
Secure Multiparty Computation Based Privacy
Preserving Smart Metering System

Cory Thoma
Information Technology Leadership Department

Washington & Jefferson College
60 S. Lincoln St. Washington, PA 15301

Email: cmt69@pitt.edu

Tao Cui and Franz Franchetti
Department of ECE

Carnegie Mellon University
5000 Forbes Ave. Pittsburgh, PA 15213

Email: {tcui,franzf}@ece.cmu.edu

Abstract—Smart metering systems provide high resolution,
realtime end user power consumption data for utilities to better
monitor and control the system, and for end users to better
manage their energy usage and bills. However, the high resolution
realtime power consumption data can also be used to extract end
user activity details, which could pose a great threat to user pri-
vacy. In this work, we propose a secure multi-party computation
(SMC) based privacy preserving protocol for smart meter based
load management. Using SMC and a proper designed electricity
plan, the utility is able to perform real time demand management
with individual users, without knowing the actual value of each
user’s consumption data. Using homomorphic encryption, the
billing is secure and verifiable. We have further implemented a
demonstration system which includes a graphical user interface
and simulates network communication. The demonstration shows
that the proposed privacy preserving protocol is feasible for
implementation on commodity IT systems.

I. INTRODUCTION

A smart meter is an energy meter (mostly an electric meter)
that measures end user power consumption and communicates
the information back to utility for monitoring and billing
purposes. Smart meters usually sample at a time interval of less
than one hour (i.e. 15 mins) [1]. Smart meters also utilize two
way communication, which enables utilities to send pricing
and/or direct control signals back to end users. With near
realtime high resolution user consumption data and prompt
price and control signals, the utility is able to monitor and
control the loads in near realtime. The end users could also
use the smart meter data to better manage their energy usage
and reduce the energy bills. Smart metering systems enable
new smart grid technologies such as flexible tariff, real time
pricing, demand response, etc.

However, improper smart meter deployment can pose severe
threats to end user privacy. Researchers have shown that
fine grained power consumption data can be used to extract
detailed information on user activities, e.g. if they are at
home or on vacation, turn on or turn off a specific appliance,
etc. [2] [3]. One such example is the “Nonintrusive Appliance
Load Monitoring” (NALM) technique that uses smart meter
measurement to identify which appliance in a household is
switched on and off by detail analysis of total load [4] [5].

This work was supported by Semiconductor Research Corporation Smart
Grid Research Center under Task No. 2111.006.

Fig.1 from [3] shows that using total consumption data, the
detailed appliance status can be identified and further allow
the user’s activities being inferred, and the user’s privacy to
be violated. As a result, privacy issues have become one of
the most significant barriers to large scale deployment of smart
meters in some countries and regions [6] [7].
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Fig. 1. Using consumption data to infer user activity [3]

Related work. In order to address the privacy issue, sev-
eral privacy preserving smart metering schemes have been
proposed. Based on homomorphic encryption techniques, a
privacy friendly energy metering system has been proposed
by Garcia and Jacob [8]. A similar method for securely
aggregating neighborhood data has been proposed by Li.,
et.al. [9]. An anonymization process is proposed by Efthymiou
and Kalogridis, which requires a third party anonymization
process to remove the user’s identity [10]. Another solution
for future smart grid household proposed by Efthymiou et.
al. uses batteries and other energy storage devices to make
the load signature undetectable [11]. Microsoft researchers
proposed a secured protocol for billing computation [12].
Cornell researcher proposed a Trust-Platform-Module based
architecture [2], which aggregates the data of a user group
over a certain time period. However, most of the previous
works do not take real time control and management into
consideration, and some methods mathematically or physically
obfuscate the real time data which unnecessarily sacrifices
the data resolution and limits the usability of the data. Some
methods do not provide verifiable mechanism for billing. Some
methods may still need a trusted third party.

In order to fully enable the advantage of smart metering



system and address its privacy concern, we believe an ideal
privacy preserving smart meter framework should meet the
following requirements: 1) fully protect the end user’s privacy,
2) without sacrificing the resolution of smart meter data for
actual load management usage, and 3) provide a verifiable
billing method, 4) without using a trusted third party.

