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Abstract. This paper introduces a formal framework for automaticgkyerating per-
formance optimized implementations of the discrete Fouransform (DFT) for dis-
tributed memory computers. The framework is implementguhaisof the program gener-
ation and optimization systemP&RAL. DFT algorithms are represented as mathematical
formulas in $IRAL’s internal language SPL. Using a tagging mechanism anduiarm
rewriting, we extend SIRAL to automatically generate parallelized formulas. Usirgy th
same mechanism, we enable the generation of rescaling QJféfithins, which redis-
tribute the data in intermediate steps to fewer processamdiice communication over-
head. It is a novel feature of these methods that the rdulisioh steps are merged with
the communication steps of the algorithm to avoid addii@eanmunication overhead.
Among the possible alternative algorithm®8AL’s search mechanism now determines
the fastest for a given platform, effectively generatinggatdd code without human inter-
vention. Experiments with DFT MPI programs generated ByR3L show performance
gains of up to 30% due to rescaling. Further, our generategrams compare favorably
with FFTw-MPI 2.1.5.

1 Introduction

For many important numerical problems, current compileesrent able to produce code that
is competitive with hand-tuned code in efficiency. To ovenecthis shortcoming, a number
of research efforts have developed novel methods aimingitatraatic program generation,
optimization, and platform adaptation [17]. Examplesumig ArLAS for basic linear algebra
subroutines (BLAS), FTw for the discrete Fourier transform (DFT), an@I8AL for more
general linear transforms. These and other approachessadtiire problem of automatically
tuning to single processor platforms. Specifically, ond ¢goto tune code to a given memory
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hierarchy. However, with few exceptions, parallelizatisrstill done by hand. The improve-
ment of this situation for the DFT on distributed memory catgps is the subject of this paper.

Contributions of this Paper. SPIRAL is a program generation and optimization system for
linear transforms including the DFT and many others [1#RA\L supports a wide range of
platforms including vector architectures [7, 10] and sdanemory platforms [9]. In this paper
we extend BIRAL to generate MPI programs for the DFT. To do this, we identifyniting
rules that enable the automatic parallelization of FFT&gias mathematical formulas. This
replaces expensive compiler analysis by simple patternimirag. In addition, we provide rules
that rescale the computation to a different number of CPUmduihe computation. By inte-
grating these rules inFSRAL'’s rewriting system, BIRAL’S automatic search mechanism can
find the fastest among alternatives and generate DFT MPIttadés adapted to a given com-
puting platform. We show that the generated programs befnefit rescaling for many sizes
and that they compare favorably t¢ Fw-MPI1 2.1.5. Besides performance improvement, the
generation of rescaling DFT programs provides greaterlfiiétyi to the user in that it de-
couples initial data distribution and processor use. Tlesilfility is usually not provided in
libraries.

Related Work. The work described in the following addresses the commobleno of ob-
taining fast code for distributed memory platforms by auitically tuning to the platform’s
characteristics. The approaches range from classicalitemgchniques to high level formula
manipulation and program generation. The respective egipn domains range from gen-
eral linear algebra and linear transforms to more appticaspecific problems like quantum
chemistry computations.

A compiler framework for generating MPI code for arbitrgiiled for-loop nests by per-
forming various loop transformations to gaiherent coarse-grained parallelism is presented
in [14]. [18] describes the generation of collective comication MPI code by automatically
searching for the best algorithm on a given system. Anotimgriical approach for generating
efficient all-to-all communication routines for Ethernatitthed clusters is used by [6].

ScALAPACK [3] is a portable library of high performance linear algebwatines for dis-
tributed memory systems following the message passing mBdét upon LAPACK, it is
highly scalable on various architectures using differaocpssor numbers.C3LAPACK re-
quires the user to define the processor configuration andtoldite the matrix data herself.

[2] presents a parallel program generator for a class of coatipnal problems in quantum
chemistry. The input is described by tensor contractiorsiamrmanipulated using algebraic
transformations to reduce the operation count. Data faritity and memory usage optimiza-
tion are performed for a specified number of processors onendarget system by using a
dynamic programming search.

