuss the implementation of delayed
asynchronous iterative graph algorithms, a hybrid solution that
combines the benefits of both synchronous and asynchronous
algorithms. Specifically, our proposed delayed asynchronous
algorithm reduces the number of individual writes in which
updated information is propagated to all threads. This in turn
reduces the potential memory conflicts that may result in
increased execution time per round. A tunable parameter ¢
is introduced to determine how often newly computed data is
propagated. Setting 6 to 0 makes our hybrid solution similar
to a fully asynchronous algorithm, while setting it to “infinity”
makes it a synchronous implementation.

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: Pending Release by IEEE

We illustrate the benefits of the delayed asynchronous algo-
rithms over both synchronous and asynchronous algorithms in
Table [I| by comparing the number of rounds and average time
per round of the 3 styles of algorithms for computing Page
Rank on the 5 graphs defined in the GAP benchmark [5]. The
asynchronous approach finishes in 2 to 21 fewer iterations over
its synchronous counterpart. However, in the case of Urand
and Kron, the average time to compute each round increases
(bolded). For the other graphs, the time per round remains
about the same. Our proposed hybrid approach similarly
reduces the number of rounds as the asynchronous approach.
In addition, each round of our hybrid solution takes the least
time among the three solutions. This yields better overall
runtimes than the other two approaches for 3 of 5 graphs.

Contributions: The contributions of this paper are:

o We introduce delayed asynchronous iterative graph al-
gorithms, a hybrid that combines the benefits of both
synchronous and asynchronous graph algorithms.

o We discuss the factors that affect the choice of different
values of 0, the delay parameter, which allows one to
design an implementation that is a hybrid between the two
extremes, i.e. synchronous and asynchronous algorithms.

o We demonstrate the performance benefits of the delayed
asynchronous algorithm where the performance improve-
ment of Page Rank on moderately-threaded CPU (32
threads) is between 2.4 and 9.5%, and between 4.5
- 19.4% on a highly parallel CPU (112 threads). On
Bellman-Ford Single Source Shortest Paths, the improve-
ment is between 1.9 and 17% for 112 threads.

II. BACKGROUND AND MOTIVATION
A. Synchrony and Asynchrony in Graph Algorithms

Synchronous and asynchronous graph algorithms are dis-
cussed extensively in graph literature. Specifically for Page
Rank, a common approach is to contrast Gauss-Seidel itera-
tive computation with Jacobi synchronous iterative computa-
tion [3]], [4]], [6] based on linear algebraic methods.

Architecturally, many works on asynchronous graph algo-
rithms focus on distributed execution, where iterative, bulk-
synchronous parallel execution is considered [7]. Some works
study completely asynchronous execution policies without
distinct compute iterations, or super-steps [[8], [9]]. These works
focus on removing points of synchronization and focus entirely
on asynchronous execution in a distributed environment.

Xie et al. combine super-step-free asynchrony with synchro-
nized iterative operation, but do not algorithmically combine
the two; instead they switch between two distinct modes using
a heuristic [[10].

Similar asynchronous execution is explored on single-node
shared memory systems using thread-local work queues [11]]
and bulk-asynchronous parallel execution on heterogeneous
systems [12]. These works focus on asynchronous execu-
tion, without considering the benefits of hybrid synchronous-
asynchronous behavior.

Vora et al. address asynchronous execution in a shared-
memory distributed setting, wherein high inter-node latency

may cause excessive use of stale data without best-effort
refresh policies [13]. By contrast, we reduce cache line inval-
idations in a single-node shared memory system by delaying
writes to shared memory and thus increasing use of stale
values in a controlled manner.

Overall, our work differs from those described in that we
seek a more general approach for synchronous and asyn-
chronous execution to apply to Page Rank and other graph
operations. Our approach specifically combines both execution
styles within the same iteration to enable flexibility in blending
their benefits. We apply this algorithmic innovation to itera-
tive graph algorithms on single-node shared-memory systems,
where the previous works have focused on either distributed
systems, non-hybrid asynchronous execution, or both.

