
Short Vector Code Generation for the
Discrete Fourier Transform

Franz Franchetti∗

Applied and Numerical Mathematics
Technical University of Vienna, Austria

franz.franchetti@tuwien.ac.at

Markus Püschel
Electrical and Computer Engineering

Carnegie Mellon University
pueschel@ece.cmu.edu

Abstract

In this paper we use a mathematical approach to
automatically generate high performance short vector
code for the discrete Fourier transform (DFT). We rep-
resent the well-known Cooley-Tukey fast Fourier trans-
form in a mathematical notation and formally derive a
“short vector variant”. Using this recursion we gen-
erate for a given DFT a large number of different al-
gorithms, represented as formulas, and translate them
into short vector code. Then we present a vector code
specific dynamic programming method that searches in
the space of different implementations for the fastest on
the given architecture. We implemented this approach
as part of the SPIRAL library generator. On Pentium III
and 4, our automatically generated SSE and SSE2 vec-
tor code compares favorably with the hand-tuned Intel
vendor library.

1. Introduction

Short Vector Extensions. The computational sim-
plicity of multimedia applications has spawned the in-
vention of short vector SIMD (single instruction, multi-
ple data) extensions, which are included in most recent
instruction set architectures. These extensions provide
datatypes and instructions to operate in parallel on short
vectors (currently of length 2 or 4) of floating point num-
bers. Table 1 gives an overview on these extensions. Ex-
amples include SSE (4-way single precision) provided
by Pentium III/4 and Athlon XP, and SSE2 (2-way dou-
ble precision) provided by Pentium 4.

Short vector instructions provide a large potential
speed-up (factors of 2 or 4) for performance-critical ap-
plications, but pose a difficult challenge for software de-
velopers for the following reasons:

∗This work was supported by the Special Research Program SFB
F011 “AURORA” of the Austrian Science Fund FWF and by DARPA
through research grant DABT63-98-1-0004 administered by the Army
Directorate of Contracting.

• Automatic vectorization of C code by compilers is
very limited for all but the most simple programs and
yields only moderate speed-up. Most code cannot be
vectorized at all.

• No common programming interface (API) exists for
using these instructions. The programmer has either
to resort to assembly programming or to the use of
C language extensions (called intrinsics or built-in
functions) provided by the vendor. These intrinsics
are not standardized, neither across compilers nor
across architectures. Both strategies require a high
level of programming expertise and yield code that is
not portable.

• The performance of short vector instructions is very
sensitive to the data access pattern during computa-
tion. Unaligned and non-unit stride access can dete-
riorate performance.

Vendor Name n-way Prec. Processor

Pentium III
Intel SSE 4-way single Pentium 4
Intel SSE2 2-way double Pentium 4

Itanium
Intel IPF 2-way single Itanium 2
AMD 3DNow! 2-way single K6

Enhanced K7, Athlon XP
AMD 3DNow! 2-way single Athlon MP

3DNow! Athlon XP
AMD Professional 4-way single Athlon MP

Motorola AltiVec 4-way single MPC 74xx G4

Table 1. Short vector SIMD extensions.

DFT Vector Code Generation. In this paper we ad-
dress the problem of creating high performance short
vector code for the discrete Fourier transform (DFT),
which is ubiquitously used in signal processing and
across scientific disciplines and has in many applica-
tions a virtually unlimited need for performance. Our
approach is based on SPIRAL [6], a library generator
for digital signal processing (DSP) transforms. SPI-
RAL generates for a given transform many different al-

1

gorithms, represented as mathematical formulas. These
formulas are translated into programs, which are timed
on the given platform. By intelligently searching in the
space of these formulas and their implementations, SPI-
RAL automatically finds an algorithm and its implemen-
tation that is adapted to the given architecture. In [2] we
extended SPIRAL to generate SSE vector code for the
DFT and other transforms. We presented
• a short vector API of C macros that can be efficiently

implemented on all current short vector architectures;
and

• a set of basic formula building blocks that can be ef-
ficiently implemented using the API.

