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Abstract—Monte Carlo simulation (MCS) is a numerical
method to solve the probabilistic load flow (PLF) problem.
Comparing to analytical methods, MCS for PLF has advantages
such as flexibility, general purpose, able to deal with large
nonlinearity and large variances, and embarrassingly paralleliz-
able. However, MCS also suffers from low convergence speed
and high computational burden, especially for problems with
multiple random variables. In this paper, we proposed a Quasi-
Monte Carlo (QMC) based method to solve the PLF for radial
distribution network. QMC uses samples from low-discrepancy
sequence intended to cover the high dimension random sample
space as uniformly as possible. The QMC method is particularly
suitable for the high dimension problems with low effective
dimensions, and has been successfully used to solve large scale
problems in econometrics and statistical circuit design. In this
paper, we showed that the PLF for radial distribution system
has the similar properties and can be a good candidate for
QMC method. The proposed method possesses the advantage
of MCS method and significantly increases the convergence rate
and overall speed. Numerical experiment results on IEEE test
feeders have shown the effectiveness of the proposed method.

I. INTRODUCTION

With the development of smart grid technologies, the elec-
tric power distribution system plays a more active and impor-
tant role in power systems. However, due to the lack of real
time measurements, the integration of renewable energy re-
sources and the emerging more active and stochastic new load
such as electric vehicles, there are more and more uncertainties
being introduced in distribution systems. Properly dealing
with the uncertainties has become a practical challenge for
distribution system planning and operation. An efficient and
generally applicable computing framework that can monitor
and assess the system states considering the impact of such
large uncertainties would be an important tool for the reliable
operation of smart distribution systems.

In order to deal with the uncertainties in the planning
and operation of transmission grid, Probabilistic Load Flow
(PLF) was firstly introduced in 70s [1]. The PLF models the
uncertainties as input random variables (RV) with probabilis-
tic density functions (PDF) or cumulative density functions
(CDF). Based on load flow equations, it computes the output
states as random variables with PDFs or CDFs [1] [2].
Recently, the PLF methods have been extensively used to
analyze the distribution network operation and planning under
uncertainties and to evaluate the impact of renewable energy
resources and large stochastic loads. In [3], the impact of wind
generation on distribution system are studied using PLF. In [4],
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the solar energy is modeled as a PLF problem. In [5] the
electric vehicles with stochastic charging behavior are also
modeled and evaluated as a PLF problem.

This paper focuses on the solution methods for PLF in
distribution network. The solution methods generally fall into
two categories: the analytical methods and Monte Carlo sim-
ulation (MCS) based methods [6]. Most analytical methods
are trying to compute the output RVs by simplifying power
system models or probabilistic models [2] [6]. Due to the
simplification, analytical methods may not be able to handle
uncertainties with large variance or systems with large non-
linearity. MCS is a general framework extensible for many
statistical applications including solving PLF. It samples the
input RVs and solves load flow for each sample using the ac-
curate system model, and then estimates the output RVs using
all result samples. The accuracy and convergence of MCS are
guaranteed by the probabilistic limit theory [7]. Therefore, the
MCS solutions are often used as accuracy references for most
PLF researches and applications. In order to obtain converged
accurate results, the MCS needs to solve a large number of
load flows, due to the computational burden, MCS methods
are often believed to be prohibitive for practical applications.
Therefore, speeding up MCS for PLF solution and other more
general applications has been an active research topic. In this
paper, we proposed a Quasi Monte Carlo (QMC) based method
for PLF solution of radial distribution network to improving
the accuracy and overall speed of MCS based PLF solutions.

Related work. In [2] and [8], a linearization and multi-
linearization model is used for MCS solutions. In [9], a
deterministic sampling method is used to speed up the trans-
mission stochastic load flow. In [10], antithetic sampling is
used for variance reduction in congestion forecasting. Most
recently, [11] and [12] have proposed using Latin-Hypercube
Sampling (LHS) method for PLF solutions for transmission
and distribution network. Efforts to speedup MCS is certainly
not only in PLF research field. In the domain of econometrics
and statistical circuit analysis, MCS based methods are used
frequently to solve the large scale problems with many ran-
dom variables. To improve the efficiency, Quasi-Monte Carlo
method was originally applied in financial computation, one
successful QMC application is an 1439-dimensional statistical
integral with a speedup of 150x comparing to conventional
MCS methods [13]. In [14], the nano-scale statistical circuit
analysis problems are effectively solved by QMC method with
a 2x to 8x speedup over the conventional MCS methods.

