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ABSTRACT
Extreme memory requirements and high communication overhead
prevent scaling of large scale iterative simulations involving par-
allel Fast Fourier Transforms (FFTs) to higher grid sizes, which is
necessary for high resolution analysis. To overcome these limita-
tions, we propose an algorithm to run stress-strain simulations
on CPU-GPU platforms for larger problem sizes using irregular
domain decomposition and local FFTs. Early results show that our
method lowers iteration cost without adversely impacting accuracy
of the result.

CCS CONCEPTS
• Theory of computation → Parallel algorithms; • Data in-
tensive parallel algorithms;
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1 INTRODUCTION
Large scale simulations running on machines with many cores
model various phenomena in physics, biological sciences and en-
gineering. However, high data movement and memory usage are
often the chief limiting factors in computation in such methods
[4]. Particularly, simulations involving partial differential equations
(PDEs) usuallymake use of large parallel FFTs, which use all-all com-
munication. Scaling the problem size results in prohibitive memory
requirements and communication bottlenecks, which makes high
resolution analysis with finer and finer grids impossible. One such
method is the Moulinec-Suquet Composite (MSC) Basic Scheme,
which is a FORTRAN scheme for local stress-strain computation in
composites [2] [1].

In MSC Basic Scheme, a PDE with periodic boundary conditions
is solved iteratively using convolution with Green’s functions [3]
to obtain local stress and strain fields. Increasing the resolution
is desirable to study interesting behavior at grain boundaries, but
larger problems require parallel FFT computations (3-D FFT for
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each tensor component). For serial code, memory requirement for
a 323 grid is approximately 70 MB, while that for a 10243 grid is
2272 GB. This severely limits scaling to even larger grid sizes. Thus,
a new generation of algorithm and software co-design is required
to deal with challenges arising in extreme scale computing, such as
communication overhead, difficulty in scaling and implementation
of existing algorithms on newer machines and hardware. In this
work, we describe MSC Alternate Scheme, an algorithm designed
to run stress-strain simulations for large datasets on heterogeneous
platforms with GPUs by using irregular domain decomposition and
local FFTs to reduce communication cost.

In the background section, we describe the MSC Basic Scheme.
TheMSCAlternate Scheme is described in the next section, followed
by some proof-of-concept results.

2 BACKGROUND
In this section, we describe the MSC Basic Scheme in more detail.
Note that Einstein notation is used to represent tensor components
and operations. Thus, Ai j refers to component (i, j ) of the rank-2
tensor A. Repetition of indices implies a summation over those
particular indices. An important tensor operation is the contraction
of indices (denoted by ‘:’). Eg., Ci jkl : Di j =

∑
i

∑
j
Ci jklDi j = Ekl

and yields a rank-2 tensor.
TheMSCBasic Scheme is a fixed-point iterative numericalmethod

used as an alternative to Finite Element Methods (FEM) to compute
local stress and strain fields using Hooke’s law. The pseudocode for
MSC Basic Scheme is as given below. ϵ (x) and σ (x) are strain and
stress tensor fields at point x respectively. Ci jkl (x) is the rank-4
stiffness tensor. E is initial average strain. Γ̂mnkl (ξξξ ) is the Green’s
operator in Fourier space at frequency point ξξξ . The convergence
error is es and tolerance error is etol . ∆ϵkl is the computed pertur-
bation in component (k, l ) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till convergence
is reached. For more details, refer to [2].

The convolution with Green’s function requires computation of
3D FFTs of each of the 9 components of the stress field, hence the
need for extensive resources for large grids. MSC Basic Scheme is
implemented in serial FORTRAN and MPI parallel (using FFTW)
versions.