Contribution. In this work, we propose a secured architec-
ture to address above issues. Secure multiparty computation
(SMC) is a computation framework which enables multiple
parties to secretly compute some joint value using a secured
protocol without revealing the private data to anyone. The
related homomorphic encryption enables the computation to
be performed on encrypted data. By using SMC with homo-
morphic encryption properties, we design a smart meter based
load management and billing framework that achieves all
the above requirements. We further develop a demonstration
system which includes the graphical user interface and runs on
our campus network. The demonstration shows the feasibility
of the proposed scheme.

Synopsis. This paper is organized as following: the concepts
of secure multiparty computation and homomorphic encryp-
tion are reviewed in Section II. A smart meter based tariff
and the SMC based protocol are detailed in Section III. The
demonstration project is described in Section IV. Section V
concludes the paper.

II. BACKGROUND: SECURE MULTIPARTY COMPUTATION

Our proposed smart meter load management scheme is built
upon several different but related concepts from cryptography,
which we review in this section.

A. Public Key Encryption

Public key encryption [13] is an asymmetric encryption
scheme. It uses key-pairs: a public key and a corresponding
private key to securely transmit messages. The public key is
used to encrypt a message (from plaintext to ciphertext). The
corresponding private key is used to decrypt a message (from
ciphertext to plaintext). The two keys are related mathemati-
cally, but parameters are chosen so that determining the private
key from the public key is prohibitively expensive. Therefore,
the public key can be publicly distributed to all the senders
who want to send encrypted messages to the recipient while
the private key is only possessed by the recipient, so that the
recipient can decrypt the message encrypted by senders with
corresponding public key.

B. Secure Multiparty Computation

Secure multi-party computation (SMC) is a cryptographic
problem in which multiple parties jointly compute a value
based on individually held private data, without sharing the
data. The concept is closely related to the idea of zero-
knowledgeness used in public key cryptosystems (for in-
stance, RSA) and zero-knowledge authentication (for instance,
Feige-Fiat-Shamir Identification Scheme) [13]. Security is
often derived from one-way functions like integer multi-
plication/factorization that is easy in one way (polynomial

time algorithm to multiply two prime numbers) but hard to
invert (exponential time to find the original integers from
the product). Historically, the first example of SMC was the
millionaire problem: millionaires Alice and Bob are interested
in knowing which of them is richer without revealing their
actual wealth [14]. One of our secure primitives is built on the
millionaire problem and will be discuss this in next section.
A more general formulation of SMC is: for a number of
players P1, . . . , Pn, each has initial inputs x1, . . . , xn, and
SMC securely computes some function f on these inputs,
where f(x1, ...xn) = (y1, ..., yn). Each player Pi only obtains
the output yi. During the computation process, the actually
value of each player’s input is kept privately without revealing
to anyone.

C. Homomorphic Encryption and SMC

One standard approach to SMC is homomorphic encryption,
which enables direct arithmetic operations on encrypted val-
ues. A prominent example is the Paillier cryptosystem [15],
[16]. One simple illustrative example would be: Let n = pq,
and p and q be distinctive prime numbers of sufficient size
(1,024–2,048 bits). n is the public key and (p, q) is the private
key. Also let g = n + 1. To encrypt a value m ∈ Zm, select
a random value r ∈ Zm and compute [m] = (mn + 1)rn =
gmrn mod n2. [.] denotes an encrypted value; the public key is
usually omitted since it is constant. For encrypted messages [a]
and [b], and constants c, one can easily compute [a+b] = [a][b]
and [ca] = [a]c. The computation of [ab] usually requires a
cryptographic protocol, since the Paillier cryptosystem is not
homomorphic with respect to multiplication.