Contribution. Inspired by the successful applications of



QMC in different fields for similar problems. In this paper,
by analyzing the property of QMC and the model of radial
distribution network, we show that the radial distribution
system has low effective dimension in superposition sense.
The PLF for radial distribution network can be a suitable
problem for QMC method to achieve better performance. We
implemented and tested the QMC based PLF solver on IEEE
test feeder. An up to 10x speedup on convergence speed
is observed comparing to MCS method with high accuracy.
Moreover, the QMC method has similar simple format as the
MCS method. By switching the sample generator, QMC can
be easily implemented as an alternative for MCS method.

Synopsis. The paper is organized as following: the Monte
Carlo method related background are reviewed in Section II,
the Quasi-Monte Carlo sampling is introduced in Section III.
The model of distribution system load flow and and application
of QMC solution is in Section IV. The numerical result is
showed in Section V. Section VI concludes the paper.

II. REVIEW PLF AND MCS

A. Probabilistic Load Flow

Considering the canonical AC power flow model:

0 = g(x,u,A,p) (1)
y = h(x) (2)

In (1), the x is the system state which often contains the
nodal voltages. Given the system structure A, the parameters p
and the generation load conditions u, the state x can be exactly
determined by circuit law and power conservative constraints
in (1). Based on states x, all other system states in y such as
line flow can be exactly determined by (2). Both (1) and (2)
can be nonlinear equations in AC power flow model.

In most planning or operation cases, due to the uncertainties
and errors, not all parameters can be exactly determined
for deterministic power flow analysis. Therefore Probabilistic
Load Flow (PLF) models these uncertainties (usually the load
generation conditions u) as random variables. Based on load
flow equations (1)(2), the system states and output states are
also computed as random variables. The random variables are
often represented by its probabilistic density function (PDF)
or cumulative density function (CDF) in PLF analysis.

In general, there are two categories of solution methods for
PLF problems [6]: the analytical method and Monte Carlo
simulation based method. Most analytical methods are trying
to compute the output RVs by simplifying power system
models or probabilistic models. Such as using linearized power
flow equations [1] [2], estimating certain moments or certain
points of the random variables’ PDF [15] [16], etc.

However, due to the simplification, analytical methods may
not be able to handle uncertainties with large variance or
systems with large non-linearity. In the focused area of this pa-
per: the distribution system may have even larger nonlinearity,
especially when considering the discrete control actions such
as regulator tap-changing and various types of nonlinear loads.
Also due to the low system capacity and small population

number, the uncertainties in distribution network tend to have
larger variances with more complicated distributions.

Comparing to analytical methods, the Monte Carlo sim-
ulation is a general applicable numerical solution for PLF
problems. It usually consists of three steps: 1) sample the input
random variables; 2) for each sample, run a deterministic load
flow to obtain an accurate result sample; 3) based on all result
samples, estimate the PDFs of the interested states.

The advantages of MCS method include: 1) Each sample is
accurate without any approximation; 2) A general framework
extensible for other statistical or non-statistical applications;
3) Has straightforward formulation and natural interpretations.
Therefore, MCS is often used as accuracy references for most
PLF research and applications [2] [15] [16].

The major drawback of MCS method is the computational
burden, which almost restrict MCS method for only off-line
comparison study. However, recent study in Monte Carlo
simulation has show that certain sampling method such as
Quasi-Monte method can be an efficient alternative for certain
problems. Moreover, MCS method can also be classified as
the embarrassingly parallelizable problem for modern parallel
computing hardware [17] [18], resulting very efficient solver
from hardware perspective. Therefore, the MCS method for
PLF solution and its properties are worth to be revisited.

B. Estimating Density Functions in Probabilistic Load Flow

In order to estimate the CDF of certain state variable X ,
consider the indicator function 1a(X) : X → {0, 1} such that:

1a(X) =

{
1 if X ≤ a,

0 if X > a.
(3)

Since the CDF of X at value a is defined as

FX(a) = P(X < a) = E[1a(X)] =

∫
X

1a(x) dP (4)

If above x is random sample draw from the distribution
of random variable X . Then (3) can be regarded as a CDF
estimator with unbiased mean E(1a(X)) = P (X < a) and
limited variance:

Var(1a(X)) = E((1a(X)− P (X < a))2)

= P(X < a) · (1− P(X < a)) (5)

From numerical simulation point of view, estimating FX(a)
is the same as evaluating the expectation (or calculating the
integral part) in (4). The MCS method is a standard way
for such expectation estimation (or integral) problem. For
continuous variables, PDFs are the derivatives of CDFs.