FFTW [11, 12] is a self-adapting DFT library supporting one- aighler-dimensional real
and complex input data of arbitrary size. TypicallyTiw is faster than most other publicly
available FFT libraries and also compares well to vendaaties. MPI support, i.e., MPI-
FFTw, is available in FTw 2.1.5 but not in the more recent version 3.1 [1R TR requires
the data to be provided in slab decomposition. It then eséisthe optimal number of proces-
sors to use for a given computation. If this number is diffiéfeom the number of CPUs the
user’s program runs on,FFw requires the user to redistribute prior and after callimg\¥.

If other data layouts are required, users often resort tiv tven custom implementations to
increase performance [5, 15]. Experiments [1] show thastsuttial portions of the runtime are



spent on communication between processors. A program giameframework as presented
in this paper is a step towards improving this situation at thenables customization without
programming effort.

[16] describes the extension of a sequential self-adapticgage for the Walsh-Hadamard
transform (WHT) to support MPI code. Different WHT matrixcfarizations provided in Kro-
necker notation exhibit different data distributions anchenunication patterns. Searching the
space of WHT formulas leads to the best performing facttidman a given platform. In spirit,
the approach taken in [16] is similar to the framework depetbin this paper.

Synopsis. Section 2 introduces the DFT and the mathematical founddtio representing

its fast algorithms. Then we explain th@I8AL system, which is the platform for our work.
In Section 3, we develop the formal framework to generate PT implementation; an

application of this approach to a novel method of rescalif@ Rlgorithms is illustrated in

Section 4. We implemented the framework as extensionPoR&. and show benchmarks of
automatically generated and optimized DFT code in SectidinB results show that rescaling
provides performance gains and that our generated MPI gmagjicompare favorably with
FFTW.

2 Background: Discrete Fourier Transform and SPIRAL

Discrete Fourier transform. The discrete Fourier transform (DFT) is the matrix vectot-mu
tiplication x — y = DFT,, z, wherez,y € C" are the input and output, respectively, and
DFT, is then x n matrix defined by

DFT, = [w* | k,¢=0,...,n—1], w,=e>V"1/"

The famous Cooley-Tukey fast Fourier transform (FFT) camg@essed as a factorization of
DFT,, into a product of structured sparse matrices [21], namefy; i= km,

DFTy,, — (DFT), ®1,,)T7 (I ©® DFT,,)L} (1)

We call (1) abreakdown rule since it formally represents a divide and conquer algorithinis
is emphasized by writing- instead of=.

In (1) we used the following notation. Thex n identity matrix is denoted witls,,; L} is
the stride permutation matrix defined by its underlying patation

pigmti—ik+g, 0<i<m, 0<j <k

It is equivalent to transposing an x k& matrix stored in row-major order in memory.
Most importantly, theensor or Kronecker product of matrices is defined by

A® B =layB], forA=la,.

Finally, T} is a diagonal matrix, called twiddle matrix, whose exacitri@an be found in [21].
Recursive computation of the DFT using (1) and other FFT4ise that, does not de-
compose) enables the computation of the DFDim log(n)) operations. Note that there is a



SPL construct code
_ t[0:1:n-1] = B(x[0:1:n-1]);
Y= (AnBn)z y[0:1:n-1] = A(t[0:1:n-1]);

for (i=0;i<mi++)
y[i*n:1l:i*n+n-1] = A(x[i*n:1l:i*n+n-1]);
for (i=0;i<mi++)
yli:nii+m1] = A(x[i:n:i+m1]);
for (i=0;ic<k;i++)
y=L"z for (j=0;j<mj++)
yLi+kxj]=x[mei+];

y=(Im®An)x

y=(An @ L))z

Table 1. Compiling SPL into code is done by recursively using the abcarrespondences. denotes
the input andy the output vector. We use Matlab-like notatiotj:b: s: e] denotes the subvector of
starting atb, ending ak, and extracted at stride

large degree of freedom in recursing, since at each stepadéaetorizations of» may be pos-
sible. These recursions have roughly the same operatiamg bot different memory access
patterns, which leads to different runtimes when impleraént

SPIRAL. SPIRAL [19,20]is a program generation and optimization systeniifiear trans-
forms such as the DFT and many others. Its internal strugsigieown in Figure 1.

