
Fast and Accurate Resource Estimation of
Automatically Generated Custom DFT IP Cores

Peter A. Milder, Mohammad Ahmad, James C. Hoe, and Markus Püschel
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, U.S.A.

{pam, mohammaa, jhoe, pueschel}@ece.cmu.edu

ABSTRACT
This paper presents an equation-based resource utilization model
for automatically generated discrete Fourier transform (DFT) soft
core IPs. The parameterized DFT IP generator allows a user to
make customized tradeoffs between cost and performance and be-
tween utilization of different resource classes. The equation-based
resource model permits immediate and accurate estimation of re-
source requirements as the user considers the different generator
options. Furthermore, the fast turnaround of the model allows it to
be combined with a search algorithm such that the user could query
automatically for an optimal design within the stated performance
and resource constraints.

Following a brief review of the DFT IP generator, this paper
presents the development of the equation-based models for esti-
mating slice and hard macro utilizations in the Xilinx Virtex-II Pro
FPGA family. The evaluation section shows that an average error
of 6.1% is achievable by a model of linear equations that can be
evaluated in sub-microseconds. The paper further offers a demon-
stration of the automatic design exploration capability.

Categories and Subject Descriptors
B.6.3 [Hardware]: Design Aids—Automatic synthesis

General Terms
Algorithm, Design

Keywords
Discrete Fourier transform, FPGA resource estimation, IP, design
generator

1. INTRODUCTION
Ready-to-use IP designs of complex functionalities greatly re-

duce the time and effort of hardware development. However, IP
designs in the form of static library modules have the limitation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’06, February 22–24, 2006, Monterey, California, USA.
Copyright 2006 ACM 1-59593-292-5/06/0002 ...$5.00.

that they cannot match the optimal cost/performance tradeoff en-
countered in every application scenario. As a solution to this prob-
lem, for certain domains, important IP functionality can be gener-
ated and customized automatically to satisfy application require-
ments. In previous work, we have described an example of this
approach: a parameterized IP generator for the discrete Fourier
transform (DFT) [1]. Using this generator, the user can control
microarchitectural tradeoffs between cost and performance, as well
as the tradeoff between utilization of different classes of resources
(e.g., slices vs. block RAM when targeting Xilinx FPGAs). We
showed that by setting the control parameters accordingly, the gen-
erator can produce DFT cores comparable to the Xilinx LogiCore
library as well as cores spanning a wide range of design tradeoffs
not available in that library.

An opportunity exists to couple such a parameterized design gen-
erator with a feedback-driven search algorithm to make possible
automatic design space exploration and optimization. The end user
could then request the desired customized IP block in simpler terms,
such as performance requirements and available resources, and the
search would find the optimal solution. This way, the end user
would be freed from understanding and configuring the parameters
of the generator.

The main obstacle in realizing this vision is the latency of the
evaluation feedback loop. For example, starting from the synthe-
sizable RTL-level description produced by the DFT IP generator,
the Xilinx ISE synthesis flow can take tens of minutes to produce
the post-map resource utilization report for a typical 1024-point
DFT design (and exponentially longer on larger designs). Consider
that an exhaustive search of the design space for a 1024-point DFT
involves evaluating 138 different design variations (already assum-
ing that the parameters controlling numerical accuracy are fixed),
the latency of synthesis-based estimation is prohibitively expensive
even if the design exploration process is fully automated.

To circumvent the prohibitive cost of post-map resource esti-
mation, this paper proposes an accurate equation-based resource
utilization model for the automatically generated DFT cores. The
model reduces the time for resource evaluation per design to the or-
der of microseconds, and thus makes it practical to exhaustively ex-
plore the design space covered by the DFT IP generator. The model
presented in this paper is tuned to target Xilinx Virtex-II Pro FP-
GAs. However, the modeling approach is extensible to other syn-
thesis targets by recalibrating the technology-related coefficients in
the equations.

In Section 2, we review the DFT IP generator, including the pa-
rameterized microarchitecture of the DFT datapath and the degrees
of freedom controllable by the end user. We first present the com-
plete resource modeling equations for the generated DFT cores in

krnl

L8
4 krnl L8

4 krnl L8
4 krnl bit reverse

Figure 1: The dataflow graph of the Pease DFT for size n = 8.

an overview in Section 3. Then, Section 4 expands on the details of
the models that require clarification. We offer models for estimat-
ing the utilization of both generic logic resources (i.e., slices) and
hard macros (i.e., block RAM and multipliers). Due to the differ-
ent synthesis and mapping algorithms employed for slices and hard
macros, they are handled differently. The slice utilization is mod-
eled by empirically developed linear equations parameterized by
coefficients, which are then found through least squares fitting; the
utilization of block RAMs and multiplier macros is modeled by ex-
act equations. Section 5 evaluates the proposed resource model in
terms of accuracy (relative to post-map report produced by Xilinx
ISE) and evaluation latency. The results show that the slice estima-
tion has an average error of 6.1%. To illustrate the capability of this
approach, we apply the resource model in an exhaustive search to
find, for DFT sizes ranging from 16 point to 4096, the best feasible
implementation for each FPGA in the Xilinx Virtex-II Pro family.
Lastly, Section 6 surveys related prior work in high-level resource
estimation, and Section 7 offers concluding remarks.

2. DFT IP CORE GENERATOR
This section provides an overview of the DFT IP generator. First,

we introduce the Pease DFT algorithm, which underlies all DFT
cores synthesizable by the generator. Then we explain wthe DFT IP
generator’s user-controlled parameters, which affect functionality
and resource usage of the generated DFT cores.