C. Convergence of MCS

To evaluate a general high dimension integral problem:

I =

∫
Rd

f(x)dx Rd = [0, 1]s (6)

MCS compute the approximated:

In =
1

n

n∑
i=1

f(xi) xi ∈ Rd (7)



x1, ..., xn are independent and identically distributed sam-
ples randomly draw from the d dimension space Rd. By central
limit theorem:

lim
n→∞ In = I (8)

and the mean square error is:

MSEn =
1

n2

n∑
i=1

E[(f(xi)− E(f(xi)))
2]

= Var(f(xi))/n = σ2
f/n (9)

We know the variance σ2
f for CDF is finite in (5). From

central limit theory, the standard deviation of MCS estimator is
σf/

√
n. Therefore, the error in MCS decreases asymptotically

to 0 at the rate n−1/2. This also means the increase of accuracy
may require much more increase of the samples.

Variances reduction techniques such as important sampling,
stratified sampling, antithetic sampling, etc are typically aim-
ing to reduce the σf part of the MCS error. While for
estimation of the full density function, it is usually difficult to
find such a variance reduction technique for all density points.

Moreover, the error of MCS is given in the sense of
probability, which means on average MCS may perform well
with expected accuracy, but there is possibility that particular
sequence of random samples may lead to unacceptable errors.

Comparing to conventional MCS, Quasi-Monte Carlo
method turns to be a better choice for particular PLF problem
for radial distribution network because:

1) QMC reduces the error by speedup the n−1/2 part,
which accommodates all points of the density function.

2) QMC is based on deterministic samples, the error is
bounded by asymptotically decreasing upper bound.

3) The radial structure distribution network can have lower
effective dimensions which is necessary for QMC to
achieve better results.

We will explain the above in detail in following sections.

III. QUASI-MONTE CARLO (QMC) AND KERNEL
DENSITY ESTIMATION (KDE)

The main difference of QMC and MCS method is the
sampling method. MCS uses the sample numbers generated
from pseudo-random number generators (PRNG), while QMC
uses sample numbers from low-discrepancy sequence (LDS),
also called quasi-random number generators (QRNG).

A. Low-Discrepancy Sequence
Fig. 1 shows the uniform distribution random samples in

50 dimension hypercube [0, 1)50. On the left is the first two
dimension point (x1, x2), on the right is the histogram of
first dimension x1. Fig. 1(a) shows the samples generated by
standard Mersenne Twister (MT) PRNG. Fig. 1(b) shows the
samples generated by Sobol sequence QRNG.

Clearly, the random samples by MT PRNG do show “ran-
domness”, but the points are not equally distributed over
the space. The histogram is not even close to the uniform
distribution based on these 500 samples. The samples by Sobol
QRNG are not random, but are equally distributed over the
space, and the histogram shows a close-to uniform distribution.
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(a) Pseudo-random number generation for MCS
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(b) Quasi-random number generation for QMC

Fig. 1. Comparison of PRNG and QRNG samples

B. Error of Integral Approximation using Samples

Consider the general problem: approximation of integral by
sampling method. The error is bounded by a term proportional
to the discrepancy of the sample set (x1, ..., xN ) and total vari-
ation of the function. The Koksma-Hlawka inequality shows
the error ε of integral function f(x) over hypercube [0, 1)s:

ε =

∣∣∣∣∣
∫
[0,1)s

f(u) du− 1

N

N∑
i=1

f(xi)

∣∣∣∣∣ (10)

is bounded by
|ε| ≤ V (f)DN (11)

Where V (f) is the Hardy-Krause variation related to the
total variation of f over the high dimension hypercube. DN

is the discrepancy of the sample set (x1, ..., xN ) and can be
defined as (so-called Star Discrepancy [19]):

DN = sup
Q⊂[0,1)s

∣∣∣∣number of points in Q

N
− volume(Q)

∣∣∣∣ (12)

The Koksma-Hlawka inequality separates the estimation
error into two parts: the proportional part V (f) depending on
the integral function, and the discrepancy part DN depending
on the sample set. And it applies to the general problem and
method for integral approximation including MCS, QMC as
well as standard numerical integration methods [19].

C. Kernel Density Estimation

Kernel density estimation (KDE) is a generally applicable
non-parametric way of estimating the probability density func-
tion of a random variable [20]. The general formulation is:

f̂h(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
(13)



Where K is the kernel function, xi is the value of sample
point i, h is the bandwidth. f̂h(x) is the estimated density
function. We choose Gaussian function as the kernel and use
the optimized bandwidth for Gaussian distribution [20].

The assumption for using KDE is that the resulting density
function is smooth enough. Using KDE in density estimation
is equivalent to replacing the indicator function with a smooth
differentiable kernel function. Once apply KDE with preset
bandwidth in density estimation, the function variation V (f)
can become finite. Therefore, from (12), QMC may have
asymptotically faster convergence rate comparing to MCS.