The user formally specifies a transform she DSP transform (user specified)
wants to have implemented, e.gDFTs56". ‘
First, SPIRAL recursively applies breakdown

Formula Generation controls

rules such as (1) to generate one out of many  Algerithm
. . Level Formula Optimization

possibleformulas, represented in the language st o s

SPL (signal processing language), which was in SPL language

informally introduced above. Namely, SPL ex-  'mplementation I impiementation controls

Level

presses algorithms as sparse structured matrix (sPL Compiler) [ Gede Optmization

Search/Learning

factorizations using products, tensor products, ‘im;ﬁe’;":n’?;mn
and basic matrix such as the identity and per- .. .con Compilation )
mutations. Next, BIRAL optimizes the structure Level Performance Evaluation =

of the formula using a formula rewriting system
(see [4] for anintroduction to rewriting systems).
The rewriting effectively performs optimizations
for the memory hierarchy [8], for vector instruc-
tions [10], or for shared memory platforms [9].
The idea is to perform these optimizations at a high levebstraction (namely on formulas),

since they are unpractical at the C code level.

The obtained optimized SPL formula is then translated inbm@e using a special purpose
compiler. This is possible since formulas have a clear jpmétation as code. A few simple
examples are shown in Table 1. The obtained code is furthenmed and then compiled and
its runtime measured.

The runtime is fed into a search engine, which drives, in abfeek loop, the formula
generation process and the selection of implementatidarmpsuch as the degree of unrolling.

optimi:

Figure 1. SPIRAL'’s architecture.



In doing so, $IRAL effectively searches for the formula, or algorithm, thatyfastest on the
given computing platform. Search strategies include dyogmgramming and evolutionary
search. Upon termination, the final program is output to tex.u

The goal of this paper is to present first steps in extendiPigR & to generate efficient
programs for distributed memory platforms. Similar to tleetor code generation and shared
memory parallel code generation, we achieve this throughitatdy designed extension of
SPIRAL’s rewriting system and the SPL compiler. This is explainethe next sections.

3 Translating Formulas into MPI Programs

In Section 2 we explained/RAL and its theoretical underpinning: the formula language,SPL
which enables algorithm generation and optimization atgh lével of abstraction. Our goal
is to enable BIRAL to generate efficient MPI implementations. To this end, we miroduce
formula constructs that are translated into message pppsiagrams by an extension of the
SPL compiler, called MPI-SPL compiler. The MPI-SPL compiteone major contribution of
this paper.

Data distribution. We introduce the tag “pép)” to express that a formula will be imple-
mented orp processors. We assume that all distributed data vectotd@rk distributed, i.e.,
each processors’ memory holds one equal sized contiguausaif the data vector. For in-
stance, if a formulalg, representing the computatign= Agx, operates on vectors of 6 data
elements which are distributed across 2 processors, we writ

Yo xo
1 1
Y2 x2
w| =4 | =
Ya x4
Ys par(2) \zs

The tag “paf2)” implies that the computation af = Agz is distributed across 2 processors.
The elementsg, x1, 2 andyg, y1, y2 are stored in the memory of processor 0, while the
elementss, x4, z5 andys, y4, y5 are stored in the memory of processor 1. We add a horizontal
line between vector elements that reside in the local memibdjfferent processors.

In addition, we introduce tags that express data redistabuThe tag “pafg — p)” ex-
presses that the input vecteiis distributed ovep processors and the output vectois dis-
tributed overq processors. This implies that the tagged formula does atrdalition fromp
to ¢ processors during its computation. For instance, we demdbemulaAg operating on
vectors of 6 data elements with the inputlistributed across 2 processors and the ougput
distributed across 3 processors by

Yo T
un o
Y2 _ T2
wl= A4 | = |- (2)
Y1 Y T4
Us par(3<2) \zs

The tag “pa(3 «— 2)” implies that the computation aof = Agx is started on 2 processors and
finished on 3 processors, redistributing during computafidhe elementsg, x1, 22, andyy,

y1 are stored in the memory of processor 0, the elements,, x5, andy,, y3 are stored in
the memory of processor 1, and the elemeniss are stored in the memory of processor 2.



Finally, we introduce the tag “p&F <— ¢ < p),” which expresses that a formula’s input
and output are distributed acrogpsprocessors but the formula internally redistributes;to
processors. For instance,

y= AB 1z with AB = _A B
~~ ~ = =~
par(p—q+p) parp«q«<p)  palp«—q) parfq—p)

has the input: and the outpuy distributed overp processors, but the output &f (i.e., the
input of A) is distributed acrosg processors.