In this paper we present the additional tools that are nec-
essary to generate very fast DFT implementations across
platforms and across vector extensions.
• We formally derive a short vector version of the fa-

mous Cooley-Tukey fast Fourier transform (FFT) for
a complex input vector in the interleaved format (real
and imaginary part alternately). The new variant
consists exclusively of building blocks that are effi-
ciently vectorizable on all current short vector SIMD
architectures, i.e., it can be implemented using vector
memory access, vector arithmetic, and a small num-
ber of in-register permutations.

• We present two vector code specific dynamic pro-
gramming search methods.

We included these methods into SPIRAL to automati-
cally generate short vector DFT code for different plat-
forms using the SSE and SSE2 instruction set. Our gen-
erated code is competitive with or faster than the hand-
tuned Intel vendor library MKL 5.1. and yields a speed-
up compared to the best available C code (from FFTW
2.1.3 [3] or SPIRAL) of up to a factor of 3.3 for SSE, and
up to a factor of 1.8 for SSE2 code. We also show that
the best algorithm found depends on the platform and
on the data format (i.e., scalar, SSE2, and SSE), and that
automatic compiler vectorization yields suboptimal per-
formance. In summary, our approach provides portable
short vector code and portable high performance.

Related Work. Because of the problems sketched
above, there are only few research efforts on short vec-
tor DFT code. Reference [9] provides a DFT implemen-
tation using SSE, and is included in our benchmarks.
FFTW 2.1.3 [3] provides very efficient C code, but no
short vector code. The best currently available SSE code
is provided by the vendor library MKL 5.1. FFTW-
GEL [5] provides short vector code, but the vectoriza-
tion technique is restricted to two-way short vector ex-
tensions. FFTW-GEL for 3DNow! and SSE2 is included
in our benchmarks. Finally, we want to note that the
“original” vector computers used a decade or longer ago
had a typical vector length of at least 64, and a high
startup cost for using vector instructions [4]. As a con-

sequence, the algorithms designed for these platforms
are not suitable for short vector implementations. The
corresponding libraries were implemented in assembly
and can thus not be used for benchmarking against our
generated code.

Organization. In Section 2 we give an overview
of SPIRAL and explain the mathematical framework
that we use to represent and manipulate DFT algo-
rithms. Section 3 contains the main advances: a recur-
sion method for the DFT suitable for vectorization, and
methods to search the space of algorithms that can be
derived from it. We benchmark our generated DFT code
in Section 4 and conclude with Section 5.

2. Background: SPIRAL and the Mathe-
matics of Transforms

In this section we provide the background for our ap-
proach to automatic generation and platform adaptation
of short vector code for the discrete Fourier transform
(DFT). First, we briefly introduce SPIRAL, a code gen-
erator for DSP transforms, which provides the context
and the methodology for our approach. Then we explain
the formal mathematical notation that we use throughout
the paper to represent and manipulate DFT algorithms.

2.1. SPIRAL

SPIRAL is a generator for high performance code for
DSP transforms like the DFT, the discrete cosine trans-
forms (DCTs), and many others [6]. SPIRAL uses a
mathematical approach that translates the implementa-
tion problem into a search in the space of structurally
different algorithms and their possible implementations
to generate code that is adapted to the given comput-
ing platform. At the heart of SPIRAL’s approach is a
concise mathematical language that represents the many
different algorithms for a transform as formulas. These
formulas are automatically generated and automatically
translated into code, thus enabling automated search for
the best.