D. SMC Framework

The theoretical and algorithmic foundations for SMC are
well-researched and it has been shown that SMC has the po-
tential to solve hard problems in application areas that require
strong privacy. Various approaches based on compilers and
domain-specific languages exist: The Fairplay system [17] im-
plements two-party SMC, and the FairplayMP extension [18]
implements multiparty SMC. SMCL [19] is a domain-specific
language for SMC. One large scale real-world application
of SMC was a sugar beet auction system in Denmark [20].
However, to the best of our knowledge, SMC for control
or management of infrastructure has not been investigated.
From its definition SMC framework can not only protects
multiple users’ privacy, but also enable complicated arithmetic
and logic operations, therefore SMC shows great potential in
building privacy preserving smart meter systems.

III. SECURE MULTIPARTY COMPUTATION BASED SMART
METER LOAD MANAGEMENT SYSTEM

A. SMC Primitives

Two basic SMC primitives—secure summation and secure
comparison—can be used to build the proposed privacy pre-
serving smart meter control and management system.

Secure summation. Secure summation can be built upon
the Paillier cryptosystem. As mentioned in Section II, Paillier



is an additive homomorphic cryptosystem. The following steps
describe the details of Paillier scheme.

1) Key generation: Choose two large prime p and q
randomly and independently. Let n = pq and λ =
lcm(p − 1, q − 1). Choose random g ∈ Z∗

n2 , ensure n
divides the order of g by checking the existence of µ =
(L(gλ mod n2))−1 mod n where L(x) = (x − 1)/n.
The public key is (n, g). The private key is (λ, µ).

2) Encryption: Given the public key (n, g) and a random
number r ∈ Z∗

n. A plaintext M can be encrypted to
ciphertext [M ], [M ] = gM · rn mod n2. The encryption
process is denoted as: [M ] = E(M).

3) Decryption: Given the public key (n, g) and private key
(λ, µ), a ciphertext [M ] can be decrypted to plaintext M
by M = L([M ]λ mod n2) · µ mod n. The decryption
process is denoted as: M = D([M ]).

The two homomorphic encryption properties of Paillier
cryptosystem can be written as follows.

D(E(m1) · E(m2) mod n2) = m1 +m2 mod n. (1)

D(E(m1)
k mod n2) = km1 mod n. (2)

The additive homomorphic encryption in (1) means that
given only the public-key and the encrypted [a] and [b], one
can compute the encrypted [a+b] without know actual value of
a and b. The homomorphic multiplication of plaintexts in (2)
means that given only the public-key, the encrypted [a] and
a constant plaintext b, one can compute the encrypted [ab]
without know actual value of a.

Based on the additive homomorphic encryption property of
Paillier cryptosystem, a secure summation process to compute
the summation of User 1 to User n’s consumption data can
be implemented as described below.

1) Set-up: Using Paillier system, the public key (n, g) is
given to all users and the utility. The private key (λ, µ)
is only given to utility.

2) Start: Starting from User 1, User 1 encrypts his/her
usage P1 to ciphertext M1, where [M1] = E(P1), and
send [M1] to next user.

3) Encrypted Addition: When User i received message
[Mi−1] from User i − 1, User i encrypts his/her con-
sumption data Pi to [Pi] = E(Pi), and send the new
message [Mi] = [Pi] · [Mi−1] mod n2 to next User
i+ 1.

4) Stop: When the message [Mn] from the last User n
finally send to the utility. The utility decrypt the message
Mn = D([Mn]) using the private key.

Then Mn =
n∑

i=1

Pi.

In this way, the utility is able to decrypt the final message to
obtain the summation without know actual value of any user.
Therefore, the privacy preserving secure summation primitive
can be achieved.

Secure comparison. The secure comparison is derived from
Yao’s millionaire example. Millionaire Bob wants to know if

he is wealthier than millionaire Alice, without either of them
revealing their actual wealth. Alice and Bob use the public-
key cryptosystem RSA [13]. Alice has an RSA private/public
key pair. In addition, they need to know an upper bound k
of their wealth. All wealth values are rounded to millions to
keep k a reasonably small number. Alice is worth a millions,
and Bob b millions.

• Step 1. Bob picks a random n-bit integer called x (Alice
will later use a n/2 bit prime, so the length of the
integer is important). Bob first calculates c as the RSA
encipherment of x using Alice’s public key.