Parallel computation. The formula construct

Aan
Ip ® Aan — ... , Aan E Can
Aan
is a block-diagonal matrix gf blocks of A”**™. The tagged formula
y= (LA™ x 3)
———————
par(p)

expresses a-way embarrassingly parallel computation. Ea£h*" operates on an indepen-
dent part oft andy. The vectorg: € CP" andy € CP™ are distributed acrogsprocessors into
p local vectorse; € C™ andy; € C" withox = 2@ --- @y, andy =y, & --- Sy,
denotes the stacking of column vectors. pAprocessors execute the formul& > in parallel
computingy; = A™*™z/. Since it is the same formula in each case, (3) is easily impteed
as single program multiple data (SPMD) MPI program.

Similarly, formulas consisting of diagonal matrices,

=_D D e C™P*™P diagon 4
y=L =z De gonal 4)
par(p)
can be trivially mapped to MPI programs.
All-to-all communication. Permutations express data reordering. In a distributedeadd
space this reordering translates into explicit commuivcatf the source and target location
are in the local memory of different processors. Permutatiaf the formP™? ® I,,, where
pmp e C™PX™P is @ permutation matrix, reordetp chunks ofn consecutive elements where
m chunks reside in each processor’s memory. This means thatrupmessages of length
are to be sent and received per processor. Thus,
y=E"el,)x ()
N——
par(p)

encodes an all-to-all communicationpprocessors with message sizand the communica-
tion pattern described b¥. For instance, when implementing




processor 0 sends the messdge, z3) to processor 1 and processor 1 sends the message
(x4, 5) to processor 0.

In our example not all chunks of length become messages. For instanece,, z1) and
(x6, x7) stay in the memory of their respective processor. We capiisdy decomposing (5)
into alocal part that copies data within the local memory of each processtaghobal part
that must be implemented using message passing. Formaljeeompos® in (5) into a sum
of two matrices,

P=F+C,

and thus

PRI, =(F®IL)+ (C®I,).

Each “1” entry inP ends up either i’ or C, hence the sum does not incur actual operations.

F contains all “1” entries ofP within the block diagonal with blocks of siza x m. It
describes the addressing of all data chunks that stay whikitocal memory of each processor.
F ® I, will be implemented as data copying by the respective psares

C contains all remaining, i.e., off-blockdiagonal “1” emsi It describes the addressing of
all data messages that have to be transmitted between twegzarsC ® I,, will be imple-
mented using one send/receive pair per message.

To make the message addressing explicit, we further facas
C=8C'G with (',

whereC’ is a permutation matrix. This factorization is explainecméssume, thatP™?
requireskp messagesk( < m). ThenC’ € CFP**r js a permutation matrix describing the
message addressing; ; = 1 implies that messaggéj mod k) sent by processolj/k] is
messagéi modk) received by process¢i/k|. G is a rectangular block-diagonal matrix of
blocks of sizek x m. G assigng: of them data chunks within each processor’s local memory
to one of thek messages to be sent by this procesSas. a rectangular block-diagonal matrix
of p blocks of sizem x k. It stores thek messages received by each processor at their final
location within the local memory of each processor.

Analysis of S, C’, andG enables highly optimized implementations like using MPI co
lective communication functions or implementigg= (P ® In)x inplace (vectorr andy
share the same memory location). For instancé;’iis symmetric andS=G™ (transpose),
thenC ® I,, can be implemented inplace using send-receive-replacatiqes. The required
analysis is implemented using the techniques describe8].iDptails of the analysis are be-
yond the scope of this paper.

As illustrative example we parallelize$ for 3 processors. We factdr} into the local
matrix £’ and the communication matricés C’, andG:

y= L3 x=Fxr+ SC'Gax.
—

par(3)



The explicit form is shown next and represents the commtinitaddressing pattern:

Yo Zo 1 - - - - o T To r+ - |- - -]« . )
Y2 T6 P Pt I gz N P T2
Y3 1 P [ N I xs3 P T I T3
ya | =|za | = R I T x| = el 1 e s s | +
Us T 1 6 A I I T
Y7 x5 e e 1o X7 J S T T
ys T8 L - - - | - 1_ xs L. - | - -] - 1_ xTs
L) F
~~
par(3, mpi)