The architecture of SPIRAL is shown in Figure 1.
The user specifies a transform she wants to implement,
e.g., a DFT of size 1024. The Formula Generator mod-
ule expands the transform into one (or several) formulas,
i.e., algorithms, represented in the SPIRAL proprietary
language SPL (signal processing language). The For-
mula Translator (also called SPL compiler) translates
the formula into a C or Fortran program. The runtime of
the generated program is fed back into a Search Engine
that controls the generation of the next formula and pos-
sible implementation choices, such as the degree of loop
unrolling. Iteration of this process yields a platform-
adapted implementation. Search methods in SPIRAL

2

include dynamic programming and evolutionary algo-
rithms. By including the mathematics in the system,
SPIRAL can optimize, akin to a human expert program-
mer, on the implementation level and the algorithmic
level to find the best match to the given platform. Further
information on SPIRAL can be found in [6, 8, 7, 12, 10].

-

�

�

Se
ar

ch
E

ng
in

e

Platform-Adapted Implementation

⇓

Performance
Evaluation

⇓

Formula
Translator

⇓

Formula
Generator

⇓

Signal Transform

Benchmarking
tools

Implementations
by domain specific

compiler

Algorithms in
uniform algebraic

notation

Figure 1. The architecture of SPIRAL.

In [2] we made first steps in extending SPIRAL to
generator short vector code. In this paper we show how
to use this methodology to obtain very fast DFT code.

2.2. Mathematical Framework

In this section we describe SPIRAL’s mathematical
framework, which is the foundation of our approach.
The key point is the representation of algorithms as
mathematical formulas. SPIRAL generates these for-
mulas (as SPL programs) and translates them into code
(see Section 2.1). To obtain fast short vector code, this
approach is not sufficient. We will show in Section 3.2
how to formally manipulate DFT formulas using math-
ematical identities to obtain the structure necessary for
the generation of high performance vector code.

DSP Transforms and Algorithms. A (linear) DSP
transform is a multiplication of the sampled signal x ∈
C

n by a transform matrix M of size n × n, x 7→ M · x.
In this paper we are mainly concerned with the DFT,
which, for size n, is given by the matrix

DFTn = [ωk`
n |≤ k, ` < n], ωn = e2π

√
−1/n.

Fast algorithms for DSP transform can be represented
as structured sparse factorizations of the transform ma-
trix. The famous Cooley-Tukey fast Fourier transform
(FFT) is a recursion method that computes a DFTmn

from smaller DFTm’s and DFTn’s. It can be written as

DFTmn= (DFTm ⊗ In)Tmn
n (Im ⊗DFTn) Lmn

m (1)

(see [11]), where we denote with In the n × n identity
matrix, by Tmn

n the complex twiddle diagonal matrix,
and by Lmn

n : im + j 7→ jn + i, 0 ≤ j < m, 0 ≤ i <
n the stride permutation matrix; Lmn

n reads an input at
stride n and stores it at stride 1. Particularly important
is the tensor or Kronecker product of matrices, and the
direct sum, respectively defined as

A ⊗ B =





a1,1 · B . . . a1,n · B
...

. . .
...

an,1 · B . . . an,n · B



 (2)

with A = [ak,`]0≤k,`≤n, and

A ⊕ B =

[
A

B

]

.

The latter will occur later. These definitions show that
all factors in (1) are sparse, and that the factorization (1)
reduces the arithmetic cost of computing a DFT. We call
Equation (1) a breakdown rule or simply rule. Recur-
sive application of rules until all occurring transforms
are base cases yields a formula which defines a fast al-
gorithm. For example, a formula for a DFT8 can be de-
rived by applying (1) twice (corresponding to 8 = 4 · 2,
followed by 4 = 2 · 2):

((
(DFT2 ⊗ I2) T4

2 (I2 ⊗DFT2) L4
2

)
⊗ I2

)

T8
2(I4 ⊗DFT2) L8

4 .

In this paper we consider only DFTs of 2-power size
n = 2k and only rule (1) for formula generation. How-
ever, the presented framework covers all linear DSP
transforms [8]. The degree of freedom in choosing a
factorization of the transform size in each step leads to
a large number of formulas with about equal arithmetic
cost, but different structure, which leads to different run-
times when implemented. SPIRAL uses search in the
space of formulas for optimization and platform adapta-
tion.

