
Automatic Performance Optimization
of the Discrete Fourier Transform

on Distributed Memory Computers

Andreas Bonelli1⋆, Franz Franchetti2, Juergen Lorenz1,
Markus Püschel2, and Christoph W. Ueberhuber1

1 Institute for Analysis and Scientific Computing
Vienna University of Technology

Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
{a.bonelli,juergen.lorenz,c.ueberhuber}@tuwien.ac.at

2 Department of Electrical and Computer Engineering
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, 15213, USA
{franzf,pueschel}@ece.cmu.edu

Abstract. This paper introduces a formal framework for automaticallygenerating per-
formance optimized implementations of the discrete Fourier transform (DFT) for dis-
tributed memory computers. The framework is implemented aspart of the program gener-
ation and optimization system SPIRAL. DFT algorithms are represented as mathematical
formulas in SPIRAL’s internal language SPL. Using a tagging mechanism and formula
rewriting, we extend SPIRAL to automatically generate parallelized formulas. Using the
same mechanism, we enable the generation of rescaling DFT algorithms, which redis-
tribute the data in intermediate steps to fewer processors to reduce communication over-
head. It is a novel feature of these methods that the redistribution steps are merged with
the communication steps of the algorithm to avoid additional communication overhead.
Among the possible alternative algorithms, SPIRAL’s search mechanism now determines
the fastest for a given platform, effectively generating adapted code without human inter-
vention. Experiments with DFT MPI programs generated by SPIRAL show performance
gains of up to 30% due to rescaling. Further, our generated programs compare favorably
with FFTW-MPI 2.1.5.

1 Introduction

For many important numerical problems, current compilers are not able to produce code that
is competitive with hand-tuned code in efficiency. To overcome this shortcoming, a number
of research efforts have developed novel methods aiming at automatic program generation,
optimization, and platform adaptation [17]. Examples include ATLAS for basic linear algebra
subroutines (BLAS), FFTW for the discrete Fourier transform (DFT), and SPIRAL for more
general linear transforms. These and other approaches address the problem of automatically
tuning to single processor platforms. Specifically, one goal is to tune code to a given memory

⋆ This work was supported by the Special Research Program SFB F011 “AURORA” and the Erwin
Schrödinger Fellowship of the Austrian Science Fund FWF, and in part by DARPA through the De-
partment of Interior grant NBCH1050009 and by NSF through awards 0234293 and 0325687.

2

hierarchy. However, with few exceptions, parallelizationis still done by hand. The improve-
ment of this situation for the DFT on distributed memory computers is the subject of this paper.

Contributions of this Paper. SPIRAL is a program generation and optimization system for
linear transforms including the DFT and many others [19]. SPIRAL supports a wide range of
platforms including vector architectures [7, 10] and shared memory platforms [9]. In this paper
we extend SPIRAL to generate MPI programs for the DFT. To do this, we identify rewriting
rules that enable the automatic parallelization of FFTs given as mathematical formulas. This
replaces expensive compiler analysis by simple pattern matching. In addition, we provide rules
that rescale the computation to a different number of CPUs during the computation. By inte-
grating these rules in SPIRAL’s rewriting system, SPIRAL’s automatic search mechanism can
find the fastest among alternatives and generate DFT MPI codethat is adapted to a given com-
puting platform. We show that the generated programs benefitfrom rescaling for many sizes
and that they compare favorably to FFTW-MPI 2.1.5. Besides performance improvement, the
generation of rescaling DFT programs provides greater flexibility to the user in that it de-
couples initial data distribution and processor use. This flexibility is usually not provided in
libraries.

Related Work. The work described in the following addresses the common problem of ob-
taining fast code for distributed memory platforms by automatically tuning to the platform’s
characteristics. The approaches range from classical compiler techniques to high level formula
manipulation and program generation. The respective application domains range from gen-
eral linear algebra and linear transforms to more application specific problems like quantum
chemistry computations.

A compiler framework for generating MPI code for arbitrarily tiled for-loop nests by per-
forming various loop transformations to gaininherent coarse-grained parallelism is presented
in [14]. [18] describes the generation of collective communication MPI code by automatically
searching for the best algorithm on a given system. Another empirical approach for generating
efficient all-to-all communication routines for Ethernet switched clusters is used by [6].

SCALAPACK [3] is a portable library of high performance linear algebraroutines for dis-
tributed memory systems following the message passing model. Built upon LAPACK, it is
highly scalable on various architectures using different processor numbers. SCALAPACK re-
quires the user to define the processor configuration and to distribute the matrix data herself.

[2] presents a parallel program generator for a class of computational problems in quantum
chemistry. The input is described by tensor contractions and is manipulated using algebraic
transformations to reduce the operation count. Data partitioning and memory usage optimiza-
tion are performed for a specified number of processors on a given target system by using a
dynamic programming search.