- - Lo

: 1 ! ' b 2

: .. 1 - -1 -

N 1 - . |1 o

. 1 .. 1. -

1 s

: 1 T N o

N D 1. - A T -

L - -] - C/ G xs

S

The matrixF encodes that (in processor 0's memory},, (in processor 1's memory), and
xg (in processor 2's memory) do not require communication aednaoved fromz to y by
their respective processors. The maittixspecifies which elements of the vectolbecome
which message. In our example the data packetscare:; (sent by processor O)s, 5
(sent by processor 1), ang;, = (sent by processor 2)" is a6 x 6 permutation matrix
encoding the send/receive addressing of the data pacla@tingtance, the entrg} ; = 1

of ¢ = [C] ;];; describes that message 1 sent by processos)dg message 0 received by
processor 2. The matri& describes the final location of the received data packetsnBtance,
message 0 received by processor2) (ill be stored at locations. Figure 2 shows the MPI
corresponding implementation.

Data redistribution. Formula (2) requires different data distributions foandy. To cap-
ture this, we generalize the idea of all-to-all communmafrom the previous section to data
redistributions. Permutations

P"®1I, with p,q|m, P™ permutation matrib C™*™ (6)
reorderm chunks of data of size. Thus,

—_———
par(qg—p)

redistributes data fromto ¢ processors using message siznd with the message addressing
encoded inP. We apply again the approach of the last section and decapasto local



int proc[][] = {{1,2}, {0,2}, {0,1}}, [// communication pattern
msg[][] = {{0,0}, {0,1}, {1,1}},
sl ={{1,2}, {3,5}, {6,7}},

F[ 1 {0,1,2};
/1 parallel function, call by 3 MPI processes sinultaneously
void L_9 3(double *ylLocal, double *xLocal, int mpirank) {
/1 output: ylLocal [3], input xLocal [3]; part of x[9] and y[9]
MPI _Request send[2], recv[2]; int i;
yLocal [ F[nmpirank]] = xLocal [F[npirank]]; // y = Fx +...

for(i =0; i <2; i++){ /1 + SC &«
/1 nonbl ocki ng send
MPlI _I send(xLocal + S npirank][i], /1 source ofs
1, WPl _DOUBLE,
proc[npirank][i], /1 receiving proc
i, /1l meg id

MPI _COW WORLD, send + i);
/1 nonbl ocki ng receive

MPl _Irecv(yLocal + SEnpirank][i], /1 target ofs
1, WPl _DOUBLE,
proc[npirank][i], /'l sending proc
nsg[ mpirank] [i], /1 meg id to get

MPI _COW WORLD, recv + i);

}
MPl _Waitall (1, recv, MPl_STATUSSES | GNORE);

Figure 2. MPI program implementing = L3z on 3 processors.

operations and communication to generated MPI code:
P=F+C.

As an example of a redistribution from 2 to 3 processors darsi

0 r- -f- - - 0

o R 1 z1

_ 6 _ x4 _ P I . T2
y= Ly =z = o1 =1.1.]. Ts
xr3 1 T4

par(3—2) z5 B e | z5

Processor 0 sends the messagédo processor 1r, andzs stay in the memory of processor
0. Processor 1 sends the messagandzx; to processor 2 and receives from processor O.
x4 Stays in in the memory of processor 1.

Parallelization through formula rewriting. Above we introduced formula constructs that
can be implemented as parallel computation or as commiumic&roducts of these formulas

can be implemented as a sequence of parallel communicattbo@nmunication steps. This

gives rise to the following definition.

Definition 1 (Parallelized formula). Formulas of the form (3), (4), (5), (7), and products of
these formulas are called parallelized. Parallelized formulas can be implemented using MPI.



10

However, not all formulas are parallelized. For instanbe,right-hand side of (1) is not
a parallelized formula. Thus, we introduce a set of rewgitinles to use BIRAL’S rewriting
system to transform formulas into parallelized formuldsisTule set is summarized in Table 2
and is one of the contributions of this paper. The rule se¢sghed for the generation of DFT
MPI code. Using this rule set,/SRAL can automatically parallelize formulas for the DFT at a
high level of abstraction.

As a small example of the workings of the rewriting systemsider

Y= (Im & An) Zz. (8)
—_——

par(p)

(8) is not parallelized forn # p. Assumingp|m, the application of rule (13) transforms (8)
into

Y= (Ip ® (Im/p & An)) T

par(p)

which matches (3) and is thus parallelized in the sense ofnibiefi 1. A more elaborate
example showing the parallelization oft&'T),,,,, and rescaling it fronp to ¢ processors is
given in the next section.

