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Algebraic Signal Processing Theory:
Cooley-Tukey Type Algorithms for DCTs and DSTs
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Abstract— This paper presents a systematic methodology to
derive and classify fast algorithms for linear transforms. The
approach is based on the algebraic signal processing theory. This
means that the algorithms are not derived by manipulating the
entries of transform matrices, but by a stepwise decomposition
of the associated signal models, or polynomial algebras. This
decomposition is based on two generic methods or algebraic
principles that generalize the well-known Cooley-Tukey FFT
and make the algorithms’ derivations concise and transparent.
Application to the 16 discrete cosine and sine transforms yields a
large class of fast general radix algorithms, many of which have
not been found before.

Index Terms— Fast Fourier transform, discrete Fourier trans-
form, discrete cosine transform, discrete sine transform, DFT,
DCT, DST, polynomial algebra, Chinese remainder theorem,
representation theory

I. I NTRODUCTION

There is a large body of literature on fast transform al-
gorithms. With few exceptions these algorithms are derived
by clever and often lengthy manipulation of the transform
coefficients. These derivations are hard to grasp, and provide
little insight into the structure of the resulting algorithm.
Further, it is hard to determine if all relevant classes of
algorithms have been found. This is not just an academic
problem as the variety of different implementation platforms
and application requirements makes a thorough knowledge
of the algorithm space crucial. For example, state-of-the-
art implementations of the discrete Fourier transform (DFT)
heavily rely on various variants of general radix algorithms to
adapt the implementation to the memory hierarchy [1], [2], [3]
or to optimize it for vector instructions and multiple threads
[4], [5], [6], [7]

In this paper, we derive fast algorithms for linear transforms
algebraically. This means that we do not manipulate the actual
transform to obtain an algorithm, but decompose apolynomial
algebra associated with the transform. In this spirit, we first
present two general decomposition theorems for polynomial
algebras and show that they generalize the well-known Cooley-
Tukey fast Fourier transform (FFT). Then, we apply these
theorems to the discrete cosine and sine transforms (DCTs
and DSTs) and derive a large new class of recursive general
radix Cooley-Tukey type algorithms for these transforms, only
special cases of which have been known. In particular, these
new fast algorithms that we present are the first to provide a
generalradix decomposition for the DCTs and DSTs.
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Our algorithm derivation is a natural application of the
algebraic signal processing theory.

Algebraic signal processing theory. In [8], [9], [10],
we proposed a new approach tolinear signal processing
(henceforth just referred to as signal processing or SP), called
algebraic signal processing theory (ASP). ASP is a general,
axiomatic approach to SP that is built from the concept of a
signal model, defined as a triple(A,M,Φ), whereA is the fil-
ter space (an algebra),M the signal space (anA-module), and
Φ generalizes the concept of thez-transform. Once a signal
model is given, other concepts such as convolution, spectrum,
Fourier transform are automatically defined but take different
forms for different models. For example, discrete infinite and
finite (finite number of samples) 1-D time are signal models
with associatedz-transform and finitez-transform (defined in
[8]) and the DTFT and DFT as associated Fourier transforms,
respectively. Beyond that, we identified the signal models
associated with practically all 1-D trigonometric transforms
[8], [9], [10]. This includes the so-called 1-D space models
for which the DCTs and DSTs are Fourier transforms. In each
case, filter and signal space are given by a polynomial algebra,
which ASP hence identifies as a key structure in SP.

Algebraic theory of transform algorithms. As we show
in this paper, knowing the polynomial algebra associated with
a transform is also the key to understanding and concisely
deriving its fast algorithms. Using a few general theorems
operating on polynomial algebras, many known and novel
transform algorithms can be derived. In this paper, we consider
the DCTs and DSTs extending our preliminary results from
[11], [12]. In [13], we use the same approach for the derivation
of real FFTs, and in [14] we show how the theory extends to
the nonseparable 2-D transforms introduced by ASP in [15].

The theory in this paper does not cover all existing classes
of DCT/DST algorithms. More precisely, we will not consider
orthogonal algorithms (i.e., algorithms built from rotations
such as [16]), “prime-factor type” algorithms [17], and “Rader-
type” algorithms (e.g., [18]). The algebraic approach to these
algorithms will be the subject of a future paper.

Besides explaining the theory and derivation of the fast
algorithms, we also made an effort to present the results
in concise, self-contained tables suitable for readers only
interested in the actual algorithms. For these readers, we
suggest to start with Table XV, which lists for each DCT and
DST a reference to the best algorithms in this paper and their
operations count. Also, further details on all algorithms can
be found in a longer version of this paper available at [19].

Related work. The approach taken in this paper to derive
fast algorithms using polynomial algebras builds on and ex-
tends early work on DFT algorithms. The known interpretation



2

of theDFTn in terms of the polynomial algebraC[x]/(xn−1)
was used to derive and explain the (radix-2) Cooley-Tukey
FFT by Auslander, Feig, and Winograd [20] using the Chinese
remainder theorem (CRT). Equivalently, Nicholson [21] ex-
plains DFT and FFT using group theory; so does Beth [22] and
generalizes the approach to more general groups. Winograd’s
DFT algorithms [23], [24] and his results in complexity theory
make heavy use of polynomial algebras and the CRT. So do
extensions of the above work by Burrus et al. [25], [26]. The
first book on FFTs by Nussbaumer uses polynomial algebras
as a framework for algorithm derivation [27].

For the DFT, it turns out that to derive the most important
FFTs it is not necessary to work with polynomial algebras,
but sufficient to work with index arithmetic modulon. This
approach is used in [28] as a consistent FFT framework.
However, this arithmetic approach provides no insight into
how to derive algorithms for other transforms. In contrast,
our algebraic approach provides one theory that explains both
DFT and DCT/DST algorithms (and algorithms for other
transforms).

Further, the algorithm theory is a natural application and
extension of ASP, which shows that polynomial algebras are
a natural structure from an SP point of view [8].

The only (implicit) use of polynomial algebras for DCT or
DST algorithms we found in the literature is in the derivation
of a DCT (type 3) algorithm by Steidl [29], [30]. These papers
provided valuable hints for developing the work in this paper.

We provide many more references to existing DCT/DST
algorithms later and place them into our algebraically derived
algorithm space.

Organization of the paper. Section II explains the re-
lationship between polynomial algebras and transforms and
connects to the notion of signal model in ASP. Most relevant
for this paper are the polynomial algebras associated with the
DFT and DCTs/DSTs. Section III introduces the notation we
use to represent algorithms as products of structured matrices.
Two general algebraic methods to derive algorithms from a
polynomial algebra are explained in Section IV using the
DFT as an example. Then we apply these methods to derive
numerous Cooley-Tukey type algorithms for the DCTs and
DSTs in Sections V and VI. These algorithms are analyzed
and discussed in Section VII. We conclude in Section VIII.

II. BACKGROUND: POLYNOMIAL ALGEBRAS AND

TRANSFORMS

In this section, we explain the relationship between polyno-
mial algebras and transforms. Knowing the polynomial algebra
associated with a transform is the key to understanding and
deriving many of its fast algorithms as we show later.

Polynomial algebra. An algebra A is a vector space
where also the multiplication of elements is defined such that
the distributivity law holds. Examples of algebras includeC

(complex numbers) andC[x] (set of polynomials with complex
coefficients).

Particularly important in signal processing (as shown below)
are polynomial algebrasA = C[x]/p(x) with a suitable
polynomialp(x). They are defined as

C[x]/p(x) = {q(x) | deg(q) < deg(p)}.

In words, givenp(x), C[x]/p(x) is the set of all polynomials
of degree smaller thandeg p with addition and multiplication
modulop. If deg(p) = n, thendim(C[x]/p(x)) = n.

Polynomial transforms. Given a polynomial algebraA =
C[x]/p(x) and assuming that the zeros ofp(x) are pairwise
distinct, given byα = (α0, . . . , αn−1), A can be decomposed
using theChinese remainder theorem (CRT)(see Appendix I)
as follows:

F : C[x]/p(x) → ⊕
0≤k<n C[x]/(x − αk),

s(x) 7→ (s(α0), . . . , s(αn−1)).
(1)

This mapping is linear. Hence, if we fix a basisb =
(p0, . . . , pn−1) in A and choose bases (of length 1)(x0) = (1)
in eachC[x]/(x − αk), F is represented by the matrix

F = Pb,α = [pℓ(αk)]0≤k,ℓ<n. (2)

We callPb,α the polynomial transformfor A with basisb. It
is possible to choose a different basis(βk), βk ∈ C in each
C[x]/(x−αk), in which case we obtain thescaled polynomial
transform

F = diag(1/β0, . . . , 1/βn−1) · Pb,α. (3)

Connection to ASP.ASP [8] uses the concept ofsignal
model to capture different SP frameworks. It is defined as a
triple (A,M,Φ), whereA is the algebra of filters,M the
module of signals, andΦ generalized the concept of az-
transform. Once a signal model is given, other concepts, such
as filtering, spectrum, and Fourier transform follow.

ASP asserts that if a signal model is for finite-length 1-D
signalss = (s0, . . . , sn−1) ∈ C

n and supports shift-invariance,
thenA has to be a polynomial algebraC[x]/p(x). Conversely,
if C[x]/p(x) is given with basisb = (p0, . . . , pn−1), then
A = M = C[x]/p(x) with

Φ : C
n → M, s 7→ s = s(x) =

∑

0≤ℓ<n

sℓpℓ, (4)

defines a signal model;Φ is the “z-transform” in this model.
Once the model is given, other key SP concepts are automat-
ically defined. For example, for the above model, filtering is
the multiplicationh(x)s(x) mod p(x). The spectral decompo-
sition of s ∈ M with respect to this model is given by (1),
andF defined in (1) or in matrix form (2) or (3) (scaled or
unscaled polynomial transform) is the Fourier transform for
this model.

Example: finite time model. As an example consider the
signal modelA = M = C[x]/(xn − 1) with basis b =
(x0, . . . , xn−1) in M and thus, fors = (s0, . . . , sn−1)

T ∈ C
n,

Φ : s 7→ s = s(x) =
∑

0≤ℓ<n

sℓx
ℓ ∈ C[x]/(xn − 1), (5)

which we call thefinite z-transform [8]. After applying the
model, filtering is defined forh = h(x) ∈ A ands = s(x) ∈
M as

h(x)s(x) mod (xn − 1),

which is equivalent to computing the circular convolution of
the coefficient sequencesh ands [27].
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TABLE I

SIGNAL MODELS ASSOCIATED TO THEDFTS.

F p(x) b f(αk) (k, ℓ) entry ofF

DFT-1 = DFT xn − 1 xℓ 1 ωkℓ
n

DFT-2 xn − 1 xℓ α
1/2
k ω

k(ℓ+1/2)
n

DFT-3 xn + 1 xℓ 1 ω
(k+1/2)ℓ
n

DFT-4 xn + 1 xℓ α
1/2
k ω

(k+1/2)(ℓ+1/2)
n

DFT(a) xn − a xℓ 1 ωkℓ
n

n
√

a
ℓ

The zeros ofxn − 1 are α = (ω0
n, . . . , ωn−1

n ) with ωn =
e−2πj/n. Hence, the Fourier transform for this model is given
by

F : C[x]/(xn − 1) →
⊕

0≤k<n

C[x]/(x − ωk
n)

and in matrix form

F = Pb,α = [ωkℓ
n ]0≤k,ℓ<n = DFTn (6)

is precisely the discrete Fourier transform. This explainswhy
we call this signal model thefinite time model.

A. Signal Models for DFTs and DTTs

In this section we list the signal models (and hence poly-
nomial algebras) for 4 types of DFTs and all the 16 DCTs
and DSTs introduced in [31]. We refer to the DCTs and DSTs
collectively as DTTs (discrete trigonometric transforms)even
though this class is actually larger (e.g., including the discrete
Hartley transform other real discrete Fourier transforms). Fur-
ther, we define 4 types of skew DTTs, which were introduced
in [9], and which are necessary to derive a complete set of
algorithms.

Each of these transforms is a Fourier transform for a finite
shift-invariant regular 1-D signal model. These models are
uniquely determined byp(x), which definesA = M =
C[x]/p(x), and the basisb of M, which definesΦ in (4). The
model in turn uniquely determines the associatedpolynomial
Fourier transformPb,α in (2). To characterize anarbitrary
Fourier transform, we need to specify in addition the diagonal
matrix in (3). We do this in the following by providing a
function f such that the diagonal matrix is given by

Df = diag0≤k<n(f(αk)),

where theαk are, as before, the zeros ofp(x).
A derivation and explanation of these signal models can be

found in [8], [9].
DFTs. We consider the DFTs of type 1–4 following [32],

and a parameterizedDFT(a). Each one of those is a Fourier
transform for a variant of the finite time model as shown in
Table I. In particular,DFT-1 = DFT(1) = DFT. Both type 1
and 3 are polynomial transforms and special cases ofDFT(a)
briefly discussed next.