B. Hybrid Graph Algorithms

A small group of graph algorithms are designed through the
blending of two or more “classical” algorithms. Two examples
of such hybrids are the direction-optimizing breath first search
(DO-BFS) [14] and delta-stepping single source shortest paths
(DS-SSSP) [15].

DO-BFS is derived from the classical top-down and bottom-
up approaches, sometimes referred to as push and pull-
style [[14f], [16]]. At the end of each iteration of DO-BFS, a
heuristic decides if the push or pull implementation will be
used in the next iteration. In this case, the algorithm uses both
classical algorithms separately such that only one is invoked
during each iteration.

DS-SSSP is a single algorithm that is a hybrid between two
classical SSSP algorithms, Dijsktra SSSP [[17] and Bellman-
Ford [18]. Unlike DO-BFS, DS-SSSP blends the character-
istics of the two classical algorithms through setting of the
parameter A. Setting the parameter A to zero, DS-SSSP is
functionally equivalent to Dijkstra SSSP. When A is set to
infinity, DS-SSSP is equivalent to the Bellman-Ford algorithm.
Typically, the step-size A is graph-dependent. Recently, it has
been shown that allowing the value of A to change between
different iterations can attain better performance [|19].

The approach taken by DO-BFS discretely switches be-
tween existing algorithms. Chakravarthy et al. use this same
approach in combining direction optimization and mode
switching between DS-SSSP and Bellman-Ford to speed con-
vergence [20].

In contrast, our delayed asynchronous algorithm is similar
to the DS-SSSP algorithm in that the parameter, J, controls
how much of the characteristics of either synchronous or asyn-
chronous algorithms is present in the final implementation. The
parameter § allows us to fine-tune the hybrid nature of our
approach without a discrete mode-switch and yields a novel
hybrid algorithm.

III. DELAYED ASYNCHRONOUS GRAPH ALGORITHMS

Our proposed delayed asynchronous algorithm is similar to
the synchronous algorithm in that computed values are first
written into output buffers separate from the input buffer that
is shared globally. When these output buffers are full, they are

Legend Asynchronous Delayed - Asynchronous Synchronous
Data Array: Input and Output Array | Input and Output Array ~ Thread-Local Input Array Output Array -
081 08&1 081 _0&1 Delay Bufers 1 08&1 0 1 3
[0 e
Thread Cache Residence: a @ 1 0 1 0|
n&m
Stale Vertex Data: QO
0&1 1 0&1 0&1 1 08&1 0 1
Updated VeriexData: © 11
Buffer (with Update): ﬁ@* update E ﬁ
@] from 1
Thread n Reads: 0&1 0&1
Thread n Writes: a«
0&1 0&1 0&1 1 0&1 08&1 0 1
Thread n Fiushes Local .
Buffer: a ol w g
n

Fig. 1: Legend and three panels showing two threads reading and writing two cache lines of data in asynchronous (left), hybrid
delayed asynchronous (middle), and synchronous (right) modes. Yellow dots represents newly computed values; grey dots
are old values. Asynchronous execution incurs a cache line invalidation for thread 0 when thread 1 writes into a cache line
previously read by thread 0. The other two implementations avoid the invalidation by writing to an external buffer. Delayed
asynchronous makes the updated values available faster than synchronous execution.

flushed and data is written into the global input buffer to be
used by all threads. By setting the output buffer size to a value
that is smaller than the number of vertices assigned to a thread,
the delayed asynchronous algorithm can be made to perform
flushing of the data more than once per iteration. The flushing
of the output buffer multiple times makes newly computed
values available before the end of the current iteration; making
the proposed algorithm a hybrid of both the synchronous and
asynchronous algorithms.