Formulas and Programs. Formulas are a natural
representation of algorithms from a mathematical point
of view, but also have an intuitive interpretation as pro-
grams, and can thus be translated into code (by SPI-
RAL’s SPL compiler [12]). For example, multiplying
a tensor product In ⊗A or A ⊗ In to an input vector x
leads to loop code (if desired), or, a permutation deter-
mines in which order the elements of x are accessed.
This access pattern is one of the main problems when
generating vector code. We use formula manipulation to
solve this problem.

Formula Manipulation. A given formula can be
manipulated using mathematical identities to derive cor-
rect variations with different structure, i.e., different data
flow. Important examples for formula manipulations in-
clude (the subscript of A,B denotes the matrix size)

(Lmn
m)−1 = Lmn

n (3)

3

and

Lmn
n (Am ⊗ Bn) Lmn

m = (Am ⊗ Bn)L
mn

m

= (Bn ⊗ Am),
(4)

where MP = P−1MP denotes conjugation. Further
identities can be found in Table 2. We will use these
identities in Section 3 to derive a short vector variant of
the Cooley-Tukey FFT (1).

Imn = Im ⊗ In (5)

(Lmn

m)−1 = Lmn

n (6)

Lkmn

m Lkmn

n = Lkmn

n Lkmn

m = Lkmn

mn (7)

Lkmn

n = (Lkn

n ⊗ Im)(Ik ⊗Lmn

n) (8)

Lkmn

km
= (Ik ⊗Lmn

m)(Lkn

k
⊗ Im) (9)

Lmn

n (Am ⊗ Bn) Lmn

m = (Am ⊗ Bn)L
mn

m = (Bn ⊗ Am) (10)

(Isk ⊗Ams×n) Lskn

sk
=

(

Ik ⊗ (Lms

s ⊗ Is)
(

Im ⊗Ls
2

s

)

(Ams×n ⊗ Is)
) (

Lkn

k
⊗ Is

)

(11)

Table 2. Formula manipulations.

Complex Arithmetic. Above we represented DFT
algorithms as formulas built from matrices with complex
entries. However, vector instructions provide only real
arithmetic of vectors with their elements stored contigu-
ously in memory. Thus, to map formulas to vector code,
we have to translate complex formulas into real ones. As
data format we choose the commonly used interleaved
complex format (alternately real and imaginary part) and
express it formally as a mapping of formulas. We use the
fact that the complex multiplication (u+ iv) · (y + iz) is
equivalent to the real multiplication [u −v

v u] · [y
z]. Thus,

the complex matrix-vector multiplication M · x ∈ C
n

corresponds to M · x̃ ∈ R
2n, where M arises from M

by replacing every entry u + iv by the corresponding
(2 × 2)-matrix above, and x̃ is in interleaved complex
format. To evaluate the (·) of a formula we use the set of
identities given in Table 3. For example, A · B = A ·B.

3. Generating Fast Short Vector DFT Code

To generate very fast short vector code for the DFT we
need to provide a set of tools that extend all 3 modules
of SPIRAL (see Figure 1). We order them conceptually
from low to high level:
• A short vector API implemented as C macros that can

be implemented on any short vector architecture. The
API was developed as part of [2].

• A set of formula building blocks that can be mapped
to efficient vector code on all current vector exten-
sions using this API and that is sufficient to imple-
ment the DFT.

A · B = A · B (12)

A = A ⊗ I2, A real (13)

Am ⊗ In = (Am ⊗ In)(Im ⊗L
2n

2) (14)

Am ⊗ Iν = (Am ⊗ Iν)(Im ⊗L
2ν

2) (15)

Am ⊗ In = (Am ⊗ I n

ν
⊗ Iν)

(

I mn

ν

⊗L
2ν

2

)

(16)

D
′
= D

(

I n

ν

⊗L
2ν

ν

)

, D = diag(c0, . . . , cn−1) (17)

Table 3. Identities for the bar operator (·).

