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Abstract— This paper presents a systematic methodology to  Our algorithm derivation is a natural application of the
derive and classify fast algorithms for linear transforms. The a|gebraic signal processing theory.

approach is based on the algebraic signal processing theory. This Algebraic signal processing theory.In [8], [9], [10],

means that the algorithms are not derived by manipulating the d h tio . I .
entries of transform matrices, but by a stepwise decomposition WE proposed a new approac €ar signal processing

of the associated signal models, or polynomial algebras. This (henceforth just referred to as signal processing or SHgcca
decomposition is based on two generic methods or algebraic algebraic signal processing theory (ASP). ASP is a general,

principles that generalize the well-known Cooley-Tukey FFT axiomatic approach to SP that is built from the concept of a
and make the algorithms’ derivations concise and transparent. signal modeldefined as a tripléA, M, @), whereA is the fil-

Application to the 16 discrete cosine and sine transforms yields a .
large class of fast general radix algorithms, many of which have ter space (an algebral the signal space (ad-module), and

not been found before. ® generalizes the concept of thetransform. Once a signal

. . . model is given, other concepts such as convolution, sp@gtru
Index Terms— Fast Fourier transform, discrete Fourier trans- Fouri f ically defined b ke di
form, discrete cosine transform. discrete sine transform, DFT, Fourier transform are automatically defined but take ceffier

DCT, DST, polynomial algebra, Chinese remainder theorem, forms for different models. For example, discrete infinitel a
representation theory finite (finite number of samples) 1-D time are signal models
with associated-transform and finite:-transform (defined in
|. INTRODUCTION [8]) and the DTFT and DFT as associated Fourier transforms,
espectively. Beyond that, we identified the signal models

There is a large body of literature on fast transform als ) . . . X
. : . : . associated with practically all 1-D trigonometric transhis
orithms. With few exceptions these algorithms are deriv 2
g P 9 , [9], [10]. This includes the so-called 1-D space models

by clever and often lengthy manipulation of the transfor or which the DCTs and DSTs are Fourier transforms. In each

coefficients. These derivations are hard to grasp, and qln!ovcase filter and signal space are given by a polynomial adgebr
little insight into the struct f th Iti Igorith o . o .
fie ISIgnt to the sucture ot fhe Tesutting :aigo hich ASP hence identifies as a key structure in SP.

Further, it is hard to determine if all relevant classes Algebraic th f ” lqorith A h
algorithms have been found. This is not just an academic gebraic theory Of transiorm algorithms. AS we show

problem as the variety of different implementation platfisr in'this paper, knowing the polynomial algebra associatet wi

and application requirements makes a thorough knowled@etrans}corm is also the key to understanding and concisely

of the algorithm space crucial. For example, state-of-th eriving its fast algorithms. Using a few general theorems

art implementations of the discrete Fourier transform (DFfperefltmg oln p?fllynomlalbal?jeb.rasé :natﬂy known angmr;o_vel
heavily rely on various variants of general radix algorithta ranstorm algorithms can be derived. in this paper, we S|

: : . the DCTs and DSTs extending our preliminary results from
adapt the implementation to the memory hierarchy [1], [2], [ I
or to optimize it for vector instructions and multiple thdsa [11], [12]. In [13], we use the same approach for the derraii
[41, 5], [6], [7] of real FFTs, and in [14] we show how the theory extends to

In this paper, we derive fast algorithms for linear transfer the nonseparable 2-D transforms introduced by ASP in [15]

algebraically. This means that we do not manipulate theaactu The theory in this paper does nqt cover aII.existing C"?‘Sses
transform to obtain an algorithm, but decompogeob/nomial of DCT/DST algquthms. _More pregsely, we will not cons!der
algebra associated with the transform. In this spirit, we ﬁrs?rthogonal a'?‘”_'thms (ie., a'%f’“thms built from r?tats

ch as [16]), “prime-factor type” algorithms [17], and ‘tRa-

present two general decomposition theorems for polynomi%h|

algebras and show that they generalize the well-known @ooléype”_algorith_ms (g, [18_])' The algebraic approach estn
Igorithms will be the subject of a future paper.

Tukey fast Fourier transform (FFT). Then, we apply thes® id laining the th d derivati f the fast
theorems to the discrete cosine and sine transforms (DCT: esides expiaining the theory and derivation of the 1as

and DSTs) and derive a large new class of recursive gene Lgorlthms, we also made an effort to present the results

radix Cooley-Tukey type algorithms for these transfornidy o in concise, self-contained tables suitable for readery onl

special cases of which have been known. In particular, the éerested in the actual ‘algorithms. For these readers, we

new fast algorithms that we present are the first to provideS ggest to start with Table XV, which lists for each DCT and

generalradix decomposition for the DCTs and DSTs. DST a reference to the best algorlthms in this paper and their
operations count. Also, further details on all algorithnas ¢
This work was supported by NSF through awards 9988296, 081,aend  be found in a longer version of this paper available at [19].
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of the DFT,, in terms of the polynomial algebf@[x]/(z™"—1) In words, givenp(z), Clz]/p(z) is the set of all polynomials
was used to derive and explain the (radix-2) Cooley-Tukeyf degree smaller thadeg p with addition and multiplication
FFT by Auslander, Feig, and Winograd [20] using the Chineseodulop. If deg(p) = n, thendim(C[z]/p(x)) = n.
remainder theorem (CRT). Equivalently, Nicholson [21] ex- Polynomial transforms. Given a polynomial algebral =
plains DFT and FFT using group theory; so does Beth [22] afif{z]/p(x) and assuming that the zeros pfx) are pairwise
generalizes the approach to more general groups. Winagradistinct, given bya = (ay, ..., a,—1), A can be decomposed
DFT algorithms [23], [24] and his results in complexity tigo using theChinese remainder theorem (CR(Epe Appendix I)
make heavy use of polynomial algebras and the CRT. So ds follows:

extensions of the above work by Burrus et al. [25], [26]. The .

first book on FFTs by Nussbaumer uses polynomial algebras Fo Clalfp(@) = Bosyen Clol/ (@ = an),
as a framework for algorithm derivation [27].

For the DFT, it turns out that to derive the most importarthis mapping is linear. Hence, if we fix a basis =
FFTs it is not necessary to work with polynomial algebragp,, ..., p,_1) in A and choose bases (of length(xf) = (1)
but sufficient to work with index arithmetic module. This in eachC[z]/(z — ), F is represented by the matrix
approach is used in [28] as a consistent FFT framework.

However, this arithmetic approach provides no insight into F = Poa = [pe(an)lo<k,e<n- 2)
how to derive algorithms for other transforms. In contrasf

. . : e call P, ., the polynomial transfornfor A with basisb. It
our algebraic approach provides one theory that explaitts b% possible to choose a different bagig), 3, € C in each

DFT and DCT/DST algorithms (and algorithms for Othe{C[x]/(x—ak), in which case we obtain thecaled polynomial

transforms).
. : L transform
Further, the algorithm theory is a natural application anda

extension of ASP, which shows that polynomial algebras are F = diag(1/Bo, -, 1/Bn-1) - Pp.a- ()
a natural structure from an SP point of view [8].

The only (implicit) use of polynomial algebras for DCT or Connection to ASP.ASP [8] uses the concept afignal
DST algorithms we found in the literature is in the derivatiomodelto capture different SP frameworks. It is defined as a
of a DCT (type 3) algorithm by Steidl [29], [30]. These papertfiple (A, M, @), where A is the algebra of filtersM the
provided valuable hints for developing the work in this papemodule of signals, andb generalized the concept of &

We provide many more references to existing DCT/DStransform. Once a signal model is given, other conceptd) suc
algorithms later and place them into our algebraically\aeti as filtering, spectrum, and Fourier transform follow.
algorithm space. ASP asserts that if a signal model is for finite-length 1-D

Organization of the paper. Section Il explains the re- signalss= (so,...,s,—1) € C™ and supports shift-invariance,
lationship between polynomial algebras and transforms ati#n.A has to be a polynomial algeb€x]/p(z). Conversely,
connects to the notion of signal model in ASP. Most relevaift C[z]/p(x) is given with basisb = (po,...,pn—1), then
for this paper are the polynomial algebras associated Wwah t4 = M = C[z]/p(x) with
DFT and DCTs/DSTs. Section Il introduces the notation we
use to represent algorithms as products of structured eceatri P: C" =M, s—s=s(r)= z Sepe; (4)
Two general algebraic methods to derive algorithms from a 0st<n
polynomial algebra are explained in Section IV using th@efines a signal modet is the “:-transform” in this model.
DFT as an example. Then we apply these methods to der@@ice the model is given, other key SP concepts are automat-
numerous Cooley-Tukey type algorithms for the DCTs angally defined. For example, for the above model, filtering is
DSTs in Sections V and VI. These algorithms are analyzee multiplicationh(z)s(z) mod p(z). The spectral decompo-
and discussed in Section VII. We conclude in Section VIII. sition of s € M with respect to this model is given by (1),
and F defined in (1) or in matrix form (2) or (3) (scaled or

Il. BACKGROUND: POLYNOMIAL ALGEBRAS AND ; . .
T unscaled polynomial transform) is the Fourier transform fo
RANSFORMS .
this model.

In this section, we explain the relationship between polyno Example: finite time model. As an example consider the
mial algebras and transforms. Knowing the polynomial algebgiynai modeld = M — Clz]/(z" — 1) with basisb =

Si
ass_opiated with a transform ig the key to understanding a&% ...,2" 1) in M and thus, fos = (so, ..., sn_1)7 € C",
deriving many of its fast algorithms as we show later.
Polynomial algebra. An algebra A is a vector space d: s s5=s(z)= Z spxt € Clz]/(z™ = 1), (5)
where also the multiplication of elements is defined such tha 0<t<n
the distributivity law holds. Examples of algebras include
I b nd t of pol ials with I
g‘;‘;@ﬁgﬁg‘;m ers) and[z] (set of polynomials with complex - ..\ “fitering is defined fof — h(x) € A ands — s(x) €
Particularly important in signal processing (as shownwlo M as .
are polynomial algebrasA = C[z]/p(x) with a suitable h(z)s(z) mod (¢ — 1),
polynomial p(z). They are defined as

@

s(x) +—  (s(ap),--.,s(an—1)).

which we call thefinite z-transform[8]. After applying the

which is equivalent to computing the circular convolutioih o
Clz]/p(z) = {q(x) | deg(q) < deg(p)}- the coefficient sequencésands [27].