We illustrate how our delayed asynchronous algorithm is a
hybrid of both the synchronous and asynchronous algorithms
in Figure[T] Vertex data mapping into two adjacent cache lines
is read and written by two threads in an asynchronous fashion.
In the presence of one writer to the second cache line, thread
0 is unable to access any data stored in that line. Only after
thread 1 finishes writing can thread O access data in the same
cache line. Hence, even having a single writer among readers
in asynchronous execution can cause delays for threads reading
data in order to compute their own vertex updates.

In the center of Figure [I] the write that caused a cache
line invalidation for thread O is delayed by thread 1, allowing
thread O to proceed using stale data. Delaying updates in this
way can reduce write-read contention with other threads, in
the same way that fully synchronous execution avoids such
conflict by writing all new values to a completely separate
array from the one which threads read from (right side of
the figure). However, in the hybrid approach, updates are
still made available to other threads at some point during an
iteration, as in the center panel where thread 0’s last access is
to data updated at some point earlier in the same iteration.

A. Design decisions

Our hybrid solution is designed to reduce memory over-
heads arising from cache line invalidation due to the coher-
ence protocol in multi-threaded asynchronous execution. On
modern shared memory systems, cache lines are invalidated

when a thread updates a value in a cache line that has been
read by multiple threads. To reduce the number of cache
line invalidations, the following decisions were made for our
implementation:

o Pull-style implementations. A pull-style algorithm, where
each vertex value is updated by one and only one thread,
is utilized. This prevents the situation where multiple
threads update the same memory location and cause
excessive cache invalidation due to multiple writes.

e Separate thread-local output buffer. Similar to syn-
chronous algorithms, the computed outputs are written
to a separate buffer from the inputs. As inputs are in
a separate memory location, writes to the output will
not invalidate data that was previously read since no
cache lines are shared. For our implementation, the output
buffers are separate and thread-local.

e Blocked partitioning of work. The work to be computed
is partitioned amongst all threads in a contiguous blocked
fashion using the given vertex IDs. Vertices are allocated
to individual threads in a way that balances the aggregate
number of in-neighbors per thread as much as possible.
This allows us to allocate contiguous chunks of memory
for storing the outputs of each thread. Furthermore, this
blocked partitioning also reduces the number of cache
lines that are “dirtied” when the updated vertex values are
pushed to the global memory space. For ease of imple-
mentation, our implementation uses a static partitioning
of the vertices across all iterations of the algorithm.

B. Delaying propagation with parameter §

The delayed asynchronous approach introduces a parameter
0 to control how much delay is applied to threads’ updates.
Based on 4, updates are stored locally to the thread and only
copied into the global memory location when either 1) the
buffer capacity determined by J is exhausted, or 2) the thread
has completed all assigned work for that iteration.

When § is set to 0, there is no delay buffer, and data is
immediately written out to the global buffer. This is equivalent
to the asynchronous algorithm. Similarly, when ¢ is set to
the number of output values assigned to each thread, then all
threads can store all their outputs before having to flush the
buffer. This is equivalent to the synchronous version.

¢ is sized in vertex data elements to a multiple of the cache
line size so that flushing a full buffer makes maximal use of
bringing a cache line in from a further level of cache. Finally,
coalesced updates provided by an aligned buffer enable use
of aligned vector loads. We discuss other factors affecting the
choice of ¢ in Section

C. Local vs Global Reads

While we have focused on reducing memory conflicts when
storing newly computed values, we highlight that there are two
different variants for reading vertex values.

A simple implementation of the hybrid implementation is
for threads to read from the global memory space. Newly up-
dated values will not be available until individual threads flush
them into the global memory space. As asynchronous algo-
rithms speed up convergence by propagating newly computed
values as quickly as possible, an alternative implementation is
to allow individual threads to read values previously computed
but not flushed from their own delay buffer. This allows even
faster information propagation. As the delay buffers are thread-
local, there will not be memory conflicts.

In testing this alternate implementation, it is rarely faster
than reading from the global memory space. For the rest of
this paper, we only discuss results for global reading.