Consider the signal model given byA = M = C[x]/(xn −
a) andΦ : s 7→

∑
0≤ℓ<n sℓx

ℓ. The zeros ofxn − a are then
nth roots ofa and thus straightforward computation yields as
polynomial Fourier transform

DFT(a) = Pb,α = DFTn diag0≤ℓ<n( n
√

a
ℓ
), (7)

TABLE II

SIGNAL MODELS ASSOCIATED TO THE16 DTTS (DCTS AND DSTS).

F p = p(x) b f(αk), αk = cos θ

T -group
DCT-3 Tn Tℓ 1

DST-3 Tn Uℓ sin(θ)

DCT-4 Tn Vℓ cos(θ/2)

DST-4 Tn Wℓ sin(θ/2)

U -group
DCT-1 (x2 − 1)Un−2 Tℓ 1

DST-1 Un Uℓ sin(θ)

DCT-2 (x − 1)Un−1 Vℓ cos(θ/2)

DST-2 (x + 1)Un−1 Wℓ sin(θ/2)

V -group
DCT-7 (x + 1)Vn−1 Tℓ 1

DST-7 Vn Uℓ sin(θ)

DCT-8 Vn Vℓ cos(θ/2)

DST-8 (x + 1)Vn−1 Wℓ sin(θ/2)

W -group
DCT-5 (x − 1)Wn−1 Tℓ 1

DST-5 Wn Uℓ sin(θ)

DCT-6 (x − 1)Wn−1 Vℓ cos(θ/2)

DST-6 Wn Wℓ sin(θ/2)

where n
√

a = |a|1/neνj/n for a = |a|eνj .
DTTs. The 16 DTTs are Fourier transforms for finitespace

models, which are defined in Table II. Space in ASP means
that the shift operator on which the models are based operates
undirected versus the directed operation of the time shift.In
contrast to the time models, the basis polynomials are now
Chebyshev polynomials of the first (Tℓ), second (Uℓ), third
(Vℓ), or fourth (Wℓ) kind instead ofxℓ. Appendix II shows
their definitions and their properties that we will use in this
paper.

As an example consider the most commonly usedDCT-2n.
The associated model is given from Table II byA = M =
C[x]/(x − 1)Un−1 and Φ is the finiteV -transform mapping
s 7→

∑
0≤ℓ<n sℓVℓ. The zeros of(x − 1)Un−1 are given by

αk = cos(kπ/n), 0 ≤ k < n (see Table XVI in Appendix II).
Thus the uniquepolynomialFourier transform for the model
is given by

Pb,α = [Vℓ(αk)]0≤k,ℓ<n =

[
cos k(ℓ+1/2)π

n

cos kπ
2n

]

0≤k,ℓ<n

. (8)

Multiplying Pb,α from the left by the scaling diagonal

diag0≤k<n(cos(kπ/(2n))) = diag0≤k<n(cos(acos(αk)/2))

cancels the denominator to yield

DCT-2n = [cos k(ℓ+1/2)π
n ]0≤k,ℓ<n,

which identifiesDCT-2 as a Fourier transform of the form (3)
for the specified signal model.

The definitions of all 16 DTTs are given in Table III. Types
1, 4, 5, 8 are symmetric; types 2, 3 and 6, 7 are transposes of
each other, respectively.
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TABLE III

8 TYPES OFDCTS AND DSTS OF SIZEn. THE ENTRY AT ROWk AND

COLUMN ℓ IS GIVEN FOR0 ≤ k, ℓ < n.

type DCTs DSTs

1 cos kℓ π
n−1

sin(k + 1)(ℓ + 1) π
n+1

2 cos k(ℓ + 1
2
) π

n
sin(k + 1)(ℓ + 1

2
) π

n

3 cos(k + 1
2
)ℓ π

n
sin(k + 1

2
)(ℓ + 1) π

n

4 cos(k + 1
2
)(ℓ + 1

2
) π

n
sin(k + 1

2
)(ℓ + 1

2
) π

n

5 cos kℓ π
n− 1

2

sin(k + 1)(ℓ + 1) π
n+ 1

2

6 cos k(ℓ + 1
2
) π

n− 1
2

sin(k + 1)(ℓ + 1
2
) π

n+ 1
2

7 cos(k + 1
2
)ℓ π

n− 1
2

sin(k + 1
2
)(ℓ + 1) π

n+ 1
2

8 cos(k + 1
2
)(ℓ + 1

2
) π

n+ 1
2

sin(k + 1
2
)(ℓ + 1

2
) π

n− 1
2

TABLE IV

4 TYPES OF SKEWDTTS AND ASSOCIATED SIGNAL MODELS. THE

PARAMETERr IS IN 0 ≤ r ≤ 1. FOR r = 1/2 THEY REDUCE TO THE

T -GROUPDTTS.

F p = p(x) b f = f(αk), αk = cos θ

DCT-3(r) Tn − cos rπ Tℓ 1

DST-3(r) Tn − cos rπ Uℓ sin(θ)

DCT-4(r) Tn − cos rπ Vℓ cos(θ/2)

DST-4(r) Tn − cos rπ Wℓ sin(θ/2)

Every DTT has a corresponding polynomial transform,
which we write asDTT. For exampleDCT-2n is the matrix
in (8). For the DCTs of types 1, 3, 5, 7, the scaling function
is 1 (see Table II) and henceDTT = DTT in these cases.

We will later see that, in some cases, the polynomial DTTs
have a lower arithmetic cost than the corresponding DTTs,
which makes them suitable choices in applications in which
the transform output is scaled anyway.

We divide the DTTs into 4 groups, calledT -, U -, V -, and
W -group depending onp as shown in Table II. Within each
group, the algebra and module are (almost) the same. This
leads to sparse relationships (conversion using sparse matrices)
between DTTs in one group as we have shown in [9]; examples
we will use are in Appendix III.

Further, within a group, the DTTs are pairwisedual (they
have flipped associated boundary conditions [9]), which means
that they can be translated into each other without additional
arithmetic operations (see (54) in Appendix III).

Skew DTTs. We introduced the skew DTTs in [9] since
their associated signal models are also reasonable space
models, but, more importantly, because they are important
building blocks of Cooley-Tukey type algorithms as we will
show in this paper. There are 4 types of skew DTTs, each
parameterized by0 < r < 1. They generalize the fourT -
group DTTs (DCT/DST of type 3/4) and have the same scaling
functions as those. The models that define these transforms are
shown in Table IV. The corresponding polynomial versions are
again denoted using a bar as inDCT-3n(r).

To obtain the exact form of these transforms, we need the
zeros of the polynomialTn − cos rπ and choose a fixed order
of these zeros. This is done in the following lemma.

Lemma 1Let 0 ≤ r ≤ 1. We have the factorization

Tn − cos rπ = 2n−1
∏

0≤i<n

(x − cos r+2i
n π), (9)

which determines the zeros ofTn−cos rπ. We order the zeros
as α = (cos r0π, . . . , cos rn−1π), such that0 ≤ ri ≤ 1,
and ri < rj for i < j. The list of therk is given by the
concatenation

(rk)0≤k<n =
⋃

0≤i<n/2

( r+2i
n , 2−r+2i

n )

for n even, and by

(rk)0≤k<n =
( ⋃

0≤i< n−1

2

( r+2i
n , 2−r+2i

n )
)
∪ ( r+n−1

n )

for n odd. In the particular case ofr = 1/2 or cos rπ = 0,
we thus haveα = (cos(k + 1/2)π/n)0≤k<n as in Table XVI
in Appendix II.

For example, theDCT-3n(r) is given by the matrix

DCT-3n(r) = [cos rkℓπ]0≤k,ℓ<n,

where therk are provided by Lemma 1.
Relationships between the skew DTTs and skew and non-

skew DTTs are shown in Appendix III.

III. B ACKGROUND: FAST TRANSFORMALGORITHMS

In this section, we explain the notation that we use to
represent and manipulate transform algorithms.

Representation of algorithms.We discuss two represen-
tations for transforms1 and their algorithms. Traditionally,
transforms in SP are written as summation like

yk =
∑

0≤ℓ<n

tk,ℓsℓ, (10)

where s = (s0, . . . , sn−1)
T is the input signal,y =

(y0, . . . , yn−1)
T the output signal, andtk,ℓ the transform

coefficients. This representation is usually adopted because
these transforms are thought of as truncated versions of infinite
series expansions. Correspondingly, algorithms are written as
sequences of such summations, cleverly organized to reduce
the operations count.

A different approach, equivalent in content, represents trans-
forms as matrix-vector products

y = Ts, whereT = [tk,ℓ]0≤k,ℓ<n. (11)

The transform matrix isT , and transform algorithms corre-
spond to factorizations ofT into a product of sparse structured
matrices. This approach was adopted for the DFT in [33], [28]
(and as early as [21]), but also for other transforms in various
research papers on fast transform algorithms.

In ASP, we adopt the second approach for two reasons. First,
in ASP, a transform is a decomposition of a signal model into
its spectral components, e.g., as in (1). This decomposition is
a base change and hence represented by a matrix. Further, we

1By “transforms,” we mean here those computing some sort of spectrum
of finite length discrete signals like the DFT or DTTs.
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TABLE V

AUXILIARY MATRICES USED IN THIS PAPER.

In =

2
64
1

. . .
1

3
75 , Jn =

2
4

1
. . .

1

3
5 , Sn =

2
6664

1 1

. . .
. . .
1 1

1

3
7775 ,

F2 =

»
1 1
1 −1

–
, Zn =

2
664

0
0 1

. . .
. . .

0 1

3
775 , Zn =

2
664

1 0
. . .

. . .

1 0
0

3
775

derive later fast algorithms by performing this decomposition
in steps, where the steps correspond to sparse base changes,
i.e., structured, sparse matrices.

Second, there are other advantages of the matrix represen-
tation from an algorithmic and implementation point of view.
Namely, it reveals the structure of the algorithm and makes it
is easy to manipulate it to derive variants.

Notation. We use the following notation to represent struc-
tured matrices.

As basic matrices, we use the ones shown in Table V.F2

is thebutterfly matrix.
Further, we use permutation matrices defined by their cor-

responding permutations

P : i 7→ f(i), 0 ≤ i < n,

which means that the matrixP has in rowi the entry 1 at
position f(i) and the entry 0 elsewhere. In this paper, all
matrix indices start with 0. Most important is then×n stride
permutation matrix, which can be defined form|n by

Ln
m : i2

n
m + i1 7→ i1m + i2 (12)

for 0 ≤ i1 < n
m , 0 ≤ i2 < m. This definition shows that

Ln
m transposes annm × m matrix stored in row-major order.

Alternatively, we can write

Ln
m : i 7→ im mod n − 1, for 0 ≤ i < n − 1,

n − 1 7→ n − 1.

Since the last pointn−1 is fixed, we can define anoddstride
permutationL̂ for m | n + 1 as the restriction ofLn+1

m to the
first n points,

L̂n
m : i 7→ im mod n. (13)

Analogous to the stride permutation,(L̂n
m)−1 = L̂n

(n+1)/m,
and (⊕ is defined right below)

Ln
m = L̂n−1

m ⊕ I1.

Diagonal matrices are written asdiag(α0, . . . , αn−1).
Further, we use matrix operators, like the product of matri-

ces, the direct sum

A ⊕ B =

[
A

B

]
,

and the Kronecker or tensor product

A ⊗ B = [ak,ℓB]k,ℓ, for A = [ak,ℓ].

SinceIk ⊗A = A⊕ . . .⊕A, we will write the direct sum of
different m × m matricesAi, 0 ≤ i < k, as

Ik ⊗i Ai = A0 ⊕ . . . ⊕ Ak−1.

We will occasionally also construct a larger matrix as a
matrix of matrices, e.g.,

[
A B
B A

]
.

Transposition and inversion. If an algorithm for a trans-
form is given as a product of sparse matrices built from the
constructs above, then an algorithm for the transpose or inverse
of the transform can be readily derived using mathematical
properties including

(AB)T = BT AT , (AB)−1 = B−1A−1,

(A ⊕ B)T = AT ⊕ BT , (A ⊕ B)−1 = A−1 ⊕ B−1,

(A ⊗ B)T = AT ⊗ BT , (A ⊗ B)−1 = A−1 ⊗ B−1.

(14)

Permutation matrices are orthogonal, i.e.,PT = P−1. The
transposition or inversion of diagonal matrices is obvious. Note
that in general the inverse of a sparse matrix is not sparse.

Arithmetic cost. We will analyze the number of operations
of the algorithms using the notation of a triple(a,m,m2),
wherea is the number of additions or subtractions,m2 the
number of multiplications by a 2-power not equal to 1, and
m the number of remaining multiplications by constants not
equal to−1. The total operations count is then given byc =
a + m + m2.

In many SP publications the term complexity is used for
the operations count or arithmetic cost. In a strict sense this is
not correct, since complexity is a property of a problem (like
computing a DFT), not of an algorithm (like a specific FFT).
Thus we will use the term cost.