FFTW [11, 12] is a self-adapting DFT library supporting one- and higher-dimensional real
and complex input data of arbitrary size. Typically, FFTW is faster than most other publicly
available FFT libraries and also compares well to vendor libraries. MPI support, i. e., MPI-
FFTW, is available in FFTW 2.1.5 but not in the more recent version 3.1 [13]. FFTW requires
the data to be provided in slab decomposition. It then estimates the optimal number of proces-
sors to use for a given computation. If this number is different from the number of CPUs the
user’s program runs on, FFTW requires the user to redistribute prior and after calling FFTW.
If other data layouts are required, users often resort to their own custom implementations to
increase performance [5, 15]. Experiments [1] show that substantial portions of the runtime are

3

spent on communication between processors. A program generation framework as presented
in this paper is a step towards improving this situation in that it enables customization without
programming effort.

[16] describes the extension of a sequential self-adaptingpackage for the Walsh-Hadamard
transform (WHT) to support MPI code. Different WHT matrix factorizations provided in Kro-
necker notation exhibit different data distributions and communication patterns. Searching the
space of WHT formulas leads to the best performing factorization on a given platform. In spirit,
the approach taken in [16] is similar to the framework developed in this paper.

Synopsis. Section 2 introduces the DFT and the mathematical foundation for representing
its fast algorithms. Then we explain the SPIRAL system, which is the platform for our work.
In Section 3, we develop the formal framework to generate MPIDFT implementation; an
application of this approach to a novel method of rescaling DFT algorithms is illustrated in
Section 4. We implemented the framework as extension of SPIRAL and show benchmarks of
automatically generated and optimized DFT code in Section 5. The results show that rescaling
provides performance gains and that our generated MPI programs compare favorably with
FFTW.

2 Background: Discrete Fourier Transform and SPIRAL

Discrete Fourier transform. The discrete Fourier transform (DFT) is the matrix vector mul-
tiplication x 7→ y = DFTn x, wherex, y ∈ Cn are the input and output, respectively, and
DFTn is then× n matrix defined by

DFTn = [ωkℓ
n | k, ℓ = 0, . . . , n− 1], ωn = e2π

√
−1/n.

The famous Cooley-Tukey fast Fourier transform (FFT) can beexpressed as a factorization of
DFTn into a product of structured sparse matrices [21], namely, for n = km,

DFTkm → (DFTk ⊗Im)T n
m(Ik ⊗DFTm)Ln

k (1)

We call (1) abreakdown rule since it formally represents a divide and conquer algorithm. This
is emphasized by writing→ instead of=.

In (1) we used the following notation. Then× n identity matrix is denoted withIn; Ln
k is

the stride permutation matrix defined by its underlying permutation

Ln
k : jm + i 7→ ik + j, 0 ≤ i < m, 0 ≤ j < k.

It is equivalent to transposing anm× k matrix stored in row-major order in memory.
Most importantly, thetensor or Kronecker product of matrices is defined by

A⊗B = [ak,ℓB], for A = [ak,ℓ].

Finally,T n
m is a diagonal matrix, called twiddle matrix, whose exact form can be found in [21].

Recursive computation of the DFT using (1) and other FFTs (incase thatn does not de-
compose) enables the computation of the DFT inO(n log(n)) operations. Note that there is a

4

SPL construct code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1]);

y = (Im ⊗ An)x
for (i=0;i<m;i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for (i=0;i<m;i++)

y[i:n:i+m-1] = A(x[i:n:i+m-1]);

y = Lkm
k x

for (i=0;i<k;i++)
for (j=0;j<m;j++)

y[i+k*j]=x[m*i+j];

Table 1. Compiling SPL into code is done by recursively using the above correspondences.x denotes
the input andy the output vector. We use Matlab-like notation:x[b:s:e] denotes the subvector ofx
starting atb, ending ate, and extracted at strides.

large degree of freedom in recursing, since at each step several factorizations ofn may be pos-
sible. These recursions have roughly the same operations count but different memory access
patterns, which leads to different runtimes when implemented.

SPIRAL. SPIRAL [19, 20] is a program generation and optimization system forlinear trans-
forms such as the DFT and many others. Its internal structureis shown in Figure 1.

The user formally specifies a transform she

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
e
a
rc

h
/L

e
a
rn

in
g

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

(SPL Compiler)

Evaluation

Level

Figure 1. SPIRAL’s architecture.

wants to have implemented, e.g., “DFT256”.
First, SPIRAL recursively applies breakdown
rules such as (1) to generate one out of many
possibleformulas, represented in the language
SPL (signal processing language), which was
informally introduced above. Namely, SPL ex-
presses algorithms as sparse structured matrix
factorizations using products, tensor products,
and basic matrix such as the identity and per-
mutations. Next, SPIRAL optimizes the structure
of the formula using a formula rewriting system
(see [4] for an introduction to rewriting systems).
The rewriting effectively performs optimizations
for the memory hierarchy [8], for vector instruc-
tions [10], or for shared memory platforms [9].
The idea is to perform these optimizations at a high level of abstraction (namely on formulas),
since they are unpractical at the C code level.