TABLE | TABLE I

SIGNAL MODELS ASSOCIATED TO THEDFTS. SIGNAL MODELS ASSOCIATED TO THE16 DTTs (DCTs AND DSTS).
F p(@) b flax) (k¢) entry of F F p=p(z) b flak), ar =cosf
DFT-1=DFT a" -1 gzt 1wkt T-group
DFT-2 =1 a2t o/t W DCT-3 T, T, 1
DFT-3 a1 2t 1wkt DST-3 Tn Uy sin(0)
DFT-4 an 1 2t /P W) DCT-4 T Vi cos(0/2)
DST-4 T, W, sin(0/2)
DFT(a) " —a ot 1 whkt ’\’/ag
U-group
DCT-1 (22 —1)Up—2 T 1
. DST-1 Un U sin(6)
no_ _ 0 n—1 _

'ghe zeros ofz Larea = (wpy o Wi .) with wn, = DCT2 (2= 1)Un1 Vi cos(6/2)
e~27i/™, Hence, the Fourier transform for this model is given DST-2 (¢4 1)Un1 Wy sin(6/2)
by

) n_ ok V-group
Fo Cla]/(@" =1) — @ Cla]/(z —wn) DCT-7 (x+1)Va1 T 1
0<k<n DST-7 Vi Ue sin(0)
and in matrix form DCT-8 Vi \7; cos(6/2)
DST-8 (z+1)Vp_1 W, sin(0/2)
F =Py = [wy'lo<ke<n = DFT, (6)
: . . . . : W-group
is precisely the discrete Fourier transform. This explaiy DCT-5 (z—1)Wno1 T, 1
we call this signal model thénite time model DST-5 W Uy sin(9)
DCT-6 (z—1)Wp_1 V, cos(0/2)
A. Signal Models for DFTs and DTTs DST-6 W W, sin(6/2)

In this section we list the signal models (and hence poly-
nomial algebras) for 4 types of DFTs and all the 16 DCTs _ _
and DSTs introduced in [31]. We refer to the DCTs and DST#here i/a = [a|'/"e*3/" for a = |ale*d.
collectively as DTTs (discrete trigonometric transforrespn ~ DTTs. The 16 DTTs are Fourier transforms for fingpace
though this class is actually larger (e.g., including thecdite models, which are defined in Table Il. Space in ASP means
Hartley transform other real discrete Fourier transforrfisiy- that the shift operator on which the models are based operate
ther, we define 4 types of skew DTTs, which were introducéd’]directed versus the directed operation of the time skft.
in [9]’ and which are necessary to derive a Comp|ete set g@ntrast to the time models, the basis ponnomiaIs are now
algorithms. Chebyshev polynomials of the firsty), second U;), third
Each of these transforms is a Fourier transform for a finif&z), or fourth (¥,) kind instead ofz*. Appendix Il shows
shift-invariant regular 1-D signal model. These models atBeir definitions and their properties that we will use insthi
uniquely determined by(z), which definesA = M = paper.
C[z]/p(x), and the basis of M, which definesb in (4). The  As an example consider the most commonly uB&dr-2,,.
model in turn uniquely determines the associgtetynomial The associated model is given from Table Il By= M =
Fourier transformP, ., in (2). To characterize aarbitrary Clz]/(z — 1)U,—1 and @ is the finite V-transform mapping
Fourier transform, we need to specify in addition the diajons — > _<,,, 5¢Vz. The zeros of(xz — 1)U,,_; are given by

matrix in (3). We do this in the following by providing acax = cos(km/n), 0 <k < n (see Table XVI in Appendix II).

function f such that the diagonal matrix is given by Thus the uniquepolynomial Fourier transform for the model
) is given by
Df = dlag0§k<n(f(ak))a
k({+1/2)7
where theqy, are, as before, the zeros pfz). o = Vil o< tan = cos ——— == ®)
A derivation and explanation of these signal models can be - cos ’5—2 <kt

found in [8], [9]. o ] )
DFTs. We consider the DFTs of type 1-4 following [32],Multiplying P, ., from the left by the scaling diagonal
and a parameterizeBFT(a). Each one of those is a Fourier ;. .
2 = 2
transform for a variant of the finite time model as shown indlagog’“@(cos(kﬂ/( n))) = diago<pcn(cos(acos(ax)/2))
Table I. In particularDFT-1 = DFT(1) = DFT. Both type 1 cancels the denominator to yield
and 3 are polynomial transforms and special casé3i¥ (a) h(e41/2)
briefly discussed next. DCT-2,, = [cos === Jo<k,e<n,
Cons@er the signal modele given by = Mn: Clal/(=" — which identifiesDCT-2 as a Fourier transform of the form (3)
a)and®: s— 3, sez’. The zeros oft™ — a are then for the specified signal model
nth roots ofa and thus straightforward computation yields as The definitions of all 16 DTTs are given in Table IIl. Types

olynomial Fourier transform .
poly ! ur ’ 1, 4, 5, 8 are symmetric; types 2, 3 and 6, 7 are transposes of
DFT(a) = Py,o = DFT,, diagy<,,,(Va ), (7) each other, respectively.



TABLE Il

<r<Il. i i
8 TYPES OFDCTs AND DSTS OF SIZEn. THE ENTRY AT ROW k AND Lemma 1let0 <r <1. We have the factorization

COLUMN £ IS GIVEN FORO < k, £ < n. T, —cosrm = 2"~ 1 H (z — cos %22'77)7 (9)
0<i<n
t DCT DST : .
ype S S which determines the zeros @f, — cos rr. We order the zeros
1 COSMﬁl S%n(k+1)(f+11)ni+1 asa = (cosrom,...,cosr,_17), such that0 < r; < 1,
2 cosk(t +1§)% sm(k+11)(€+5)% andr; < r; for i < j. The list of ther; is given by the
3 cos(kt )l sin(k+ 5)(C+ 1) 7 concatenation
4  cos(k+3)(L+3)n sin(k + 5)(€+5) %
T i s +2i 2—r+2i
5 coskl Ty sin(k+1)(¢+1) 1 (Tk)o<k<n = U (L2 2-r42i)
6 cosk({+5)—" sin(k +1)(¢ + 3) 1 0<i<n/2
2
7 cos(k+ 3)6—"1 sin(k + 1)(¢ + D2 for n even, and by
2
8 cos(k4+ D)L+ 1)+ sin(k+ 1)+ 1) % 9 ra2 1
2 nts o ine (rk)osk<n = ( U (2=t Z)) U (5=
- n—1
TABLE IV 0=i<5
4 TYPES OF SKEWDTTS AND ASSOCIATED SIGNAL MODELS THE for n odd. In the particular case of = 1/2 or cosrm = 0,
PARAMETERT ISINO < r < 1. FORr = 1/2 THEY REDUCE TO THE we thus havey = (cos(k + 1/2)71'/"')0§k<n as in Table XVI
T-GROUPDTTS. in Appendix II.
F p = p(z) b f=f(ay), ax = cosd For example, th&CT-3,(r) is given by the matrix
DCT-3(r) Tn —cosrm Ty 1 DCT-3,,(r) = [cos rilmo<k e<ns
DST-3(r) Tn —cosrm Uy sin(6) )
DCT-4(r) Tn —cosrm Vj cos(0/2) where ther, are provided by Lemma 1.
DST-4(r) Tn —cosrr W, sin(0/2) Relationships between the skew DTTs and skew and non-
skew DTTs are shown in Appendix lII.
Every DTT has a corresponding polynomial transform, |||. BACKGROUND: FAST TRANSFORMALGORITHMS

which we write asDTT. For exampleDCT-2,, is the matrix
in (8). For the DCTs of types 1, 3, 5, 7, the scaling functio
is 1 (see Table Il) and hendeTT = DTT in these cases.

In this section, we explain the notation that we use to
Rapresent and manipulate transform algorithms.

Representation of algorithms.We discuss two represen-

We will later see thaF, in some cases, the polynom|a| DT gtions for transfornis and their algorithms. Traditionally,
have a lower arithmetic cost than the corresponding DT iansforms in SP are written as summation like

which makes them suitable choices in applications in whic
the transform output is scaled anyway. Yk = Z i eSe, (20)
We divide the DTTs into 4 groups, called-, U-, V-, and 0<t<n
W-group depending op as shown in Table Il. Within each here' s — (so,....sn 1) is the input signaly —
%;;s’t(;ze algebrlat_and hmodule are _(almo_st) the S"?‘me-tT g}%,...,yn,l)T the output signal, and;, the transform
parse relationships (conversion using sparseas) coefficients. This representation is usually adopted bmzau

betwgen DTTs I one group as we have shown in [9]; examplf?]sese transforms are thought of as truncated versions oftafi
we will use are in Appendix IlI.

Further, within a group, the DTTs are pairwideal (they series expansions. Correspondingly, algorithms are exris

have flipped associated boundary conditions [9]), whichmae sr?éqlg(:)r;gtsio(r)]lsCuO(:Snfummatlons, cleverly organized to reduce
that they can be translated into each other without addition A different approac.h equivalent in content, represeiss
arithmetic operations (see (54) in Appendix Il1). forms as matrix-vector, products '

Skew DTTs. We introduced the skew DTTs in [9] since
their associated signal models are also reasonable space y=Ts, whereT = [t s]o<k i<n- (11)

models, but, more importantly, because they are importa

t - .
building blocks of Cooley-Tukey type algorithms as we WmTrhe transform .ma.trlx |$T,.and transform algorithms corre-
ond to factorizations d&f into a product of sparse structured

show in this paper. There are 4 types of skew DTTSs, eacho" X X
parameterized by) < r < 1. They generalize the fouf- matrices. This approach was adopted for the DFT |n'[33], [28]
group DTTs (DCT/DST of type 3/4) and have the same scalir( nd as early as [21]), but also for other transforms in weio

functions as those. The models that define these transfoems'&S€2rCh papers on fast transform algorithms. .
shown in Table IV. The corresponding polynomial versiores ar In ASP, we adopt the second apprgach for tvyo reasons. F'rSt’
again denoted using a bar asICT-3, () In ASP, a transform is a decomposition of a signal model into

To obtain the exact form of these transforms, we need tfi& SPectral components, e.g., as in (1). This decompasisio
zeros of the polynomial’, — cos 7+ and choose a fixed order@ base change and hence represented by a matrix. Further, we

of these zeros. This is done in the following lemma.

1By “transforms,” we mean here those computing some sort of spactr
of finite length discrete signals like the DFT or DTTs.



TABLE V
AUXILIARY MATRICES USED IN THIS PAPER

1 1

1 1
In = , Jn = , Sn = ,
1 1 1 1
0
1 1 0o 1| =
F27|:1 _1:|1an 7Zn* 1 0
0 1 0

derive later fast algorithms by performing this decomposit

Sincel,,  A=A®...® A, we will write the direct sum of
differentm x m matricesA4;, 0 <i < k, as

i ®Ai=A&... 0 A1

We will occasionally also construct a larger matrix as a
matrix of matrices, e.g.,

A B
B A
Transposition and inversion. If an algorithm for a trans-

form is given as a product of sparse matrices built from the

constructs above, then an algorithm for the transpose ersev
of the transform can be readily derived using mathematical

in steps, where the steps correspond to sparse base Char}ﬂ%ﬁerties including

i.e., structured, sparse matrices.

Second, there are other advantages of the matrix represefi4B)” = BT AT,
tation from an algorithmic and implementation point of view (4 ¢ B)T = AT @ BT,

(AB)~! = B~1471,
(AeoB)"'=A"teo B! (14)

Namely, it reveals the structure of the algorithm and makes i(A 9B)T =AT®BT, (A®9B)'=A"'gB

is easy to manipulate it to derive variants.