2.1 Pease DFT algorithm
The DFT generator presented in [1] outputs DFT cores for com-

plex input vectors based on the Pease FFT algorithm [2]1. An ex-
ample dataflow of the Pease algorithm for a DFT of size 8 is given
in Figure 1. The computation kernel in the dataflow is a 2-input/2-
output submodule (identified as the krnl module) that comprises
a “butterfly” and a multiplication by a complex-valued constant
(the so-called twiddle factor). The butterfly computes the sum and
the difference of the two complex-valued inputs. For a DFT of
two-power size n, n log2(n)/2 such kernels are performed. In a
dataflow representation, the n log2(n)/2 krnl modules can be ar-
ranged into an array of n/2 rows and log2(n) columns as shown
in Figure 1 for n = 8. A notable feature of the Pease algorithm is
that an identical stride permutation (defined later) shuffles the data
after each of the log2(n) computation stages; the stride permuta-
tion in Figure 1 is called L8

4. After the final computation stage of
the dataflow in Figure 1 is a “bit-reverse” permutation. As with
many DFT implementations, our generator omits this stage in the
generated cores. Thus, the generated cores accept input vectors in

1FFT or fast Fourier transform refers generally to the class of
O(n log(n)) algorithms for the DFT.

8

8

8

8

8 8

input
bypass permL8

4 krnl register

Figure 2: A fully horizontally-folded Pease DFT, size n = 8
(p = n/2).

4
8Lv−fold() 2 2

2
2 2

Figure 3: A fully horizontally and vertically-folded Pease DFT,
size n = 8 (p = 1).

natural order and produce output vectors in bit-reversed order; an
alternative option generates cores for DFTs with bit-reversed or-
dered input vectors and natural-ordered output vectors.

The regular structure of the Pease DFT dataflow allows our gen-
erated DFT core to instantiate only a single permutation and a sin-
gle column of krnl modules to be reused iteratively log2(n) times,
as shown in Figure 2. This results in resource savings of approxi-
mately a factor of log2(n) without a latency penalty. One should
note that in this so-called horizontally folded implementation, the
lower output of the butterfly in the krnl module must be multiplied
by a different twiddle factor in each of the log2(n) iterations. These
factors are stored in tables of size n log2(n)/2 or n/2, depending
on a user-specified parameter.

The regular structure of the Pease DFT dataflow further allows
reusing the krnl modules in the vertical dimension. Figure 3 shows
a maximally folded DFT datapath with only a single krnl module
that is iteratively reused n log2(n)/2 times per DFT. Our DFT gen-
erator can produce the full range of vertically folded implementa-
tions where the number of krnl modules is a two-power p between
1 (minimum resource, minimum performance) and n/2 (maximum
resource, maximum performance). Ideally, both performance and
resource usage scale linearly with p, the number of krnl modules
used. Notice that in Figure 3—and in vertically folded implemen-
tations in general—the data vector is presented as a data stream
sequenced in time. Therefore, to permute a vector, a folded im-
plementation of the stride permutation must buffer the data stream
to shuffle the data elements in time. Our generator folds the stride
permutation using the method in [3].

2.2 DFT generator parameters
The DFT IP generator produces synthesizable RTL-level Verilog

descriptions of DFT cores [4]. To support application-specific cus-
tomizations, many details of the generated core are controllable by
the end-user. The user-controlled parameters can be grouped into
two categories: those that control the functionality of the DFT core
and those that the control hardware implementation choices. The
parameters are described below and summarized for convenience
in Table 1.

The following parameters control the functionality of the gener-
ated IP cores:

• n: The generated core computes the DFT of an n-element
complex-valued input vector and outputs a complex-valued
n-element output vector. n must be a two-power and n ≥ 4.

• w: w specifies the precision of the fixed-point representation
of the input, the output, and the intermediate data values.
2 · w bits are used to represent both the real and imaginary
components.

• t: t specifies the precision of the fixed-point representation
for the precomputed twiddle factors. The real and the imagi-
nary components are each represented using 1-bit sign, 1-bit
integer, and t − 2-bit fraction. We require 2 < t ≤ w.

• dir: This boolean parameter selects whether the generated
core accepts natural-ordered input vectors and outputs bit-
reversed-ordered output vectors (dir = 0), or vice versa
(dir = 1).

• scale: This boolean parameter determines whether the fixed-
point data representation of intermediate values is scaled by
a factor 2 after each krnl module to avoid overflow.

The following parameters control implementation choices:

• p: This parameter specifies the number of krnl modules in-
stantiated in the DFT implementation. This is the primary
microarchitectural parameter that allows the end-user to cus-
tomize the tradeoff between performance and resource use.
The input and output data vectors are streamed 2p elements
per cycle over n/(2p) cycles. Parameter p must be a two-
power and 1 ≤ p ≤ n/2.

• twid: This parameter controls whether the twiddle factor ta-
bles use the 16-Kbit block RAM (BRAM) macros in the Xil-
inx Virtex-II Pro FPGA architecture (twid = 0), or if one
of two distributed RAM methods are used (twid = 1 or 2).
If the twiddle factor tables are greater than 16-Kbit in size,
BRAM mode is selected automatically (see Section 4.2).

• thr: If p < n/4, the stride permutation module requires
FIFO queues ranging in depth from 2 to size n/(4p). FIFOs
deeper than thr use BRAMs for storage. FIFO queues re-
quiring more than 16-Kbit of storage are automatically set to
use BRAM.

Given a fixed DFT size n and fixed numerical accuracy (bitwidth
w and twiddle bitwidth t), the generator can produce

3[(log2(n) − 1) log2(n)/2 + 1] (1)

distinct DFT cores with differing resource and performance char-
acteristics. Equation (1) arises from the different available choices
of p, twid, and thr.