IV. FACTORS AFFECTING DELAY PARAMETER §

Picking good values for ¢, the delay parameter that blends
the implementation between fully asynchronous and fully
synchronous, depends on the platform, input, and algorithm.
We examine the different conditions that affects how the
parameter ¢ should be selected. In this section, we examine
the following factors:

1) Number of threads

2) Connectivity of graphs (Graph Topology)

3) Average number of updates in an iteration.

We evaluate pull-based Page Rank and Bellman Ford
SSSP. For each algorithm, we test using the GAP benchmark
graphs [5]. Details of the graphs are shown in Table [T, We
report the performance of synchronous, asynchronous, and
multiple ¢ set-points for delayed asynchronous to determine
which has the best performance for otherwise identical run-
time conditions (same work allocation, unconditionally storing
updates). We test values of § in power-of-two sizes from 16
up to 32768 elements, where each element is 32-bits. Page
rank scores are computed with floating point values and SSSP
path lengths are computed with 32-bit unsigned integers.

For both workloads, each instance (synchronous, asyn-
chronous, delayed asynchronous) is run for three trials and the
average is taken. In Page Rank, each trial runs to a convergence
criterion such that the total absolute page rank score change

TABLE II: Statistics of GAP Benchmark Graphs

Graphs Vertices Edges Symmetric?
Road 577 M 239 M yes
Urand 42950 M 1342 M yes
Kron 42233 M 1342 M yes
Twitter 1,468.4 M 61.6 M no
Web 1,9303 M 506 M no

across vertices from the penultimate iteration totals le-4. For
SSSP, the stopping criteria is that no update was generated in
the last iteration.

All experiments were performed on two Intel architectures:
dual-socket Haswell (Xeon E5-2667 v3) with 16 cores and
32 threads at 3.2 GHz and dual-socket Cascade Lake (Xeon
Platinum 8280) with 56 cores and 112 threads at 2.7 GHz.

A. Delaying Dense Updates in Many-Threaded Page Rank

At each iteration of Page Rank, a vertex value is likely
to change because it is computed as a weighted combination
of scores among incoming neighbors. A change in even one
in-neighbor’s score will change the vertex score and hence
timeliness of any new information matters. For such dense
updates and at the largest number of threads on each platform,
fully asynchronous execution may incur a large number of
conflicts as each thread writes to the vertices assigned to
it, potentially invalidating a cache line for other threads
repeatedly as it generates updates for each vertex score in the
cache line one at a time. Therefore, the benefit of the hybrid
approach should be clearly visible at the maximum number
of threads, because it balances the benefit of sharing updates
earlier with a reduction in number of write-accesses to shared
cache lines.

Figure [2] confirms these two points concerning the perfor-
mance of asynchronous and delayed asynchronous implemen-
tations, normalized against synchronous performance. First,
asynchronous and hybrid execution always offer better perfor-
mance compared to the baseline synchronous implementation.
This confirms that sharing information sooner, especially in the
dense update environment, leads to faster convergence. Sec-
ond, delaying updates often offers a performance improvement
over the asynchronous approach by consolidating writes from
threads. The improvement over asynchronous execution across
all GAP graphs is between 2.4% to 9.5% on the Haswell
system and between 4.5% to 19.4% on the Cascade Lake
system with all threads active.

B. Scaling Threads with Dense Updates in Page Rank

As the number of threads increases for these graphs, the
amount of work per thread decreases and inter-thread commu-
nication may increase. Hence we would expect to see larger
values of & be effective for a low number of threads, while
a smaller value of & would be better at a high thread count
because it shares information faster.