Notation. We use the following notation to represent strud®ermutation matrices are orthogonal, i.€2 = P~!. The

tured matrices.
As basic matrices, we use the ones shown in Tablé"y.
is the butterfly matrix

transposition or inversion of diagonal matrices is obviduiste
that in general the inverse of a sparse matrix is not sparse.
Arithmetic cost. We will analyze the number of operations

Further, we use permutation matrices defined by their céif the algorithms using the notation of a triple, m, ms),

responding permutations
P:iw— f(i), 0<i<mn,

which means that the matri® has in row: the entry 1 at

position f(i) and the entry O elsewhere. In this paper, a

matrix indices start with 0. Most important is thex n stride
permutation matrix, which can be defined fain by

L (12)

m 12E+11+—>11m+12

for 0 <4, < -, 0 < iy < m. This definition shows that
transposes a- x m matrix stored in row-major order.

Ln

m

Alternatively, we can write

L t—immodn—1, for0<i<n-—1,

n—1—n-—1
Since the last point — 1 is fixed, we can define apdd stride

permutationZ for m | n + 1 as the restriction of.”+! to the
first n points,

Efn : 1+ 4m modn. (13)
Analogous to the stride permutatiofl.?,)~! = E?nﬂ)/m,
and @ is defined right below)
L' =L ‘a1,
Diagonal matrices are written a$ag(«o, ..., a,—1).

wherea is the number of additions or subtractionsy the
number of multiplications by a 2-power not equal to 1, and
m the number of remaining multiplications by constants not
equal to—1. The total operations count is then given by

ﬁ + m + meo.

In many SP publications the term complexity is used for
the operations count or arithmetic cost. In a strict seniseish
not correct, since complexity is a property of a probleme(lik
computing a DFT), not of an algorithm (like a specific FFT).
Thus we will use the term cost.

IV. ALGEBRAIC DERIVATION OF FAST TRANSFORM
ALGORITHMS

In this section, we algebraically derive Fourier transform
algorithms, where the term “Fourier transform” is meant in
the general sense of the algebraic signal processing theory
(e.g., including the DCTs, DSTs, and other trigonometric
transforms).

Overview. We consider finite shift-invariant regular signal
models, i.e., models of the forid = M = C[z]|/p(x) and

. C" > M, s— Z Sepe,
0<t<n

whereb = (po,...,pn—1) is a basis forM. Further, we
assume thap has pairwise different zeros, which causes the
spectrum to consist of distinct one-dimensional submadule

Further, we use matrix operators, like the product of matri-he Fourier transform in these cases is given by the CRT (1)

ces, the direct sum
A
som-[* ],
and the Kronecker or tensor product

A® B = [ak’gB]kyg, for A = [ak,£]~

and as a matrixF takes the form of a polynomial transform
in (2) or a scaled polynomial transform in (3).

Assume a transformF is given. The basic idea of the
algebraic approach is to derive algorithms f8rby manip-
ulating the associated signal model, M, ®), instead of
manipulating the matrix entries ¢f. Namely, (1) shows that
F decompose<[z]/p(x) into one-dimensional polynomial



algorithm for F.

A. Cooley-Tukey Type Algorithms: Factorization

A simple way to decomposE[z]|/p(x) in steps is to use a
factorizationp(x) = ¢(x) - (x) of p. Namely, letk = deg(q)

partial decomposition

JT

andm = deg(r), then

Clz]/p(x)
—  Clz]/q(z) ® Clz]/r(x) (15)
D Clal/(e — o) ~ P Cll/a-se @ Chl/@-) 1)

Osk<n 0<i<k 0<j<m
Fig. 1. Basic idea behind the algebraic derivation of Codlejgey type - @ Clzl/(z — o). (17)
algorithms for a Fourier transfori. 0<i<n

Here the8; are the zeros ofy and the~; are the zeros

of r, which implies that both are a subset of the zergs

of p. Both steps (15) and (16) use the Chinese remainder
theorem, whereas (17) is just a reordering of the spectrum.
The corresponding factorization of the Fourier transfosm i

algebras, i.e., its spectrum. Fast algorithms are obtaaede
will show, by performing this decompositian stepsusing an
intermediate subalgebra. Fig. 1 visualizes this approach.

The advantage of the algebraic derivation is that it ideztifi , : ,
a few general principles that account for many di1‘fererﬂrOVIOIed in the following theorem.
algorithms when instantiated for different transformsrtker,
the derivation is often greatly simplified, since the onlgkta
required is to determine the base change matrices w
instantiating the general theorems.

In this paper, we focus on explaining and deriving “Coole
Tukey type” algorithms as we will call them. As the name
suggests, these algorithms will include, as well as geizeral ) _
the equally named algorithms for the DFT. The latter wilkger The matrixB corresponds to (15), which maps the basts
as examples in this section. Our main focus in the remainidertBe concatenatioric, d) of the bases: and d, and P is the
this paper will then be the derivation of analogous algonigh Permutation matrix mapping the concatenatigh ) to the
for the DCTs and DSTs, most of which have not been reportégt of zerosa in (17).
in the literature. All these new algorithms are non-orthago
i.e., are not constructed exclusively from butterflies and2
rotations. Orthogonal algorithms do exist and will be cagdu
algebraically in a future paper. Also “Rader” type algamits
which apply when the above decomposition methods fail (f

the DFT in the case of a prime size), will be explained in a Ex.ample: DFT. The DFT is a (polynomial) Fourier trans-

Theorem 1 (Cooley-Tukey Type Algorithm by Factorization)
He§t p(2) = q(x) - r(2), and letc andd be bases of[z]/q(x)
andClz]/r(z), respectively. Further, denote withand~ the
>)jsts of zeros ofg andr, respectively. Then

Ppa = P('Pcﬁ D Pd,'y)B-

Note that the factorization 0P, o in Theorem 1 is useful
as a fast algorithm, i.e., reduces the arithmetic cost, @nly
B is sparse or can be multiplied with efficiently. Referring to
Fig. 1, the “partial decomposition” is step (15) correspagd

future paper.
The existence and usefulness of Cooley-Tukey type al
rithms for the above signal model depends on properties

property ofp:

9@?]
both p(z) andb. Specifically, algorithms may arise from twofj :
different basic principles, which manifest themselves as

form for the regular signal model given bd = M =
/(z™ — 1) with basisb = (1,z,...,2""1) as shown in
We assume, = 2m and use the factorizatio®™ — 1 =
™ —1)(z™ + 1). Applying Theorem 1 yields the following
o%composition steps:

1) Cooley-Tukey type (factorizatianp(z) = q(z) - r(z) Clz]/(z" = 1)
factorizes; and — Clz]/(a™ = 1) ®Clz]/(z™ + 1) (18)
2) Cooley-Tukey type (decompositiop)z) = q(r(z)) de- 2 2041
composes. 0 g?mccm/(x wi') ® 0 g_?m«:[x]/@ wp ) (19)
Clearly, 1) is always possible (if we consider the basefi@id P ; -
but 2) is a special property of. — D Clal/(z -wp). (20)
0<i<n

In both cases, as we will show, we obtain a matrix factor-
ization of F containing smaller transforms, i.e., the algorithri\s bases in the smaller module€[z]/(z™ — 1) and
for F is recursive. Its usefulness agast algorithm, however, C[z]/(z™ + 1), we choosec = d = (1,x,...,2™"!). We
depends on the basis In the remainder of this section, wenote that from this point on the derivation of the algorithen i
derive the general form of these two algorithms. We focus @mtirely mechanical.
Fourier transforms that are polynomial transforms,. Since First, we derive the base change matixcorresponding to
any Fourier transform has the forfi = DP, ,, in (3), where (18). To do so, we have to express the base eleméntsb
D is a diagonal matrix, any algorithm @, ,, also yields an in the basis(c, d) (concatenation); the coordinate vectors are



TABLE VI
ALGEBRAS OCCURING IN THE ALGORITHM DERIVATION BASED ON THE
DECOMPOSITIONp(z) = q(y), y = r(z).

the columns ofB. For0 < ¢ < m, x* is actually contained in
c andd, so the firstm columns ofB are

B I, =x
L, x| algebra basis zeros
where the entries are determined next. For the base elementd = Clz]/p(z) b= (po,---,pn—1) a=(ao,...,n—1)
2™ 0 < ¢ < m, we have B = C[yl/q(y) c=1(qo,---»qrk-1) B=1(Bo,---Pr—1)
Ci =Clz]/r(x) =8 d=(ro,..-sTm—-1) ¥ = (Vi,05---+Yi,m—1)
2™ = 2% mod (2™ — 1),
2™ = —zf mod (2™ + 1),

consisting of all polynomials im(z). Settingy = r(x) makes
the structure o5 evident: B = C[y]/q(y).

Let 8 = (Bo,...,0k—1) be the zeros ofy and lety; =
(Vi,05 - - -, Vi,m—1) be the zeros of (x) — 8;, 0 < i < k. Then

which yields the final result

L Inm| _
B= {Im —Im} — DFT, @1,
Next, we consider step (19):[z]/(z™ —1) is decomposed by p(z) = (r(z) — B;) = (2 — i j).
DFT,, andClz]/(z™+1) by DFT-3,, (see Table Il). Finally, Ogllk Ogllkogljlm i

the permutation in step (20) is the perfect shufff&”, which _ )

interleaves the even and odd spectral components (even Yhgarticular, eachy; ; is a zeroa, of p. Now we decompose

odd exponents af,,). The final algorithm obtained is Clz]/p(x) in the following steps:

DFT,,, = L" (DFT,, ®DFT-3,,)(DF T, ®1,,,). Clzl/p(x) — Clz]/q(r(z)) (21)
Using DFT-3,, = DFT,, D,, With D,,, = diagy;,, (@), - 0§9k(cm/ (r(@) = B:) (22)
we get the better known form Eg B il -

N Clz])/(x — i, 23
DFTy,, = L:Ln (DFTm ®DFT,, Dm)(DFTZ ®Im) 0<i<k 0<j<m ’
= L5(I @ DFTy)(Im ® D )(DF T @11y). - P Clal/(z— ). (24)
The last expression is the radix-2 decimation-in-freqyenc 0gi<n

Cooley-Tukey FFT. The corresponding decimation-in-timgteps (22) and (23) use the Chinese remainder theorem. To
version is obtained by transposition using (14) and that t@Rrive the corresponding factorization®f . into four factors,
DFT is symmetric. The entries of the diagonal matix®D,,,  we first choose bases in the occuring algebras as shown in
are commonly calledwiddle factors Table VI. Note that in eacli; we choose the same basis
Remarks. Theorem 1 is well-known, as it is the CRT for |n the first step (21), we do not changebut only make a

polynomials expressed in matrix form. The above DFT exargzse change ot from the given basié to the new basis
ple is equivalent to the derivation in [27] or [20]. Theoreris1

also used as the first step in the derivation of Winograd DFT o' = (roqo(r),-...rm-1qo(r),

algorithms [24]. There, the polynomial® — 1 is completely (25)
factored over the rational numbers, and the DFT decomposed ToQk—1(7)s -« s Tm—1qk—1(7)),
accordingly.

which is a product of the “coarse” basis of the subalgebra

An algorithm based on Theorem 1 is naturally implementegd A with the “fine” common basis of th€,. We denote
recursively and requires the availability of algorithms the ==\ - < change matrix for— b with B "

smaller transforms. Next, we compute the base change matrxcorresponding

The algorithm derivation method in Theorem 1 is alwayt% the coarse decomposition (22) f with basist’ and the

applicable if the basefield i€, but in general the basebasisd in eachC; on the right hand side. Let (z)q, (r(z)) €
change matrixB will be dense and without useful structure,s Then ! S

Otherwise, every polynomial transform would have a fast’
algorithm, which by the current state of knowledge is not ro(x)q; (r(z)) = ro(2)g;(8;) mod (r(z) — 5;),
the case. The subsequent method is different in that respect . _
it requires a special property gfz), and only this property Which is g;(3;) times the(th base vector(z) in d. Thus,
leads to the typical general radix Cooley-Tukey FFT strrectu
P g y y M= [qj (ﬁz) . I’m]Ogi,j<k = Pc,ﬁ ® I’m-

B. Cooley-Tukey Type Algorithms: Decomposition The third step (23) decomposes the summands in (22) by
d their respective Fourier transforr; ...
The final step (24) reorders the one-dimensional summands
by a suitable permutatiorP. We summarize the resulting
: th[@ctorization in the following theorem.