IV. A LGEBRAIC DERIVATION OF FAST TRANSFORM

ALGORITHMS

In this section, we algebraically derive Fourier transform
algorithms, where the term “Fourier transform” is meant in
the general sense of the algebraic signal processing theory
(e.g., including the DCTs, DSTs, and other trigonometric
transforms).

Overview. We consider finite shift-invariant regular signal
models, i.e., models of the formA = M = C[x]/p(x) and

Φ : C
n → M, s 7→

∑

0≤ℓ<n

sℓpℓ,

where b = (p0, . . . , pn−1) is a basis forM. Further, we
assume thatp has pairwise different zeros, which causes the
spectrum to consist of distinct one-dimensional submodules.
The Fourier transform in these cases is given by the CRT (1)
and as a matrixF takes the form of a polynomial transform
in (2) or a scaled polynomial transform in (3).

Assume a transformF is given. The basic idea of the
algebraic approach is to derive algorithms forF by manip-
ulating the associated signal model(A,M,Φ), instead of
manipulating the matrix entries ofF . Namely, (1) shows that
F decomposesC[x]/p(x) into one-dimensional polynomial
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C[x]/(x − αk)

Fig. 1. Basic idea behind the algebraic derivation of Cooley-Tukey type
algorithms for a Fourier transformF .

algebras, i.e., its spectrum. Fast algorithms are obtained, as we
will show, by performing this decompositionin stepsusing an
intermediate subalgebra. Fig. 1 visualizes this approach.

The advantage of the algebraic derivation is that it identifies
a few general principles that account for many different
algorithms when instantiated for different transforms. Further,
the derivation is often greatly simplified, since the only task
required is to determine the base change matrices when
instantiating the general theorems.

In this paper, we focus on explaining and deriving “Cooley-
Tukey type” algorithms as we will call them. As the name
suggests, these algorithms will include, as well as generalize,
the equally named algorithms for the DFT. The latter will serve
as examples in this section. Our main focus in the remainder of
this paper will then be the derivation of analogous algorithms
for the DCTs and DSTs, most of which have not been reported
in the literature. All these new algorithms are non-orthogonal,
i.e., are not constructed exclusively from butterflies and2× 2
rotations. Orthogonal algorithms do exist and will be captured
algebraically in a future paper. Also “Rader” type algorithms,
which apply when the above decomposition methods fail (for
the DFT in the case of a prime size), will be explained in a
future paper.

The existence and usefulness of Cooley-Tukey type algo-
rithms for the above signal model depends on properties of
both p(x) and b. Specifically, algorithms may arise from two
different basic principles, which manifest themselves as a
property ofp:

1) Cooley-Tukey type (factorization): p(x) = q(x) · r(x)
factorizes; and

2) Cooley-Tukey type (decomposition): p(x) = q(r(x)) de-
composes.

Clearly, 1) is always possible (if we consider the basefieldC),
but 2) is a special property ofp.

In both cases, as we will show, we obtain a matrix factor-
ization ofF containing smaller transforms, i.e., the algorithm
for F is recursive. Its usefulness as afastalgorithm, however,
depends on the basisb. In the remainder of this section, we
derive the general form of these two algorithms. We focus on
Fourier transforms that are polynomial transformsPb,α. Since
any Fourier transform has the formF = DPb,α in (3), where
D is a diagonal matrix, any algorithm forPb,α also yields an

algorithm forF .

A. Cooley-Tukey Type Algorithms: Factorization

A simple way to decomposeC[x]/p(x) in steps is to use a
factorizationp(x) = q(x) · r(x) of p. Namely, letk = deg(q)
andm = deg(r), then

C[x]/p(x)

→ C[x]/q(x) ⊕ C[x]/r(x) (15)

→
⊕

0≤i<k

C[x]/(x − βi) ⊕
⊕

0≤j<m

C[x]/(x − γj) (16)

→
⊕

0≤i<n

C[x]/(x − αi). (17)

Here the βi are the zeros ofq and the γj are the zeros
of r, which implies that both are a subset of the zerosαi

of p. Both steps (15) and (16) use the Chinese remainder
theorem, whereas (17) is just a reordering of the spectrum.
The corresponding factorization of the Fourier transform is
provided in the following theorem.

Theorem 1 (Cooley-Tukey Type Algorithm by Factorization)
Let p(x) = q(x) · r(x), and letc andd be bases ofC[x]/q(x)
andC[x]/r(x), respectively. Further, denote withβ andγ the
lists of zeros ofq andr, respectively. Then

Pb,α = P (Pc,β ⊕ Pd,γ)B.

The matrixB corresponds to (15), which maps the basisb to
the concatenation(c, d) of the basesc and d, and P is the
permutation matrix mapping the concatenation(β, γ) to the
list of zerosα in (17).

Note that the factorization ofPb,α in Theorem 1 is useful
as a fast algorithm, i.e., reduces the arithmetic cost, onlyif
B is sparse or can be multiplied with efficiently. Referring to
Fig. 1, the “partial decomposition” is step (15) corresponding
to B.

Example: DFT. The DFT is a (polynomial) Fourier trans-
form for the regular signal model given byA = M =
C[x]/(xn − 1) with basisb = (1, x, . . . , xn−1) as shown in
(6). We assumen = 2m and use the factorizationx2m − 1 =
(xm − 1)(xm + 1). Applying Theorem 1 yields the following
decomposition steps:

C[x]/(xn − 1)

→ C[x]/(xm − 1) ⊕ C[x]/(xm + 1) (18)

→
⊕

0≤i<m

C[x]/(x − ω2i
n ) ⊕

⊕

0≤i<m

C[x]/(x − ω2i+1
n ) (19)

→
⊕

0≤i<n

C[x]/(x − ωi
n). (20)

As bases in the smaller modulesC[x]/(xm − 1) and
C[x]/(xm + 1), we choosec = d = (1, x, . . . , xm−1). We
note that from this point on the derivation of the algorithm is
entirely mechanical.

First, we derive the base change matrixB corresponding to
(18). To do so, we have to express the base elementsxℓ ∈ b
in the basis(c, d) (concatenation); the coordinate vectors are
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the columns ofB. For 0 ≤ ℓ < m, xℓ is actually contained in
c andd, so the firstm columns ofB are

B =

[
Im ∗
Im ∗

]
,

where the entries∗ are determined next. For the base elements
xm+ℓ, 0 ≤ ℓ < m, we have

xm+ℓ ≡ xℓ mod (xm − 1),

xm+ℓ ≡ −xℓ mod (xm + 1),

which yields the final result

B =

[
Im Im

Im −Im

]
= DFT2 ⊗Im.

Next, we consider step (19).C[x]/(xm−1) is decomposed by
DFTm andC[x]/(xm+1) by DFT-3m (see Table II). Finally,
the permutation in step (20) is the perfect shuffleL2m

m , which
interleaves the even and odd spectral components (even and
odd exponents ofωn). The final algorithm obtained is

DFT2m = Ln
m(DFTm ⊕DFT-3m)(DFT2 ⊗Im).

Using DFT-3m = DFTm Dm with Dm = diag0≤i<m(ωi
n),

we get the better known form

DFT2m = Ln
m(DFTm ⊕DFTm Dm)(DFT2 ⊗Im)

= Ln
m(I2 ⊗ DFTm)(Im ⊕ Dm)(DFT2 ⊗Im).

The last expression is the radix-2 decimation-in-frequency
Cooley-Tukey FFT. The corresponding decimation-in-time
version is obtained by transposition using (14) and that the
DFT is symmetric. The entries of the diagonal matrixIm⊕Dm

are commonly calledtwiddle factors.
Remarks. Theorem 1 is well-known, as it is the CRT for

polynomials expressed in matrix form. The above DFT exam-
ple is equivalent to the derivation in [27] or [20]. Theorem 1is
also used as the first step in the derivation of Winograd DFT
algorithms [24]. There, the polynomialxn − 1 is completely
factored over the rational numbers, and the DFT decomposed
accordingly.

An algorithm based on Theorem 1 is naturally implemented
recursively and requires the availability of algorithms for the
smaller transforms.

The algorithm derivation method in Theorem 1 is always
applicable if the basefield isC, but in general the base
change matrixB will be dense and without useful structure.
Otherwise, every polynomial transform would have a fast
algorithm, which by the current state of knowledge is not
the case. The subsequent method is different in that respect:
it requires a special property ofp(x), and only this property
leads to the typical general radix Cooley-Tukey FFT structure.

B. Cooley-Tukey Type Algorithms: Decomposition

A more interesting factorization ofF = Pb,α can be derived
if p(x) decomposesinto two polynomials,p(x) = q(r(x)).
If deg(q) = k and deg(r) = m, then deg(p) = n = km,
i.e., the degree ofp is necessarily composite. In this case, the
polynomialr(x) generates a subalgebraB of A = C[x]/p(x)

TABLE VI

ALGEBRAS OCCURING IN THE ALGORITHM DERIVATION BASED ON THE

DECOMPOSITIONp(x) = q(y), y = r(x).

algebra basis zeros

A = C[x]/p(x) b = (p0, . . . , pn−1) α = (α0, . . . , αn−1)

B = C[y]/q(y) c = (q0, . . . , qk−1) β = (β0, . . . , βk−1)

Ci = C[x]/r(x) − βi d = (r0, . . . , rm−1) γi = (γi,0, . . . , γi,m−1)

consisting of all polynomials inr(x). Settingy = r(x) makes
the structure ofB evident:B = C[y]/q(y).

Let β = (β0, . . . , βk−1) be the zeros ofq and let γi =
(γi,0, . . . , γi,m−1) be the zeros ofr(x)− βi, 0 ≤ i < k. Then

p(x) =
∏

0≤i<k

(r(x) − βi) =
∏

0≤i<k

∏

0≤j<m

(x − γi,j).

In particular, eachγi,j is a zeroαℓ of p. Now we decompose
C[x]/p(x) in the following steps:

C[x]/p(x) → C[x]/q(r(x)) (21)

→
⊕

0≤i<k

C[x]/(r(x) − βi) (22)

→
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x − γi,j) (23)

→
⊕

0≤i<n

C[x]/(x − αi). (24)

Steps (22) and (23) use the Chinese remainder theorem. To
derive the corresponding factorization ofPb,α into four factors,
we first choose bases in the occuring algebras as shown in
Table VI. Note that in eachCi we choose the same basisd.

In the first step (21), we do not changeA but only make a
base change inA from the given basisb to the new basis

b′ = (r0q0(r), . . . , rm−1q0(r),
. . .
r0qk−1(r), . . . , rm−1qk−1(r)),

(25)

which is a product of the “coarse” basis of the subalgebra
B ≤ A with the “fine” common basis of theCi. We denote
the base change matrix forb → b′ with B.

Next, we compute the base change matrixM corresponding
to the coarse decomposition (22) ofA with basisb′ and the
basisd in eachCi on the right hand side. Letrℓ(x)qj(r(x)) ∈
b′. Then

rℓ(x)qj(r(x)) ≡ rℓ(x)qj(βi) mod (r(x) − βi),

which is qj(βi) times theℓth base vectorrℓ(x) in d. Thus,

M = [qj(βi) · Im]0≤i,j<k = Pc,β ⊗ Im.

The third step (23) decomposes the summands in (22) by
their respective Fourier transformsPd,γi

.
The final step (24) reorders the one-dimensional summands

by a suitable permutationP . We summarize the resulting
factorization in the following theorem.
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Theorem 2 (Cooley-Tukey Type Algorithms by Decomposition)
Let p(x) = q(r(x)). Using the notation in Table VI,

Pb,α = P (Ik ⊗i Pd,γi
)(Pc,β ⊗ Im)B,

whereB is the base change matrix mappingb to b′, andP is
the permutation matrix mapping the concatenation of theγi

onto α in (24).

As in Theorem 1, the usefulness of this factorization as fast
algorithm depends on the base change matrixB. Referring to
Fig. 1, the “partial decomposition” is step (22).

Example: DFT. Let A = M = C[x]/(xn − 1) with basis
b = (1, x, . . . , xn−1) be the signal model associated with the
DFTn. Further, assume thatn = km. Then the polynomial
p(x) = xn − 1 decomposes as

xn − 1 = (xm)k − 1, (26)

i.e., p(x) = q(r(x)) with q(y) = yk − 1 and r(x) = xm.
Thus Theorem 2 is applicable. The zeros ofq(y) areβi = ωi

k,
0 ≤ i < k. Further, we choosec = (1, y, . . . , yk−1) as basis
in B = C[x]/q(y) andd = (1, x, . . . , xm−1) as basis in each
Ci = C[x]/(xm − ωi

k). We find thatb′ = b in (25), which
implies B = In.

Thus, the matrixDFTk ⊗Im performs the following coarse
decomposition corresponding to (22):

C[x]/(xn − 1) →
⊕

0≤i<k

C[x]/(xm − ωi
k).