The obtained optimized SPL formula is then translated into Ccode using a special purpose
compiler. This is possible since formulas have a clear interpretation as code. A few simple
examples are shown in Table 1. The obtained code is further optimized and then compiled and
its runtime measured.

The runtime is fed into a search engine, which drives, in a feedback loop, the formula
generation process and the selection of implementation options such as the degree of unrolling.

5

In doing so, SPIRAL effectively searches for the formula, or algorithm, that runs fastest on the
given computing platform. Search strategies include dynamic programming and evolutionary
search. Upon termination, the final program is output to the user.

The goal of this paper is to present first steps in extending SPIRAL to generate efficient
programs for distributed memory platforms. Similar to the vector code generation and shared
memory parallel code generation, we achieve this through a suitably designed extension of
SPIRAL’s rewriting system and the SPL compiler. This is explained in the next sections.

3 Translating Formulas into MPI Programs

In Section 2 we explained SPIRAL and its theoretical underpinning: the formula language SPL,
which enables algorithm generation and optimization at a high level of abstraction. Our goal
is to enable SPIRAL to generate efficient MPI implementations. To this end, we now introduce
formula constructs that are translated into message passing programs by an extension of the
SPL compiler, called MPI-SPL compiler. The MPI-SPL compiler is one major contribution of
this paper.

Data distribution. We introduce the tag “par(p)” to express that a formula will be imple-
mented onp processors. We assume that all distributed data vectors areblock distributed, i.e.,
each processors’ memory holds one equal sized contiguous chunk of the data vector. For in-
stance, if a formulaA6, representing the computationy = A6x, operates on vectors of 6 data
elements which are distributed across 2 processors, we write





y0
y1
y2

y3
y4
y5



 = A6
︸︷︷︸

par(2)





x0
x1
x2

x3
x4
x5



 .

The tag “par(2)” implies that the computation ofy = A6x is distributed across 2 processors.
The elementsx0, x1, x2 andy0, y1, y2 are stored in the memory of processor 0, while the
elementsx3, x4, x5 andy3, y4, y5 are stored in the memory of processor 1. We add a horizontal
line between vector elements that reside in the local memoryof different processors.

In addition, we introduce tags that express data redistribution. The tag “par(q ← p)” ex-
presses that the input vectorx is distributed overp processors and the output vectory is dis-
tributed overq processors. This implies that the tagged formula does a redistribution fromp
to q processors during its computation. For instance, we denotea formulaA6 operating on
vectors of 6 data elements with the inputx distributed across 2 processors and the outputy
distributed across 3 processors by






y0
y1

y2
y3

y4
y5




 = A6

︸︷︷︸

par(3←2)





x0
x1
x2

x3
x4
x5



 . (2)

The tag “par(3← 2)” implies that the computation ofy = A6x is started on 2 processors and
finished on 3 processors, redistributing during computation. The elementsx0, x1, x2, andy0,
y1 are stored in the memory of processor 0, the elementsx3, x4, x5, andy2, y3 are stored in
the memory of processor 1, and the elementsy4, y5 are stored in the memory of processor 2.

6

Finally, we introduce the tag “par(p ← q ← p),” which expresses that a formula’s input
and output are distributed acrossp processors but the formula internally redistributes toq
processors. For instance,

y = AB
︸︷︷︸

par(p←q←p)

x with AB
︸︷︷︸

par(p←q←p)

= A
︸︷︷︸

par(p←q)

B
︸︷︷︸

par(q←p)

has the inputx and the outputy distributed overp processors, but the output ofB (i.e., the
input ofA) is distributed acrossq processors.

Parallel computation. The formula construct

Ip ⊗Am×n =






Am×n

. . .
Am×n




 , Am×n ∈ C

m×n

is a block-diagonal matrix ofp blocks ofAm×n. The tagged formula

y =
(
Ip ⊗Am×n

)

︸ ︷︷ ︸

par(p)

x (3)

expresses ap-way embarrassingly parallel computation. EachAm×n operates on an indepen-
dent part ofx andy. The vectorsx ∈ Cpn andy ∈ Cpm are distributed acrossp processors into
p local vectorsx′i ∈ Cn andy′i ∈ Cm with x = x′0 ⊕ · · · ⊕ x′p−1 andy = y′0 ⊕ · · · ⊕ y′p−1; ⊕
denotes the stacking of column vectors. Allp processors execute the formulaAm×n in parallel
computingy′i = Am×nx′i. Since it is the same formula in each case, (3) is easily implemented
as single program multiple data (SPMD) MPI program.

Similarly, formulas consisting of diagonal matrices,

y = D
︸︷︷︸

par(p)

x, D ∈ C
mp×mp diagonal, (4)

can be trivially mapped to MPI programs.