A more interesting factorization of = P, o, can be derive
if p(z) decomposednto two polynomials,p(z) = q(r(z)).
If deg(q) = k anddeg(r) = m, thendeg(p) = n = km
i.e., the degree of is necessarily composite. In this case
polynomial »(x) generates a subalgebfaof A = C[z]/p(x)



Theorem 2 (Cooley-Tukey Type Algorithms by Decompositionin algorithm based on Theorem 2 is naturally implemented
Let p(z) = ¢(r(z)). Using the notation in Table VI, recursively, where the smaller transform are called inside
loops coresponding to the tensor product and direct sum,
Po.o =PIy ®i Pay)(Pep ® Im) B, respectively. The structure of the algorithm also makes it a
where B is the base change matrix mappigo o', and P is candidate for efficient vectorization and parallelizatjgh [6],
the permutation matrix mapping the concatenation of the [33], [28].
onto « in (24).

As in Theorem 1, the usefulness of this factorization as fa('s:t Remarks on Algebraic Principles

algorithm depends on the base change makiReferring to ~ The algorithms derived in this section are based on the
Fig. 1, the “partial decomposition” is step (22). factorization or decomposition of the polynomialz) in the
Example: DFT. Let 4 = M = C[z]/(z" — 1) with basis Signal model provided byC[z]/p(z) (and basisb). This is
b=(1,z,...,2"') be the signal model associated with th®leasantly simple, but it is also of interest to identify {heore
DFT,,. Further, assume that = km. Then the polynomial 9eneral) principle from the representation theory of algeb

p(z) = 2" — 1 decomposes as that lies behind that. This is important, as other signal e®d .
. may not be regular or may not be represented by a polynomial
" —1=(2")" -1, (26) algebra in one variable, but the algebraic principle maly sti
i.e., p(x) = q(r(z)) with ¢(y) = y* — 1 andr(z) = ™. @aPP L
Thus Theorem 2 is applicable. The zeros;0f) are 8; = wi, We focus on the decomposition property mfr) and be

0 < i < k. Further, we choose = (1,y, ...,y*1) as basis brief, assuming some familiarity with representation tlyeo
in B = Cla]/q(y) andd — (Lx,... x’mh) as basis in each The key concept underlying Theorem dnsluctionas implicit

C; = Cla]/(z™ — wi). We find thatt’ = b in (25), which in step (21). Namely, (x) generates a subalgebid =

implies B = I,,. (r(z)) < A, which is equal_ (setting = r(x)) to (C[y]/q(y).
Thus, the matrXDF T}, @1,, performs the following coarse FUrther.d = (ro, ..., 7m—1) is a transversal oB in A, which
decomposition corresponding to (22): meansA is a direct sum of the vector spacess:
Clz]/(z™ — 1) — @ C[:E]/(l’m*w;c) A=reBd... 0 1rn-1B. (28)
0<i<k This shows that the regulad-module is an induction of the
EachC[z]/(z™ — w!) is further decomposed as regular B-module with transversall: A = B 1, A. The
» o natural basis of this induction & in (25), which reflects
Clz]/(a™ — wy,) — @ Clz]/(x — Wik the structure of (28). The purpose of step (21) is to make this
0<j<m induction explicit, and Theorem 2 is a decomposition theore
and the associated polynomial transform is a special casef@finductions of (regular modules of) polynomial algebras
(7): This is a satisfying insight since it connects to relatedkwor
DFT,,(w!) = DFT .diagm—ol (w¥) on group FFTs that uses, among other techniques, the same
m . m = n/*

principle for algorithm derivation (e.g., [22], [34], [35]36];
At this point, corresponding to (23%;[z]/p(x) is completely compare Theorem 2 to [36, Th. 2 in the appendix]). In our
decomposed, but the spectrum is ordered according 4, own prior work [36], [37] we extended the group techniques to
0<i<m,0<j<k(jruns faster). The desired order isgutomatically find algorithms for a given transform. Applic
im + j. Thus, we need to apply the permutatiph + i —  tjon to the DCTs and DSTs yielded in some casghogonal
im + j, which is exactly the stride permutatidtf,, in (12).  algorithms that are different from the ones in this paper.
In summary, we obtain the Cooley-Tukey decimation-in- Fyrther, we have used already a different generalization of
frequency FFT with arbitrary radix: Theorem 2, namely to polynomial algebrastwo variables
n . m—1, ij (which provide two-dimensional signal models) to derive a
L (I’“ @ DETy, - diagj— (wnj))(DFTk @Im) Cooley-Tukey type algorithm in [38] for the discrete trideg
= L, (Ixy ® DFT,,)T,,(DFTy ®1Ip), (27) transform introduced in [39].

where the matrix7); is diagonal and usually called the
twiddle matrix Transposition of (27) using (14) yields the V. COOLEY-TUKEY TYPEDTT ALGORITHMS
corresponding decimation-in-time version. (FACTORIZATION)
Again, we note that after recognizing the decomposition In this section we derive recursive DTT algorithms by
property (26), the derivation is completely mechanical. ~ applying Theorem 1, i.e., by factorizing the polynomjain
Remarks. Theorem 2 makes use of the CRT in (22) anthe moduleC|z]/p(x) associated to a giveDTT. To do so,
(23), but it is the decomposition property aof* — 1 that Wwe will use the followingrational factorizations of Chebyshev
produces the general radix structure. The previous work galynomials.
the algebraic derivation of this FFT did not make use of
decompositions. As we briefly discuss the next section, themma 2The following factorizations hold for the Chebyshev
decomposition is a special case of a more general algebr@@ynomials?, U, V, W
principle. ) Ty = x(42? — 3)



i) Uspo1 =2U,_1T,. DTTs in theU-group. We derived these already in [11] and

i) Usp =V, W, restate them in Table VIi(a) and (b) for completeness.
V) Vapi1 = 2V (Tont1 — 1/2). The algorithms in Table VIi(a) and (b) appeared first in
V) Wanq1 = 2Wy (Tons1 +1/2). the literature (to our best knowledge) in [40], [41], [16hda

) .. [42], respectively. Combining Table VlI(a) with the manyysa
. P-roof. Follows from Fhe closed- fqrm O.f _the polynom|alsof translating DTTs into each other given by duality or base
given in Table XVI and trigonometric identities.

The factorizations in Lemma 2 give rise to size 3 algorithmc%hange (see Appendix IIf) gives a large number of different
for DTTs in theT-group and recursive algorithms for DTTs corsions, many of them, however, with suboptimal aritfime

in the U-, V-, and W-groups. The derivation is in each caseCOSt' Example; include [43], [44] .[451' -

. : . One application of Table VII(b) is in obtaining DTT algo-
straightforward using Theorem 1, hence we give only one .
detailed example rithms for small sizes, where the smaller DTTs of type 5-8

T-Group DTT algorithms for Size 3. We derive algo- are base cases. As a simple example, we get
rithms based on Lemma 2, i), i.e., for DTTs in tiiegroup DCT-2,
(DTTs of type 3 and 4).of size 3. As an.examplle, we consider _ E‘;’(DCT—62 @ DCT-8,)Bs
a DCT-43. We start with the polynomial versiobCT-43, 1 0 0 1 0 1
which is a polynomial transform fo€[z]/T5 with V-basis IRYE]
1 69711 0 1 0/.(2)
1 0 -1

=

(Vo, Vi, Vo) = (1,22 — 1,422 — 22 — 1). The zeros ofly are 001
(v/3/2,0,—/3/2). The factorizatiorls = x (42 — 3) yields 0 10
the stepwise decomposition Transposition yields ®CT-3; algorithm, equivalent to the
one obtainable from Lemma 2(i).

Clel/Ts s 3 V- and W-Group DTT algorithms. The factorizations in
— Clz]/x @ Clz]/(2” - 7) (29 Lemma 2, iv) and v), yield recursive algorithms for the DTTs
— (]

2)/z @ (Clz]/(x — L) & Clz]/(x + %2))(30) in the V- and W-group, i.e., for all DTTs of type 5-8. Since
3 3 the second factor in these factorizationsTig, .1 + 1/2 =

= Clal/(z - §) & Clal/z & Cla]/(z + §)' (31) Ton41 £ cos(m/3), the skew DTTs (see Section II-A{) come

We start with the partial decomposition in (29) and chooseto play. The resulting algorithms are shown in Table Vi(c

in all three algebras & -basis. The base change matfxis and (d) and are novel.

computed by mappingVy, V1, Vo) and expressing it in the  One may ask what is the “natural” size of the DTTs of types

basis of the direct sum in (29). The coordinate vectors ae t5-8, i.e., the sizes that yield the best decomposition. & ea

columns ofB. The first column i1, 1,0)”. Because of; = case, the occurring skew DTT is of odd size + 1. Hence,
2z — 1 = —1 mod z, the second column i6-1,0,1)”. The it can be decomposed best using the algorithms shown later
last column is obtained froff, = 42> —2x—1= -1 modz in Table Xl if 2m + 1 is a 3-power. This implies thatm + 2

and4z? —2r —1 = -2z +2 = -V, + Vo mod4z? —3 and3m + 1 are of the forms(3* + 1)/2 and (3% — 1)/2,
as(—1,1,—1)T. Step (30) requires polynomial transforms forespectively.
Clx]/x and C[z]/(x? — 3/4) with V-bases, which are given Polynomial DTTs. Every DTT in Table VIl is decomposed

by into two DTTs that have the same associated basifhus
v (ﬁ) v (ﬁ) ] V31 they have the same sc.aling function (see Tableb land f .
[1] and 0 22 L 220 = [ ] , are connected), which is the reason why we see no scaling
Vo(=3) Vi(=%) I —V3-1 factors in the equations. As an important consequence, we

respectively. Finally, we have to exchange the first two spec 9et algorithms corresponding to Table VI for the polynomia

components in (31). The result is transformsDTT.
As an example, we derive the polynomial equivalent of (32):
0 1 o] (1 O 0 1 -1 -1
DCT-43=[1 0 0| |0 1 3—1||f1 o0 1]. Lo ol 10 1
0 0 1|f0o 1 —=v3—=1|1]0 1 -1 DCT-23= (0 0 1 (L 2}@10 0 1 0f,
01 0 1 0 -1