EachC[x]/(xm − ωi
k) is further decomposed as

C[x]/(xm − ωi
k) →

⊕

0≤j<m

C[x]/(x − ωjk+i
n )

and the associated polynomial transform is a special case of
(7):

DFTm(ωi
k) = DFTm ·diagm−1

j=0 (ωij
n ).

At this point, corresponding to (23),C[x]/p(x) is completely
decomposed, but the spectrum is ordered according tojk + i,
0 ≤ i < m, 0 ≤ j < k (j runs faster). The desired order is
im + j. Thus, we need to apply the permutationjk + i 7→
im + j, which is exactly the stride permutationLn

m in (12).
In summary, we obtain the Cooley-Tukey decimation-in-

frequency FFT with arbitrary radix:

Ln
m

(
Ik ⊗i DFTm ·diagm−1

j=0 (ωij
n )
)
(DFTk ⊗Im)

= Ln
m(Ik ⊗ DFTm)Tn

m(DFTk ⊗Im), (27)

where the matrixTn
m is diagonal and usually called the

twiddle matrix. Transposition of (27) using (14) yields the
corresponding decimation-in-time version.

Again, we note that after recognizing the decomposition
property (26), the derivation is completely mechanical.

Remarks. Theorem 2 makes use of the CRT in (22) and
(23), but it is the decomposition property ofxn − 1 that
produces the general radix structure. The previous work on
the algebraic derivation of this FFT did not make use of
decompositions. As we briefly discuss the next section, the
decomposition is a special case of a more general algebraic
principle.

An algorithm based on Theorem 2 is naturally implemented
recursively, where the smaller transform are called inside
loops coresponding to the tensor product and direct sum,
respectively. The structure of the algorithm also makes it a
candidate for efficient vectorization and parallelization[5], [6],
[33], [28].

C. Remarks on Algebraic Principles

The algorithms derived in this section are based on the
factorization or decomposition of the polynomialp(x) in the
signal model provided byC[x]/p(x) (and basisb). This is
pleasantly simple, but it is also of interest to identify the(more
general) principle from the representation theory of algebras
that lies behind that. This is important, as other signal models
may not be regular or may not be represented by a polynomial
algebra in one variable, but the algebraic principle may still
apply.

We focus on the decomposition property ofp(x) and be
brief, assuming some familiarity with representation theory.
The key concept underlying Theorem 2 isinductionas implicit
in step (21). Namely,r(x) generates a subalgebraB =
〈r(x)〉 ≤ A, which is equal (settingy = r(x)) to C[y]/q(y).
Further,d = (r0, . . . , rm−1) is a transversal ofB in A, which
meansA is a direct sum of the vector spacesriB:

A = r0B ⊕ . . . ⊕ rm−1B. (28)

This shows that the regularA-module is an induction of the
regular B-module with transversald: A = B ↑d A. The
natural basis of this induction isb′ in (25), which reflects
the structure of (28). The purpose of step (21) is to make this
induction explicit, and Theorem 2 is a decomposition theorem
for inductions of (regular modules of) polynomial algebras.

This is a satisfying insight since it connects to related work
on group FFTs that uses, among other techniques, the same
principle for algorithm derivation (e.g., [22], [34], [35], [36];
compare Theorem 2 to [36, Th. 2 in the appendix]). In our
own prior work [36], [37] we extended the group techniques to
automatically find algorithms for a given transform. Applica-
tion to the DCTs and DSTs yielded in some casesorthogonal
algorithms that are different from the ones in this paper.

Further, we have used already a different generalization of
Theorem 2, namely to polynomial algebras intwo variables
(which provide two-dimensional signal models) to derive a
Cooley-Tukey type algorithm in [38] for the discrete triangle
transform introduced in [39].

V. COOLEY-TUKEY TYPE DTT ALGORITHMS

(FACTORIZATION)

In this section we derive recursive DTT algorithms by
applying Theorem 1, i.e., by factorizing the polynomialp in
the moduleC[x]/p(x) associated to a givenDTT. To do so,
we will use the followingrational factorizations of Chebyshev
polynomials.

Lemma 2The following factorizations hold for the Chebyshev
polynomialsT,U, V,W :

i) T3 = x(4x2 − 3)
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ii) U2n−1 = 2Un−1Tn.
iii) U2n = VnWn.
iv) V3n+1 = 2Vn(T2n+1 − 1/2).
v) W3n+1 = 2Wn(T2n+1 + 1/2).

Proof: Follows from the closed form of the polynomials
given in Table XVI and trigonometric identities.

The factorizations in Lemma 2 give rise to size 3 algorithms
for DTTs in theT -group and recursive algorithms for DTTs
in the U -, V -, andW -groups. The derivation is in each case
straightforward using Theorem 1, hence we give only one
detailed example.

T -Group DTT algorithms for Size 3. We derive algo-
rithms based on Lemma 2, i), i.e., for DTTs in theT -group
(DTTs of type 3 and 4) of size 3. As an example, we consider
a DCT-43. We start with the polynomial versionDCT-43,
which is a polynomial transform forC[x]/T3 with V -basis
(V0, V1, V2) = (1, 2x− 1, 4x2 − 2x− 1). The zeros ofT3 are
(
√

3/2, 0,−
√

3/2). The factorizationT3 = x(4x2 − 3) yields
the stepwise decomposition

C[x]/T3

→ C[x]/x ⊕ C[x]/(x2 − 3
4 ) (29)

→ C[x]/x ⊕
(
C[x]/(x −

√
3

2 ) ⊕ C[x]/(x +
√

3
2 )
)
(30)

→ C[x]/(x −
√

3
2 ) ⊕ C[x]/x ⊕ C[x]/(x +

√
3

2 ). (31)

We start with the partial decomposition in (29) and choose
in all three algebras aV -basis. The base change matrixB is
computed by mapping(V0, V1, V2) and expressing it in the
basis of the direct sum in (29). The coordinate vectors are the
columns ofB. The first column is(1, 1, 0)T . Because ofV1 =
2x − 1 ≡ −1 mod x, the second column is(−1, 0, 1)T . The
last column is obtained fromV2 = 4x2−2x−1 ≡ −1 mod x
and 4x2 − 2x − 1 ≡ −2x + 2 = −V1 + V0 mod 4x2 − 3
as(−1, 1,−1)T . Step (30) requires polynomial transforms for
C[x]/x and C[x]/(x2 − 3/4) with V -bases, which are given
by

[1] and

[
V0(

√
3

2 ) V1(
√

3
2 )

V0(−
√

3
2 ) V1(−

√
3

2 )

]
=

[
1

√
3 − 1

1 −
√

3 − 1

]
,

respectively. Finally, we have to exchange the first two spectral
components in (31). The result is

DCT-43 =




0 1 0
1 0 0
0 0 1








1 0 0

0 1
√

3 − 1

0 1 −
√

3 − 1








1 −1 −1
1 0 1
0 1 −1



 .

The corresponding algorithm forDCT-43 is obtained
by scaling from the left with the diagonal matrix
diag(cos(π/12), cos(3π/12), cos(5π/12)) to get

DCT-43 =




0 1 0
1 0 0
0 0 1









1√
2

0 0

0 cos π
12

1√
2

0 cos 5π
12 − 1√

2








1 −1 −1
1 0 1
0 1 −1



 .

Similarly, we get algorithms for the other DTTs of size 3 in
the T -group. Those, which are among the best known ones,
are collected in Table X in Section VI-A.

U -Group DTT algorithms. The factorizations in Lemma 2,
ii) and iii), yield a complete set of recursive algorithms for

DTTs in theU -group. We derived these already in [11] and
restate them in Table VII(a) and (b) for completeness.

The algorithms in Table VII(a) and (b) appeared first in
the literature (to our best knowledge) in [40], [41], [16], and
[42], respectively. Combining Table VII(a) with the many ways
of translating DTTs into each other given by duality or base
change (see Appendix III) gives a large number of different
recursions, many of them, however, with suboptimal arithmetic
cost. Examples include [43], [44], [45].

One application of Table VII(b) is in obtaining DTT algo-
rithms for small sizes, where the smaller DTTs of type 5–8
are base cases. As a simple example, we get

DCT-23

= L̂3
2(DCT-62 ⊕ DCT-81)B3

=




1 0 0
0 0 1
0 1 0




([

1 1
1
2 −1

]
⊕

√
3

2
I1

)


1 0 1
0 1 0
1 0 −1



 . (32)

Transposition yields aDCT-33 algorithm, equivalent to the
one obtainable from Lemma 2(i).

V - and W -Group DTT algorithms. The factorizations in
Lemma 2, iv) and v), yield recursive algorithms for the DTTs
in the V - andW -group, i.e., for all DTTs of type 5–8. Since
the second factor in these factorizations isT2n+1 ± 1/2 =
T2n+1 ± cos(π/3), the skew DTTs (see Section II-A) come
into play. The resulting algorithms are shown in Table VII(c)
and (d) and are novel.

One may ask what is the “natural” size of the DTTs of types
5–8, i.e., the sizes that yield the best decomposition. In each
case, the occurring skew DTT is of odd size2m + 1. Hence,
it can be decomposed best using the algorithms shown later
in Table XI if 2m + 1 is a 3-power. This implies that3m + 2
and 3m + 1 are of the forms(3k + 1)/2 and (3k − 1)/2,
respectively.

Polynomial DTTs. Every DTT in Table VII is decomposed
into two DTTs that have the same associated basisb. Thus
they have the same scaling function (see Table II:b and f
are connected), which is the reason why we see no scaling
factors in the equations. As an important consequence, we
get algorithms corresponding to Table VII for the polynomial
transformsDTT.

As an example, we derive the polynomial equivalent of (32):

DCT-23 =




1 0 0
0 0 1
0 1 0




([

1 1
1 −2

]
⊕ I1

)


1 0 1
0 1 0
1 0 −1



 ,

where DCT-23 = diag(1,
√

3
2 , 1

2 ) · DCT-23. The algorithm
requires 4 additions and 1 multiplication and is thus 1 multi-
plication cheaper than its non-polynomial equivalent (32).

Final remarks. The algorithms given in this section are
based on Lemma 2, which provides factorizations of the
Chebyshev polynomialsT,U, V,W . Since all these polyno-
mial factorizations are rational, the associated matrix factor-
izations are also rational (the occuring transforms may of
course still contain irrational entries). In Lemma 2, ii) and
iii), the factors are again Chebyshev polynomials, and thus
the smaller transforms in the decomposition are again DTTs.
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TABLE VII

DTT ALGORITHMS BASED ON FACTORIZATION PROPERTIES OF THECHEBYSHEV POLYNOMIALS. TRANSPOSITION YIELDS A DIFFERENT SET OF

ALGORITHMS. REPLACING EACH TRANSFORM BY ITS POLYNOMIAL COUNTERPART YIELDS ALGORITHMS FOR THE POLYNOMIALDTTS. THE BASE

CASES ARE GIVEN INTABLE IX. T HE OCCURING MATRICES ARE DEFINED INTABLE VIII.

(a) U -group: Based onU2n−1 = 2Un−1Tn

DCT-12m+1 = bL2m+1
m+1 (DCT-1m+1 ⊕ DCT-3m)B2m+1

DST-12m−1 = bL2m−1
m (DST-3m ⊕ DST-1m−1)B2m−1

DCT-22m = L2m
m (DCT-2m ⊕ DCT-4m)B2m

DST-22m = L2m
m (DST-4m ⊕ DST-2m)B2m

(b) U -group: Based onU2n = VnWn

DCT-12m = L2m
m (DCT-5m ⊕ DCT-7m)B2m

DST-12m = L2m
m (DST-7m ⊕ DST-5m)B2m

DCT-22m+1 = bL2m+1
m+1 (DCT-6m+1 ⊕ DCT-8m)B2m+1

DST-22m+1 = bL2m+1
m+1 (DST-8m+1 ⊕ DST-6m)B2m+1

(c) V -group: Based onV3n+1 = 2(T2n+1 − 1/2)Vn

DCT-73m+2 = P 3m+2
m (DCT-32m+1( 1

3
) ⊕ DCT-7m+1)B

(C7)
3m+2

DST-73m+1 = bP 3m+1
m (DST-32m+1( 1

3
) ⊕ DST-7m)B

(S7)
3m+1

DCT-83m+1 = bP 3m+1
m (DCT-42m+1( 1

3
) ⊕ DCT-8m)B

(C8)
3m+1

DST-83m+2 = P 3m+2
m (DST-42m+1( 1

3
) ⊕ DST-8m+1)B

(S8)
3m+2

(d) W -group: Based onW3n+1 = 2Wn(T2n+1 + 1/2)

DCT-53m+2 = Q3m+2
m (DCT-5m+1 ⊕ DCT-32m+1( 2

3
))B

(C5)
3m+2

DST-53m+1 = bQ3m+1
m (DST-5m ⊕ DST-32m+1( 2

3
))B

(S5)
3m+1

DCT-63m+2 = Q3m+2
m (DCT-6m+1 ⊕ DCT-42m+1( 2

3
))B

(C6)
3m+2

DST-63m+1 = bQ3m+1
m (DST-6m ⊕ DST-42m+1( 2

3
))B

(S6)
3m+1

TABLE VIII

MATRICES USED IN THE ALGORITHMS INTABLE VII.