AB —- A B 9) Im ® An — I, ® (Im ® Ay) (13)
NV —_——
par(p) par(p) par(p) par(p) par(p)
L- L dr @0 (Am® 1) — Li" (I An)LI"  (14)
parte) parp—a—p) par(p—q) par(p—q) par(q)
AB A B 11
L -4 L (Am ® I) = L (I, ® Am) L™ (15)
par(p—q«—p) par(p«—q) par(q«—p) —_—— ———
AB — A B (12) par(q—p) par(q) par(q—p)
—~— -~~~
par(q+p) par(q) par(q«p)
mn mn 2 n
Ln” — (Ip ® LM/zép) (LIIZ ® Imn/p2) (IP ® (Lp ® Im/p)) (16)
~—~—~
par(p) par(p)
mn mn 2 n
L = (Ie® (Lyq ® Lynj?)) (L © Lynyp2) (In ® (L ® Inp)) (%)
par(q<—p) par(q) par(g«p) par(p)
mn mn 2 n
\Lm , (Ip ® LM/z{p) (Lg ® Imn/p2) (Ifl ® (Ip/q ® Lp ® Im/p)) (18)
par(p—q) par(p) par(p—q) par(q)

Table 2. Parallelization and rescaling rewriting rules.
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4 Rescaling FFTs Using SPIRAL

The framework developed in Section 3 allows us to exploetraffs between communication
and computation. Assume a subroutine computing a DFf mrocessors in parallel. Depend-
ing on the cost of communication and the speed of processmrgyuting ony < p processors
may speed up the computation. However, the initial and fiatd distribution oy processors
is fixed by the subroutine’s interface. In this situation plegformance gain by computing on
only ¢ processors can easily be lost in the necessary data rbdigiri fromp to ¢ processors
before the computation ando p processors after the computation.

Rescaling. Using the parallelization rules in Table 1 we can systeralifiderive formulas
that internally use less processors than at the beginnidgatithe end of the computation.
Further, the necessary redistribution is performed asgidhie communication that has to be
done anyway. Thus, these formulas are candidates to spebéd whole computation without
changing the subroutine interface. We call this appraestaling.

Specifically, we perform downscaling (to fewer processtmggther with the first occurring
communication step, while upscaling is performed with & tommunication step. Hence,
all encapsulated communication steps profit of the reducethwunication effort.

After choosing a number of processors to rescale to, thetélito decide whichy of thep
processors to use for calculation. On machines with nofetmicommunication structure (for
instance clusters of symmetric multiprocessors) this aaarbimportant choice that strongly
influences the achieved performance.

In SPIRAL, the formula rewriting is performed automaticallypi®AL’s search will find a
formula, and thus a rescaling strategy that performs fastethe given platform.

Example: Rescaled DFT. We show the rewriting process that parallelizd3®T,,,,,, for p |
m,n, acrosgp processors and rescales it¢d p processors for the intermediate computation
steps. In BIRAL, this derivation is done automatically. We tB§'T.,,,,, for p processors and
expand it using rules (1) and (10)-(12):

DFT,,, — (DFT,, ®1,) T"" (I, ® DFT,) L™"

~—~—
par(p) parp«—q)  parq) par(q) par(g+p)

This introduces rescaling tpprocessors. Next we apply rules (9), (14), and (16)—(18pto f
mally parallelize:

- (IP ® Lﬁ%p) (L§2 ® Imn/pQ) (Iq ® (Ip/q ® LZ ® Im/p)) (Iq ® (In/q ® DFTm))
T o patea) par(q) par(q)
(I @ L) (L @ Lnnyq2) (I ® (L7 © Inyy) I Iy ® (Injq © DFT0))
par(q) par(q) par(q) par(q) par(q)
’ (Iq ® (Ip/q ® Lg/l;{p)) (ng ® Imn/pz) (Ip ®(Ly® Im/p)) :
par(q) par(g—p) par(p)

(19)
Inspection shows that the final expression is parallelingtié sense of Definition 1.