3 PROPOSED METHOD
This section briefly describes the proposed algorithm, designed to
be implemented on a CPU-GPU hardware setup. For the purpose
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Algorithm 1MSC Basic Scheme

1: Initialize:
ϵ0 ← E,
σ 0
mn (x) ← Cmnkl (x) : ϵ0kl (x)

2: while es > etol do
3: σ̂ imn (ξξξ ) ← FFT(σ imn (x))
4: Check convergence
5: ∆ϵ̂i+1kl (ξξξ ) ← Γ̂klmn (ξξξ ) : σ̂ imn (ξξξ )

6: Update strain: ϵ̂i+1kl (ξξξ ) ← ϵ̂ikl (ξξξ ) − ∆ϵ̂i+1kl (ξξξ )

7: ϵi+1kl (x) ← IFFT(ϵ̂i+1kl (ξξξ ))

8: Update stress: σ i+1mn (x) ← Cmnkl (x) : ϵi+1kl (x)

of algorithm development, a MATLAB-FORTRAN workflow has
been used to build a prototype and obtain preliminary results.

After initialization on the CPU side, an irregular domain de-
composition method decomposes the volume into smaller regions
with smooth stress fields (grain interiors). Data models are used to
communicate initial stress fields in the smaller volumes to GPUs,
with one small volume per GPU. Grain boundaries are communi-
cated at full resolution. In each GPU-based iteration, local FFTs
are performed on these fields and convolution with the Green’s
function is computed. Then, communication between GPUs serves
to transfer parts of the result to respective grains on different GPUs
so that stress update for a grain is a self-contained problem. The
effect of convolution is summarized by data communicated from
different GPUs. This makes the GPU part of the code intrinsically
parallel. In this way, stress and strain fields are updated till con-
vergence. A small number of iterations are performed on the CPU
side without approximations. However, a majority of the iterations
are performed in a distributed manner on the GPUs at a lowered
communication cost since communication consists of only a few
coefficients to summarize the effect of convolution.

4 RESULTS
For proof-of-concept results, a simple microstructure test dataset
with two types of grain orientations was created using MATLAB for
various grid sizes. Grains in each grid of sizeN 3 areN /2×N /2×N /2
cubes arranged in a periodic lattice. The cubical shape makes it
easier to test the prototype with simple windowing techniques.
More complicated pre-processingwill be used for irregularly shaped
grains.

In the MSC Alternate Scheme, n lower cost iterations of the fixed-
point method are to be performed on GPUs using data models and
local FFTs. A few (4 to 5) high cost iterations are performed using
the MSC Basic Scheme to reduce approximation errors in the final
answer. The plot in Fig. 1 shows the convergence of stress fields
in MSC-Basic Scheme and MSC Alternate Scheme for different
values of n in a simulation of size 128 × 128 × 128. We observe that
for equal error thresholds for both methods, number of iterations
for convergence changes depending on n, but not drastically. The
mismatch in stress field between the original and proposed method,
arising due to approximations is about 4% for Case 1 of n = 10 and
n = 15 and about 2% for n = 10, Case 2. This is due to convergence
to a different local minimum which is at a small deviation from
the MSC-Basic Scheme. GPU-side iterations have a lowered cost in

Figure 1: Convergence in stress for problem size 1283. Case 1
of n=10 refers to performing iterations 5 to 15 on GPUs, and
case 2 refers to performing iterations 10 to 20 on GPUs.

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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ijkluk,lj(x) + ⌧ij,j(x) = 0 (1)
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Figure 2: Comparison of stress fields in final iteration for the
σ11 (x) component inMSC Basic andMSCAlternate Schemes
(n = 10, Case 2).
terms of communication and data movement. Metrics for iteration
cost are not provided here.

5 CONCLUSIONS & FUTUREWORK
The proposed MSC Alternate Scheme is a co-design of algorithm
and software for heterogeneous platforms. It enables scaling of
stress-strain simulations to large grids by overcoming high mem-
ory requirements and communication bottlenecks. The algorithm
uses small local FFTs and data modeling to perform iterations with
a lowered cost, which converge to the same solution as the MSC-
Basic Scheme with a small accuracy tradeoff, as is seen in proof-of-
concept results presented here. Future work includes implementa-
tion and testing on various platforms.
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