D. Theoretical Bound

In our proposed approach, we use low-discrepancy sequence
of QMC for the quasi random number generation and KDE
for the density estimation. QMC tries to reduce DN part of the
error to increase the convergence speed. The best-known LDS
can have the discrepancy bounded by O( log(N)s

N ). Therefore,
the QMC result has an error bounded O( log(N)s

N ), where s is
the problem dimension and N is the number of samples.

While it has been showed that the pseudo-random number
sequence used by Monte Carlo simulation has the discrepancy
bounded by O([ loglogNN ]1/2) with probability 1 [21]. This also
matches the Monte Carlo MSE O( 1√

N
) in (9).

Therefore, one can say that for a fixed dimension s, QMC
converge with error bound at O( log(N)s

N ), which is faster than
MCS’ error bound O([ loglogNN ]1/2) and MSE O( 1√

N
).

E. Simple QMC-KDE Example for PDF Estimation
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Fig. 2. Example of MCS and QMC to estimate Normal distribution

Fig. 2 shows an example of comparing MCS and QMC us-
ing KDE to estimate PDF. We generate samples from Normal
distribution: N(0, 1), and use these samples to estimate the
original PDF curve. From (a) to (e), for each plot, we generate
100 different sequences of samples. For each sequence of
samples, a PDF curve is estimated and plotted, each plot has
100 PDF curves. In (a) to (c), the samples are generated from
MT PRNG. In (d) and (e), the samples are generated from
Sobol QRNG. Clearly we can see the PDF estimated from
QMC converge to the single true PDF with much less samples.

The promising result motivates many applications of QMC
method. However, in order to apply QMC on practical prob-
lems for better performance, special problem formulation is

necessary. For example, a bigger dimension s may require
much bigger N for QMC to outperform MCS. Fortunately
in practice, many high dimension problems can have lower
effective dimension, and can be suitable for QMC method. We
will show in the following section that the probabilistic load
flow problem in radial distribution network can be a good
candidate for QMC to achieve good performance.

IV. LEVERAGING QMC FOR RADIAL DISTRIBUTION
NETWORK PLF SOLUTIONS

A. Effective Dimensions for QMC

The effective dimension has been used to explain the success
of QMC on many practical problems including statistical
circuit analysis and many other general problems [14] [19].

The effective dimension is highly related to analysis of
variance (ANOVA). In ANOVA, the multivariate function can
be decomposed into multiple functions of lower dimensions.

f(u) =
∑

I⊆{1,...,s}
fI(u) (14)

The variance of ANOVA component is:

σ2
I =

∫
[0,1)s−d

fI(u)
2 duI (15)

All the components are orthogonal, and the total variance
of f can be written as:

Var(f) = σ2 =
∑
I

σ2
I (16)

The ANOVA decomposes the variance of high dimension
function f into sum of variances of lower dimension compo-
nents. From (16), the effective dimension is defined as:

The effective dimension in superposition sense is the small-
est integer dS such that:∑

0<|u|≤dS

σ2
u = pσ2 (17)

The effective dimension in truncation sense is the smallest
integer dT such that: ∑

u⊆{1,...,dT}
σ2
u = pσ2 (18)

Where p is a number close to 1 (e.g. p = 0.99).
Intuitively, the effective dimension means that the function

with an effective dimension of d can be well approximated
by sum of functions of at most d variables (in superposition
sense), or sum of functions involving only the first d variables
u1, ..., ud (in truncation sense) [19]. For example: let x =
(x1, x2, x3), the 3 dimension function.

f(x) = f1(x1) + f2(x2) + f3(x4) (19)

has the effective dimension of 1 in superposition sense, since
f(x) is the sum of functions with at most 1 variable.



B. Radial Distribution Network Model

We have following assumptions for distribution system PLF.
1 A radial tree structure network, the substation at the root

is the slack bus where the voltages are assumed given.
2 The randomness is from power injections or current

injections (stochastic load or renewable generations).
3 Comparing to the power injection, the power loss on the

network is very low.
Above assumptions are hold for many load flow and prob-
abilistic load flow analysis in distribution network [22]. The
general formula of distribution network probabilistic load flow
can be written as following:

(V1, V2, ..., VN ) = f(P s
1 , P

s
2 , ..., P

s
m, P r

1 , P
r
2 , ..., P

r
n) (20)

Where Vi is the state to be solved. P s
i is the specified

parameter such as fixed power injection. P r
i is the random

parameter such as random power injection described by a PDF.
To solve the PLF using Monte Carlo simulation method is
to generate samples of these random variables and evaluate
integration. Therefore, the dimension is the total number of
random variables: n. However, effective dimension can be
much smaller than n, as shown in following paragraphs:

The tree structure with slack bus as the root means for any
particular bus in the network, there is only one path from the
root to that bus. To solve the state on that bus, the full network
can be reduced to a compact network which only includes the
path from root. Other branches can be aggregated as a nodal
power injection at the branching points.