Analysis. The communication and computation cost of (19) depends erctivice of the
scaling factork = p/q. Table 3 summarizes the effect of scaling on packet size,beum
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computation datavolume packetsize #packets
O(k) o(1) O(k?) O(1/k?)

Table 3. Effect of rescaling by: = p/q on computation and communication.

of packets, computation cost, and total data to be transthés function of. In essence,
scaling down keeps the overall amount of data to be trarsdnfitactically constant while
increasing the message size and the computation cost. Bhel@ce ofy depends on the
relation between the speed of the processor, the commianidatency, and the bandwidth.

5 Experimental Results

In this section we evaluate our approach. We first show tlsaftang speeds up smaller DFTs.
Then we show that our generated DFT programs compare fdyowith FFTW.

Benchmark setup. All experiments were done with complex-to-complex doupteeision
2-power FFTs. The platform is a cluster of AMD Opteron 250 C#ial nodes running at
2.4 GHz, connected by a Mellanox InfiniBand high speed néiwdth a theoretical peak of
10 Gb/s and 4:s latency. All codes were compiled using thelGC compiler 3.4.4 with the
option- A3 and linked with the mvapich 0.9.5 MPI library. Performanageds given in pseudo
Mflop/s computed asn logn/t, wheren is the DFT size and the runtime in microseconds.
This measure is proportional to inverse runtime and henesegpves runtime relationships.
Further, it gives an indication of the absolute floatingrp@erformance [12].

Experiment 1: Rescaling. Figures 3(i)—(ii7) show the performance impact of rescaling for
the problem sizeg'?, 2'°, and2'®. We start withp = 16 processors and letFSRAL gen-
erate downscaling programs for= 1, 2, 4, 8, and 16 processors (16 processors implies no
downscaling). We compare the performance of the origindlthe downscaled programs to
FFTw-MPI running on 16 processors. Figure&Band(ii) show a performance peakat 8
processors. Thus, for the siz2¥ and2'® we gain from downscaling. Figure (3ii) shows
thatp = 16 processors are required for the best performance at pratite®'8. For this size,
the increased workload per processor overcompensateaith@éwgcommunication speed.

On the benchmark platform, rescaling speeds up only forlsmsizes. On machines with
slower, higher-latency networks we saw performance gaiegarescaling for larger problem
sizes.

Experiment 2: Comparison to FFTW. Figure 4(i7) shows the speed-up oP&RAL generated
FFT programs run on 16 CPWéthout downscaling, anavith optimal downscaling (8 CPUs
for small sizes), compared tacFw-MPI 2.1.5 using 16 CPUs. For sizes utd, downscaling
provides significant performance gains. For these sizer/& generated programs are up to
80% faster than FTw-MPI. For larger sizes, BRAL's performance is comparable t&Fw-
MPI.

Figure 4(i) shows the same experiment, but for 8 CPUs. The optimal dalingdfound
in this case is to 4 CPUs for small size®.8AL generated MPI programs are between 1.5 and
2.5 times faster thanfTw-MPI, showing higher relative speed for problems smallantt®.
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Figure 3. Effect of downscaling fromp = 16. The plots show, for three DFT sizes the best per-
formance obtained for different scaling factdrs= p/q. p = 16 and thez-axis is labeled withy. The
dashed line is the performance achieved by W. Higher is better.
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Figure 4. Relative performance.Performance of 8IRAL generated MPI FFT programs without down-
scaling (dashed), and optimally rescaled (solid), redativF-Tw-MP1 2.1.5. Higher is better.

6 Conclusion

We presented a formal framework for generating efficient KIBbrithms by rewriting formu-
las representing FFT algorithms. We applied the framewmiknplement the idea of flexible
rescaling and thus enable adaptation to a platform’s chexistics. By including the frame-
work into SPIRAL’s infrastructure, the entire implementation and adaptaprocess is au-
tomated. It is worth pointing out that we used very similapiegaches before to the related
problems of vectorization and shared memory parallebratin fact, all these optimizations
are performed using the same infrastructure mrRAL. Since our approach is formula based,
it is domain-specific but can be generalized to other linearsforms.

Ongoing work aims to enablePBRAL to optimize the runtime of the DFT including possi-
ble data redistributions. This way, the user can specifyltsired data layout before and after
the computation to interface with his application. As bo#taddistribution and transform are
represented on a mathematical level they can be optimizettjjadhus reducing the overhead.
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