• A short vector FFT rule, derived from (1), that is ex-
clusively built from these building blocks, and thus
can be used to generate a large class of vectorizable
formulas (see Section 2.2) that constitute the algo-
rithm search space.

• A vector code specific search method to find a fast
implementation.

We explain the latter three bullets in the following.

3.1. Formula Building Blocks

Our portable SIMD API is designed such that the only
architectural parameter on the formula level is the the
vector length ν of the short vector SIMD extension. In
this section we present a set of basic formula constructs,
parameterized by ν, that can be efficiently implemented
using the API, and thus on every short vector architec-
ture. In other words, the structure of the building blocks
allows their implementation using exclusively aligned
vector memory access, vector arithmetic, vector permu-
tations, and certain register permutations.

Tensor Product. The simplest construct that can be
naturally mapped to vector code is any tensor product of
the form

A ⊗ Iν , A ∈ R
m×n. (18)

The corresponding code is obtained by replacing every
scalar operation in a program for the formula A by a
ν-way vector operation. A is subsequently called vec-
tor terminal, since the construct solves the vectorization
problem independent of A. In particular, DFTn ⊗ Iν
can be completely vectorized, no matter how DFTn is
further expanded.

Permutations. All permutations of the form

P ⊗ Q = (P ⊗ Im)(In ⊗Q), (19)

where Q ∈
{

Iν , L2ν
2 , L2ν

ν , Lν2

ν

}

and P is arbitrary, are

included. The permutation P ⊗ Im operates on blocks
of length m ∈ {ν, 2ν, ν2}, i.e., ν | m, and can thus be
realized using vector variables. In ⊗Q is implemented
by applying Q to n blocks of m/ν vector variables. The

4

register-to-register permutations required by the differ-
ent Q’s can be implemented on all SIMD architectures,
on some by specialized instructions. The actual imple-
mentation of Q is hidden by the portable SIMD API.

Complex Diagonals. The last basic construct covers
complex diagonal matrices D = diag(c0, . . . , cν−1),
ck = ak + ibk, which cannot directly be mapped ef-
ficiently onto short vector instructions (note that D is
a direct sum of 2 × 2 matrices, which has no obvi-
ous vector structure). We conjugate complex diagonals
(AP = P−1AP) to obtain

D
′
= D

L2ν

ν =
[
diag(a0, . . . , aν−1) − diag(b0, . . . , bν−1)
diag(b0, . . . , bν−1) diag(a0, . . . , aν−1)

]

(20)
The construct in (20) has the same structure as (18) with
A ∈ R

2×2, only the the nonzero entries vary, and can
thus be implemented using ν-way vector arithmetic. To
implement the complex twiddle diagonal T

mn

n in (1), we
divide it into subdiagonals Di of length ν and apply (20).
Formally,

T
′mn

n = T
mn

n

(

I mn

ν
⊗L2ν

ν

)

=

mn

ν
−1

⊕

i=0

D
′
i, ν | mn

(21)
In the remainder of this paper, we will refer to the

constructs defined by (18), (19), (20), and (21) as vector
constructs.

3.2. Short Vector FFT Rule

In this section we derive a short vector variant of the
Cooley-Tukey FFT rule given in (1) (in real arithmetic,
i.e., with (·) applied). The derived rule is exclusively
built from the constructs presented in Section 3.1 and is
thus parameterized by the vector length ν, which ensures
complete vectorization on all current short vector SIMD
architectures using our vector API. Further, the rule ex-
pands a given DFT in one step into vector terminals that
can be further expanded using the ordinary scalar rule
(1), which gives rise to a large space of vectorizable for-
mulas. We will show in Section 4 that by searching this
space we can generate very fast code.