The corresponding algorithm forDCT-45 is obtained
by scaling from the left with the diagonal matrixyhere DCT-2; = diag(1 V3 1) . DCT-25. The algorithm

diag(cos(m/12), cos(3m/12), cos(5m/12)) to get requires 4 additions and 12mL12ItipIication and is thus 1 multi
01 ol [% 0 0 1 1 plication cheaper than its non-polynomial equivalent (32)
DCT-45=[1 0 0] |0 cos? % 1 Final remarks. The algpr|thms given in th|_s section are
00 1 0 cosst —=| o based on Lemma 2 which prowd_es factorizations of the
12 V2 Chebyshev polynomiald”, U, V, . Since all these polyno-
Similarly, we get algorithms for the other DTTs of size 3 irmial factorizations are rational, the associated matrotdia
the T-group. Those, which are among the best known onézations are also rational (the occuring transforms may of
are collected in Table X in Section VI-A. course still contain irrational entries). In Lemma 2, ii)dan
U-Group DTT algorithms. The factorizations in Lemma 2, iii), the factors are again Chebyshev polynomials, and thus
i) and iii), yield a complete set of recursive algorithms fothe smaller transforms in the decomposition are again DTTs.

-1
0
1 -1



10

TABLE VI
DTT ALGORITHMS BASED ON FACTORIZATION PROPERTIES OF THEHEBYSHEV POLYNOMIALS. TRANSPOSITION YIELDS A DIFFERENT SET OF
ALGORITHMS. REPLACING EACH TRANSFORM BY ITS POLYNOMIAL COUNTERPART YIEDS ALGORITHMS FOR THE POLYNOMIALDTTS. THE BASE
CASES ARE GIVEN INTABLE IX. THE OCCURING MATRICES ARE DEFINED INTABLE VIII.

(a) U-group: Based ott/z,,—1 = 2Up, 1T, (b) U-group: Based oz, = V,, Wy

DCT-1gpm 41 = L2 (DCT-1 41 & DCT-3,) Bam 1 DCT-1,, = L2"(DCT-5,, & DCT-7,,)Bam

DST-1pm_1 = L2 1(DST-3p, ® DST-L11—1)Bam_1 DST-lo,n = L7 (DST-7,m & DST-5,) Bam
DCT-22,, = L2™(DCT-2,, @ DCT-4,,) Bam, DCT-22m+1 = L2 (DCT-61n 41 © DCT-81n) Bam 41
DST-22,, = L2™(DST-4y, & DST-2,n)Bam DST-23m41 = L2"4 (DST-8p141 ® DST-6) Bam 41

(c) V-group: Based oVap 1 = 2(Tont1 — 1/2)V, (d) W-group: Based oWs,, 1 = 2Wp (Ton+1 + 1/2)

DCT-73m42 = P37 2(DCT-32m41(3) ® DCT-7pn41) BSS ), DCT-53m12 = Q3" 2(DCT-5y,41 ® DCT-32m41(2))BSS0),
DST-T3m11 = P2+ (DST-32m 41 (L) ® DST-7,) BT | DST-53m11 = Q3! (DST-5,n ® DST-32m+1(2)) B ),
DCT-83m11 = P21 (DCT-42m+41(%) ® DCT-8,,)BSY), DCT-63m12 = Q3" 2(DCT-6,41 ® DCT-42,n41(2))BSSY),
DST-83m+2 = P32 (DST-42m41(%) ® DST-8511) B, DST-63m+1 = Q3"+ (DST-6,n @ DST-4orm1(2))Be),
TABLE ViII
MATRICES USED IN THE ALGORITHMS INTABLE VII.
(a) Base change matrices in Table Vli(a) and (b)
I, . Iy, O Im
By = {7 _7| = (DFT2@n)(Im ® Jm),  Bemt1= [0 1 0
m m Iy, 0 —Jm
(b) Base change matrices in Table VII(c); from left to rigﬁércn:zz, Bgfn?_l, Bégﬁﬁl, Béfnsj_Q.
1/2 I, I, Im
Iom41 I Tom41 Jm Tam41 0.0 Iom41 2
_Jm , 0--0 R _Jm s Jm
1 -1 0 1 J, —1
Im  —Jm ‘ —Im Im Im 8 ‘ —Im Im & =Jm ‘ —Im T ‘ B
(c) Base change matrices in Table VIIi(d); from left to ri (C5)  gss) - plco)  p(S6)
g 9B, Lo D3pt1s P3mt2r Pamti
1 1 0 Im Im Im 0
I JIm Im, Im  —Jm o Im 1 1 Im o —Jm Im
-1/2 ) —Im | —Im , —In,
Tom41 —Im Iom41 Im Tom41 -2 Iom+1 0.0
—Jm 00 —Jm Im

(d) Permutations in Table VII(c) and (d); note thatand Q are implicitly defined by dropping a fixpoint fror® and Q, respectively.

p3m+2 . 3 ?Z27 2 1 ;Or l.l i (1)7 12, for iy = 0;
m i1 + 3ig — 122 ++;n+ ) fz: l‘1 : Qj anm+2 i1 4 3ia = g +m+1, forip =1;
2T 5 =4 2o +m 42, foris=2.
3m+2 Imt1 S2m41 >3m42 Imt1| (p2m+1
_ Ln;nt Im+1 (L2m+ @ Im+l) _ mej; m+ (L2m+ o) Im+1)
+ I +1 | Iam+1
- pmtigg = LeQy!
TABLE IX
BASE CASES FOR THE ALGORITHMS INTABLE VII. THE T-GROUPDTT BASE CASES ARE PROVIDED INTABLE X.
DCOT-15 — /7 DCT1, — DCT-1,  DCT-7; = [1 1_/12] DCT-73 = DCT-75  DCT-55 = [} ,11/2] DCT-5; = DCT-5;
DST-1, = I DST-1; = I DST-71 = 21y DST-71 = I DST-5; = 21y DST-5, = I
: 1 NOTLD, G _ -
DCT-2; = diag(1, J3) - F2 DCT-22 = P DCT-8 = Y31,  DCT8 = I DCT-6; = [}, 1] DOT6: = [} 1]
25 — di 1 . 2, — — _
DST-2; = ding(75,1) - F2 DST-22 = psT8, = [{*_}] DOT® =[] i]  psre = L1, DCT-6; = I
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In Lemma 2, iv) and v), the second factby,, ; —1/2 leads to Cooley-Tukey type algorithms for all 16 DTTs. Looking at

skew DTTs (see Table IV). The complete rational factor@ati Lemma 3, Theorem 2, and its derivation in (21)—(24), we see

of the Chebyshev polynomialg,, U,, for arbitraryn is given that the algebras in (22), will always have the form

in [46]. The rational factorization df,, and¥,, can be derived

using [46] and Lemma 2, iii). These factorizations can beluse Cla]/ (T — cosrm).

to decompose a DTT, but the smaller transforms obtained dreus the decomposition (23) will require skew DTTs, which

in general no DTTs or skew DTTs. motivates their introduction in [9]. Of course, this posks t
All algorithms in Table VII can be manipulated in numerouguestion how to further decompose the skew DTTs for non-

ways using the identities in Appendix Il or transpositian ttrivial sizes. This question is answered by the second ijent

obtain different algorithms. in Lemma 3, i):T,, —a decomposes exactly &% does, which
establishes a one-to-one correspondence between aigsrith
VI. COOLEY-TUKEY TYPEDTT ALGORITHMS for the DTTs in theT-group and their skew counterparts.
(DECOMPOSITION We will focus on the derivation of algorithms far-group

In this section, we derive DTT algorithms that are basddTTs, and, due to space limitations, comment only very lyriefl
on Theorem 2, i.e., on a decompositipiz) = ¢(r(x)) ©n the others. Additional details are in [19].
of the polynomialp in the associated algebr&@[x]/p(x).
These algorithms are structurally and in a precise mathieatat A, 7-Group DTT Algorithms

sense the equivalent of the Cooley-Tukey FFT (27), which We|n this section, we derive Cooley-Tukey algorithms for the

. - ok
derived based on the decompositioh — 1 = (2™)" — 1. four DTTs in theT-group based on the decompositidoh =

We W'". see that all 16 DTTs possess such algorlthm%k T.»). These algorithms are then summarized in Table XI.
and that in many cases there are several reasonable varian e start with a fixed DTT in the'-group with associated

with different characteristics to choose from. Some of me%lgebra@[x]/T and C-basi€ b = (Cj C,_1), Where

algorithms generalize the ones we introduced in Section V'C € {T,U,V,W} depends on the chosen DTT. We assume

Eac_h of these DTT aIgonthmg exhibits the same erX|bI7;? — km, and use the decompositici, — Ty (T,.). The
recursion and regular and versatile structure that has tieen decomposition steps (21)—(24) of Theorem 2 take the form
success of the Cooley-Tukey FFT. As a consequence, one may

expect that many FFT variants optimized for, e.g., paraitel Clz)/T, — Clz)/Te(Twm) (33)

vector computation will have counterparts for the 16 DTTs. - 1 aog PEL/2

See [33], [28], [5], [6] for more details on FFT variants. Oj‘EfW (T = cos =5=m) - (34)
Only very few special cases of these algorithms have been P

found before. Again, our algebraic methods show their power - @ @ Cla]/(x = cosrijm) (35)

all algorithms are based on the single Theorem 2 and the Osi<kOsj<m _

derivation is comparatively easy since only base changes ha — @ Clz]/(x — cos #w), (36)

to be computed. In contrast, a derivation based on matrix 0<i<n

entries would become hopelessly complicated and does p@lere ther; ; are determined by Lemma 1.

provide a guideline on how to obtain an algorithm at all. In the first step (33), we change bases @fw]/7, =
Decomposition of Chebyshev polynomialsThe DTT al- ¢ (;]/7,(T,,), from the givenC-basisb to the basis’ given

gorithms are based on the following lemma. in (25). The question arises, which basis to choose in the

. subalgebra3 = Cl[y] /T, and which common basis to choose
Lemma 3The Chebyshev polynomial$,U,V,W have the ;, the “skew” algebrag’; — (C[x]/(T _ cos(i+1/2)7r)_ In

following decomposition properties: the latter ones, we always choose the sarhbasis as in the

) Tem = Ti(Trm); Them — a = Ti(Trn) —a, a € C. original algebra. For the subalgebra, it turns out that weeha
i) Ugm-1=Un-1-Ug—1(T). two reasonable choices: basis or al/-basis. We consider
i) Vik—1)/240m = Vi - Vi—1)2(T2m+1)- both cases, starting with tHé-basis.