For the largest thread setting in the scaling study, we use
all available hyper-threads on the machine. Both machines are
dual-socket, so the next lowest thread setting - half of the

Page Rank: Async and Delayed-Async vs Synchronous, 32 Thread Haswell

w

g
w»

[N}

Speedup over Synchronous
[
v

[=}
o n =

Twitter

W Async ™ Delayed-Async

Page Rank: Async and Delayed-Async vs Synchronous, 112 Thread Cascade Lake

Improvement from Asynchronous :
to Delayed-Asynchronous

Speedup over Synchronous

I = N~

o (5] = (%] N w
¥
e
= !
R

Kron Road Twitter Urand Web

Fig. 2: Page Rank spe.eﬁyuni) .o[sgedég?yrrféhronous baseline (red

line), for asynchronous and delayed asynchronous implemen-
tations. For each graph except web, delaying updates improves
performance over the asynchronous approach, which in turn
is always better than synchronous execution.

thread complement - is arranged across sockets to avoid hyper-
threading. Below this, the thread count is progressively halved
and they are pinned with their memory on one socket.

Figures [3] and [] show the runtime of the delayed and
asynchronous approaches at each thread configuration for
Kron and Web. Detailed plots for Twitter, Urand, and Road are
omitted due to space constraints. The value of § that achieves
the annotated stated speedup over asynchronous is shown with
a grey line on the secondary axis.

Indeed, on Kron, the best ¢ decreases as the number of
threads increases, for two likely reasons. First, less work per
thread for a large number of threads implies fewer updates
generated per thread. Second, updates must be communicated
sooner to avoid slowing convergence in the presence of many
threads and the long range connections present in Kron. This
is consistent with requiring more information transfer, while
still needing some delay in updates to avoid excessive conflict
between threads reading and writing.

For Web, the best value of § is often the smallest one
tested (16 elements), and delayed asynchronous execution is
always worse than asynchronous. As we discuss in the next
subsection, this is attributable to the Web’s topology.

C. Effects of Graph Topology

Graph topology is expected to affect the amount of commu-
nication between threads, which in turn affects the potential
for write-read contention on cache lines. Here we study thread
communication induced by the topologies of Kron and Web.

Page Rank Asynchronous vs Delayed-Async, Kron, Haswell

E Asynchronous mmm Delayed-Async (% Speedup) Buffer Size (8)

100 32768

+4.1%

80 . 40%
B 60 512 g
< +4.5% &
9 5}
g 40 +3.6% o £
20 I I +8.0% +3.5% 8 o
) AR EEm .
2 4 8 16 32
Number of Threads
Page Rank Asynchronous vs Delayed-Async, Web, Haswell
mmmm Asynchronous mmmm Delayed-Async (% Speedup) Buffer Size (8)
30 -9.2% 128
25 64
» 20 32 g
e -4.3% 16 »n
o 15 5
2 o 8 @
8 10 -3.5% . =
-8.8%
; il -
. HEl mm
2 4 8 6

1 32

Number of Threads

Fig. 3: Thread Scaling for Pagerank on up to 32 threads,
Haswell system. For Kron the best buffer sizes (value of)
trend downward as thread count increases. On Web, even the
smallest tested § value (16) does not achieve improvement
over asynchronous execution.

Recall that in each of these experiments, we statically assign
vertices to threads based on their degree in contiguous blocks.
In one round of Page Rank, we instrument the number of reads
by each thread into every other thread’s assigned vertex data.
This effectively creates a coarsened adjacency matrix of the
graph with partitions based on the static work assignment.

Figure [5] shows the number of accesses made to data that a
thread will change itself (local) v.s. reads on data that another
thread will write in that round. The row index corresponds
the thread ID reading, and the column index corresponds to
the thread ID that ‘owns’ (writes) that data. In spite of the
balanced number of edges assigned to each thread, some graph
topologies cause a larger proportion of local compared to
remote accesses.

Kron and Web are both scale free. However, while Kron
exhibits relatively diffuse reads from all threads, Web exhibits
dense clustering in which the thread writing some range of
vertex data is a major reader of that data. Figure [5] shows that
the darkest read-write regions are on the main diagonal. As
updates are used mainly by the thread that creates them, there
is little benefit in delaying the global write-out because doing
so does not relieve inter-thread memory contention.