(a) Base change matrices in Table VII(a) and (b)

B2m =

»
Im Jm

Im −Jm

–
= (DFT2 ⊗Im)(Im ⊕ Jm), B2m+1 =

2
4

Im 0 Jm

0 1 0
Im 0 −Jm

3
5

(b) Base change matrices in Table VII(c); from left to right:B
(C7)
3m+2, B

(S7)
3m+1, B

(C8)
3m+1, B

(S8)
3m+2.

2
6664

1/2

I2m+1 Im

−Jm

1 −1

Im −Jm −Im

3
7775 ,

2
6664

Im

I2m+1 Jm

0 ··· 0

Im Jm
0
··
·
0

−Im

3
7775 ,

2
6664

Im

I2m+1 0 ··· 0

−Jm

Im
0
··
·
0

−Jm −Im

3
7775 ,

2
6664

Im

I2m+1 2

Jm

Im Jm −Im

1 −1

3
7775

(c) Base change matrices in Table VII(d); from left to right:B
(C5)
3m+2, B

(S5)
3m+1, B

(C6)
3m+2, B

(S6)
3m+1.

2
6664

1 1

Im Jm Im

−1/2

I2m+1 −Im

−Jm

3
7775 ,

2
6664

Im −Jm
0
··
·
0

Im

−Im

I2m+1 Jm

0 ··· 0

3
7775 ,

2
6664

Im Jm Im

1 1

−Im

I2m+1 −2

−Jm

3
7775 ,

2
6664

Im
0
··
·
0

−Jm Im

−Im

I2m+1 0 ··· 0

Jm

3
7775

(d) Permutations in Table VII(c) and (d); note thatP̂ and Q̂ are implicitly defined by dropping a fixpoint fromP andQ, respectively.

P 3m+2
m = i1 + 3i2 7→

8
><
>:

2i2, for i1 = 0;

i2 + 2m + 1, for i1 = 1;

2i2 + 1, for i1 = 2;

= bL3m+2
m+1

2
4

Im+1

Im+1

Im

3
5 (bL2m+1

2 ⊕ Im+1)

= bP 3m+1
m ⊕ I1

Q3m+2
m = i1 + 3i2 7→

8
><
>:

i2, for i1 = 0;

2i2 + m + 1, for i1 = 1;

2i2 + m + 2, for i2 = 2.

= bL3m+2
m+1

»
Im+1

I2m+1

–
(bL2m+1

2 ⊕ Im+1)

= I1 ⊕ bQ3m+1
m

TABLE IX

BASE CASES FOR THE ALGORITHMS INTABLE VII. T HE T -GROUPDTT BASE CASES ARE PROVIDED INTABLE X.

DCT-12 = F2 DCT-12 = DCT-12

DST-11 = I1 DST-11 = I1
DCT-22 = diag(1, 1√

2
) · F2 DCT-22 = F2

DST-22 = diag( 1√
2
, 1) · F2 DST-22 = F2

DCT-72 =
h

1 1/2
1 −1

i
DCT-72 = DCT-72

DST-71 =
√

3
2

I1 DST-71 = I1

DCT-81 =
√

3
2

I1 DCT-81 = I2

DST-82 =
h

1/2 1
1 −1

i
DCT-82 =

h
1 2
1 −1

i

DCT-52 =
h

1 1
1 −1/2

i
DCT-52 = DCT-52

DST-51 =
√

3
2

I1 DST-51 = I1

DCT-62 =
h

1 1
1/2 −1

i
DCT-62 =

h
1 1
1 −2

i

DST-61 =
√

3
2

I1 DCT-61 = I1
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In Lemma 2, iv) and v), the second factorT2n+1−1/2 leads to
skew DTTs (see Table IV). The complete rational factorization
of the Chebyshev polynomialsTn, Un for arbitraryn is given
in [46]. The rational factorization ofVn andWn can be derived
using [46] and Lemma 2, iii). These factorizations can be used
to decompose a DTT, but the smaller transforms obtained are
in general no DTTs or skew DTTs.

All algorithms in Table VII can be manipulated in numerous
ways using the identities in Appendix III or transposition to
obtain different algorithms.

VI. COOLEY-TUKEY TYPE DTT ALGORITHMS

(DECOMPOSITION)

In this section, we derive DTT algorithms that are based
on Theorem 2, i.e., on a decompositionp(x) = q(r(x))
of the polynomial p in the associated algebraC[x]/p(x).
These algorithms are structurally and in a precise mathematical
sense the equivalent of the Cooley-Tukey FFT (27), which we
derived based on the decompositionxn − 1 = (xm)k − 1.

We will see that all 16 DTTs possess such algorithms,
and that in many cases there are several reasonable variants
with different characteristics to choose from. Some of these
algorithms generalize the ones we introduced in Section V.

Each of these DTT algorithms exhibits the same flexible
recursion and regular and versatile structure that has beenthe
success of the Cooley-Tukey FFT. As a consequence, one may
expect that many FFT variants optimized for, e.g., parallelor
vector computation will have counterparts for the 16 DTTs.
See [33], [28], [5], [6] for more details on FFT variants.

Only very few special cases of these algorithms have been
found before. Again, our algebraic methods show their power:
all algorithms are based on the single Theorem 2 and the
derivation is comparatively easy since only base changes have
to be computed. In contrast, a derivation based on matrix
entries would become hopelessly complicated and does not
provide a guideline on how to obtain an algorithm at all.

Decomposition of Chebyshev polynomials.The DTT al-
gorithms are based on the following lemma.

Lemma 3The Chebyshev polynomialsT,U, V,W have the
following decomposition properties:

i) Tkm = Tk(Tm); Tkm − a = Tk(Tm) − a, a ∈ C.
ii) Ukm−1 = Um−1 · Uk−1(Tm).
iii) V(k−1)/2+km = Vm · V(k−1)/2(T2m+1).
iv) W(k−1)/2+km = Wm · W(k−1)/2(T2m+1).
v) Tkm+m/2 = Tm/2 · Vk(Tm).
vi) Ukm+m/2−1 = Um/2−1 · Wk(Tm).

Proof: Straightforward using the closed form ofTn from
Table XVI. In particular, property i) is well-known in the
literature [47].

Inspecting the identities in Lemma 3, we observe that only
i) provides a pure decomposition; the other identities are
a decomposition up to a factor. Thus, in these cases, the
algorithm derivation requires us to first apply Theorem 1 and
then Theorem 2.

Also, we observe that Lemma 3 provides decompositions of
all four typesof Chebyshev polynomials. Thus we can expect

Cooley-Tukey type algorithms for all 16 DTTs. Looking at
Lemma 3, Theorem 2, and its derivation in (21)–(24), we see
that the algebras in (22), will always have the form

C[x]/(Tn − cos rπ).

Thus the decomposition (23) will require skew DTTs, which
motivates their introduction in [9]. Of course, this poses the
question how to further decompose the skew DTTs for non-
trivial sizes. This question is answered by the second identity
in Lemma 3, i):Tn−a decomposes exactly asTn does, which
establishes a one-to-one correspondence between algorithms
for the DTTs in theT -group and their skew counterparts.

We will focus on the derivation of algorithms forT -group
DTTs, and, due to space limitations, comment only very briefly
on the others. Additional details are in [19].

A. T -Group DTT Algorithms

In this section, we derive Cooley-Tukey algorithms for the
four DTTs in theT -group based on the decompositionTn =
Tk(Tm). These algorithms are then summarized in Table XI.

We start with a fixed DTT in theT -group with associated
algebraC[x]/Tn and C-basis2 b = (C0, . . . , Cn−1), where
C ∈ {T,U, V,W} depends on the chosen DTT. We assume
n = km, and use the decompositionTn = Tk(Tm). The
decomposition steps (21)–(24) of Theorem 2 take the form

C[x]/Tn → C[x]/Tk(Tm) (33)

→
⊕

0≤i<k

C[x]/(Tm − cos i+1/2
k π) (34)

→
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x − cos ri,jπ) (35)

→
⊕

0≤i<n

C[x]/(x − cos i+1/2
n π), (36)

where theri,j are determined by Lemma 1.
In the first step (33), we change bases inC[x]/Tn =

C[x]/Tk(Tm), from the givenC-basisb to the basisb′ given
in (25). The question arises, which basis to choose in the
subalgebraB = C[y]/Tk, and which common basis to choose
in the “skew” algebrasCi = C[x]/

(
Tm − cos(i+1/2)π

k

)
. In

the latter ones, we always choose the sameC-basis as in the
original algebra. For the subalgebra, it turns out that we have
two reasonable choices: aT -basis or aU -basis. We consider
both cases, starting with theU -basis.

U -basis. We choose, independently ofC, a U -basis in
C[y]/Tk. Note, that this makes the corresponding DTT a
DST-3m (see Table II). The basisb′ in (25) is then given
by

b′ = (C0U0(Tm), . . . , Cm−1U0(Tm),
. . .
C0Uk−1(Tm), . . . , Cm−1Uk−1(Tm))

= (CjUi(Tm) | 0 ≤ i < k, 0 ≤ j < m).

(37)

We order double indices always lexicographically(i, j) =
(0, 0), (0, 1), . . . .

2C-basis does not mean that the basefield isC but that it consists of
Chebyshev polynomials.
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We denote the corresponding base change matrixb → b′

in (33) with B
(∗)
k,m. Here, and in the following, the∗ ∈

{C3, S3, C4, S4} in the superscript means that the matrix
depends on the DTT that is decomposed.

We show DTT = DCT-3 as an example. The matrix
B

(∗)
k,m = B

(C3)

k,m in (40) performs in this case inC[x]/Tn a
base change from theT -basis to the basisb′ in (37) with
C = T . To computeB

(C3)

k,m we have to express every element
Ti in b as a linear combination of elements inb′. To do this,
we first writeb as

b = (Tim+j | 0 ≤ i < k, 0 ≤ j < m).

We did not changeb, but only decomposed the index into a
radix-m representation. The basisb′ is a special case of (37):

b′ = (TjUi(Tm) | 0 ≤ i < k, 0 ≤ j < m).

First, we consider the casej = 0. From Table XVII, we know
that Ti = (Ui − Ui−2)/2 and thus

Tim = Ti(Tm) = 1
2Ui(Tm) − 1

2Ui−2(Tm) (38)

is the desired representation inb′.
Now, let j 6= 0, i.e., 1 ≤ j < m. We claim that

Tim+j = TjUi(Tm) − Tm−jUi−1(Tm). (39)

To prove it, we define the recursion

p0 = Tj−m = Tm−j ,

p1 = Tj ,

pi+1 = 2Tmpi − pi−1.

First, because of (53) in Appendix III we see that

pi+1 = Tim+j ,

which is the left hand side of (39). On the other hand, using
(52) in Appendix II with Tm playing the role ofx in (52)
shows thatpi+1 is also the right hand side of (39), as desired.

The equations (38) and (39) define the columns of the base
change matrix, which is thus given by

B
(C3)
k,m =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 −

1
2

Im−1 −Jm−1

. . .

1
2

. . . −

1
2

. . . −Jm−1
1
2

Im−1 −Jm−1
1
2

Im−1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

For example, all rows with an index that is a multiple ofm
are determined by (38) and thus contain the numbers1/2.

Using

Cim+j = CjUi(Tm) − Cj−mUi−1(Tm),

which generalizes (39), yields the base change matrices in the
other three cases∗ ∈ {C4, S3, S4}.

After the base change, the decomposition follows
steps (34)–(36) and Theorem 2. The coarse decomposition in

step (34) is obtained with the matrixDST-3k ⊗ Im, since
Theorem 2 requires us to choose a polynomial transform for
the coarse decomposition. For step (35), we need a direct sum
of skew DTTs:Ik ⊗i DTTm( i+1/2

k ). These are of the same
type as the DTT we started with, since they have the same
C-basis as the DTT to be decomposed.

Finally, we order the one-dimensional summands in
step (36) using a permutation. This permutation does not
depend on the basis, but only on the zeros ofTk and Tm.
Thus it is the same in all four cases of DTTs in theT -group,
and, using Lemma 1, it takes the form

Kn
m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . . )Ln

m.