V) Wi—1)/24km = Wi - Wi—1)/2(T2m1). U-basis. We choose, independently af, a U-basis in

V) Timim/2 = Tmy2 - Vi(Tm)- Cly]/Ty. Note, that this makes the corresponding DTT a
Vi) Ukmtmsa—1 = Unja—1 - Wi(Tm). DST-3,, (see Table Il). The basig in (25) is then given

Proof: Straightforward using the closed form 6§, from by
Table XVI. In particular, property i) is well-known in the v = (CoUo(Thm),- - Crmn_1Uo(Th),
literature [47]. ] 37)
Inspecting the identities in Lemma 3, we observe that only CoUk—1(Ti)s -« o, Cone1 U —1(Th))
i) provides a pure decomposition; the other identities are = (CUi(Ty) |0<i<k, 0<j<m).

algorithm derivation requires us to first apply Theorem 1 an eo)org)erl)double indices always lexicographically j) =
then Theorem 2. (U, 1), e

Also, we observe that Lemma 3 pr.OVIdeS decompositions OEC-basis does not mean that the basefieldCisut that it consists of
all four typesof Chebyshev polynomials. Thus we can expeathebyshev polynomials.

a decomposition up to a factor. Thus, in these cases, \g
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We denote the corresponding base change matrix b step (34) is obtained with the matri®ST-3; ® I,,, since
in (33) with Fffn Here, and in the following, the: € Theorem 2 requires us to choose a polynomial transform for
{C3,83,C4,54} in the superscript means that the matrihe coarse decomposition. FQVIStQQP (35), we need a direct sum
depends on the DTT that is decomposed. of skew DTTs: 1}, ®; DTT,,(“+22). These are of the same
We show DTT = DCT-3 as an example. The matrixtype as the DTT we started with, since they have the same
Eé*in — gfﬂi) in (40) performs in this case ifi[z]/T, a C-basis as the DTT to be decomposed.

base change from th@-basis to the basi#’ in (37) with Finally, we order the one-dimensional summands in

C—T.To computeﬁ,icni) we have to express every elementteP (36) using a permutation. This permutation does not
’ depend on the basis, but only on the zerosipfand T,,.

T; in b as a linear combination of elementstih To do this, L . .
: ; Thus it is the same in all four cases of DTTs in thegroup,
we first writeb as . .
and, using Lemma 1, it takes the form

K=&y ol ®J®...)L,.
We did not change, but only decomposed the index into a_ . o ] )
radix-m representation. The basisis a special case of (37): ' NiS permutation is th&'-group DTT equivalent of the stride
permutationL}, in the Cooley-Tukey FFT.

b:(Tim+j‘0§i<k‘, O§]<m)

V = (TU(T) | 0<i <k, 0<j<m). In summary, we obtain
First, we consider the cage= 0. From Table XVII, we know DTT, = K" (I, ®; DTT +1/2)\ DST-3, @ I, F(*)
thatTl = (U1 e UZ,Q)/Z and thus " m,( e m( k ))( b m) kZZO)
Tim = Ty(Tr) = LU(Tr) — LUi—o(T}) (38) The question that remains is how to decompose the smaller
. ] c transforms: the skeWDTT,,'s and the polynomiaDST-3.
is the desired representation fif _ However, this poses no problem. Since for amye C,
Now, letj # 0, i.e., 1 < j < m. We claim that T,, — a decomposes exactly ds,, we derive in a completely
Timi = TjUi(T) = Ton— ;Ui 1 (Tpm). (39) @analogous way the “skew version” of (40) as
To prove it, we define the recursion DTT, (r) = K\, (I ®; DT Ty, (r;)) (DST-3;(r) ®Im)§1(:2m
(41)
po = Tjom =Tm—j, which generalizes (40); namely, (40) is (41) for=1/2. The
o = T numbersr; are computed fromr using Lemma 1. The matrix
pic1 = 2Tmpi — pi-1- K] neither depends on the type of DTT, nor arthe matrix

E,(:,)n does depend on the type of DTT, but not snsince
the base$ andb’ are independent aof.
Dit1 = Tim+5, Further, since DTTs and skew DTTs have the same scaling

which is the left hand side of (39). On the other hand, usirfﬁ”c“on (Tables Il and 1V), we obtain corresponding algo-
. . : . : mhms for the polynomial version of the transforms by just

(52) in Appendix Il with T,,, playing the role ofz in (52) eplacing each DTT by its polynomial counterpart:

shows thaip; , is also the right hand side of (39), as desired. " 209 y 1S poly part.

The equations (38) and (39) define the columns of the baS&T,, () = K (I; ®; DT T, (r;)) (DST-34(r) ®Im)§§:,)n-
change matrix, which is thus given by ’

First, because of (53) in Appendix Ill we see that

All details of the above algorithms are in Table XI.
T Next, we derive the analogue of the above algorithms, if
. a T-basis, instead of &-basis is chosen in the subalgebra
Im—1 —Jm-1 K Clz]/Ty.
1 T-basis. In distinction to the above, we choose this time,
B = ? N independently ofC, a T-basis inCly|/T}). Thus, the corre-
’ m—1 sponding DTT is aDCT-3,,. The basist’ in (25) is now
given by

1 _

Nom

I’m—l —Jm—1

1 Y = (CoTo(Th), - -, Con1 To(Th),

42
For example, all rows with an index that is a multiplesof CoTi—1(Tim), .- "C’"*lTkil(Tm)) , “2
are determined by (38) and thus contain the numbggs = (Ci=im/2+ Cjvim/2| 0 < i <k, 0 < j <m),
Using using (53) in A[()[;endix Il. We denote the base change matrix
for b — ' by B,”) . We omit the derivation, which is similar
Cimej = C3Ui(Tm) = CjmmUiza(Tm), 0 the U-basis case above. Details are in [19].
which generalizes (39), yields the base change matricdwin t The coarse decomposition in step (34) is now performed by
other three cases e {C4, 53, 54}. the matrixDCT-3; ® I,,, (note thatDCT-3 is a polynomial
After the base change, the decomposition follomsansform). The remaining steps (35) and (36) are equal to
steps (34)—(36) and Theorem 2. The coarse decompositionnhat we had before.
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TABLE X

As a resu”’ we obtain BASE CASES FOR NORMAL AND SKEWI'-GROUPDTTS OF SIZE2 AND 3.

DTT,, = K7 (I ® DTT,,(42))(DCT-3; @ I,,,) B")

k,m>

(43) DCT-3; = P, - diag(1,1/v2)
DST-3; = F; - diag(1, v2)

DCT-4 = Fy- | 5
DTT,(r) = Kjj (I @ DT Ty, (ri)) (DCT-34 () @ L) BY), . ST = 15 [ 1
(44) —
i () DCT-3; = DCT-3;
Again, B, . only depends on the type of DTT, and notan DST-3 = F - ding(1/v/3, 1)

The polynomial version is again given by simply replacin
poly g 9 y ply rep %CT-42 = diag(cos %,sin %) - Fy - L ‘[1]]

and its generalization to the skew DTTs

all DTTs by their polynomial counterparts: 02
DST-4; = diag(sin g, cos g) - Fb - é \}5

DTT,(r) = K7 (It @ DT T, (r;)) (DCT-34,(r) @ I, BL")

km DCOT-3, r) = I} - diag(1, cos 5m)

(
We mentioned above that choosind/abasis in the subal- DST-3:(r) = F% -di?g(lﬁ cos ¢
gebraClz]/T}, leads to base change matricBs ,, that are DCT-4(r) = Fy - [0 zcosﬂ]
sparse. For thd-basis, this is somewhat different. In fact,BsT-4,(r) = F, - [(I)QCD;%W
inspecting (42) shows that the inverse base change b,
ie., Bk‘1 is sparse (with at most two entries in each cqumn)PCT'BQ(T) - DCTfSQ (T_) .
v, M . . . ST-32(r) = F> - diag(sin 5F, sin rm)

For this reason, we will also consider the inverse of (43) anDCT () — i e o oo [L
(44). The sparsity ofB;, ,,, depends ork; the best case is “Aa(r) = diag(cos 7, sin 5F) - Fo - [1026015%]
k = 2 and the only one we consider in this paper. DST-45(r) = diag(sin 7, cos ) - Fy - [o 2cos IF

All the_ de_tails are in Table XI. . iDCT-3,(r) = diag(l, yoslrmy - F2,

T-basis inverted. To express the inverse, we need thelDST_32(r) — diag(~—L, T ). F
inverse skew DTTs (Appendix ). The inverse of (44) will 2gn Tyt sinrm

1 1
take, after minor simplifications, in each case the generahf iDCT-42(r) = [0 @} - F - diag(@v ﬁ)

1 -1
. _ . 1 1
iDTT,(r) = Cf), (DCT-34(r) ® I,n) IDOT-0(r) = [0 Toos TE } By diag(G T 55T
(I ®; iDTT,, (r;) ) M}, (45)

where M} = (K2,) ' = LI ® Jk ® Iy ® Jpy @ ...), and DCT-3; = E}g (ﬂ F 0 1_/12}
C,E*,l@ is closely related t(ﬁB,(;?n)*l. (45) provides algorithms o1 17100
for the DTTs of type 2 and 4 (the inverses of the DTTs in th&57™3 = | §¢ ff} [3 v (ﬂ
T-group). See Table XI for the exact form. DOT4; = |10 5’_1} [i o *i}
Variants. The algorithms derived above can be further o} —g—f Ty
manipulated to obtain variants. We saw already an examples1-4s = |10 ] 168 }}

the inversion of (44) to obtain (45). One obvious manipolati
is transposition, which turns ea@higroup DTT algorithm into
an algorithm for a DCT or DST of type 2 or 4 (the transpose®ST-3s =
of the T-group DTTS). D

More interestingly, each of the above algorithms has a cor-
responding “twiddle version,” which is obtained by trattislg DST-4; =
skew DTTs into their non-skew counterparts using (56) in

DCT-33 = DCT-33

Himo= |

1
0
1
[1
CT-43 =10
| 1
1
0
1

2—r

3

7, sin 2X 1) DST-33(r)

= diag(sin £ 7, sin 5

The twiddle version seems more appealing; however, WS T-3s( "3
DCT-43(r) = by definition
(

0
1
Appendix Ill. For example, the twiddle version of (43) isgiv DCT-33(r) = i -1 (h ® [Cosigrﬁi coszﬁﬁib
b - cos ‘31 77\: cos T:‘:
: oST30) = |- ¢ (no 2| ZGRD LD ) (3]
DTTy = K, (I @ DTTom) Dy (DCT-3 @ Lo ) By, (46) DCT-43(r) = by definition ’ ?
*) (i ; : DST-43(r) = by definiti
where Dy, = I ®; X\ (“512) is a direct sum of the x- 3(r) = by definition
shaped matrices in (56) (Appendix III). DCT-33(T)) = DCT-33(r)
T
)
)

will later see that at least in the 2-power case= 2" they -

. . . . . ]%ST-43 r) = by definition

incur a higher arithmetic cost. The reason is that skew an

non-skew DTTs can be computed with the same cost in this

case. For other sizes, the twiddle version may not incur any

penalty. Most state of the art software implementations [Zpllow from the definition; most of the size 3 cases are defive

[3] fuse the twiddle factors with the subsequent loop inedrr as explained in in Section V.

by the tensor product anyway to achieve better locality. Special caseWe briefly discuss the special case of (48) in
Base casesWe provide the base cases for the abovEable XI for DTT = DCT-3 andk = 2. Bégs) shonw in

algorithms for sizen = 2, 3 in Table X. The size 2 casesTable Xll(c) incurs multiplications by 2, which can be fused
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TABLE XI
GENERAL RADIX COOLEY-TUKEY ALGORITHMS BASED ONT}, = T} (T, ) FOR THEDTTS IN THE T-GROUP(AND THEIR TRANSPOSES. IN EACH CASE
DTT € {DCT-3,DST-3, DCT-4, DST-4}. THE EXACT FORM OF THE OCCURRING MATRICES IS GIVEN INTABLE XII.