D. Effects of average number of updates in each iteration

We demonstrate that a lower average number of updates in
each iteration decreases the benefits of our hybrid approach.

Bellman Ford results were collected using the given weights
for each of the GAP graphs. In this analysis, we expect to
see that a smaller ¢ is better for SSSP because fewer updates

Page Rank Asynchronous vs Delayed-Async, Kron, Cascade Lake

mmmm Asynchronous mmmm Delayed-Async (% Speedup) Buffer Size (8)

80 +0.8% 32768
70 y —
0 4096 <
P I
< 50 512 &
< —
S 40 +1.6% o 2
(7 30 e
< 20 ‘. +2:0% 2

10 I I I *2.9% s10% @ +45% 8
o 0l s m=m
3 7 14 28 56 112
Number of Threads
Page Rank Asynchronous vs Delayed-Async, Web, Cascade Lake
mmmm Asynchronous mmmm Delayed-Async (% Speedup) Buffer Size (6)
1 % 128
-11.59

10 64 >
()
0 N
E z
(%] p=1
@

I 32

16

-11.4% R

-12.4%

-12.3% -6.1% -8.0% 4

| T T

1

3 7 14 28 56 112
Number of Threads

Fig. 4: Thread Scaling for Pagerank on up to 112 threads,
Cascade Lake system. Kron shows improvement from delaying
updates with decreasing § as thread count rises. On Web there
is no benefit and the penalty is smallest for a relatively small
0 across all thread counts.

le6 le7
4.130

Access matrix for web on 32 threads

atrix for kron on 32 thre

4.125

4.120

4.115

-4.110

Thread performing read
3028262422201816141210 8 6 4 2 0

-4.105

* + @
0 2 4 6 81012141618202224262830
Thread owning data

024 6 81012141618202224 262830 -4.100
Thread owning data

Fig. 5: The access matrices show the proportion of mem-
ory accesses made from each thread (row) to other threads
(column) in a 32-thread setup (Haswell). A plus in the box
indicates that the row thread received at least 6.25% or (1/32)
of accesses from itself rather than other threads. Kron does not
show significant imbalance in local vs remote accesses. Web
shows high clustering on the main diagonal. This indicates
that a thread references its own updated information far more
than it references information generated by other threads.

are needed as the algorithm progresses and thus every update
created is of greater significance to convergence.

Indeed, Figure [6] shows that delaying updates is effective
on SSSP for only some of the graphs in the GAP collection,
while it was effective on Page Rank for most of them. Web and
Road demonstrate poor performance when buffering is used
for SSSP. For Web, this is likely due to the very localized
access pattern shown in Figure [5] For Road, delaying updates
is not beneficial because doing so slows down information

Asynchronous and Delayed-Async Bellman Ford SSSP, 112 Thread Casade Lake

Speedup over Synchronous

Urand Web

Kron Road Twitter

W Asynchronous M Delayed-Asynchronous (8, % speedup over Async)

Fig. 6: Speedup of asynchronous and delayed asynchronous
SSSP implementations over baseline synchronous (red line)
on 112-thread Cascade Lake. Kron, Urand, and Twitter benefit
from they hybrid approach, while Road and Web graphs do
not. Unlike Page Rank, in SSSP, fewer updates are made on
average per round.

transfer in a graph that already has slow information transfer
due to large diameter and very low average degree. Kron,
Urand, and Twitter do show some benefit from the hybrid
approach, and these graphs are the ones with more long-range
connections and without the dense clustering in Web.

V. CONCLUSION

We propose the delayed asynchronous approach for iterative
graph algorithms. Similar to hybrid algorithms such as delta-
stepping SSSP, our implementation spans the space of possible
implementations between synchronous and asynchronous be-
havior through a delay parameter .