3. RESOURCE MODELING: OVERVIEW
This section presents our model to quickly and accurately esti-

mate the resource requirements for any generated DFT core after
synthesis and mapping to a Xilinx Virtex-II Pro FPGA. The model
for the general-purpose logic resources (i.e., slices) consists of a hi-
erarchical set of empirical equations, which take as input the same
parameters as the DFT generator (summarized in Table 1). The uti-
lization of hard macros in Xilinx FPGAs—block RAMs (BRAMs)

meaning range

n DFT size 22 to 214

w datapath bitwidth 6 to 36

t twiddle bitwidth 6 to w

dir location of bit-reversal input or output

scale arithmetic mode scaled or unscaled

p degree of parallelism 1 to n/2

twid twiddle storage three twiddle storage options

thr FIFO of size ≥ thr 2 to n/(2p)

is implemented in BRAM

Table 1: DFT IP generator parameters

and 18x18 multipliers—is expressed separately by exact equations.
Although the presented models are developed in the context of Xil-
inx Virtex-II Pro FPGAs, the factors specific to the Xilinx Virtex-
II Pro architecture are captured as empirically determined coeffi-
cients that can be meaningfully recalibrated for other synthesis tar-
get technologies.

3.1 Slice utilization
A slice is the general purpose logic element in Xilinx Virtex-II

Pro FPGAs. A slice contains two 4-to-1 function tables (that can
alternatively be used as RAM, ROM, or FIFO), two bits of stor-
age (either as registers or latches), and a small number of simple
gates with hardwired functionalities (such as multiplexing, carry-
propagation, etc.) [5]. To simplify the presentation, we first present
our slice model for the cases where the generated DFT core is pa-
rameterized to use only slices and not BRAMs (i.e., when twid �=
0, thr > n/(4p)).

In the Xilinx synthesis flow, RTL-level structural descriptions
are reduced to slices indirectly through several steps of complex
transformations. Since the exact transformations employed are not
known, an accurate estimation of the slice utilization by direct in-
spection of the RTL-level description is not possible. Although
we can develop accurate equations to model the slice utilization of
some simple primitive modules, estimating the slice utilization of a
higher level module as the sum of its constituent submodules leads
to erratic outcomes. Furthermore, aggressive optimizations during
synthesis can make estimations of even seemingly simple primi-
tives unreliable. For example, the number of slices necessary to
realize a read-only constant table is highly dependent on the values
stored and how “compressible” they are.

Our estimation relies on an empirically developed model of lin-
ear combinations of terms with fitted coefficients. For example, for
a primitive module (without submodules) whose number of slices
S = S(w, p) depends on w and p , we may begin with a model of
the form

S(w, p) = c0 · pw + c1 · p + c2 · w + c3. (2)

The coefficients c0, . . . , c3 in the linear model are then determined
by standard least-squares fitting from a sufficiently large number of
synthesized reference designs for representative values of w and p.
Terms in the equation with negligible coefficients can be eliminated
from the model. If the fitted model remains in poor agreement
with the synthesized references, this is an indication that additional
terms may be needed to account for the differences.

1

....
..

n
8p

n
4p

DSD cascade module (cascade)

Stride permutation module (perm)

p blocks

twiddle table
(ttbl)

....
..

sequencing control
(ctrl)

top module (top)

dsddsddsd kernel
(krnl)

kernel
(krnl)

twiddle table
(ttbl)

DSD cascade module (cascade)

1 n
8p

n
4p

dsddsddsd

Figure 4: Hierarchical diagram of the generated DFT core, il-
lustrating the modules: top, perm, cascade, dsd, ctrl, ttbl,
and krnl.

constant value

cperm,0 0.93

cperm,1 19.00

cperm,2 3.86

cperm,3 -138.46

cctrl,0 0.76

cctrl,1 2.73

(a)

constant value

ccascade,0 0.50

cdsd,0 3.00

cdsd,1 0.03

cdsd,2 1.00

(b)

twid = 0 twid = 1 twid = 2

cttbl,0 0 0.024 0.027

cttbl,1 0 0.147 -3.194

cttbl,2 0 -0.397 0.131

cttbl,3 0 67.261 129.709

(c)

Table 2: Coefficient values used in: (a) perm and ctrl, (b)
cascade and dsd, and (c) ttbl models.

Similarly, we build a slice usage estimate Smod for a higher-level
module recursively from the estimates Ssubmod,j of its submodules
(indexed by j) as a linear combination:

Smod(...) = cmod,0

∑
Ssubmod,j

+ cmod,1 · term1 + · · · + cmod,k · termk + cmod,k+1. (3)

The first term of (3) is a weighted sum of the submodule esti-
mates. The latter terms term1, . . . , termk, suitably chosen, account
for overhead and glue logic necessary to form the current hierarchy

Figure 4 graphically shows the hierarchical module structure of
the generated DFT cores, and Figure 5 summarizes the recursive
slice model we have constructed. Each node in Figure 5 corre-
sponds to a module in the hierarchy and states a slice estimate in
the form of (2) or (3) above. The empirically determined coeffi-
cients (when the synthesis target is a Xilinx Virtex-II Pro FPGA)

w > 18 w ≤ 18

t ≤ 18 t > 18 t ≤ 18

dir = 1

ckrnl,0 14.0 19.5 8.0

ckrnl,1 9.5 13.2 1.4

ckrnl,2 6.7 77.0 8.4

dir = 0

ckrnl,0 17.0 20.5 6.2

ckrnl,1 9.8 11.7 0.8

ckrnl,2 -26.7 78.0 14.8

Table 3: Coefficient values used in the krnl model.

have been compiled in Tables 2–4. In Section 4, we highlight key
details of this model that require additional attention.