All-to-all communication. Permutations express data reordering. In a distributed address
space this reordering translates into explicit communication if the source and target location
are in the local memory of different processors. Permutations of the formP mp ⊗ In, where
Pmp ∈ Cmp×mp is a permutation matrix, reordermp chunks ofn consecutive elements where
m chunks reside in each processor’s memory. This means that upto m messages of lengthn
are to be sent and received per processor. Thus,

y = (Pmp ⊗ In
︸ ︷︷ ︸

par(p)

)x (5)

encodes an all-to-all communication ofp processors with message sizen and the communica-
tion pattern described byP . For instance, when implementing

y =
(
L4

2 ⊗ I2

)

︸ ︷︷ ︸

par(2)

x =









1 · · · · · · ·
· 1 · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · · · 1 ·
· · · · · · · 1









·









x0

x1

x2

x3

x4

x5

x6

x7









,

7

processor 0 sends the message(x2, x3) to processor 1 and processor 1 sends the message
(x4, x5) to processor 0.

In our example not all chunks of lengthm become messages. For instance,(x0, x1) and
(x6, x7) stay in the memory of their respective processor. We capturethis by decomposing (5)
into a local part that copies data within the local memory of each processor and aglobal part
that must be implemented using message passing. Formally, we decomposeP in (5) into a sum
of two matrices,

P = F + C,

and thus

Pmp ⊗ In = (F ⊗ In) + (C ⊗ In).

Each “1” entry inP ends up either inF or C, hence the sum does not incur actual operations.

F contains all “1” entries ofP within the block diagonal with blocks of sizem × m. It
describes the addressing of all data chunks that stay withinthe local memory of each processor.
F ⊗ In will be implemented as data copying by the respective processor.

C contains all remaining, i.e., off-blockdiagonal “1” entries. It describes the addressing of
all data messages that have to be transmitted between two processors.C ⊗ In will be imple-
mented using one send/receive pair per message.

To make the message addressing explicit, we further factorC as

C = SC′G with C′,

whereC′ is a permutation matrix. This factorization is explained next. Assume, thatPmp

requireskp messages (k ≤ m). ThenC′ ∈ Ckp×kp is a permutation matrix describing the
message addressing.C′i,j = 1 implies that message(j mod k) sent by processor⌊j/k⌋ is
message(i modk) received by processor⌊i/k⌋. G is a rectangular block-diagonal matrix ofp
blocks of sizek×m. G assignsk of them data chunks within each processor’s local memory
to one of thek messages to be sent by this processor.S is a rectangular block-diagonal matrix
of p blocks of sizem × k. It stores thek messages received by each processor at their final
location within the local memory of each processor.

Analysis ofS, C′, andG enables highly optimized implementations like using MPI col-
lective communication functions or implementingy =

(
P ⊗ In

)
x inplace (vectorx andy

share the same memory location). For instance, ifC′ is symmetric andS=GT (transpose),
thenC ⊗ In can be implemented inplace using send-receive-replace operations. The required
analysis is implemented using the techniques described in [8]. Details of the analysis are be-
yond the scope of this paper.

As illustrative example we parallelizeL9
3 for 3 processors. We factorL9

3 into the local
matrixF and the communication matricesS, C′, andG:

y = L9
3

︸︷︷︸

par(3)

x = Fx + SC′Gx.

8

The explicit form is shown next and represents the communication addressing pattern:
0

B
B
B
B
B
B
B
B
B
B
B
B
@

y0

y1

y2

y3

y4

y5

y6

y7

y8

1

C
C
C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
@

x0

x3

x6

x1

x4

x7

x2

x5

x8

1

C
C
C
C
C
C
C
C
C
C
C
C
A

=

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1 · · · · · · · ·
· · · 1 · · · · ·
· · · · · · 1 · ·

· 1 · · · · · · ·
· · · · 1 · · · ·
· · · · · · · 1 ·

· · 1 · · · · · ·
· · · · · 1 · · ·
· · · · · · · · 1

3

7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

L9
3

|{z}
par(3, mpi)

·

0

B
B
B
B
B
B
B
B
B
B
B
B
@

x0

x1

x2

x3

x4

x5

x6

x7

x8

1

C
C
C
C
C
C
C
C
C
C
C
C
A

=

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1 · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · 1 · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · 1

3

7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

F

·

0

B
B
B
B
B
B
B
B
B
B
B
B
@

x0

x1

x2

x3

x4

x5

x6

x7

x8

1

C
C
C
C
C
C
C
C
C
C
C
C
A

+

+

2

6
6
6
6
6
6
6
6
6
6
6
6
4

· · · · · ·
1 · · · · ·
· 1 · · · ·

· · 1 · · ·
· · · · · ·
· · · 1 · ·

· · · · 1 ·
· · · · · 1
· · · · · ·

3

7
7
7
7
7
7
7
7
7
7
7
7
5

| {z }

S

2

6
6
6
6
6
6
4

· · 1 · · ·
· · · · 1 ·

1 · · · · ·
· · · · · 1

· 1 · · · ·
· · · 1 · ·

3

7
7
7
7
7
7
5

| {z }

C′

2

6
6
6
6
6
6
4

· 1 · · · · · · ·
· · 1 · · · · · ·

· · · 1 · · · · ·
· · · · · 1 · · ·

· · · · · · 1 · ·
· · · · · · · 1 ·

3

7
7
7
7
7
7
5

| {z }

G

·

0

B
B
B
B
B
B
B
B
B
B
B
B
@

x0

x1

x2

x3

x4

x5

x6

x7

x8

1

C
C
C
C
C
C
C
C
C
C
C
C
A

.