• Step 2. Bob transmits c− b+ 1 to Alice.
• Step 3. Alice generates a series of numbers y1, y2, . . . , yk

such that yi is the RSA decipherment (using her private
key) of c− b+ i.

• Step 4. Alice now generates a random n/2 bit length
prime p. Alice then generates z1, z2, . . . , zk by calculat-
ing zi = yi mod p. Note that p must be chosen so that
all the zi differ by at least 2.

• Step 5. Alice now transmits the prime p to Bob, and then
sends k numbers ui. The first few ui are u1 = z1, u2 =
z2, . . . , ua = za with a being Alice’s worth in millions.
Then Alice adds 1 to all the remaining k − a values ui

to be sent and sends ua+1 = za+1 + 1, . . . , uk = zk + 1.
• Step 6. Bob receives p and u1, . . . , uk. He computes g =

x mod p. If the ub = g then Alice is equal or greater
to Bob in wealth (a ≥ b). If the ub ̸= g then Bob is
wealthier than Alice (a < b).

This has all been done without either of them transmitting their
wealth value and cryptanalysis shows that the values haven’t
been leaked [14]. The procedure is redone with switched roles
to let Alice know if or if not she is wealthier than Bob.

In the smart meter based load management system appli-
cation, the above millionaire problem can be translated to the
comparison of the utility’s pre-set consumption threshold and
the user’s realtime consumption data to to find out if the user is
over certain limit, without revealing user’s consumption data.

B. SMC Based Demand Management

In this section, we describe the proposed electricity plan for
smart meter based load management. We also show how SMC
primitives can enable such realtime load management without
revealing any knowledge of private user consumption data.

Customer electricity plan. We now discuss a proposed
electricity plan similar to a cell phone plan. In our set-
up, all customers have SMC-capable smart meters installed.
Customers buy electricity plans from their utility with two
service states, normal and high. Similar to cell phone plans,
electricity plans in our setup also cover a certain number high
demand allowance kWh (kilowatt-hours) per month which
can be used in high demand state. If customers exceed their
high demand kWh budget in high demand state, they pay
a premium on the excess kWh. Electricity consumed during
low demand is charged at the normal rate. The smart meter
signals customers in which of the two states they operate at
any given point in time and how many high demand kWh



they have left. Customers can choose to adjust their energy
consumption, similar to how people manage their peak-hour
cell phone minutes. In addition, the smart meter has a standard
interface to consumer appliances to signal to them the current
consumption mode and to enable or disable smart appliances.
At the end of the month the smart meter sends the total number
of kWh for each state (normal, high demand) to the utility for
billing. This is a simple customer interface that has proven to
work for phone service; the hope is that it is simple enough
for electricity customers.

From customer side, the details of the electricity plan are
set-up as follows:

1) Each User i has a state variable U i
s denoting his/her de-

mand state. U i
s could be either: normal or high demand.

2) Each User i has a high demand allowance N i
H kWh per

month covered by the plan.
3) When U i

s = normal User i is charged with normal rate.
4) When U i

s = high, but User i has high demand allowance
N i

H , User i will be charged with normal rate and his/her
N i

H begin to decrease according to usage.
5) When U i

s = high, and N i
H = 0. User i will be charged

with high rate.
From utility side, the users are divided into groups according

to the plan and their history load profile patterns. The details
of the electricity plan set-up from utility side are as follows:

1) Each group has a state variable Gs denoting the peak or
offpeak states: Gs =peak or offpeak

2) Utility computes the total group consumption PG
Σ and

set a threshold ThresG for the group G.
3) When for the group G, PG

Σ ≥ ThresG, then Gs = peak,
otherwise Gs =offpeak.

4) When Gs =peak, a group-wide user threshold
ThresGuser is computed. It could be the average user
consumption in G.

5) For the User i in G, if the consumption Pi ≥ ThresGuser,
User i will enter high demand state: U i

s = high.
Otherwise, U i

s = normal.
The detailed implementation of the proposed electricity plan

is summarized in Algorithm 1.
Discussion. Several features of this electricity plan:
1) Dynamical management: The utility is able to dynam-

ically determine the system’s status (peak or offpeak) based
on the realtime consumption of the customer groups.