3.2.1 Derivation

The starting point for the derivation is (1) mapped to real
arithmetic, i.e.,

DFTmn=(DFTm ⊗ In)Tmn
n (Im ⊗DFTn)Lmn

m (22)

and we assume that

ν | m and ν | n.

The standard way of translating (1) into real code us-
ing the complex interleaved format corresponds to a
straightforward application of the identities in Table 3,

starting with distributing (·) over the factors in (22) to
get

DFTmn =(DFTm ⊗ In)(Im ⊗L2n

2)

T
mn

n (Im ⊗DFTn)(Lmn
m ⊗ I2)

(23)

This formula is not built exclusively from vector con-
structs (see Section 3.1). Formally, when mapping it to
vector instructions the following difficulties occur:

• Lmn
m ⊗ I2 does not match (19) for ν 6= 2.

• Im ⊗L2n
2 and Im ⊗L2n

n do not match (19) (n 6= ν).

• DFTm ⊗ In and Im ⊗DFTn do not match (18)
(they are no vector terminals).

• T
mn

n does not match (21).

Thus, this formula cannot be directly mapped to short
vector SIMD hardware without further manipulation.
Using the identities in Table 2 and (17), it is possible
to modify (23) to obtain a better structure. However,
the problem of Lmn

n ⊗ I2 remains and forces sub-vector
access. We have tried different variants of (23) and ob-
tained moderate to good runtime results in [1, 2].

The key to complete and efficient vectorization, a bet-
ter overall structure, and higher performance, is to pur-
sue a different derivation that starts by applying the bar
operator in (22) differently to the derivation of (23). We
present the derivation in detail.

We start by distributing the bar operator in (22) over
only three factors, using identity (12), and obtain

DFTmn=(DFTm ⊗ In)
︸ ︷︷ ︸

(a)

T
mn

n
︸︷︷︸

(b)

(Im ⊗DFTn) Lmn
m

︸ ︷︷ ︸

(c)

(24)
To further manipulate (a), we can use any of the identi-
ties (14)–(16) in Table 3. It turns out that (16) is best,
since it leads later to a cancellation of permutations and
thus a simpler structure. We obtain

(DFTm ⊗ In) =
(
DFTm ⊗ In

ν
⊗ Iν

)
(

I mn

ν
⊗L2ν

2

)

.

Note that the construct DFTm ⊗ In

ν
is a vector terminal,

i.e., it matches (18), and can thus be further expanded by
the scalar rule (1).

Construct (b) in (24) is a complex diagonal matrix
and is transformed by applying the identities (6) and (17)
to get

T
mn

n = T
′mn

n

(

I mn

ν
⊗L2ν

2

)

. (25)

Construct (c) requires the most complicated transforma-
tion among the three factors in (24). We first manipulate
the complex formula, and then apply the bar operator.
By factoring the stride permutation (identities (5), (8)),
partially flipping the tensor product (identity (10)), and

5

DFTmn =
(
Imn

ν
⊗L2ν

ν

)(
DFTm ⊗ In

ν
⊗ Iν

)
T

′mn

n

(

Im

ν
⊗

(
L2n

ν ⊗ Iν
)(

I 2n

ν

⊗Lν2

ν

)(
DFTn ⊗ Iν

))(

L
mn

ν
m

ν

⊗L2ν
2

)

(26)

Table 4. Short vector variant of the Cooley-Tukey FFT, ν | m, n.

using several other identities in Table 3, we obtain a spe-
cial case of (11),

(Im ⊗DFTn) Lmn
m =

(

Im

ν
⊗ (Ln

ν ⊗ Iν)
(

In

ν
⊗Lν2

ν

)

(DFTn ⊗ Iν)
)(

L
mn

ν
m

ν

⊗ Iν

)

.