U-basis: DTTy, = DTTn(1/2), DT Thm(r) = K2 (Ix ©; DT T (r)) (DST-3(r) @ L) By, 47)

T-basis; DTT, = DTTy(1/2), DTTyu(r) = K2 (I @; DT Ty (r;)) (DCT-3;(r) ® Iy) BL) (48)

Inverse of (48): DTTYL = iDTTy(1/2), DT Tk (r) = CL") (iIDCT-34(r) @ In) (I @; DT Ty (rs)) ML (49)
TABLE XII

MATRICES USED INTABLE XI.

(a) Permutations.
Kh = @@L, @ ®... )0, MP=(Kp) ' =L, @@L, ®Jpd...)

ase change matrices for : from left to righx B B B,
(b) B hang ices for (47); f left -gB(CS)7 (53)7 (6‘4)7 (54)

N

Im—l —Jm—1 Im Zm Im 7Jm Im J’m

Im—l _Jm—l
1

¥

L L1l

(c) Base change matrices for (48) in the case 2.

B = (I @ diag(1,2,...,2)) [ Im} . B = [I QZIWJ , BV = { QIm}

)

(s4) _ |Im JIm
Baym = { 21,”} :
(d) Base change matrices for (49); from left to right{C3), C(S3) ¢(C4) (54,

[{m—1 _Jmfl

N

2
m Zm I’m—l Tomed k Im Jm [m 7Jm

1
’ 2

with the multiplications incurred by the adjacenCT-3,(r). C. U/V/W-group DTT Algorithms
Namely, usingDCT-3;(r) = F - diag(1,cos 5m) (see Ta-

ble X), we can manipulate (48) in Table XI to take the form0 Lemma 3, ii)-iv), yields general radix algorithms for the

ther DTTs in thel’/V/W-groups. These are generalizations

DCT-3,(r) = Kj,”l(DCT—Sm(g) @DCT—Sm(Qgr)) of the glgorithms in Table VII. Since the most important
DCT-2 is already covered by the transposes of I@T-3

(F2 @ Im) E,m,  (50) algorithms, we are very brief and give one representative ex

where ample from each group in Table XIV. The occurring matrices

o I, ~Zm (51) and more details for the other DTTs can be found in [19].
2;m cos gm(I1 @ 2@ —1)|"

B. AlternativeT-Group DTT Algorithms VIl ANALYSIS

It is also possible to deriv&-group DTT algorithms using In this section we analyze the algorithms presented in this
the decompositiofi,;, + 1, /2 = Ton/2- Vi () in Lemma 3, v). paper in Tables VIl and Xl with respect to arithmetic cost and
One application is in obtaining algorithms for size= 2-2+ other characteristics. We also identify the special cakas t
2/2. For theDCT-3 this yields the algorithm in Table XIll. can be found in the literature.

The cost can be read off g42,6,1). Transposition yields  Cost analysis.We focus the discussion on the most impor-
an algorithm forDCT-25 with identical cost, which is only tant cases. Table XV shows a summary of the achievable costs
slightly worse than thé13, 5,0) algorithm in [48]. for all 16 DTTs including the algorithms that achieve them.
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TABLE XIlI
ALGORITHM FORDCT-35 WITH COST(12, 6, 1). TRANSPOSITION YIELDS ADCT-25 ALGORITHM OF EQUAL COST.

-1
1/2
0
1
0

I diag(cos Z,2cos T
<11 @ (Fo diag(1,cos T) @ Fj diag(1, cos X)) 2 g(cos 5 ))}>

: 3 s
Iy diag(cos 5, 2cos 5

[eNeN N oNe)
S oo O
[ =N eN o]
[=NeoNen e}
OO OO
[=NeNel S
[eNeN T No N}
_OoO 00O
o= OO

TABLE XIV
EXAMPLES OF COOLEY-TUKEY TYPE ALGORITHMS FORDTTS IN THE U/V/W -GROUR BASED ON THE RESPECTIVE DECOMPOSITIONS
Ukm—1 = Uk—1(Tm) - Um—1, Vik—1) /24 km = Vik—1)/2(T2m+1) * Vins W(—1)/246m = Wm - W(g_1)/2(T2m+1). THE POLYNOMIAL VERSIONS
ARE OBTAINED BY REPLACING ALL TRANSFORMS BY THEIR POLYNOMIAL COUNTERPARTS

DST-1pp1 = Plgii) <(Ik71 K DST-3m(H];1 )) (DST-lk,1 ® Im) 2 DST_l"L—l) B)(Cii)
DST-Tyms(e-1y2 = Pl (Le-1)/2 @i DST-82m41 (252)) (DSTT st @ Lam41) © DST-Trn ) B
DST-5¢my(k—1)/2 = P;E,S,z) <DST'5m ® (I(k—1)/2 @i DST-32m+1(2i;2))(DST—5% ® 12m+1))B;(CYS,i)

For the T-group DTTs, we consider the algorithms in48] for p = 5,7), it is now easy to compute a precise cost.
Table XI; (49) is considered transposed. Transpositiofdgie The other7-group DTTs can be decomposed analogously.
2-power algorithms of equal cost for DCT and DST of type 2. Further comments.

For a 2-powem, the costs in each case are independent of e The algorithms in (48) in Table XI fok = 2 have
the chosen recursive split strategy and are equal for the ske the appealing feature that all multiplications occur in
(and inverse skew) and non-skew versions since they have the parallel with additions on the same operands as shown
same recursionand the base cases in Table X have equal for the DCT-3 in (51). Further, their transposes are a
cost. The polynomial DTTs save multiplications since they good choice if the output is to be pruned, i.e., only, say,
have cheaper base cases (except forDk&-3 = DCT-3). the first half of the output matters. This was used in [49]

For a 3-powem, the skew DTTs are more expensive than  for the DCT-2.
their non-skew counterparts, because the size 3 base casasThe algorithms (49) involvéDTTs and hence inverse
have this property. Also, the stated costs for 3-powers in cosines (from the base cases of tRel['Ts in Table X).
Table XV(a) can be further improved with the algorithms in ~ This may cause numerical instability.
this paper. For example, we can slightly improveD&T-3 « Transposition of the algorithms in Tables VII and XI
of a 3-power sizen using first the transpose of Table VII(b) yields algorithms for the respective transposed DTTs
and then decompose the occuring DCTs of type 7 and 8 with with equal cost. The reason for this is that all occurring

Tables VIi(c) and VII(d) to get a cost of matrices have this property.
« If a non-skew DTT is decomposed using any of the
(§nlogz(n) — 2n + 2, 5nlogs(n) — In+ 3logs(n) + 1, algorithms in Table XI, anch is odd, then (the middle)
%n + %10g3(n) — i) = 4nlogs(n) — %n + logs(n) + % one of the occurring skew DTTs in the direct sum has

r=1/2, i.e., is non-skew.
while sacrificing some regularity in structure. For example Any odd-size DCT of type 2 or 3 can be translated into
for n = 9, Table XV(a) yields(32,12,4) = 48 and the an RDFT without incurring operations [48].
above (32,11,3) = 46. The same costs apply tolaCT-2 | Again, we note that the algorithms in this section are
by transposing the algorithms. Reference [48] provides an ot all the available ones. One example are orthogonal
(34,8,2) = 44 algorithm (proven optimal with respect to  gigorithms, which are due to other algebraic principles
non-rational multiplications) with no obvious structureny such as [36].
of these size 9 algorithms can also be used as base case fqQr || the algorithms for DTTs of types 2—4 have a total
a larger 3-power size. Using (55) and (56), the cost for a 3- ¢gst of2n, log,(n) 4+ O(n) for a 2-power sizer. This can
power sizeDCT-4 can also be reduced. be improved by roughly 5% with the recent paper [50]
For an arbitrary-powern, we can computé'-group DTTs to ¥nlog,(n)+O(n) at the expense of some regularity.

(and their tr_ansposes) using the twiddle versions of The | jterature. Algorithm (48) for theDCT-3 of 2-power size
group algorithms such as (46). For exampleD&T-2,: iy the special casé = 2 was derived in [51] and in [29];
computed with (49) then requires, independently of thet Splhe |atter also considered 3-powers dnd- 3. For arbitrary
strategy,;; log, (n) DCT-2,'s and p-powers f prime) andk = p, the derivation is in [30].

_ _ The above references also used Chebyshev polynomials in

2(1 = 1/p)nlog,(n) = 2n +2 their derivation, but they do not use the algebraic framé&wor

additions and multiplications, respectively. For a giveand they present the algorithms in an iterative form only,
DCT-2, kernel (e.g., the transpose of Table Xl fpr=5 or which avoids the definition of skew DTTs. For software



TABLE XV
ARITHMETIC COSTS ACHIEVABLE FOR THEL16 DTTS WITH THE ALGORITHMS IN THIS PAPER

16

(a) T-group DTTs of 2-power and 3-power sizes All the 3-power size costs can be slightly improved upon Seetion VII). For 2-power sizes, the
polynomial versions of the type 4 DTTs requiremultiplications less and the polynomiBIST-3 requiresn/2 multiplications less.