2) Customer experience: Within the same customer group,
the utility selects the customers with higher consumption to
enter the high demand state first. Those customers can choose
to lower the consumptions or use their high demand allowance
hours. With this plan, the customer with higher demand may
consider to carefully plan their energy usage.

3) Security of real time data: The proposed demand man-
agement algorithm with SMC primitives preserves privacy in
user consumption data: in above Algorithm 1, the variables
in [.] are all encrypted by individual user. By using SM-
C primitives secure summation and secure comparison, the
required functions for load management can be performed
without revealing private user information to anyone.

Algorithm 1 Proposed Demand Management Algorithm
1: {Load management loop at each time interval}
2: loop
3: {Secure summation}
4: PG

Σ ←
[∑

i∈G Pi

]
5: if PG

Σ > ThresG then
6: Gs = peak
7: ThresGuser = fG(P

G
Σ )

8: else
9: Gs = offpeak

10: All User Rate = Normal
11: end if
12: if Gs = peak then
13: Broadcast Gs = peak
14: for i ∈ G do
15: {Secure comparison}
16: if [Pi] >

[
ThresGuser

]
then

17: U i
s = high

18: N i
H = N i

H − 1
19: if N i

H ≤ 0 then
20: User i Rate = High
21: end if
22: else
23: U i

s = normal
24: User i Rate = Normal
25: end if
26: end for
27: end if
28: end loop

C. Billing and Verification

The billing and verification is achieved by homomorphic
encryption. As described in Section II, homomorphic encryp-
tion is a form of encryption which allows specific types of
computations to be carried out on ciphertext (encrypted data)
and obtain an encrypted result which is the ciphertext of the
result of operations performed on the plaintext.

The idea of privacy preserving billing and verification is to
let both the utility and the user’s smart meter calculate the
user’s bill in real-time as electricity is consumed in low or
high demand mode. However, the bill calculation by utility
is carried out on encrypted data received from the user to
hide the instantaneous consumption from the utility. The bill
calculation by user’s smart meter is carried out on plaintext.
At the end of each month, the user’s plaintext bill is sent to the
utility as final bill total, and can be encrypted and compared
to utility’s encrypted bill value to ensure the correctness of the
user-calculated bill.

The set-up of the billing from user side: each user i’s smart
meter has two counters for each day j: U i

normal(j): normal
price usage counter and U i

high(j): high price usage counter.
The normal price usage counter accumulate the user’s energy
usage when the price is set at normal rate, while the high price
usage counter accumulate the user’s energy usage when price



is set at high rate. The following steps are implemented for
billing and verification:

In the algorithm, we still use Paillier cryptosystem.
• Step 0. Using Paillier system. User i has the public key

and private key. The utility only has the public key.
• Step 1. At the end of each day j, User i use public key

to encrypt daily U i
normal(j) and U i

high(j). The encrypted
[U i

normal(j)] and [U i
high(j)] are send to the utility for

record.
• Step 2. At the end of each month, using the public key,

the utility is able to compute the encrypted total usage of
User i: [U i

normal] =
∑

j [U
i
normal(j)] and [U i

normal] =∑
j [U

i
high(j)]. Since the prices are given constants. The

total encrypted bill can also be computed as: [Billi] =
[U i

highPhigh + U i
normalPnormal].

• Step 3. At the end of each month, the user i also com-
putes his/her total usage U i

normal and U i
high in plaintext.

The total bill in plaintext is Billi = U i
highPhigh +

U i
normalPnormal.

• Step 4. Utility send the encrypted total usage and bill to
User i, and User i send plaintext total usage and bill to
the utility.

• Step 4. For verification by utility, using the public key,
utility can encrypted the plaintext usage and bill received
from User i to see if the data match the encrypted data
of the utility.

• Step 4. For verification by User i, using the private
key, User i can decrypted the ciphertext usage and bill
received from the utility see if the data match his/her own
meter’s record.

