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Overview 

 Large size 2D Fast Fourier Transform 
 
•Used in image processing, scientific computing 
 
 
 
 
•Typical datasets are large and high precision! 

• e.g. 2K-by-2K double precision 2D-FFT: 
• Input dataset: 64 MB 
• # of operations: ~461.4 Mflop 

 
• Does not fit on-chip 
• Stored off-chip 

 
 

Background 

 

Evaluation 
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 Memory access pattern and achieved bandwidth 
 
• Have large strided DRAM  

access pattern 
• Does not exploit DRAM  

row-buffer locality 
 
• Results in low memory bandwidth utilization! 
 
• Memory bandwidth becomes bottleneck  

for achieving high performance 
 

• Effective bandwidth orchestration is required for: 
 
 

 DFT is matrix-vector multiplication 
 
 

 FFT algorithm is factorization of DFT matrix 
 
 

 2D-FFT algorithms 
• Row column algorithm: 
 
 

 Row-wise and column-wise accesses! 
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 1024-by-1024 double precision 2D-FFT 

Solution: Algorithm and Architecture 

  Restructured algorithm 
• Linear data mapping in DRAM causes 

row and column-wise accesses 
•  Use 2D tiled data mapping where each tile 

is mapped to a DRAM row 
• Restructure the algorithm given 2D data mapping 

 
From algorithm to hardware 

• Double-buffering: 
- Overlapped computation and I/O 
- All modules kept busy 
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Core 

 2D-FFT operates on 2D data, e.g. images 

• Matching throughput to memory bandwidth: 
- Achieved via fine-grain control  

over datapath parallelism 
- Results in balanced design 

• Ensuring continuous dataflow: 
-Buffers are used to smooth 
the flow of data. 
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DRAM Type DDR3 GDDR5 DDR2 

# of Memory Channels 3 6 2 

Memory BW (GB/s) 25.6 177.4 12 

On-chip Memory (MB) 8 1.69 2.53 

Proc. Freq. (MHZ) 3,200 1,401 200 

# of Cores 4 480 N/A 

Technology Node (nm) 45 40 40 

Application 
Infrastructure 

Spiral CUDA 4.0 Spiral/Verilog 

Target application:  
-Double precision complex 2D-FFT  
-Data sizes up to 2,048-by-2,048 

Target platforms: 

Raw performance: Power* Efficiency: 
* Measured power consumption including DRAMs 

Bandwidth Efficiency: 

Performance 1 Bandwidth Efficiency 2 Power Efficiency 3 

Results are normalized to CPU. 

Results are normalized to CPU. 

• Need to make use of every row  
touched to maximize bandwidth 

 

• Large strides result in small 
packets of transferred data 
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 Row-wise access exploits  
row-buffer locality 
 
Column-wise access results 
in row-buffer misses 

Each tile  DRAM row 

• Data is accessed as tiles, not 
row and column-wise 

• Row-buffer misses are minimized! 