3.2 Block RAM utilization
Xilinx Virtex-II Pro FPGAs contain dedicated on-chip memory

elements called block RAMs (BRAMs). The aspect ratio of this
16K-bit memory primitive can be optionally configured to be be-
tween 16Kx1-bit and 512x32-bit [5]. Unlike the algorithms for
mapping logic to slices, the algorithm for inferring BRAM from
RTL-level “array” constructs is straightforward. The number of
BRAMs consumed in a generated DFT core thus can be stated ex-
actly in a parameterized equation.

Our DFT generator can be parameterized to employ BRAM in-
stead of slices to store twiddle constants (when twid = 0) and to
implement FIFO queues (when thr ≤ n/(4p)). Their modeling
equations are derivable directly from our parameterized DFT core
architecture. Below, we first offer the equations without justifica-
tion. Section 4.1 and Section 4.2 provide further details.

The number of BRAMs consumed by a twiddle table is

Bttbl(n, t, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if twid �= 0

p else if t′h ≤ 213 and t′ ≤ 16

2p else if t′h ≤ 214

�p else

(4)

where

t′ = 2�log2(t)�

is the effective twiddle word width,

h =

{
n
2

if p ≤ log2(n)
n
2
· log2(n)

p
if p > log2(n)

is the number of words per table, and

� = 2�log2(2t′h/214)�

is the number of BRAMs per table.
The vertically folded stride permutation comprises 2p FIFOs of

sizes 20 through 2log2(n/(4p)). For FIFO depth d greater than thr,
the FIFO is implemented using BRAMs.

top module (top)

Stop(p, w, t, dir, n, twid, thr) = p · Skrnl + Sctrl + p · Sttbl + Sperm + ctop,0 · n + ctop,1 · p + ctop,2

�
�

�
�

�

�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

������

kernel (krnl)

Skrnl(w, t, dir) = ckrnl,0 ·w+ckrnl,1 ·t+ckrnl,2

sequencing control (ctrl)

Sctrl(n, p) = 1 +

⎛
⎝log2(n

4p
)∑

i=1

cctrl,0 · i + cctrl,1

⎞
⎠

twiddle table (ttbl)

Sttbl(t, h, twid) = cttbl,0 · h · t
+ cttbl,1 · t + cttbl,2 · h + cttbl,3

stride permutation (perm)

Sperm(w, thr, n, p) = cperm,0 · p · Scascade(w, thr, n, p)

+ cperm,1 · p + cperm,2 · w + cperm,3

DSD cascade (cascade)

Scascade(w, thr, n, p) =

log2(n
4p

)∑
i=0

Sdsd(2
i, w, thr)+ccascade,0·w

delay switch delay (dsd)

Sdsd(d, w, thr) =

⎧⎪⎨
⎪⎩

0 d = 1 or d ≥ thr

cdsd,0 · w 2 ≤ d ≤ 32 and d < thr

cdsd,1 · w · d + cdsd,2 · w d > 32 and d < thr

Figure 5: The complete hierarchical slice model

w = 8 w = 16 w = 32

twid = 0 twid = 1 twid = 2 twid = 0 twid = 1 twid = 2 twid = 0 twid = 1 twid = 2

dir = 1

ctop,0 0.0767 0.1709 0.2887 0.3045 0.8350 1.9663 -0.7310 0.8465 -28.4821

ctop,1 3.3968 16.9921 7.9950 -132.0714 -319.5112 -156.8810 1.9041 10.4357 73.8951

ctop,2 49.0620 -44.9364 -45.1627 316.5599 692.0835 205.7261 -109.2496 -496.8318 40.3796

dir = 0

ctop,0 0.0397 0.1166 0.2198 0.2968 0.7855 0.9067 -0.9366 0.5265 -4.8235

ctop,1 -18.4841 -10.3651 8.6668 -153.7381 -249.2857 -209.2381 -7.3549 39.2352 -3.3765

ctop,2 111.2902 9.6899 -91.1419 288.5831 460.7778 379.2339 -13.2356 -927.9078 -128.4907

Table 4: Coefficient values used in the top model

The number of BRAMs consumed by a FIFO of depth d is

BFIFO(d, w, thr) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if d < thr

1 else if w′d ≤ 213, w′ ≤ 16

2 else if w′d ≤ 214

2�log2(2w′h/214)� else

(5)

where w′ = 2�log2(w)� is the effective data width.
Therefore, the total number of BRAMs used in a DFT core is:

B(n, w, p, thr) =

Bttbl(n, w, p) + 2p

⎛
⎝log2(n

4p
)∑

i=0

BFIFO(2i, w, thr)

⎞
⎠ . (6)

When twiddle tables and FIFOs are implemented using BRAMs,
their corresponding contributions in the slice model need to be sub-
tracted. Further, the amount of overhead and glue logic (in slices) to
incorporate a submodule is also affected by whether the submodule
is constructed from slices or BRAMs. These effects are reflected in
the slice model by 1) requiring an alternative set of coefficients or
2) requiring different equations to be applied at a given hierarchy
depending on the setting of DFT generator parameters that control
the BRAM usage.

3.3 Multiplier utilization
Xilinx Virtex-II Pro FPGAs provide hardwired 18x18 multiplier

macros which are used automatically by the synthesis tool to realize
multiplications in RTL-level descriptions. Like BRAM usage, the
utilization of multipliers follows a simple formula.

m(p, w, t) =

⎧⎪⎨
⎪⎩

4p if w ≤ 18 and t ≤ 18

8p if w > 18 and t ≤ 18

16p if w > 18 and t > 18

(7)

A total of p complex multipliers of width w by t are required
per DFT core. In the most basic case, each complex multiplier is
implemented with 4 real multipliers and two real adders. However,
when w > 18 or t > 18, additional 18x18 bit multipliers are
needed. This problem is discussed further in Section 4.3.