The matrixF encodes thatx0 (in processor 0’s memory),x4 (in processor 1’s memory), and
x8 (in processor 2’s memory) do not require communication and are moved fromx to y by
their respective processors. The matrixG specifies which elements of the vectorx become
which message. In our example the data packets arex1, x2 (sent by processor 0),x3, x5

(sent by processor 1), andx6, x7 (sent by processor 2).C′ is a 6 × 6 permutation matrix
encoding the send/receive addressing of the data packets. For instance, the entryC′4,1 = 1
of C′ = [C′i,j]i,j describes that message 1 sent by processor 0 (x2) is message 0 received by
processor 2. The matrixS describes the final location of the received data packets. For instance,
message 0 received by processor 2 (x2) will be stored at locationy6. Figure 2 shows the MPI
corresponding implementation.

Data redistribution. Formula (2) requires different data distributions forx andy. To cap-
ture this, we generalize the idea of all-to-all communication from the previous section to data
redistributions. Permutations

Pm ⊗ In with p, q | m, Pm permutation matrix∈ C
m×m (6)

reorderm chunks of data of sizen. Thus,

y =
(
Pm ⊗ In

)

︸ ︷︷ ︸

par(q←p)

x (7)

redistributes data fromp to q processors using message sizen and with the message addressing
encoded inP . We apply again the approach of the last section and decompose P into local

9

int proc[][] = {{1,2}, {0,2}, {0,1}}, // communication pattern
msg[][] = {{0,0}, {0,1}, {1,1}},
SG[][] = {{1,2}, {3,5}, {6,7}},
F[] = {0,1,2};

// parallel function, call by 3 MPI processes simultaneously
void L_9_3(double *yLocal, double *xLocal, int mpirank) {

// output: yLocal[3], input xLocal[3]; part of x[9] and y[9]
MPI_Request send[2], recv[2]; int i;
yLocal[F[mpirank]] = xLocal[F[mpirank]]; // y = Fx +...
for(i = 0; i < 2; i++){ // + SC’Gx

// nonblocking send
MPI_Isend(xLocal + SG[mpirank][i], // source ofs

1, MPI_DOUBLE,
proc[mpirank][i], // receiving proc
i, // msg id
MPI_COMM_WORLD, send + i);

// nonblocking receive
MPI_Irecv(yLocal + SG[mpirank][i], // target ofs

1, MPI_DOUBLE,
proc[mpirank][i], // sending proc
msg[mpirank][i], // msg id to get
MPI_COMM_WORLD, recv + i);

}
MPI_Waitall(1, recv, MPI_STATUSSES_IGNORE);

}

Figure 2. MPI program implementingy = L9
3x on 3 processors.

operations and communication to generated MPI code:

P = F + C.

As an example of a redistribution from 2 to 3 processors consider

y = L6
2

︸︷︷︸

par(3←2)

x =







x0

x2

x4

x1

x3

x5







=







1 · · · · ·
· · 1 · · ·
· · · · 1 ·
· 1 · · · ·
· · · 1 · ·
· · · · · 1






·







x0

x1

x2

x3

x4

x5







.

Processor 0 sends the messagex1 to processor 1.x0 andx2 stay in the memory of processor
0. Processor 1 sends the messagex3 andx5 to processor 2 and receivesx1 from processor 0.
x4 stays in in the memory of processor 1.

Parallelization through formula rewriting. Above we introduced formula constructs that
can be implemented as parallel computation or as communication. Products of these formulas
can be implemented as a sequence of parallel communication and communication steps. This
gives rise to the following definition.

Definition 1 (Parallelized formula). Formulas of the form (3), (4), (5), (7), and products of
these formulas are called parallelized. Parallelized formulas can be implemented using MPI.

10

However, not all formulas are parallelized. For instance, the right-hand side of (1) is not
a parallelized formula. Thus, we introduce a set of rewriting rules to use SPIRAL’s rewriting
system to transform formulas into parallelized formulas. This rule set is summarized in Table 2
and is one of the contributions of this paper. The rule set is designed for the generation of DFT
MPI code. Using this rule set, SPIRAL can automatically parallelize formulas for the DFT at a
high level of abstraction.

As a small example of the workings of the rewriting system consider

y = (Im ⊗An)
︸ ︷︷ ︸

par(p)

x. (8)

(8) is not parallelized form 6= p. Assumingp|m, the application of rule (13) transforms (8)
into

y =
(
Ip ⊗ (Im/p ⊗An)

)

︸ ︷︷ ︸

par(p)

x

which matches (3) and is thus parallelized in the sense of Definition 1. A more elaborate
example showing the parallelization of aDFTmn and rescaling it fromp to q processors is
given in the next section.