We discuss factors affecting the choice of 6 and demonstrate
the effects of these factors through a detailed evaluation
using PageRank and Bellman-ford SSSP. We show that on
highly threaded systems, the performance of the delayed
asynchronous implementation can be up to 19.4% faster than
an asynchronous implementation, and up to 2.56x faster than
a synchronous implementation.

Our evaluation shows that delay-buffered Page Rank
achieves reasonable performance improvements (2.4 - 19.4%)
over asynchronous execution and that these results are best at
high thread counts. Graphs with topologies not amenable to
buffering are found to have high levels of local clustering. This
analysis of a graph’s topology can be precomputed, giving a
potential way to determine when to buffer in practice.

For Bellman Ford SSSP, we show modest speedup from
buffering between 1.9 and 17% on the 112-thread machine
when the graph is amenable to buffering. These findings
suggest that the reduced number of updates in SSSP requires
more care in when and on what graphs to buffer vertex
information updates.

In future work, we would extend the idea of buffering to
other pull-style algorithms, including where updates may only
be conditionally written. We would also consider other ways
of assigning vertices to threads to balance the thread-local
and thread-remote reads. Finally, further work must be done

to determine what buffer size to use, dependent on both the
graph’s topology and the number of threads on the system.

ACKNOWLEDGEMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. [DISTRIBUTION STATEMENT A]
This material has been approved for public release and un-
limited distribution. Please see Copyright notice for non-US
Government use and distribution. DM21-0741

Mark Blanco is supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant
No. DGE 1745016, and the Jack and Mildred Bowers En-
dowed Fellowship and the Benjamin Garver Lamme and
Westinghouse Graduate Fellowship. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

Use of the Cascade Lake system was provided by Henry
Gabb and Ramesh Peri at Intel, and we are grateful for their
support.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, p. 269-271, Dec. 1959. [Online]. Available:
https://doi.org/10.1007/BF01386390

[2] A. Azad, M. M. Aznaveh, S. Beamer, M. Blanco, J. Chen,
L. D’Alessandro, R. Dathathri, T. Davis, K. Deweese, J. Firoz, H. A.
Gabb, G. Gill, B. Hegyi, S. Kolodziej, T. M. Low, A. Lumsdaine,
T. Manlaibaatar, T. G. Mattson, S. McMillan, R. Peri, K. Pingali,
U. Sridhar, G. Szarnyas, Y. Zhang, and Y. Zhang, “Evaluation of
Graph Analytics Frameworks Using the GAP Benchmark Suite,” IEEE
International Symposium on Workload Characterization (IISWC 2020),,
Oct. 2020.

[3] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin, “PageRank Computation
and the Structure of the Web: Experiments and Algorithms,” May 2002.

[4] D. Silvestre, J. Hespanha, and C. Silvestre, “A PageRank Algorithm
based on Asynchronous Gauss-Seidel Iterations,” in 2018 Annual Amer-
ican Control Conference (ACC), Jun. 2018, pp. 484—489, iSSN: 2378-
5861.

[5] S. Beamer, K. Asanovi¢, and D. Patterson, “The GAP Benchmark
Suite,” arXiv:1508.03619 [cs], May 2017, arXiv: 1508.03619. [Online].
Available: http://arxiv.org/abs/1508.03619

[6] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra
and its Applications, vol. 2, no. 2, pp. 199-222, Apr. 1969.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0024379569900287

[71 L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, pp. 103-111, Aug. 1990.
[Online]. Available: https://doi.org/10.1145/79173.79181

[8] J. S. Firoz, M. Zalewski, A. Lumsdaine, and M. Barnas, “Runtime
Scheduling Policies for Distributed Graph Algorithms,” in 20/8 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2018, pp. 640-649, iSSN: 1530-2075.

[91 J. S. Firoz, M. Zalewski, T. Kanewala, and A. Lumsdaine,

“Synchronization-Avoiding Graph Algorithms,” in 20/8 IEEE 25th

International Conference on High Performance Computing (HiPC), Dec.