Transform Cost (adds, mults, 2-power mults) Total cost Acheved by

2-powern

DCT-3, (3nlogy(n) —n+1, inlogy(n), 0) 2nlogy(n) —n+ 1 (47) = (50), (49)”, Table Vli(ay"

DST-3, same adDCT-3, 2nlogy(n) —n+1 duality (54) Table Vli(a)’'

DCT-4, (%nlogQ( ), 2nlogg( n)+n, 0) 2nlogy(n) + (47), (48), (49), (55), and their transposes
DST-4, same adDCT-4, 2nloggy(n) + (47), (48), (49), duality (54)

DCT-3,(r) same adCT-3, 2nlogy(n) — n +1 (48)

DST-3,(r) (%nlogQ(n) —n+1, %nlog2(n) + %n, 0) 2nlogy(n) — n +1 (47

DCT-4,(r) same aDCT-4, 2nlogy(n) + (47), (48)

DST-4,(r) same adDCT-4, 2nlog,(n) + (47), (48)

3-powern

DCT-3, (8nlogsz(n) — 2n+2, 3nlogz(n) — 2n, In—1) 4nlogs(n) —3n+3  (48),(49)7, see also discussion in SectionVII
DST-3,, same adDCT-3, 4nlogs(n) —3n+3  duality (54)

DCT-4, (%nlogg,(n) -n+1, %nlogg(n) — %n, %n— 5) 4dnlogz(n) —n+2 (55)

DST-4, same adDCT-4, 4dnlogz(n) —n+2 duality (54)

DCT-3,(r) (%nlogg,(n) —n+1, %nlogr, (n), 0) 4dnlogs(n) — n + 1 (48)

DST-3,(r) (%nlog;;(n) 7n+l 4n10g3( )+%n+ %, %nf % 4nlogs(n) + (56)

DCT-4,(r) (%nlog3( ), 3” logs(n) + n - %, ln— %) 4nlogs(n) + (57)

DST-4,(r) same aDCT-4,(r) 4nlogs(n) + the equivalent to (57)

(b) UIVIW-group DTTs. The size aDCT-1 isn = 2% + 1, the size ofDST-1 isn = 2k — 1, the sizes ofDCT-2 andDST-2 is n = 2F, the size of
DCT-5,DCT-6, DCT-7, DST-8 isn = (3* 4+ 1)/2, and the size oDST-5, DST-6, DST-7,DCT-8 isn = (3* — 1)/2. The polynomial DTTs of type
2 aren — 1 multiplications cheaper.

Transform  Cost (adds, mults, 2-power mults) Total cost Acheved by
DCT-1, (%nlogz (n—1)—2n— 3 logz(n -1)+ 2nlogy(n — 1) — 3n Table Vli(a)
lnlogQ(n—l)—n—710g2(n—1)—i-2 0) —logy(n —1) 48
DST-1, (3n logy(n+1) — 2n + 2 logy(n + 1) + 2nlogy(n 4 1) — 3n Table Vli(a)
nlogz(n+1)—n+ 110g2(n+1), ) +3logy(n+1) +2
DCT-2, (gn logy(n) —n +1, %nlogg(n), 0) 2nlogy(n) —n+1 Table Vli(a), (48)" = (50)7, (49)
DST-2, same aDCT-2 2nlogy(n) —n+1 Table Vli(a), duality (54)"
DCT-7, (8nlogs(2n — 1) — 3n — Llogs(2n — 1) + 3, 4nlogs(2n —1) —5n+5  Table VII(c)
gnlogg(2n — 1) — 2n — g logz(2n — 1) + 2, logz(2n — 1))
DST-7, (dn logs(2n+1) —3n+ 3 10g3(2n + 1), 4dnlogz(2n+ 1) — 4n Table VIi(c)
7n10g3(2n+ 1) — —n+ 10g3(2n+ 1), %nf %10g3(2n+ 1)) +logz(2n + 1)
DCT-8,, same aDST-7 duality (54)
DST-8, same adDCT-7 duality (54)
DCT-5,, same adDCT-7 Table VII(d) and its transpose
DST-5, same aDST-7 Table VII(d) and its transpose
DCT-6, same adDCT-7 duality (54) Table VIi(c)”
DST-6, same aDST-7 duality (54) Table VIi(c)”

implementations, it is crucial to have a recursive form &eund in the literature (again for 2-powers akd= 2 only)
presented here. Further, the derivation for> 2 in [30] was derived implicitly in [51], where thé&CT-4 is called
produced suboptimal cost compared to our algorithms. “‘odd DCT.”

Special cases of (48) for tBCT-3 with the reverse spli, The only case of (49) we found in the literature is for
ie., forn = pt, k = pt~! andm = p, may not be practical PCT-2 andn = 2!, m = 2, in which case the skew DCTs
because of the long critical path for computify ,,. Their P&come trivial [56].
discovery, however, is more straightforward, since theyndp  All other cases in Table Xl are to our best knowledge novel.
require large skew DCTs, which are unexpected without the
algebraic approach. The cage= 2 was reported in [52],

p = 3,61in [53], the case of a generalin [54] with examples  \we presented an algebraic approach to deriving fast trans-
p=3,57,9. form algorithms as an extension to the algebraic signal pro-
Algorithm (48) for DST-3 and for 2-powers and = 2 was cessing theory (ASP). In particular, we identified the gaher

found in [55]. The only special case of (48) fexCT-4 we principle behind the Cooley-Tukey FFT and applied it to deri

VIIl. CONCLUSIONS



“Cooley-Tukey type” algorithms for all 16 DCTs and DSTSs. Ir16]
doing so, we explain many existing algorithms and discower a
even larger number of new algorithms that were not found wiﬂnn
previous methods. In particular, general radix algoritHiors

the DCTs and DSTs were not known before. The availabilit
of a flexible radix algorithm helps, as for the DFT, wit 18
the optimization of its implementation for computers with a
deep memory hierarchy, vector instruction sets, and neltif19]
processors.

From a theoretical point of view, our approach also expq
plains why these algorithms exist, makes the derivation-com
paratively easy, and explains their structure. The key is Eol
associate with each transform a polynomial algebra, and %o]
derive algorithms by manipulating this algebra rather thapp]
the transform itself. That polynomial algebras play such an
important role is not surprising as explained by ASP [8}:23]
they provide the structure for finite, shift-invariant SR |24
means, the signal and filter spaces are polynomial algebdhs a
the associated Fourier transform is provided by the Chinegg]
remainder theorem. Thus, in ASP, the signal processingyheI)

naturally connects with the theory of fast transform altjonis.
[26]
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processing [9], [10] and in this paper. They are denoted by

C € {T,U,V,WW} and are called Chebyshev polynomials of
the first, second, third, and fourth kind. Table XVI givesithe
initial conditions, their closed form, their symmetry pesfies,

Let C[z]/p(z) be a polynomial algebra (see Section IIhnd their zeros.
and assume thai(z) = q()r(x) factors into two coprime  For example,T,(z) = cos(nf), wherecosf = z. The
polynomials, i.e.gcd(q,r) = 1. Then the Chinese remaindercigsed form easily yields the zeros &f.
theorem (for polynomials) states that We will use the following properties of Chebyshev polyno-

ials:
¢: Clx|/p(z) — Clx|/q(x)® Clz]/r(z mia
=)/ E ; - [( ])/ rfm)d ( g ]/( () r)nod (@) 1) For any sequence of Chebyshev polynomials with arbi-
S\ S\ L), 51 e trary initial conditionsCy, Cy, we have

APPENDIXI
CHINESE REMAINDER THEOREM

is an isomorphism of algebras. Formally, this implies

Cn = ClUn—l - COU'IL—2' (52)
(s + 5:) = o(s)+ ¢(;5/)7 2) For any sequence of Chebyshev polynomi@s
P(s-s') = o(s)-o(s). ToCy = (Cop + Cosn))2 (53)

Informally, this means that computing i@i[z]/p(x) and ele-
)

mentwise computing i€[z]/q(z) @ Clz] /r(z) is equivalent. 3) The identities in Table XVII hold. They are based on

trigonometric identities.

APPENDIXII

CHEBYSHEV POLYNOMIALS APPENDIXIII
. . RELATIONSHIPSBETWEENDTTS
Chebyshev polynomials are a special class of orthogonal

polynomials and play an important role in many mathemat- W& use in this paper the following relationships between
ical areas. Excellent introductory books are [57], [471][5 DTTs. The explanation for their existence and proofs can be

We only introduce the definitions and the properties of tH@UNd in [9], [11]. ) , ,
polynomials we use in this paper. Duality. Two DTTs DTT,,,DTT,,, which have flipped

Let Cy(x) = 1 andC; () be a polynomial of degree 1 andboundary conditions are calledlial to each other. They are

defineC,, (z) for n > 1 by the recurrence necessarily in the same group (see Table I). The dualitppro
" erty is not visible from Table Il since we omitted the boundar

Cn(z) = 22C,—1(2) — Ch—2(2). conditions. Thus we just state the pai®CT-3/DST-3,
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TABLE XVIII
MATRICES IN (56). FROM LEFT TO RIGHT, XT(LC?’)(r), X,(LSB) (r), X£C4) (), XT([%)(T). WE USEcy = cos(1/2 — r)lr/n, sy = sin(1/2 — r)ér/n,
¢y = cos(1/2 —r)(2¢ + 1)7/(2n), AND s, = sin(1/2 — r)(2¢ + 1)7/(2n). WHERE THE DIAGONALS CROS$THE ELEMENTS ARE ADDED.

1 0 - .- 0 c1 —s$p—1 0 / ’

/ /
C, S C, —S
0 c1 Sn—1 0 n—1 0 n—1
k) ’ ’
. —S1 Cn—1 0 / ' ' / / . ’ /
S C —S C
0 s1 Cn—1 0 0 Cn 0 n—1 0 n—1

DCT-4/DST-4, the DTTs in theU-group (DTTs of type  The above identities show that the complexity of a skew
1 and 2) are all self-dualDCT-7/DST-8, DST-7/DCT-8, DTT differs from the complexity of the associated DTT by

DCT-5/DCT-6, DST-5/DST-6. O(n).
The following relationship holds for dual DTTs:
diagy<; <, ((—1)") - DTT, -J,, = DTT;, . (54)

As a consequence ayTT algorithm can be converted into
aDTT’ algorithm without incurring additional operations.

Base changeTwo DTTs (or skew DTTSs) in the same group
(e.g., T-group) have (at least almost) the same associated
algebra. As a consequence they can be translated into each
other at the expense @?(n) operations with a suitable base
change using Table XVII (see [9]).

Examples include

DCT-4, = S, -DCT-2,- %Dn(l/Q)—17 (55)
iDCT-4,(r) = S, -iDCT-3,(r) - D, (r)~".
Sy, is defined in Table V and,(r) = diagy<,;,(cos 5 7).
The r; are computed fromr using Lemma 1.

Skew and non-skew DTTs.Every skewDTT(r) can be
translated into its non-skew counterp®T T

DTT,(r) = DTT, -X\’(r), and

DTT, () = DTT,-X\(r). (56)

Here,X,(L*)(r) depends on the DTT; the exact form is given
in Table XVIII.
Combining (56) with (55) gives, for example

DCT-4,(r) = S, - DCT-2, - $D,(1/2)74- X\ (r). (57)

The diagonal matrix can be fused with the x-shaped matrix to
save multiplications.

Inversion of (56) gives the corresponding identities fog th
iDTT(r)’s:

iDTT, (r) = (X{(r)) " -DTTT . (58)

n

The matrices(X,({k)(r))*1 have the same x-shaped structurg

and the same arithmetic complexity a’ér(b*)(r) and can
be readily computed because of their block structure.
example:

(X)) =
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