AB
|{z}

par(p)

→ A
|{z}

par(p)

B
|{z}

par(p)

(9)

A
|{z}

par(p)

→ A
|{z}

par(p←q←p)

, q|p (10)

AB
|{z}

par(p←q←p)

→ A
|{z}

par(p←q)

B
|{z}

par(q←p)

(11)

AB
|{z}

par(q←p)

→ A
|{z}

par(q)

B
|{z}

par(q←p)

(12)

Im ⊗ An
| {z }

par(p)

→ Ip ⊗
`
Im ⊗ An

´

| {z }

par(p)

(13)

(Am ⊗ In)
| {z }

par(p←q)

→ Lmn
m

|{z}

par(p←q)

(In ⊗ Am)Lmn
n

| {z }

par(q)

(14)

(Am ⊗ In)
| {z }

par(q←p)

→ Lmn
m (In ⊗ Am)

| {z }

par(q)

Lmn
n

|{z}

par(q←p)

(15)

Lmn
m

|{z}

par(p)

→
`
Ip ⊗ L

mn/p
m/p

´`
Lp2

p ⊗ Imn/p2

´`
Ip ⊗ (Ln

p ⊗ Im/p)
´

| {z }

par(p)

(16)

Lmn
m

|{z}

par(q←p)

→
`
Iq ⊗ (Ip/q ⊗ L

mn/p

m/p)
´

| {z }

par(q)

`
Lp2

p ⊗ Imn/p2

´

| {z }

par(q←p)

`
Ip ⊗ (Ln

p ⊗ Im/p)
´

| {z }

par(p)

(17)

Lmn
m

|{z}

par(p←q)

→
`
Ip ⊗ L

mn/p
m/p

´

| {z }

par(p)

`
Lp2

p ⊗ Imn/p2

´

| {z }

par(p←q)

`
Iq ⊗ (Ip/q ⊗ Ln

p ⊗ Im/p)
´

| {z }

par(q)

(18)

Table 2.Parallelization and rescaling rewriting rules.

11

4 Rescaling FFTs Using SPIRAL

The framework developed in Section 3 allows us to explore trade-offs between communication
and computation. Assume a subroutine computing a DFT onp processors in parallel. Depend-
ing on the cost of communication and the speed of processors,computing onq < p processors
may speed up the computation. However, the initial and final data distribution onp processors
is fixed by the subroutine’s interface. In this situation theperformance gain by computing on
only q processors can easily be lost in the necessary data redistribution fromp to q processors
before the computation andq to p processors after the computation.

Rescaling. Using the parallelization rules in Table 1 we can systematically derive formulas
that internally use less processors than at the beginning and at the end of the computation.
Further, the necessary redistribution is performed as partof the communication that has to be
done anyway. Thus, these formulas are candidates to speed upthe whole computation without
changing the subroutine interface. We call this approachrescaling.

Specifically, we perform downscaling (to fewer processors)together with the first occurring
communication step, while upscaling is performed with the last communication step. Hence,
all encapsulated communication steps profit of the reduced communication effort.

After choosing a number of processors to rescale to, there isstill to decide whichq of thep
processors to use for calculation. On machines with non-uniform communication structure (for
instance clusters of symmetric multiprocessors) this can be an important choice that strongly
influences the achieved performance.

In SPIRAL, the formula rewriting is performed automatically; SPIRAL’s search will find a
formula, and thus a rescaling strategy that performs fastest on the given platform.

Example: Rescaled DFT.We show the rewriting process that parallelizes aDFTmn, for p |
m, n, acrossp processors and rescales it toq | p processors for the intermediate computation
steps. In SPIRAL, this derivation is done automatically. We tagDFTmn for p processors and
expand it using rules (1) and (10)–(12):

DFTmn
︸ ︷︷ ︸

par(p)

→ (DFTm⊗In)
︸ ︷︷ ︸

par(p←q)

T mn
n

︸︷︷︸

par(q)

(Im ⊗DFTn)
︸ ︷︷ ︸

par(q)

Lmn
m

︸︷︷︸

par(q←p)

.

This introduces rescaling toq processors. Next we apply rules (9), (14), and (16)–(18) to for-
mally parallelize:

→
(
Ip ⊗ L

mn/p
m/p

)

︸ ︷︷ ︸

par(p)

(
Lp2

p ⊗ Imn/p2

)

︸ ︷︷ ︸

par(p←q)

(
Iq ⊗ (Ip/q ⊗ Ln

p ⊗ Im/p)
)

︸ ︷︷ ︸

par(q)

(
Iq ⊗ (In/q ⊗DFTm)

)

︸ ︷︷ ︸

par(q)

·
(
Iq ⊗ L

mn/q
m/q

)

︸ ︷︷ ︸

par(q)

(
Lq2

q ⊗ Imn/q2

)

︸ ︷︷ ︸

par(q)

(
Iq ⊗ (Ln

q ⊗ Im/q)
)

︸ ︷︷ ︸

par(q)

T mn
n

︸︷︷︸

par(q)

(
Iq ⊗ (Im/q ⊗DFTn)

)

︸ ︷︷ ︸

par(q)

·
(
Iq ⊗ (Ip/q ⊗ L

mn/p
m/p)

)

︸ ︷︷ ︸

par(q)

(
Lp2

p ⊗ Imn/p2

)

︸ ︷︷ ︸

par(q←p)

(
Ip ⊗ (Ln

p ⊗ Im/p)
)

︸ ︷︷ ︸

par(p)

.