4. MODEL DETAILS
This section expands on the details in the resource utilization

model that require more in-depth knowledge of the Pease DFT dat-
apath. The modules covered in this section are the stride permuta-
tion (perm module) in Section 4.1, the twiddle table (ttbl module)
in Section 4.2, and the kernel (krnl module) in Section 4.3.

4.1 Stride permutation
The perm module implements the stride permutation (also called

perfect shuffle or corner turn) in the Pease DFT. A stride permuta-
tion, denoted as Ln

m, reorders an input vector such that the element
at position i · (n/m) + j in a vector becomes the element at posi-
tion j · m + i (for 0 ≤ j < n/m and 0 ≤ i < m). The Pease
DFT requires either Ln

n/2 or Ln
2 , depending on the setting of the

interface ordering parameter dir.
When the DFT core is not vertically folded (i.e., p = n/2), the

stride permutation is simply a wired reordering in space. When
the datapath is vertically folded (i.e., p < n/2), the data vector
is presented as a data stream of 2p elements per cycle over n/2p

1DSD

2p
inputs outputs

2p

....

....

...
...2p

L
p

nDSD

1DSD

8p

nDSD
8p

nDSD
4p

nDSD
4p

Figure 6: A vertically folded Ln
n/2 permutation with 2p ports.

FIFOd

FIFOd

Figure 7: The dsd block.

cycles. Thus, the folded perm module requires memory to buffer
and reorder the data stream.

Takala, et al. [3] describe an efficient construction to vertically
fold a stride permutation for any p. For 1 ≤ p < n/2, Ln

n/2 can be
realized as shown in Figure 6. (Ln

2 is the left-right mirror image.)
On each cycle, a 2p-element subvector enters the perm module
and first undergoes an L2p

p permutation by wire reordering. For
the next n/(2p) − 1 cycles, the 2p-element vector passes through
log2(n/8p) successive stages of delay-shift-delay (dsd) modules.
A dsd block, shown in Figure 7, consists of two FIFOs of depth
d and a programmable switch that either allows its inputs to pass
through or criss-cross. A chain of dsd modules where d increases
from 1 to n/4p constitutes the “DSD cascade” module (cascade)
in the hierarchical slice model (Figure 5).

FIFOs in slices. The slice model of the perm module is devel-
oped recursively from the bottom up using the approach explained
in Section 3.1. We obtain an exact expression (shown at the bot-
tom of Figure 5) for the number of slices in a dsd module when the
FIFOs in the DSD cascade are built using slices (i.e., d > thr). No-
tice that for d < 32, the number of slices used is constant because
any FIFO of depth less than 32 still consumes the same number of
32-entry FIFO primitives (based on lookup tables) in its construc-
tion. Moving up the hierarchy in Figure 5, the cascade model
sums the slice estimates for the instantiated dsd modules and adds
an overhead dependent on the bitwidth w. Next, the model for
perm sums the slice estimate for p parallel cascade modules and
adds a constant and an overhead that is a linear combination of p
and the bitwidth w.

FIFOs in BRAM. FIFOs deeper than the user-set threshold thr
are implemented using BRAMs instead of slices. The aspect ratio
of the 16-Kbit BRAM is configurable but only for data widths that
are two-powers. Therefore, to determine the number of BRAMs
utilized, the user-specified data word width w first is rounded up to
the effective word width w′ = 2�log2(w)�. The number of BRAMs
needed by a FIFO of depth d can now be easily calculated using (5)
(from Section 3.2) based on its effective storage requirement 2w′d.

In Equation (5), the first case, d < thr, corresponds to when
a FIFO is to be implemented using slices. The second case cor-
responds to all implementations where the FIFO only partially uti-
lizes one 16-Kbit BRAM. The third case is another transitional case
where the FIFO is bigger than one but smaller than two BRAMs. In
this case, the imaginary and the real components of the data values
are split across two BRAMs. Larger FIFO sizes are captured by
the final case which rounds up the effective FIFO storage require-
ment to correspond to the storage capacity of a two-power number
of BRAMs.

4.2 Twiddle factor table
The krnl modules in the generated DFT core are reused itera-

tively for different instances of the krnl module in the unrolled
dataflow. Thus, the multiplier in a krnl module must be supplied
with a different twiddle factor (a complex constant) in each itera-
tion of reuse. The DFT IP generator pre-computes these twiddle
factors and includes them as constant tables in the generated RTL
Verilog description.

For a given n, there are n log2(n)/2 complex multiplications
to be performed by p krnl modules; each krnl module is thus re-
sponsible for n log2(n)/(2p) multiplications. In a naive approach
(i.e., twid = 2), each krnl module maintains a private table of
n log2(n)/(2p) twiddle factors that it needs. The twiddle factors
are stored in this table in the order they are needed to simplify the
indexing logic. The total number of twiddle constants stored in this
case is n log2(n)/2, independent of p.

A common optimization to reduce twiddle storage cost leverages
the fact that only n/2 unique constants are used. In this option
(i.e., twid = 1), each krnl module maintains a private table of all
n/2 twiddle factors because there is no natural way to partition the
factors. Also, the krnl module requires a somewhat involved index
generator to read out from the table the required twiddle factors in
the order used. The number of twiddle constants stored in this case
is p·(n/2). Under idealized assumptions, this option yields savings
when p < log2(n).

Table in Slices. With either storage method, the storage cost,
in terms of the number of twiddle factors stored times the number
of bits per twiddle factor, is known exactly. However, when these
tables of constants are mapped to use lookup tables in slices—a
preferable option when the tables are small or when BRAMs are
scarce—the number of slices actually consumed is much smaller
then expected. We have determined by examination that Xilinx
ISE does not instantiate these tables of constants literally but rather
spends considerable effort to minimize the redundancies in the ta-
ble at the bit level. The degree of compression varies with the stor-
age method and the table size.