Discussion. The billing and verification scheme utilizes the
homomorphic addition of ciphertexts in (1) and the homomor-
phic multiplication of plaintexts in (2). The utility is able to
keep (encrypted) records of user’s daily usage and to compute
the (encrypted) total bill without knowing the actual value.
Both user and utility can make sure the bill is correct at the
end of each month. One assumption of the verification is that
the smart meter can correctly record the usage data.

IV. IMPLEMENTATION

In this section, we discuss a prototypical demonstration
implementation of our proposed privacy preserving scheme
using commodity computing and network environments. We
also build a smart meter simulation environment to simulate
the interaction between the users and the utility using the
proposed privacy preserving scheme.

A. Network Topology

The system is a network consisting of smart meters and the
utility server. The network topology of the proposed privacy
preserving load management is showed in Fig. 2. There are
two structures for different security primitives:

1) The outer ring structure is used for secure summation: at
the end of each time interval, the utility starts the Paillier Cryp-
tosystem enabled secure summation from the the first user. The
first user then encrypted his/her consumption data to the next
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Fig. 2. Network topology of smart meters and the utility server.

user. Each user add his/her own encrypted consumption data to
the encrypted data received from precious user. Then, finally,
the total encrypted sum is sent to utility. Then the utility is
able to decrypt the encrypted sum and obtain the summation
of all user’s total consumption data. Note in Fig. 2, all data in
[.] are encrypted by user him/herself.

2) The inner star structure used for secure comparison
and billing: at the end of each time interval, once the utility
obtained the total consumption of the user group. The secure
comparison is performed between each user and the utility.
Also, at the end of each day, each user sends his/her encrypted
usage data to the utility. At the end of each month, the billing
calculation and verification is performed between the utility
and each user.

B. User Interface

Fig. 3. The the customer smart meter interface.

The GUI customer interface simulates as the control panel
of a smart house. The customer is able to monitor the house-
hold real time consumption as well as the electricity price and
bill. The customer is also able to monitor and control various
appliances including TV, heater, refrigerator, oven, electric
vehicle charging and user owned renewable generations.

The substation interface is designed to monitor the user
group’s total consumption and system status (peak or offpeak).
The utility can also use the interface to set the thresholds for
system status and user demand status.



Fig. 4. The substation interface for the utility.

C. Simulation

Based on the proposed load management scheme and its
privacy preserving implementation, we developed a simulation
environment to simulate the system reasonably realistically.

During the simulation, the customer can choose to switch
on/off specific appliance by using the customer interface in
Fig. 3. There are also several simulated appliance behaviors
triggered by the buttons on the upper left conned on Fig. 3. The
“Manual” gives the user complete control over all appliances.
The “Manual Realistic” adds some realistic restrictions to
what the user can do. The “Automatic” is a fully automated
simulation of a household, the household appliance will be
turned on or off according to pre-programmed sequence.
The “Automatic Random” adds some randomness upon the
“Automatic” simulation.

D. Hardware and Software Infrastructure

The user interface and network communication system
are implemented using the Java programming language. The
networking is built on a library provided by Apache called
Apache MINA. The demonstration and simulation is running
on a desktop computer with 2.53 GHz 2 Core CPU with
4 GB memory. The computational power necessary for the
simulation shows that an embedded processor in a smart meter
could easily meet the performance requirements for a real-
world deployment of our proposed approach.

V. CONCLUSION

In this paper we propose and implement a privacy pre-
serving smart meter based load management system. We use
secure multi-party computation and homomorphic encryption
as the security primitives. Our scheme fulfills four conditions
that are desirable for a privacy preserving smart meter load
management system: 1) it is able to fully preserve the detailed
users data, 2) it does not sacrifice the data resolution for
proposed smart grid control and management functionalities,
3) it has a verification process, and 4) it does not need a trusted
third party. We further implemented the proposed scheme
as a networked simulation on standard commodity hardware.
Our system provides a GUI that allows prospective users to
experience our proposed electricity plan and the smart meter

load management scheme. The demonstration also shows that
our proposed privacy preserving scheme is feasible on current
commodity hardware and thus could be deployed on a real
system.
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