(19)
Inspection shows that the final expression is parallelized in the sense of Definition 1.

Analysis. The communication and computation cost of (19) depends on the choice of the
scaling factork = p/q. Table 3 summarizes the effect of scaling on packet size, number

12

computation data volume packet size #packets

O(k) O(1) O(k2) O(1/k2)

Table 3.Effect of rescaling byk = p/q on computation and communication.

of packets, computation cost, and total data to be transmitted as function ofk. In essence,
scaling down keeps the overall amount of data to be transmitted practically constant while
increasing the message size and the computation cost. The best choice ofq depends on the
relation between the speed of the processor, the communication latency, and the bandwidth.

5 Experimental Results

In this section we evaluate our approach. We first show that rescaling speeds up smaller DFTs.
Then we show that our generated DFT programs compare favorably with FFTW.

Benchmark setup. All experiments were done with complex-to-complex double-precision
2-power FFTs. The platform is a cluster of AMD Opteron 250 CPUdual nodes running at
2.4 GHz, connected by a Mellanox InfiniBand high speed network with a theoretical peak of
10 Gb/s and 4µs latency. All codes were compiled using the GNU C compiler 3.4.4 with the
option-O3 and linked with the mvapich 0.9.5 MPI library. Performance data is given in pseudo
Mflop/s computed as5n log n/t, wheren is the DFT size andt the runtime in microseconds.
This measure is proportional to inverse runtime and hence preserves runtime relationships.
Further, it gives an indication of the absolute floating-point performance [12].

Experiment 1: Rescaling. Figures 3(i)–(iii) show the performance impact of rescaling for
the problem sizes212, 215, and218. We start withp = 16 processors and let SPIRAL gen-
erate downscaling programs forq = 1, 2, 4, 8, and 16 processors (16 processors implies no
downscaling). We compare the performance of the original and the downscaled programs to
FFTW-MPI running on 16 processors. Figures 3(i) and(ii) show a performance peak atq = 8
processors. Thus, for the sizes212 and215 we gain from downscaling. Figure 3(iii) shows
thatp = 16 processors are required for the best performance at problemsize218. For this size,
the increased workload per processor overcompensates the gain in communication speed.

On the benchmark platform, rescaling speeds up only for smaller sizes. On machines with
slower, higher-latency networks we saw performance gains due to rescaling for larger problem
sizes.

Experiment 2: Comparison to FFTW. Figure 4(ii) shows the speed-up of SPIRAL generated
FFT programs run on 16 CPUswithout downscaling, andwith optimal downscaling (8 CPUs
for small sizes), compared to FFTW-MPI 2.1.5 using 16 CPUs. For sizes up to217, downscaling
provides significant performance gains. For these sizes SPIRAL generated programs are up to
80% faster than FFTW-MPI. For larger sizes, SPIRAL’s performance is comparable to FFTW-
MPI.

Figure 4(i) shows the same experiment, but for 8 CPUs. The optimal downscaling found
in this case is to 4 CPUs for small sizes. SPIRAL generated MPI programs are between 1.5 and
2.5 times faster than FFTW-MPI, showing higher relative speed for problems smaller than216.

13

 0

 0.2

 0.4

 1 2 4 8 16

G
flo

p/
s

Spiral MPI
FFTW 2.1.5 MPI

(i) n = 212

 0

 0.5

 1

 1.5

 1 2 4 8 16

G
flo

p/
s

Spiral MPI
FFTW 2.1.5 MPI

(ii) n = 215

 0

 1

 2

 3

 1 2 4 8 16

G
flo

p/
s

Spiral MPI
FFTW 2.1.5 MPI

(iii) n = 218

Figure 3. Effect of downscaling fromp = 16. The plots show, for three DFT sizesn, the best per-
formance obtained for different scaling factorsk = p/q. p = 16 and thex-axis is labeled withq. The
dashed line is the performance achieved by FFTW. Higher is better.

1

2

3

26 28 210 212 214 216 218 220 222 224

S
pe

ed
-U

p

Vector Length

Speed-Up Relative to FFTW MPI

rescaled Spiral MPI
non-rescaled Spiral MPI

(i) 8 CPUs

1

1.5

2.0

28 210 212 214 216 218 220 222 224

S
pe

ed
-U

p

Vector Length

Speed-Up Relative to FFTW MPI

rescaled Spiral MPI
non-rescaled Spiral MPI

(ii) 16 CPUs

Figure 4. Relative performance.Performance of SPIRAL generated MPI FFT programs without down-
scaling (dashed), and optimally rescaled (solid), relative to FFTW-MPI 2.1.5. Higher is better.