This permutation is theT -group DTT equivalent of the stride
permutationLn

m in the Cooley-Tukey FFT.
In summary, we obtain

DTTn = Kn
m

(
Ik ⊗i DTTm( i+1/2

k )
)
(DST-3k ⊗ Im)B

(∗)
k,m.
(40)

The question that remains is how to decompose the smaller
transforms: the skewDTTm’s and the polynomialDST-3k.
However, this poses no problem. Since for anya ∈ C,
Tn − a decomposes exactly asTn, we derive in a completely
analogous way the “skew version” of (40) as

DTTn(r) = Kn
m

(
Ik ⊗i DTTm(ri)

)(
DST-3k(r)⊗ Im

)
B

(∗)
k,m,
(41)

which generalizes (40); namely, (40) is (41) forr = 1/2. The
numbersri are computed fromr using Lemma 1. The matrix
Kn

m neither depends on the type of DTT, nor onr; the matrix

B
(∗)
k,m does depend on the type of DTT, but not onr, since

the basesb andb′ are independent ofr.
Further, since DTTs and skew DTTs have the same scaling

function (Tables II and IV), we obtain corresponding algo-
rithms for the polynomial version of the transforms by just
replacing each DTT by its polynomial counterpart:

DTTn(r) = Kn
m

(
Ik ⊗i DTTm(ri)

)(
DST-3k(r)⊗ Im

)
B

(∗)
k,m.

All details of the above algorithms are in Table XI.
Next, we derive the analogue of the above algorithms, if

a T -basis, instead of aU -basis is chosen in the subalgebra
C[x]/Tk.

T -basis. In distinction to the above, we choose this time,
independently ofC, a T -basis inC[y]/Tk. Thus, the corre-
sponding DTT is aDCT-3m. The basisb′ in (25) is now
given by

b′ = (C0T0(Tm), . . . , Cm−1T0(Tm),
. . .
C0Tk−1(Tm), . . . , Cm−1Tk−1(Tm))

= (Cj−im/2 + Cj+im/2 | 0 ≤ i < k, 0 ≤ j < m),

(42)

using (53) in Appendix II. We denote the base change matrix
for b → b′ by B

(∗)
k,m. We omit the derivation, which is similar

to theU -basis case above. Details are in [19].
The coarse decomposition in step (34) is now performed by

the matrixDCT-3k ⊗ Im (note thatDCT-3 is a polynomial
transform). The remaining steps (35) and (36) are equal to
what we had before.
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As a result, we obtain

DTTn = Kn
m

(
Ik ⊗i DTTm( i+1/2

k )
)
(DCT-3k ⊗ Im)B

(∗)
k,m,
(43)

and its generalization to the skew DTTs

DTTn(r) = Kn
m

(
Ik ⊗i DTTm(ri)

)(
DCT-3k(r)⊗ Im

)
B

(∗)
k,m.
(44)

Again, B(∗)
k,m only depends on the type of DTT, and not onr.

The polynomial version is again given by simply replacing
all DTTs by their polynomial counterparts:

DTTn(r) = Kn
m

(
Ik ⊗i DTTm(ri)

)(
DCT-3k(r)⊗ Im

)
B

(∗)
k,m.

We mentioned above that choosing aU -basis in the subal-
gebraC[x]/Tk leads to base change matricesBk,m that are
sparse. For theT -basis, this is somewhat different. In fact,
inspecting (42) shows that the inverse base changeb′ → b,
i.e., B−1

k,m is sparse (with at most two entries in each column).
For this reason, we will also consider the inverse of (43) and
(44). The sparsity ofBk,m depends onk; the best case is
k = 2 and the only one we consider in this paper.

All the details are in Table XI.
T -basis inverted. To express the inverse, we need the

inverse skew DTTs (Appendix III). The inverse of (44) will
take, after minor simplifications, in each case the general form

iDTTn(r) = C
(∗)
k,m(iDCT-3k(r) ⊗ Im)

(
Ik ⊗i iDTTm(ri)

)
Mn

k , (45)

whereMn
k = (Kn

m)−1 = Ln
k (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . . ), and

C
(∗)
k,m is closely related to(B(∗)

k,m)−1. (45) provides algorithms
for the DTTs of type 2 and 4 (the inverses of the DTTs in the
T -group). See Table XI for the exact form.

Variants. The algorithms derived above can be further
manipulated to obtain variants. We saw already an example:
the inversion of (44) to obtain (45). One obvious manipulation
is transposition, which turns eachT -group DTT algorithm into
an algorithm for a DCT or DST of type 2 or 4 (the transposes
of the T -group DTTs).

More interestingly, each of the above algorithms has a cor-
responding “twiddle version,” which is obtained by translating
skew DTTs into their non-skew counterparts using (56) in
Appendix III. For example, the twiddle version of (43) is given
by

DTTn = Kn
m(Ik⊗DTTm)Dk,m(DCT-3k⊗Im)Bk,m, (46)

whereDk,m = Ik ⊗i X
(∗)
m ( i+1/2

k ) is a direct sum of the x-
shaped matrices in (56) (Appendix III).

The twiddle version seems more appealing; however, we
will later see that at least in the 2-power casen = 2k they
incur a higher arithmetic cost. The reason is that skew and
non-skew DTTs can be computed with the same cost in this
case. For other sizes, the twiddle version may not incur any
penalty. Most state of the art software implementations [2],
[3] fuse the twiddle factors with the subsequent loop incurred
by the tensor product anyway to achieve better locality.

Base cases.We provide the base cases for the above
algorithms for sizen = 2, 3 in Table X. The size 2 cases

TABLE X

BASE CASES FOR NORMAL AND SKEWT -GROUPDTTS OF SIZE2 AND 3.

DCT-32 = F2 · diag(1, 1/
√

2)

DST-32 = F2 · diag(1,
√

2)

DCT-42 = F2 ·
h

1 −1

0
√

2

i

DST-42 = F2 ·
h

1 1
0
√

2

i

DCT-32 = DCT-32

DST-32 = F2 · diag(1/
√

2, 1)

DCT-42 = diag(cos π
8

, sin π
8
) · F2 ·

h
1 −1

0
√

2

i

DST-42 = diag(sin π
8
, cos π

8
) · F2 ·

h
1 1
0
√

2

i

DCT-32(r) = F2 · diag(1, cos r
2
π)

DST-32(r) = F2 · diag(1, 2 cos rπ
2

)

DCT-42(r) = F2 ·
h

1 −1

0 2 cos
rπ
2

i

DST-42(r) = F2 ·
h

1 1
0 2 cos

rπ
2

i

DCT-32(r) = DCT-32(r)

DST-32(r) = F2 · diag(sin rπ
2

, sin rπ)

DCT-42(r) = diag(cos rπ
4

, sin rπ
4

) · F2 ·
h

1 −1

0 2 cos
rπ
2

i

DST-42(r) = diag(sin rπ
4

, cos rπ
4

) · F2 ·
h

1 1
0 2 cos

rπ
2

i

iDCT-32(r) = diag(1, 1
2 cos r

2
π)

· F2,

iDST-32(r) = diag( 1
2 sin rπ

2

, 1
sin rπ

) · F2

iDCT-42(r) =

»
1 1

0
1

2 cos
rπ
2

–
· F2 · diag( 1

2 cos
rπ
4

, 1

2 sin
rπ
4

)

iDCT-42(r) =

» 1 −1

0
1

2 cos
rπ
2

–
· F2 · diag( 1

2 sin
rπ
4

, 1

2 cos
rπ
4

)

DCT-33 =

»
1 0 1
0 1 0
1 0 −1

– »
1 0 1/2
1 0 −1

0
√

3/2 0

–

DST-33 =

»
0 1 1
1 0 0
0 1 −1

– »
1 0 −1
1 0 2

0
√

3 0

–

DCT-43 =

»
0 1

√
3−1

1 0 0
0 1 −

√
3−1

– »
1 −1 −1
1 0 1
0 1 −1

–

DST-43 =

»
0 1

√
3+1

1 0 0
0 1 −

√
3+1

– »
1 1 −1
1 0 1
0 1 1

–

DCT-33 = DCT-33

DST-33 =

»
1 0 1
0 1 0
1 0 −1

– »
1/2 0 1
1 0 −1

0
√

3/2 0

–

DCT-43 =

»
1 −1 0
0 0 1
1 1 0

– »
1 0 0
0 1 −1
0 −2 −1

–
diag(

q
3
2
,
q

1
8
,
q

1
2
)

»
1 0 1

−1 0 1
0 1 0

–

DST-43 =

»
1 −1 0
0 0 1
1 1 0

– »
1 0 0
0 1 −1
0 2 1

–
diag(

q
3
2
,
q

1
8
,
q

1
2
)

»
1 0 1
1 0 −1
0 1 0

–

DCT-33(r) =

»
1 1 1
1 −1 0
1 0 −1

– “
I1 ⊕

»
cos( 1+r

3
π) cos( 1−2r

3
π)

cos( 1−r

3
π) cos( 1+2r

3
π)

–”

DST-33(r) =

»
1 1 1
1 −1 0
1 0 −1

– “
I1 ⊕ 2

»
cos( 1+r

3
π) cos( 1−2r

3
π)

cos( 1−r

3
π) cos( 1+2r

3
π)

–” h
1 0 1
0 1 0
0 0 1

i

DCT-43(r) = by definition
DST-43(r) = by definition

DCT-33(r) = DCT-33(r)

DST-33(r) = diag(sin r
3
π, sin 2−r

3
π, sin 2+r

3
π)DST-33(r)

DCT-43(r) = by definition
DST-43(r) = by definition

follow from the definition; most of the size 3 cases are derived
as explained in in Section V.

Special case.We briefly discuss the special case of (48) in
Table XI for DTT = DCT-3 and k = 2. B

(C3)
2,m shonw in

Table XII(c) incurs multiplications by 2, which can be fused
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TABLE XI

GENERAL RADIX COOLEY-TUKEY ALGORITHMS BASED ONTn = Tk(Tm) FOR THEDTTS IN THE T -GROUP(AND THEIR TRANSPOSES). IN EACH CASE

DTT ∈ {DCT-3, DST-3, DCT-4, DST-4}. THE EXACT FORM OF THE OCCURRING MATRICES IS GIVEN INTABLE XII.

U -basis: DTTn = DTTn(1/2), DTTkm(r) = Kn
m

`
Ik ⊗i DTTm(ri)

´`
DST-3k(r) ⊗ Im

´
B

(∗)
k,m (47)

T -basis: DTTn = DTTn(1/2), DTTkm(r) = Kn
m

`
Ik ⊗i DTTm(ri)

´`
DCT-3k(r) ⊗ Im

´
B

(∗)
k,m (48)

Inverse of (48): DTTT
n = iDTTn(1/2), iDTTkm(r) = C

(∗)
k,m

`
iDCT-3k(r) ⊗ Im

´`
Ik ⊗i iDTTm(ri)

´
Mn

k (49)

TABLE XII

MATRICES USED INTABLE XI.

(a) Permutations.

Kn
m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . . )Ln

m, Mn
k = (Kn

m)−1 = Ln
k (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . . )

(b) Base change matrices for (47); from left to right:B
(C3)

, B
(S3)

, B
(C4)

, B
(S4)

.
2
666666666666664

1 −

1
2

Im−1 −Jm−1

. . .

1
2

. . . −

1
2

. . . −Jm−1
1
2

Im−1 −Jm−1
1
2

Im−1

3
777777777777775

,

2
6666664

Im Zm

Im Zm

. . .
. . .
Im Zm

Im

3
7777775

,

2
6666664

Im −Jm

Im −Jm

. . .
. . .
Im −Jm

Im

3
7777775

,

2
6666664

Im Jm

Im Jm

. . .
. . .
Im Jm

Im

3
7777775

.

(c) Base change matrices for (48) in the casek = 2.

B
(C3)
2,m = (Im ⊕ diag(1, 2, . . . , 2))

»
Im −Zm

Im

–
, B

(S3)
2,m =

»
Im Zm

2Im

–
, B

(C4)
2,m =

»
Im −Jm

2Im

–
, B

(S4)
2,m =

»
Im Jm

2Im

–
.

(d) Base change matrices for (49); from left to right:C(C3), C(S3), C(C4), C(S4).

2
6666664

Im Zm

Im Zm

. . .
. . .
Im Zm

Im

3
7777775

,

2
6666666666666664

Im−1 −Jm−1
1
2

−

1
2

Im−1 −Jm−1

. . .

1
2

. . . −

1
2

. . . −Jm−1
1
2

Im−1

1

3
7777777777777775

,

2
6666664

Im Jm

Im Jm

. . .
. . .
Im Jm

Im

3
7777775

,

2
6666664

Im −Jm

Im −Jm

. . .
. . .
Im −Jm

Im

3
7777775

.

with the multiplications incurred by the adjacentDCT-32(r).
Namely, usingDCT-32(r) = F2 · diag(1, cos r

2π) (see Ta-
ble X), we can manipulate (48) in Table XI to take the form

DCT-3n(r) = Kn
m

(
DCT-3m( r

2 ) ⊕ DCT-3m( 2−r
2 )
)

(F2 ⊗ Im)E2,m, (50)

where

E2,m =

[
Im −Zm

cos r
2π(I1 ⊕ 2Im−1)

]
. (51)

B. AlternativeT -Group DTT Algorithms

It is also possible to deriveT -group DTT algorithms using
the decompositionTkm+m/2 = Tm/2·Vk(Tm) in Lemma 3, v).
One application is in obtaining algorithms for size5 = 2 · 2+
2/2. For theDCT-3 this yields the algorithm in Table XIII.
The cost can be read off as(12, 6, 1). Transposition yields
an algorithm forDCT-25 with identical cost, which is only
slightly worse than the(13, 5, 0) algorithm in [48].