Thus, the slice model for the twiddle factor table (given in Fig-
ure 5, repeated below) is based on the linear combination of four
terms.

Sttbl(t, h, twid) = cttbl,0 · ht + cttbl,1 · t
+ cttbl,2 · h + cttbl,3. (8)

In this equation, h corresponds to the number of entries in the table
and t is the bitwidth of the twiddle factors. The first term propor-
tional to ht is the expected size of the table in bits. The latter terms
attempt to capture the dependencies on h and t alone. This equa-
tion works for both twid = 1 and twid = 2, but the values of the
weighting coefficients cttbl,0, cttbl,1, cttbl,2, and cttbl,3 (given in Table
2(c)) depend on the twiddle storage method used.

Table in BRAM. For large twiddle tables, it make sense—both
in terms of resource utilization and in terms of performance due
to routing delay—to utilize the more compact BRAMs for storage
(i.e., twid = 0). The calculation of BRAMs used follows a simple
formula analogous to the calculation of the BRAM usage in the
dsd module’s FIFOs.

The height of the twiddle tables to be stored in BRAM is given
by

h =

{
n
2

if p ≤ log2(n)
n
2
· log2(n)

p
if p > log2(n)

,

where the two cases correspond to the two twiddle table options
(i.e., n log2(n)/2p vs. n/2 twiddle factors per krnl module). This

decision is made automatically when twid = 0 because the relative
advantage of the two methods is decidable by p > log2(n) exactly.

The effective table height h′ = 2
�log2(2w′·h

214
)� and the effective

twiddle bitwidth, t′ = 2�log2(t)� are used in determining the ef-
fective BRAM storage requirement. Based on h′ · t′, Equation (4)
(given in Section 3.2) gives the number of BRAMs consumed by
p twiddle tables. The four cases are exactly analogous to the four
cases when calculating BRAM usage in dsd FIFOs in Section 4.1.

4.3 Nonlinear dependence on bitwidth
Slice utilization generally varies smoothly with data bitwidth w.

However, as seen from the BRAM equations (4), (5), and (6), slice
utilization can also vary in a nonlinear fashion when using hard
macros with fixed native bitwidths or capacity.

Another example of this nonlinearity is in the implementation of
the krnl module, which utilizes the FPGA’s hardwired 18-bit by 18-
bit multipliers. If the data bitwidth or twiddle bitwidth are greater
than the native width of the multipliers, a twiddle multiplier needs
to synthesized from several 18-by-18 multiplier hard macros. Fur-
thermore, because these multipliers are in the critical delay path,
the DFT generator readjusts the optimal pipeline depth of the krnl
module accordingly. To handle this type of non-linearity associated
with bitwidth in our linear modeling approach, the slice model re-
quires different sets of weighting coefficients for different bitwidth
regions (shown in Table 3). For the slice model reported in this pa-
per, the weighting coefficients are separately tuned for bitwidths of
8, 16, and 32 bits. For intermediate bitwidths, the coefficients are
interpolated.

5. RESULTS
This section reports the accuracy and runtime of the resource

model. Only the slice model is evaluated for accuracy because
the equations for BRAM and multiplier usage are exact. We also
present the outcomes of a design space exploration experiment.

5.1 Slice model accuracy
For the purpose of this evaluation, we consider a design space

of 8388 distinct DFT cores, corresponding to all possible combina-
tions of the following parameters2:

n ∈ {23 . . . 214}
p ∈ {20 . . . n/2}

thr ∈ {21 . . . n/(2p)}
w ∈ {8, 16, 32}
t ∈ {8, 16, 32}

twid ∈ {0, 1, 2}
dir ∈ {0, 1}

The resource estimates reported in this section are produced by
the hierarchical slice model (Figure 5) whose coefficients derive
from a training set of 162 selected DFT cores. These coefficients
are reported in Tables 2, 3, and 4. This training set comprises less
than 2% of the design space. To select the set, the parameter space
is divided into 18 regions: (3 settings for w) × (3 settings for twid)
× (2 settings for dir). For each of these 18 regions, we select 3 val-
ues for n and three values for p that are evenly spaced within their

2The current slice model is able to handle cases when w �= 8, 16, or
32. In those cases, the coefficients listed in Table 4 are interpolated
from existing values.

estimated vs. actual slices

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000 30000

actual slices

es
tim

at
ed

 s
lic

es

Figure 8: Actual vs. estimated slices for various generated DFT
cores.

respective allowed3 range. The choice of p and n are not fixed
across regions because, for example, the allowed maximum val-
ues for n and p are larger when twid = 2 than when twid = 1.
The coefficients for primitive submodules with simple parameter-
ization, such as FIFOs, are calibrated independently. Due to the
simplicity of these primitive submodules, relatively few reference
points are needed to converge to the final coefficient values.

From the total design space outlined above, we select an eval-
uation sample of 962 DFT cores for synthesis and mapping using
Xilinx ISE 7.1.03i. This sample includes a comprehensive cover-
age for 64, 1024 and 2048-point DFT. The set is constructed from
the following parameters:

n ∈ {64, 1024, 2048}
p ∈ {20 . . . 25}

thr ∈ {21 . . . n/(2p)}
w ∈ {8, 16, 32}
t ∈ {8, 16, 32}

twid ∈ {0, 1, 2}
dir ∈ {0, 1}

(The parameter p is limited to 32 due to synthesis and mapping
time of larger designs.) In addition, we sample 9 cores for n = 24

through n = 212 while fixing the other parameters (p = 1, thr =
n/2, w = 16, twid = 0, and dir = 1). This evaluation sample
represents 11.5% of the overall design space.