6 Conclusion

We presented a formal framework for generating efficient MPIalgorithms by rewriting formu-
las representing FFT algorithms. We applied the framework to implement the idea of flexible
rescaling and thus enable adaptation to a platform’s characteristics. By including the frame-
work into SPIRAL’s infrastructure, the entire implementation and adaptation process is au-
tomated. It is worth pointing out that we used very similar approaches before to the related
problems of vectorization and shared memory parallelization. In fact, all these optimizations
are performed using the same infrastructure in SPIRAL. Since our approach is formula based,
it is domain-specific but can be generalized to other linear transforms.

Ongoing work aims to enable SPIRAL to optimize the runtime of the DFT including possi-
ble data redistributions. This way, the user can specify thedesired data layout before and after
the computation to interface with his application. As both data distribution and transform are
represented on a mathematical level they can be optimized jointly, thus reducing the overhead.

References

1. A. Adelmann, A. Bonelli, W. P. Petersen, and C. W. Ueberhuber. Communication efficiency of
parallel 3D FFTs. InProc. High Performance Computing for Computational Science (VECPAR),
volume III, pages 901–907, 2004.

14

2. G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V.Choppella, D. Cociorva, X. Gao, R. J.
Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer,
J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance parallel programs
for a class of ab initio quantum chemistry models.In [17], pages 276–292, 2005.

3. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. SCALAPACK Users’ Guide.
SIAM, Philadelphia, PA, 1997.

4. N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and A. Voronkov, editors,Handbook
of Automated Reasoning, volume 1, chapter 9, pages 535–610. Elsevier, 2001.

5. M. Eleftheriou, B. Fitch, A. Rayshubskiy, T. C. Ward, and R. Germain. Scalable framework for
3D FFTs on the Blue Gene/L supercomputer: Implementation and early performance measurements.
IBM Journal of Research and Development, 49(2/3):457–464, 2005.

6. A. Faraj and X. Yuan. Automatic generation and tuning of MPI collective communication routines.
In Proc. International Conference on Supercomputing (ICS), pages 393–402, 2005.

7. F. Franchetti and M. Püschel. A SIMD vectorizing compiler for digital signal processing algorithms.
In Proc. International Parallel and Distributed Processing Symposium (IPDPS), pages 20–26, 2002.

8. F. Franchetti, Y. Voronenko, and M. Püschel. Loop merging for signal transforms. InProc. Pro-
gramming Language Design and Implementation (PLDI), pages 315–326, 2005.

9. F. Franchetti, Y. Voronenko, and M. Püschel. FFT programgeneration for shared memory: SMP and
multicore. InProc. Supercomputing (SC), 2006.

10. F. Franchetti, Y. Voronenko, and M. Püschel. A rewriting system for the vectorization of signal
transforms. InProc. High Performance Computing for Computational Science (VECPAR), 2006. On
CD-ROM.

11. M. Frigo. A fast Fourier transform compiler. InProc. Programming Language Design and Imple-
mentation (PLDI), pages 169–180, 1999.

12. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. InProc. In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 3, pages
1381–1384. IEEE, 1998.

13. M. Frigo and S. G. Johnson. The design and implementationof FFTW3. In [17], pages 216–231,
2005.

14. G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Automatic parallel code generation for
tiled nested loops. InProc. Symposium on Applied Computing (SAC), pages 1412–1419. ACM
Press, 2004.

15. F. Gygi, E. Draeger, B. R. de Supinski, R. K. Yates, F. Franchetti, S. Kral, J. Lorenz, C. W. Ueber-
huber, J. Gunnels, and J. Sexton. Large-scale first-principles molecular dynamics simulations on the
Blue Gene/L platform using the Qbox code. InProc. Supercomputing (SC), page 24, 2005.

16. J. Johnson and K. Chen. A self-adapting distributed memory package for fast signal transforms. In
Proc. International Parallel and Distributed Processing Symposium (IPDPS), page 44a, 2004.

17. J. M. F. Moura, M. Püschel, D. Padua, and J. Dongarra, editors. Special Issue on Program Genera-
tion, Optimization, and Platform Adaptation, volume 93(2) ofProceedings of the IEEE, 2005.

18. J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,E. Gabriel, and J. Dongarra. Performance
analysis of MPI collective operations.Cluster Computing Journal, Special Issue on Performance
Modeling and Evaluation of Parallel and Distributed Systems, 2006. Accepted for publication.

19. M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong, F. Franchetti,
A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for
DSP transforms.In [17], pages 232–275, 2005.

20. Spiral web site. www.spiral.net.
21. C. Van Loan.Computational Frameworks for the Fast Fourier Transform, volume 10 ofFrontiers in

Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992.