2018, pp. 52-61, iSSN: 2640-0316.

C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “SYNC or

ASYNC: time to fuse for distributed graph-parallel computation,” in

Proceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, ser. PPoPP 2015. New York, NY,

USA: Association for Computing Machinery, Jan. 2015, pp. 194-204.

[Online]. Available: https://doi.org/10.1145/2688500.2688508

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

R. Pearce, M. Gokhale, and N. M. Amato, “Multithreaded Asynchronous
Graph Traversal for In-Memory and Semi-External Memory,” in SC "10:
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov. 2010,
pp. 1-11, iSSN: 2167-4337.

R. Dathathri, G. Gill, L. Hoang, V. Jatala, K. Pingali, V. K. Nandivada,
H.-V. Dang, and M. Snir, “Gluon-Async: A Bulk-Asynchronous System
for Distributed and Heterogeneous Graph Analytics,” in 2019 28th
International Conference on Parallel Architectures and Compilation
Techniques (PACT). Seattle, WA, USA: IEEE, Sep. 2019, pp. 15-28.
[Online]. Available: https://ieeexplore.ieee.org/document/8891625/

K. Vora, S. C. Koduru, and R. Gupta, “ASPIRE: exploiting asynchronous
parallelism in iterative algorithms using a relaxed consistency based
DSM,” ACM SIGPLAN Notices, vol. 49, no. 10, pp. 861-878, Oct.
2014. [Online]. Available: https://doi.org/10.1145/2714064.2660227

S. Beamer, K. Asanovic, and D. Patterson, “Direction-Optimizing
Breadth-First Search,” in In SC12, Salt Lake City, Utah, USA, Nov.
2012, p. 10.

U. Meyer and P. Sanders, “Delta-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, vol. 49, pp. 114-152, Oct. 2003.

C. Yang, A. Buluc, and J. D. Owens, “Implementing Push-Pull
Efficiently in GraphBLAS,” arXiv:1804.03327 [cs], Jun. 2018, arXiv:
1804.03327. [Online]. Available: http://arxiv.org/abs/1804.03327

E. W. Dijkstra et al., /A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87-90, 1958. [Online]. Available: https:
/Iwww.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/

G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan, “Parallel
Shortest Paths Using Radius Stepping,” in Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’16. New York, NY, USA: Association for Computing
Machinery, Jul. 2016, pp. 443-454. [Online]. Available: https:
//doi.org/10.1145/2935764.2935765

V. T. Chakaravarthy, F. Checconi, F. Petrini, and Y. Sabharwal, “Scalable
Single Source Shortest Path Algorithms for Massively Parallel Systems,”
in 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. Phoenix, AZ, USA: IEEE, May 2014, pp. 889-901.
[Online]. Available: http://ieeexplore.ieee.org/document/6877320/

https://doi.org/10.1007/BF01386390
http://arxiv.org/abs/1508.03619
https://www.sciencedirect.com/science/article/pii/0024379569900287
https://www.sciencedirect.com/science/article/pii/0024379569900287
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/2688500.2688508
https://ieeexplore.ieee.org/document/8891625/
https://doi.org/10.1145/2714064.2660227
http://arxiv.org/abs/1804.03327
https://www.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/
https://www.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/
https://doi.org/10.1145/2935764.2935765
https://doi.org/10.1145/2935764.2935765
http://ieeexplore.ieee.org/document/6877320/

	Introduction
	Background and Motivation
	Synchrony and Asynchrony in Graph Algorithms
	Hybrid Graph Algorithms

	Delayed Asynchronous Graph Algorithms
	Design decisions
	Delaying propagation with parameter
	Local vs Global Reads

	Factors affecting delay parameter
	Delaying Dense Updates in Many-Threaded Page Rank
	Scaling Threads with Dense Updates in Page Rank
	Effects of Graph Topology
	Effects of average number of updates in each iteration

	Conclusion
	References