To evaluate the accuracy of the slice model, we compare the slice
estimates calculated by the model to post-map estimates reported
by Xilinx ISE for these 962 synthesized DFT cores. We present
the results visually in a scatter plot in Figure 8 where the X-axis
indicates the post-map slice estimate and the Y-axis indicates the
model-based slice estimate. Each point corresponds to a DFT core
in the test sample.

The fact that the points in Figure 8 are clustered tightly around
the line through the origin with a slope of 1 gives indication that

3Such that the resulting design could still fit in the largest Xilinx
Virtex-II Pro FPGA available.

slices abs. error (%) abs. error (slices)

avg. max. avg. max

< 5000 7.4 75.0 118 835

5000–10000 2.4 14.4 162 756

10000–15000 2.0 11.5 232 1235

> 15000 2.3 14.5 438 2287

Table 5: Average absolute error in slices and percentage, by
size of implementation.

there is a high degree of correspondence between the estimated and
the actual slice utilization. However, these results require a more
careful interpretation. The average absolute error over the test sam-
ple is 6.12%. What is not obvious from the plot is that the maximal
error is 74.98%. The practical significance of this error is small be-
cause the class of large percentage errors occur only in very small
designs—the observed maximal error corresponds to a difference
of only 584 slices.4 There is an analogous caveat when considering
the maximal error in terms of slices. The highest error observed
is 2287 slices. This class of large errors only occurs in large DFT
cores where they correspond to small percentage errors.5 To clarify
this analysis, we divide the test sample into four bins according the
number of slices used. Table 5 separately reports for each bin the
average absolute error and maximal error, in terms of slices and as
a percentage of the complete design. Errors of these magnitudes
and distribution do not interfere with the usefulness of this model
in practice.

5.2 Evaluation speed

The main reason for introducing the resource usage models in
this paper is to enable the user to quickly determine which DFT
core to choose under given resource constraints. For example, for
a DFT of size 214, the DFT IP core generator can produce 276
possible design (see (1)), provided the bitwidths w and t are fixed.
If the latter are included in the search space, the number of possible
designs is considerably larger. The synthesis and mapping of just
one possible configuration of DFT214 takes on the order of hours
using Xilinx ISE 7.1.03i. Using our model the time for evaluation
becomes negligible. For example, the evaluation of our model for
all 276 possible designs of DFT214 can be performed in less than
a millisecond on a 2.8 GHz Pentium 4 system.

5.3 A possible application

We apply the resource model to search over the settings of p,
twid, and thr to determine the fastest DFTn (given fixed w and
t) for n ∈ {16, 64, 256, 1024, 4096} that fits within the resource
budget of each part in the Xilinx Virtex-II Pro family. For this
experiment, we fix w = t = 16 and dir = 1. For the purpose
of this experiment, we evaluate performance in terms of execution
latency in clock cycles.

4These large percentage errors occur because the real system that
we model by linear system is highly nonlinear at these smallest
sizes.
5These errors tend to occur in large DFTs with twiddle tables stored
in slices. Furthermore, this area-intensive approach is not com-
monly used in DFT designs.

The latency in clock cycles for the generated DFT cores is in-
versely proportionally to p by the equation

cycles = log2(n)

(
n

2p
+ pipe

)
, (9)

where pipe is the krnl module’s pipeline depth. Thus, this experi-
ment reduces to finding the settings of thr and twid to maximize
p in a given FPGA. Although a true performance comparison must
take into consideration clock frequency, we are able to simplify the
problem in this way for a several reasons. The generated core’s
critical path delay is fixed by the arithmetic operations in the krnl
module, except in cores that occupy a very large number of slices.
On these large designs, routing delay begins to dominate. However,
in our tests, the minimum cycle time never changes by more than a
factor of 2. Since the latency in clock cycle reduces by (close to) a
factor of 2 for each increment of p, we know the fastest implemen-
tation of a DFT at a given n must have the largest feasible p. From
the experimental data in [1], we know varying twid and thr have
only a small impact on the critical path delay. Thus, all feasible
designs with the maximal p have nearly the same maximum clock
frequency.

The final results of this experiment are tabulated in Table 6. For
each intersection of DFT size and part choice, the table reports the
latency of the DFT in cycles and the generator parameters used.
The data to compile this table is generated in a few milliseconds on
a 2.8 GHz Pentium 4.

6. RELATED WORK
Fast and accurate cost estimation is a pivotal component of any

high-level hardware design or automatic design exploration frame-
work. Several prior research projects have developed resource mod-
eling in those contexts.

Most closely related to our approach, Brandolese et al. [6] de-
scribe an approach to estimate FPGA resources (in terms of flip-
flops and LUTs) for designs described in SystemC. Their approach
analyzes the SystemC constructs in the description to generate a
system of equations with fitted coefficients. As in our approach,
these constant coefficients are pre-determined off-line against syn-
thesized reference designs. They report an error ranging from 9 to
37% over six benchmarks. Kulkarni et al. [7] reduce a high-level
hardware description (written in SA-C) to a dataflow graph and es-
timate its design costs by an equation that sums the cost over the
node types. The coefficients corresponding to different node types
are determined also by regression against synthesized reference de-
signs. Bilavarn et al. [8] describe a similar high-level approach to
high-level resource modeling.

Alternatively, Xu and Kurdahi [9] more directly estimate FPGA
resources by predicting the mapping of designs from the netlist-
level to lookup tables in FPGAs. This approach requires that a
design is synthesized first into a netlist and furthermore the analysis
is more time consuming than equation-based estimations.

In addition, others have developed coarse-grain cost estimation
in terms of datapath units (e.g., number of adders, multipliers and
registers). For example, Nayak et al. [10] and Bjreus et al. [11]
both describe extraction of register and functional unit usage of
MATLAB descriptions.