732ca

737ab 738ab

740ab

735ab

736ab

Aggregated 
Subnet

Aggregated 
Subnet

Aggregated 
Subnet

Fig. 3. IEEE 37-bus Test Feeder (Left: Full, Right: Reduced)

For example, suppose we are interested in solve the states of
Bus 730 in Fig. 3, all the downstream buses from 730 can be
aggregated into one nodal power injection at Bus 730. Also,
all other branches on Bus 702 and 703 can be aggregated into
nodal power injections on Bus 702 and Bus 703. Therefore,
in the right figure in Fig. 3, the network for solving the state
on Bus 730 has been reduced to a 5-bus system.

The aggregated nodal power injection are the total power
injections in the reduced subnet plus the losses on the subnet.
An equation similar to (19) can be written to represents such

relations: Psubnet = f1(Ps1)+ ...fN (PsN )+Ploss. Where Psi

is the power injection on node i in the subnet. As we already
assume that the losses on the subnet is small comparing to
the power injection. By ignoring the loss’ contribution to the
variance of the state, Psubnet � f1(P1s)+...fN (PNs). Similar
to (19), the effective dimension in superposition sense can be
actually reduced to the dimension of Psi. The possible value
of the effective dimension of the subnet is 3 if we consider
there are random active power injections on all three phases.

Moreover, in PLF analysis, usually not all power injections
are random variables, therefore, the effective dimensions of
PLF on distribution networks are usually much less than the
actual number of random variables. As a result, the QMC can
be expected to have a better performance on PLF for radial
distribution network than conventional MCS.

V. NUMERICAL EXPERIMENTS

A. Simulation Setup

We use IEEE 37-bus test feeder to test our proposed method.
Detail model of the network can be found in [23] [24]. In
our simulation, the system configuration is the same as in
OpenDSS software [24], except all the loads are modeled
as PQ load. The multiple random active power injections
are attached to the following locations: 732 Phase CA, 735
Phase AB, 736 Phase AB, 737 Phase AB, 738 Phase AB and
740 Phase AB. All the random loads are modeled as Normal
distribution with zero mean and 50 kW standard deviation.

In our test, given each sample number limit, we generate 10
different solutions using different sample sequence. According
to probabilistic limit theories, these 10 PDF results converge
to the true PDF with large enough sample number limit.

B. Accuracy and Convergence Speed

In order to show the accuracy and convergence of MCS
and QMC for the above case setup, we pick two typical buses
in the network: the 703 closer to the root and 738 in the
center of the random loads. We compare the PDF results of
phase A’s voltages of both buses in Fig. 4 and Fig. 5. Other
buses’ PDF results are very similar to these two figures. In
these figures, with increasing sample numbers, all ten PDF
curves converges to one single curves for both MCS and
QMC. However, the QMC results require much less samples
to achieve same accuracy comparing to the MCS method.

We further calculate the normalized error band of all voltage
PDFs in the system and shown in Fig. 6. The normalized error
band is the maximal difference of the all 10 PDFs’ density
value divided by the maximal value of the PDF curves for
each case. It shows the maximal variation of the result PDF
curves using different sample sequence. For converged PDFs,
this value should be closer to zero.

In Fig. 6, to achieve the same level of accuracy, MCS
requires 10x more samples comparing to QMC, which means
much more load flow computation than QMC. QMC for this
case can achieve 10x speedup comparing to MCS method.
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Fig. 4. Comparison of MCS and QMC (Bus 703, Phase A)
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Fig. 5. Comparison of MCS and QMC (Bus 738, Phase A)

VI. CONCLUSION

In this paper, we proposed a Quasi-Monte Carlo method
to solve the PLF for radial distribution networks. QMC uses
samples from low-discrepancy sequence to cover the high
dimension random sample space as uniform as possible. We
showed that the PLF for radial distribution system is suitable
for QMC method. The proposed method possesses the advan-
tages of MCS method and significantly increases the overall
speed. Numerical experiment results on IEEE test feeders have
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Fig. 6. Normalized error band on all buses’ phase A voltage PDFs

shown the effectiveness of the proposed method. Therefore,
QMC can be an efficient tool for evaluating the impact of
integration of stochastic renewable energy resources and loads
with large variance in the smart distribution networks.
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