C. U /V /W -group DTT Algorithms

Lemma 3, ii)–iv), yields general radix algorithms for the
other DTTs in theU/V/W -groups. These are generalizations
of the algorithms in Table VII. Since the most important
DCT-2 is already covered by the transposes of theDCT-3
algorithms, we are very brief and give one representative ex-
ample from each group in Table XIV. The occurring matrices
and more details for the other DTTs can be found in [19].

VII. A NALYSIS

In this section we analyze the algorithms presented in this
paper in Tables VII and XI with respect to arithmetic cost and
other characteristics. We also identify the special cases that
can be found in the literature.

Cost analysis.We focus the discussion on the most impor-
tant cases. Table XV shows a summary of the achievable costs
for all 16 DTTs including the algorithms that achieve them.
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TABLE XIII

ALGORITHM FORDCT-35 WITH COST (12, 6, 1). TRANSPOSITION YIELDS ADCT-25 ALGORITHM OF EQUAL COST.

2
6664

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

3
7775

„
I1 ⊕

`
F2 diag(1, cos π

5
) ⊕ F2 diag(1, cos 3π

5
)
´ »

I2 diag(cos π
5

, 2 cos π
5
)

I2 diag(cos 3π
5

, 2 cos 3π
5

)

–«
2
6664

1 0 −1 0 1
1 0 1/2 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0

3
7775

TABLE XIV

EXAMPLES OF COOLEY-TUKEY TYPE ALGORITHMS FORDTTS IN THE U /V /W -GROUP, BASED ON THE RESPECTIVE DECOMPOSITIONS

Ukm−1 = Uk−1(Tm) · Um−1 , V(k−1)/2+km = V(k−1)/2(T2m+1) · Vm , W(k−1)/2+km = Wm · W(k−1)/2(T2m+1). THE POLYNOMIAL VERSIONS

ARE OBTAINED BY REPLACING ALL TRANSFORMS BY THEIR POLYNOMIAL COUNTERPARTS.

DST-1km−1 = P
(S1)
k,m

“`
Ik−1 ⊗i DST-3m( i+1

k
)
´
(DST-1k−1 ⊗ Im) ⊕ DST-1m−1

”
B

(S1)
k,m

DST-7km+(k−1)/2 = P
(S7)
k,m

“`
I(k−1)/2 ⊗i DST-32m+1( 2i+1

k
)
´
(DST-7k−1

2

⊗ I2m+1) ⊕ DST-7m

”
B

(S7)
k,m

DST-5km+(k−1)/2 = P
(S5)
k,m

“
DST-5m ⊕

`
I(k−1)/2 ⊗i DST-32m+1( 2i+2

k
)
´
(DST-5k−1

2

⊗ I2m+1)
”
B

(S5)
k,m

For the T -group DTTs, we consider the algorithms in
Table XI; (49) is considered transposed. Transposition yields
2-power algorithms of equal cost for DCT and DST of type 2.

For a 2-powern, the costs in each case are independent of
the chosen recursive split strategy and are equal for the skew
(and inverse skew) and non-skew versions since they have the
same recursionsand the base cases in Table X have equal
cost. The polynomial DTTs save multiplications since they
have cheaper base cases (except for theDCT-3 = DCT-3).

For a 3-powern, the skew DTTs are more expensive than
their non-skew counterparts, because the size 3 base cases
have this property. Also, the stated costs for 3-powers in
Table XV(a) can be further improved with the algorithms in
this paper. For example, we can slightly improve aDCT-3
of a 3-power sizen using first the transpose of Table VII(b)
and then decompose the occuring DCTs of type 7 and 8 with
Tables VII(c) and VII(d) to get a cost of

( 8
3n log3(n) − 2n + 2, 4

3n log3(n) − 7
4n + 1

2 log3(n) + 7
4 ,

1
4n + 1

2 log3(n) − 1
4 ) = 4n log3(n) − 7

2n + log3(n) + 7
2

while sacrificing some regularity in structure. For example,
for n = 9, Table XV(a) yields(32, 12, 4) = 48 and the
above (32, 11, 3) = 46. The same costs apply to aDCT-2
by transposing the algorithms. Reference [48] provides an
(34, 8, 2) = 44 algorithm (proven optimal with respect to
non-rational multiplications) with no obvious structure.Any
of these size 9 algorithms can also be used as base case for
a larger 3-power size. Using (55) and (56), the cost for a 3-
power sizeDCT-4 can also be reduced.

For an arbitraryp-powern, we can computeT -group DTTs
(and their transposes) using the twiddle versions of theT -
group algorithms such as (46). For example, aDCT-2pt

computed with (49) then requires, independently of the split
strategy,np logp(n) DCT-2p’s and

2(1 − 1/p)n logp(n) − 2n + 2

additions and multiplications, respectively. For a given
DCT-2p kernel (e.g., the transpose of Table XIII forp = 5 or

[48] for p = 5, 7), it is now easy to compute a precise cost.
The otherT -group DTTs can be decomposed analogously.

Further comments.
• The algorithms in (48) in Table XI fork = 2 have

the appealing feature that all multiplications occur in
parallel with additions on the same operands as shown
for the DCT-3 in (51). Further, their transposes are a
good choice if the output is to be pruned, i.e., only, say,
the first half of the output matters. This was used in [49]
for the DCT-2.

• The algorithms (49) involveiDTTs and hence inverse
cosines (from the base cases of theiDTTs in Table X).
This may cause numerical instability.

• Transposition of the algorithms in Tables VII and XI
yields algorithms for the respective transposed DTTs
with equal cost. The reason for this is that all occurring
matrices have this property.

• If a non-skew DTT is decomposed using any of the
algorithms in Table XI, andn is odd, then (the middle)
one of the occurring skew DTTs in the direct sum has
r = 1/2, i.e., is non-skew.

• Any odd-size DCT of type 2 or 3 can be translated into
an RDFT without incurring operations [48].

• Again, we note that the algorithms in this section are
not all the available ones. One example are orthogonal
algorithms, which are due to other algebraic principles
such as [36].

• All the algorithms for DTTs of types 2–4 have a total
cost of2n log2(n)+O(n) for a 2-power sizen. This can
be improved by roughly 5% with the recent paper [50]
to 17

9 n log2(n)+O(n) at the expense of some regularity.
Literature. Algorithm (48) for theDCT-3 of 2-power size

in the special casek = 2 was derived in [51] and in [29];
the latter also considered 3-powers andk = 3. For arbitrary
p-powers (p prime) andk = p, the derivation is in [30].
The above references also used Chebyshev polynomials in
their derivation, but they do not use the algebraic framework,
and they present the algorithms in an iterative form only,
which avoids the definition of skew DTTs. For software
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TABLE XV

ARITHMETIC COSTS ACHIEVABLE FOR THE16 DTTS WITH THE ALGORITHMS IN THIS PAPER.

(a) T -group DTTs of 2-power and 3-power sizesn. All the 3-power size costs can be slightly improved upon (seeSection VII). For 2-power sizesn, the
polynomial versions of the type 4 DTTs requiren multiplications less and the polynomialDST-3 requiresn/2 multiplications less.

Transform Cost (adds, mults, 2-power mults) Total cost Achieved by

2-powern
DCT-3n ( 3

2
n log2(n) − n + 1, 1

2
n log2(n), 0) 2n log2(n) − n + 1 (47) = (50), (49)T , Table VII(a)T

DST-3n same asDCT-3n 2n log2(n) − n + 1 duality (54), Table VII(a)T

DCT-4n ( 3
2
n log2(n), 1

2
n log2(n) + n, 0) 2n log2(n) + n (47), (48), (49), (55), and their transposes

DST-4n same asDCT-4n 2n log2(n) + n (47), (48), (49), duality (54)
DCT-3n(r) same asDCT-3n 2n log2(n) − n + 1 (48)
DST-3n(r) ( 3

2
n log2(n) − n + 1, 1

2
n log2(n) + 1

2
n, 0) 2n log2(n) − 1

2
n + 1 (47)

DCT-4n(r) same asDCT-4n 2n log2(n) + n (47), (48)
DST-4n(r) same asDCT-4n 2n log2(n) + n (47), (48)

3-powern
DCT-3n ( 8

3
n log3(n) − 2n + 2, 4

3
n log3(n) − 3

2
n, 1

2
n − 1

2
) 4n log3(n) − 3n + 3 (48), (49)T , see also discussion in SectionVII

DST-3n same asDCT-3n 4n log3(n) − 3n + 3 duality (54)
DCT-4n ( 8

3
n log3(n) − n + 1, 4

3
n log3(n) − 1

2
n, 1

2
n − 1

2
) 4n log3(n) − n + 2 (55)

DST-4n same asDCT-4n 4n log3(n) − n + 2 duality (54)
DCT-3n(r) ( 8

3
n log3(n) − n + 1, 4

3
n log3(n), 0) 4n log3(n) − n + 1 (48)

DST-3n(r) ( 8
3
n log3(n) − n + 1, 4

3
n log3(n) + 1

2
n + 1

2
, 1

2
n − 1

2
) 4n log3(n) + 1 (56)

DCT-4n(r) ( 8
3
n log3(n), 4

3
n log3(n) + 1

2
n − 1

2
, 1

2
n − 1

2
) 4n log3(n) + n (57)

DST-4n(r) same asDCT-4n(r) 4n log3(n) + n the equivalent to (57)

(b) U /V /W -group DTTs. The size ofDCT-1 is n = 2k + 1, the size ofDST-1 is n = 2k − 1, the sizes ofDCT-2 andDST-2 is n = 2k, the size of
DCT-5, DCT-6, DCT-7, DST-8 is n = (3k + 1)/2, and the size ofDST-5, DST-6, DST-7, DCT-8 is n = (3k − 1)/2. The polynomial DTTs of type
2 aren − 1 multiplications cheaper.

Transform Cost (adds, mults, 2-power mults) Total cost Achieved by

DCT-1n ( 3
2
n log2(n − 1) − 2n − 1

2
log2(n − 1) + 6, 2n log2(n − 1) − 3n Table VII(a)

1
2
n log2(n − 1) − n − 1

2
log2(n − 1) + 2, 0) − log2(n − 1) + 8

DST-1n ( 3
2
n log2(n + 1) − 2n + 5

2
log2(n + 1) + 2, 2n log2(n + 1) − 3n Table VII(a)

1
2
n log2(n + 1) − n + 1

2
log2(n + 1), 0) +3 log2(n + 1) + 2

DCT-2n ( 3
2
n log2(n) − n + 1, 1

2
n log2(n), 0) 2n log2(n) − n + 1 Table VII(a), (48)T = (50)T , (49)

DST-2n same asDCT-2 2n log2(n) − n + 1 Table VII(a), duality (54)T

DCT-7n ( 8
3
n log3(2n − 1) − 3n − 1

3
log3(2n − 1) + 3, 4n log3(2n − 1) − 5n + 5 Table VII(c)

4
3
n log3(2n − 1) − 2n − 2

3
log3(2n − 1) + 2, log3(2n − 1))

DST-7n ( 8
3
n log3(2n + 1) − 3n + 1

3
log3(2n + 1), 4n log3(2n + 1) − 4n Table VII(c)

4
3
n log3(2n + 1) − 3

2
n + 7

6
log3(2n + 1), 1

2
n − 1

2
log3(2n + 1)) + log3(2n + 1)

DCT-8n same asDST-7 duality (54)
DST-8n same asDCT-7 duality (54)

DCT-5n same asDCT-7 Table VII(d) and its transpose
DST-5n same asDST-7 Table VII(d) and its transpose
DCT-6n same asDCT-7 duality (54), Table VII(c)T

DST-6n same asDST-7 duality (54), Table VII(c)T

implementations, it is crucial to have a recursive form as
presented here. Further, the derivation forp > 2 in [30]
produced suboptimal cost compared to our algorithms.

Special cases of (48) for theDCT-3 with the reverse split,
i.e., for n = pt, k = pt−1 and m = p, may not be practical
because of the long critical path for computingBk,m. Their
discovery, however, is more straightforward, since they donot
require large skew DCTs, which are unexpected without the
algebraic approach. The casep = 2 was reported in [52],
p = 3, 6 in [53], the case of a generalp in [54] with examples
p = 3, 5, 7, 9.

Algorithm (48) forDST-3 and for 2-powers andk = 2 was
found in [55]. The only special case of (48) forDCT-4 we

found in the literature (again for 2-powers andk = 2 only)
was derived implicitly in [51], where theDCT-4 is called
“odd DCT.”