Whereas these other approaches all support a more general class
of design inputs, our goal is to provide very fast and very accurate
estimation for a restricted set of designs. Although the generated
DFT cores span a large space of design tradeoffs, they nonetheless
utilize a common microarchitecture and a common set of primi-
tives. Thus, with a very high-degree of control and knowledge over

DFT size

FPGA 16 64 256 1024 4096

xc2vp2 cycles 28 114 536 5150 —

thr 4 16 64 256 —

twid 0 0 0 0 —

p 2 2 2 1 —

xc2vp4 cycles 20 66 280 2590 —

thr 2 8 32 256 —

twid 0 0 0 0 —

p 4 4 4 2 —

xc2vp7 cycles 16 42 152 1310 12324

thr 2 4 16 128 512

twid 1 1 1 0 0

p 8 8 8 4 2

xc2vp20 cycles 16 30 88 350 6180

thr 2 2 8 8 512

twid 0 1 1 1 0

p 8 16 16 16 4

xc2vp30 cycles 16 24 56 190 3108

thr 2 2 4 4 2

twid 0 1 1 1 1

p 8 32 32 32 8

xc2vp40 cycles 16 24 56 190 1572

thr 2 2 4 16 128

twid 0 0 0 0 0

p 8 32 32 32 16

xc2vp50 cycles 16 24 56 190 1572

thr 2 2 4 16 128

twid 0 0 0 0 0

p 8 32 32 32 16

xc2vp70 cycles 16 24 40 110 804

thr 2 2 2 8 32

twid 0 0 1 1 0

p 8 32 64 64 32

xc2vp100 cycles 16 24 40 110 420

thr 2 2 2 8 32

twid 0 0 0 0 0

p 8 32 64 64 64

Table 6: Fastest generated DFT cores for Xilinx Virtex-II Pro
FPGA series. w = t = 16, dir = 1

the generated DFT IP cores, we are able to build a simple model
for our purpose.

In contrast, without the advantage of special domain restrictions,
the prior work generally cannot achieve the level of accuracy we
desire. The approaches that are intended for high-level design ab-
stractions [7, 8, 10, 11] do not have the resolution in their design
abstraction to capture the many low-level but important optimiza-
tions in the generated DFT cores. Lastly, approaches such as [6]
and [9] are also not fast enough to enable real-time design space
exploration.

7. CONCLUSIONS
This paper presented an equation-based model for estimating the

slice usage and exact models for calculating the block RAM and
multiplier usage of generated DFT IP cores. The model is accurate
for practical purposes: in our tests, we estimate slices with an av-
erage absolute error of 6.1%. Due to its simplicity, the evaluation
of the model is very fast, thus enabling exhaustive search over the
available design parameters.

The model can be decomposed into two components: a set of
parameterized equations that capture our understanding of the syn-
thesis and mapping procedure, and a standard least squares fitting
that determines the best choices of these coefficients from a given
training set of generated designs. This structure should enable easy
adoption to FPGAs with different logic resources by simply refit-
ting the model starting from the same structure.

We believe that more important than the specific result is the
general approach taken in [1] and this paper: replacing static IP de-
sign by flexible, domain-specific IP generators coupled with corre-
sponding domain-specific resource and performance models. The
IP generator encapsulates the degrees of freedom in implement-
ing a well-known kernel functionality and is capable of generat-
ing the corresponding implementations. The resource and perfor-
mance models, together with a simple search, enable the user to
quickly find and instantiate the optimal design for her application
constraints. In this paper we focused on modeling resource usage.
To complete the approach we will consider cycle time, numerical
accuracy, and power in future work.

We invite the reader to try the DFT IP generator at [4].

8. ACKNOWLEDGMENTS
This work was supported by DARPA under DOI grant NBCH-

1050009 and by NSF awards ACR-0234293 and ITR/ACI-0325687.

9. REFERENCES
[1] G. Nordin, P. Milder, J. Hoe, and M. Püschel. Automatic

generation of customized discrete Fourier transform IPs. In
Proceedings of the 42nd Annual Conference on Design
Automation, 2005.

[2] M. C. Pease. An adaptation of the fast Fourier transform for
parallel processing. ACM, 15(2), April 1968.

[3] J. Takala, T. Järvinen, P. Salmela, and D. Akopian. Multi-port
interconnection networks for radix-r algorithms. In Proc.
IEEE Intl. Conf. Acoustics, Speech, Signal Processing, 2001.

[4] Spiral DFT IP generator.
www.spiral.net/hardware/dftgen.html.

[5] Xilinx, Inc. Xilinx Virtex-II Pro Platform FPGA Data Sheet,
June 2005.

[6] C. Brandolese, W. Fornaciari, and F. Salice. An area
estimation methodology for FPGA based designs at
SystemC-level. In Proceedings of the 41st Annual
Conference on Design Automation, 2004.

[7] D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi. Fast area
estimation to support compiler optimizations in FPGA-based
reconfigurable systems. In Proceedings of the 10th Annual
Symposium on Field-Programmable Custom Computing
Machines, 2002.

[8] S. Bilavarn, G. Gogniat, and J. L. Phillipe. Area time power
estimation for FPGA based designs at a behavioral level. In
Proceedings of the 7th IEEE International Conference on
Electronics, Circuits, and Systems, 2000.

[9] M. Xu and F. Kurdahi. Area and timing estimation for
lookup table based FPGAs. In Proc. IEEE European Design
and Test Conference, 1996.

[10] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee.
Accurate area and delay estimators for FPGAs. In Proc.
IEEE Design, Automation and Test in Europe Conference,
2002.

[11] P. Bjuréus, M. Millberg, and A. Jantsch. FPGA resource and
timing estimation from Matlab execution traces. In Proc. of
the 10th International Symposium on Hardware/software
Codesign (CODES), 2002.

