
Algorithm and Architecture Optimizations for Large Size
Two Dimensional Discrete Fourier Transform

Berkin Akin, Peter Milder, Franz Franchetti and James Hoe
Carnegie Mellon Univeristy, Pittsburgh PA USA

{bakin, pam, franzf, jhoe}@ece.cmu.edu

Overview

 Large size 2D Fast Fourier Transform

•Used in image processing, scientific computing

•Typical datasets are large and high precision!

• e.g. 2K-by-2K double precision 2D-FFT:
• Input dataset: 64 MB
• # of operations: ~461.4 Mflop

• Does not fit on-chip
• Stored off-chip

Background

Evaluation

The authors acknowledge the support of the C2S2 Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity.

 Memory access pattern and achieved bandwidth

• Have large strided DRAM

access pattern
• Does not exploit DRAM

row-buffer locality

• Results in low memory bandwidth utilization!

• Memory bandwidth becomes bottleneck

for achieving high performance

• Effective bandwidth orchestration is required for:

 DFT is matrix-vector multiplication

 FFT algorithm is factorization of DFT matrix

 2D-FFT algorithms
• Row column algorithm:

 Row-wise and column-wise accesses!

 DRAM operation

17.2

82.1

7.6

Solving PDEs CT Cosmology SAR

4.83

1.56

1.00

5.07

2.76

1.00

Altera DE4 (FPGA)

Nvidia GTX 480 (GPU)

Intel Core i7 960 (CPU)

Raw performance (Gflop/s)

Altera DE4 (FPGA)

Nvidia GTX 480 (GPU)

Intel Core i7 960 (CPU)

Altera DE4 (FPGA)

Nvidia GTX 480 (GPU)

Intel Core i7 960 (CPU)

Performance to bandwidth ratio (Gflop/GB)

Performance to power consumption ratio (Gflop/J)

 1024-by-1024 double precision 2D-FFT

Solution: Algorithm and Architecture

 Restructured algorithm
• Linear data mapping in DRAM causes

row and column-wise accesses
• Use 2D tiled data mapping where each tile

is mapped to a DRAM row
• Restructure the algorithm given 2D data mapping

From algorithm to hardware

• Double-buffering:
- Overlapped computation and I/O
- All modules kept busy

Stage 1 Stage 2

tensor twiddle factors permutation

Decode
Row

Row
Precharge

Row
Activate

Decode
Column

assuming rank&bank
is active

data out

row-buffer
HIT

row-buffer
MISS

Extra
Latency!

read tiles
from DRAM

write tiles
into DRAM

on-chip permutation on-chip permutation DFT computation

DRAM write
address generation

DRAM read
address generation

Local Memory
address generation

Local Memory
address generation

Streaming FFT
Core

 2D-FFT operates on 2D data, e.g. images

• Matching throughput to memory bandwidth:
- Achieved via fine-grain control

over datapath parallelism
- Results in balanced design

• Ensuring continuous dataflow:
-Buffers are used to smooth
the flow of data.

streaming
width

FIFO

Core i7
960

GTX
480

Stratix IV (DE4)
EP4SGX530

DRAM Type DDR3 GDDR5 DDR2

of Memory Channels 3 6 2

Memory BW (GB/s) 25.6 177.4 12

On-chip Memory (MB) 8 1.69 2.53

Proc. Freq. (MHZ) 3,200 1,401 200

of Cores 4 480 N/A

Technology Node (nm) 45 40 40

Application
Infrastructure

Spiral CUDA 4.0 Spiral/Verilog

Target application:
-Double precision complex 2D-FFT
-Data sizes up to 2,048-by-2,048

Target platforms:

Raw performance: Power* Efficiency:
* Measured power consumption including DRAMs

Bandwidth Efficiency:

Performance 1 Bandwidth Efficiency 2 Power Efficiency 3

Results are normalized to CPU.

Results are normalized to CPU.

• Need to make use of every row
touched to maximize bandwidth

• Large strides result in small
packets of transferred data

hardware aware
manipulation

1

2

3

row-wise
access

column-wise
access DRAM row

 Row-wise access exploits
row-buffer locality

Column-wise access results
in row-buffer misses

Each tile  DRAM row

• Data is accessed as tiles, not
row and column-wise

• Row-buffer misses are minimized!