The only case of (49) we found in the literature is for
DCT-2 andn = 2t, m = 2, in which case the skew DCTs
become trivial [56].

All other cases in Table XI are to our best knowledge novel.

VIII. C ONCLUSIONS

We presented an algebraic approach to deriving fast trans-
form algorithms as an extension to the algebraic signal pro-
cessing theory (ASP). In particular, we identified the general
principle behind the Cooley-Tukey FFT and applied it to derive
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“Cooley-Tukey type” algorithms for all 16 DCTs and DSTs. In
doing so, we explain many existing algorithms and discover an
even larger number of new algorithms that were not found with
previous methods. In particular, general radix algorithmsfor
the DCTs and DSTs were not known before. The availability
of a flexible radix algorithm helps, as for the DFT, with
the optimization of its implementation for computers with a
deep memory hierarchy, vector instruction sets, and multiple
processors.

From a theoretical point of view, our approach also ex-
plains why these algorithms exist, makes the derivation com-
paratively easy, and explains their structure. The key is to
associate with each transform a polynomial algebra, and to
derive algorithms by manipulating this algebra rather than
the transform itself. That polynomial algebras play such an
important role is not surprising as explained by ASP [8]:
they provide the structure for finite, shift-invariant SP. This
means, the signal and filter spaces are polynomial algebras and
the associated Fourier transform is provided by the Chinese
remainder theorem. Thus, in ASP, the signal processing theory
naturally connects with the theory of fast transform algorithms.
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for shared memory: SMP and multicore,” inProc. Supercomputing (SC).
2006, ACM, New York.

[7] “Spiral web site,” 1998,www.spiral.net.
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[39] M. Püschel and M. R̈otteler, “The discrete triangle transform,” in
Proc. International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2004, vol. 3, pp. 45–48.

[40] H. Kitajima, “A symmetric cosine transform,” IEEE Trans. on
Computers, vol. C-29, no. 4, pp. 317–323, 1980.

[41] P. Yip and K. R. Rao, “A fast computational algorithm for the discrete
sine transform,”IEEE Trans. on Communications, vol. COM-28, no. 2,
pp. 304–307, 1980.

[42] Z. Wang, “Fast algorithms for the discrete W transform and for the
discrete Fourier transform,”IEEE Trans. on Acoustics, Speech, and
Signal Processing, vol. ASSP-32, no. 4, pp. 803–816, 1984.

[43] P. Yip and K. R. Rao, “Fast decimation-in-time algorithms for a family
of discrete sine and cosine transforms,”Circuits, Systems, and Signal
Processing, vol. 3, no. 4, pp. 387–408, 1984.



18

[44] P. Yip and K. R. Rao, “The decimation-in-frequency algorithms for a
family of discrete sine and cosine transforms,”Circuits, Systems, and
Signal Processing, vol. 7, no. 1, pp. 3–19, 1988.

[45] S. C. Chan and K. L. Ho, “Direct methods for computing discrete
sinusoidal transforms,”IEE Proceedings, vol. 137, no. 6, pp. 433–442,
1990.

[46] M. O. Rayes, V. Trevisan, and P. S. Wang, “Factorizationof Chebyshev
polynomials,” Tech. Rep. ICM-199802-0001, Kent State University,
1998.

[47] G. Szeg̈o, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ.,
4th edition, 1992.

[48] M. T. Heideman, “Computation of an odd-length DCT from a real-
valued DFT of the same length,”IEEE Trans. on Signal Processing,
vol. 40, pp. 54–61, 1992.

[49] Z. Wang, “Pruning the fast discrete cosine transform,”IEEE Transac-
tions on Communications, vol. 39, no. 5, pp. 640–643, 1991.

[50] X. Shao and S. Johnson, “Type-II/II DCT/DST algorithms with reduced
number of arithmetic operations,” submitted for publication.

[51] Y. Morikawa, H. Hamada, and N. Yamane, “A fast algorithm for the
cosine transform based on successive order reduction of theChebyshev
polynomial,” Electronics and Communications in Japan, Part 1, vol. 69,
no. 3, pp. 173–180, 1986.

[52] H. S. Hou, “A fast recursive algorithm for computing the discrete cosine
transform,” IEEE Trans. on Acoustics, Speech, and Signal Processing,
vol. ASSP-35, no. 10, pp. 1455–1461, 1987.

[53] Y. H. Chan and W. C. Siu, “Mixed-radix discrete cosine transform,”
IEEE Trans. on Signal Processing, vol. 41, no. 11, pp. 3157–3161, 1993.

[54] G. Bi and L. W. Yu, “DCT algorithms for composite sequence lengths,”
IEEE Trans. on Signal Processing, vol. 46, no. 3, pp. 554–562, 1998.

[55] Z. Wang, “Fast discrete sine transform algorithms,”Signal Processing,
vol. 19, pp. 91–102, 1990.

[56] B. G. Lee, “A new algorithm to compute the discrete cosinetransform,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-32,
no. 6, pp. 1243–1245, 1984.

[57] T. S. Chihara,An Introduction to Orthogonal Polynomials, Gordon and
Breach, 1978.

[58] T. J. Rivlin, The Chebyshev Polynomials, Wiley Interscience, 1974.

APPENDIX I
CHINESE REMAINDER THEOREM

Let C[x]/p(x) be a polynomial algebra (see Section II)
and assume thatp(x) = q(x)r(x) factors into two coprime
polynomials, i.e.,gcd(q, r) = 1. Then the Chinese remainder
theorem (for polynomials) states that

φ : C[x]/p(x) → C[x]/q(x) ⊕ C[x]/r(x)

s(x) 7→ (s(x) mod q(x), s(x) mod r(x))

is an isomorphism of algebras. Formally, this implies

φ(s + s′) = φ(s) + φ(s′),

φ(s · s′) = φ(s) · φ(s′).

Informally, this means that computing inC[x]/p(x) and ele-
mentwise computing inC[x]/q(x) ⊕ C[x]/r(x) is equivalent.

APPENDIX II
CHEBYSHEV POLYNOMIALS

Chebyshev polynomials are a special class of orthogonal
polynomials and play an important role in many mathemat-
ical areas. Excellent introductory books are [57], [47], [58].
We only introduce the definitions and the properties of the
polynomials we use in this paper.

Let C0(x) = 1 andC1(x) be a polynomial of degree 1, and
defineCn(x) for n > 1 by the recurrence

Cn(x) = 2xCn−1(x) − Cn−2(x).

TABLE XVI

FOUR SERIES OFCHEBYSHEV POLYNOMIALS. THE RANGE FOR THE

ZEROS IS0 ≤ k < n. IN THE TRIGONOMETRIC CLOSED FORMcos θ = x.

n = 0, 1 closed form symmetry zeros

Tn 1, x cos(nθ) T−n = Tn cos
(k+ 1

2
)π

n

Un 1, 2x
sin(n+1)θ

sin θ
U−n =−Un−2 cos

(k+1)π
n+1

Vn 1, 2x − 1
cos(n+ 1

2
)θ

cos 1
2

θ
V−n = Vn−1 cos

(k+ 1
2
)π

n+ 1
2

Wn 1, 2x + 1
sin(n+ 1

2
)θ

sin 1
2

θ
W−n =−Wn−1 cos

(k+1)π

n+ 1
2

TABLE XVII

IDENTITIES AMONG THE FOUR SERIES OFCHEBYSHEV POLYNOMIALS;

Cn HAS TO BE REPLACED BYTn , Un , Vn , Wn TO OBTAIN ROWS1, 2, 3, 4,

RESPECTIVELY.

Cn Cn − Cn−2 Cn − Cn−1 Cn + Cn−1

Tn 2(x2 − 1)Un−2 (x − 1)Wn−1 (x + 1)Vn−1

Un 2Tn Vn Wn

Vn 2(x − 1)Wn−1 2(x − 1)Un−1 2Tn

Wn 2(x + 1)Vn−1 2Tn 2(x + 1)Un−1

Running this recurrence backwards yields polynomialsC−n,
n > 0. Each sequence(Cn)n∈Z of polynomials defined
this way is called a sequence of Chebyshev polynomials.
It is uniquely determined byC0 = 1 and the choice of
C1. Four special cases are of particular importance in signal
processing [9], [10] and in this paper. They are denoted by
C ∈ {T,U, V,W} and are called Chebyshev polynomials of
the first, second, third, and fourth kind. Table XVI gives their
initial conditions, their closed form, their symmetry properties,
and their zeros.

For example,Tn(x) = cos(nθ), where cos θ = x. The
closed form easily yields the zeros ofTn.

We will use the following properties of Chebyshev polyno-
mials:

1) For any sequence of Chebyshev polynomials with arbi-
trary initial conditionsC0, C1, we have

Cn = C1Un−1 − C0Un−2. (52)

2) For any sequence of Chebyshev polynomialsCn,

TkCn = (Cn−k + Cn+k)/2. (53)

3) The identities in Table XVII hold. They are based on
trigonometric identities.

APPENDIX III
RELATIONSHIPSBETWEEN DTTS

We use in this paper the following relationships between
DTTs. The explanation for their existence and proofs can be
found in [9], [11].

Duality. Two DTTs DTTn,DTT′
n, which have flipped

boundary conditions are calleddual to each other. They are
necessarily in the same group (see Table II). The duality prop-
erty is not visible from Table II since we omitted the boundary
conditions. Thus we just state the pairs:DCT-3/DST-3,
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TABLE XVIII

MATRICES IN (56). FROM LEFT TO RIGHT, X
(C3)
n (r), X

(S3)
n (r), X

(C4)
n (r), X

(S4)
n (r). WE USEcℓ = cos(1/2 − r)ℓπ/n, sℓ = sin(1/2 − r)ℓπ/n,

c′ℓ = cos(1/2 − r)(2ℓ + 1)π/(2n), AND s′ℓ = sin(1/2 − r)(2ℓ + 1)π/(2n). WHERE THE DIAGONALS CROSS, THE ELEMENTS ARE ADDED.

2
6666664

1 0 · · · · · · 0
0 c1 sn−1

...
. . . . .

.

... . . . .. .
0 s1 cn−1

3
7777775

,

2
6666664

c1 −sn−1 0

. . . . .
. ...

. . . .. .
...

−s1 cn−1 0
0 · · · · · · 0 cn

3
7777775

,

2
666664

c′0 s′n−1

. . . . .
.

. . . .. .
s′0 c′n−1

3
777775

,

2
666664

c′0 −s′n−1

. . . . .
.

. . . .. .
−s′0 c′n−1

3
777775

DCT-4/DST-4, the DTTs in theU -group (DTTs of type
1 and 2) are all self-dual,DCT-7/DST-8, DST-7/DCT-8,
DCT-5/DCT-6, DST-5/DST-6.

The following relationship holds for dual DTTs:

diag0≤i<n((−1)i) · DTTn ·Jn = DTT′
n . (54)

As a consequence anyDTT algorithm can be converted into
a DTT′ algorithm without incurring additional operations.

Base change.Two DTTs (or skew DTTs) in the same group
(e.g., T -group) have (at least almost) the same associated
algebra. As a consequence they can be translated into each
other at the expense ofO(n) operations with a suitable base
change using Table XVII (see [9]).

Examples include

DCT-4n = Sn · DCT-2n · 1
2Dn(1/2)−1, (55)

iDCT-4n(r) = Sn · iDCT-3n(r) · 1
2Dn(r)−1.

Sn is defined in Table V andDn(r) = diag0≤i<n(cos ri

2 π).
The ri are computed fromr using Lemma 1.

Skew and non-skew DTTs.Every skewDTT(r) can be
translated into its non-skew counterpartDTT:

DTTn(r) = DTTn ·X(∗)
n (r), and

DTTn(r) = DTTn ·X(∗)
n (r).

(56)

Here,X(∗)
n (r) depends on the DTT; the exact form is given

in Table XVIII.
Combining (56) with (55) gives, for example

DCT-4n(r) = Sn · DCT-2n · 1
2Dn(1/2)−1 · X(C4)

n (r). (57)

The diagonal matrix can be fused with the x-shaped matrix to
save multiplications.

Inversion of (56) gives the corresponding identities for the
iDTT(r)’s:

iDTTn(r) =
(
X(∗)

n (r)
)−1·DTTT

n . (58)

The matrices
(
X

(∗)
n (r)

)−1
have the same x-shaped structure

and the same arithmetic complexity asX(∗)
n (r) and can

be readily computed because of their block structure. For
example:
(
X(C3)

n (r)
)−1

=

1

cos(1/2 − r)π





cn 0 · · · · · · 0
0 cn−1 −sn−1

...
.. . . .

.

... . .
. .. .

0 −s1 c1




.

The above identities show that the complexity of a skew
DTT differs from the complexity of the associated DTT by
O(n).
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Jośe M. F. Moura (S’71–M’75–SM’90–F’94) re-
ceived the engenheiro electrotécnico degree in 1969
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