The permutation on the right side of DFTn ⊗ Iν per-
mutes blocks while the permutations on the left side is
a product of a permutation on blocks and a permutation
within blocks. In a second step, the bar operator is ap-
plied to obtain a real formula. Using now identities from
Table 3 we obtain the desired structure

(Im ⊗DFTn) Lmn
m =

(
Imn

ν
⊗L2ν

ν

)(

Im

ν
⊗

(
L2n

ν ⊗ Iν
)

(

I 2n

ν

⊗Lν2

ν

)(
DFTn ⊗ Iν

)) (

L
mn

ν
m

ν

⊗L2ν
2

)

This equation now consists exclusively of vector con-
structs. Again, DFTn is a vector terminal, which can be
further expanded by the scalar rule (1).

Now all factors in (24) are built exclusively from vec-
tor constructs. By multiplying the derived factors, some
permutations introduced as conjugations cancel out us-
ing identity (6). This cancellation simplifies data flow,
and thus improves performance, and is another reason
for the particular choice of transformations above. The
final short vector rule (26) for the DFT is displayed in
Table 4.

In summary we obtain the main result of this pa-
per: an FFT variant that consists exclusively of vector-
izable constructs and decomposes a given DFTmn, for
ν | m,n, into vector terminals DFTm ⊗ In

ν
and DFTn,

which both can be further expanded using scalar rules,
e.g., by (1). Thus, all formulas derived this way can be
efficiently vectorized. We note that a formal transposi-
tion of (26) yields a different fully vectorizable rule.

Next, we explain how the formulas generated from
(26) are mapped into vector code.

3.2.2 Implementation

For the code generation we use the SIMD version of
SPIRAL’s SPL compiler developed in [2]. All formu-
las generated using the vector FFT rule (26) match the
general construct this compiler can translate into vec-
tor code and the generated code uses exclusively vector
memory access. We briefly describe how the SIMD SPL
compiler translates the occurring constructs. For further

information we refer the reader to [2]. The generated
code is C code using the macros of our SIMD API.

Vector Terminals. Vector code for vector terminals
A ⊗ Iν is generated by generating scalar code for A
and replacing every scalar operation by the correspond-
ing vector operation.

Permutations. Any permutation in a final formula that
is not part of a vector terminal matches equation (19).
The short vector SPL compiler fuses these permutations
with memory access operations required by the subse-
quent computation. Finally, they are implemented via
variable renaming and calls to combined memory access
and reordering macros that are part of the portable SIMD
API. No additional (scalar) memory access is caused by
this method.

Twiddle Matrix. The construct T
′mn

n is handled as a
pre- or post-processing scaling operation of memory ac-
cess operations.

3.3. Vector Code Specific Search Methods

SPIRAL provides different search methods to find the
best algorithm for a given computing platform, includ-
ing dynamic programming (DP), STEER (an evolution-
ary algorithm) [10], a hill climbing search, and exhaus-
tive search. For scalar DFT implementations, it turns
out that in general DP is a good choice since it ter-
minates fast (using only (1), DP times at the order of
O(n2) formulas, where n is the transform size) and
finds close to the best implementations found among all
search methods [8].

But in the case of short vector SIMD implementa-
tions, it turns out that DP fails to find the best algorithms,
as the optimal subproblem becomes highly context de-
pendent. We explain this in the following and present
two variations of DP that we included in SPIRAL search
engine to overcome this problem. In Section 4 we exper-
imentally evaluate the different DP variants.

Standard DP. DP searches for the best implementa-
tion for a transform recursively by applying all possible
rules but expanding the obtained child transforms using
the previously found optimal formulas, and picking the
fastest among the obtained formulas. Since the child
transforms are smaller than the original construct, this
process terminates. In the case of a DFT2n , using only
rule (1), DP recursively generates the best implementa-
tions for all DFT2k , k ≤ n.

The method works well for scalar code, but for vector

6

code the method is flawed. First rule (26) is applied on
the top level, leading to different child transform config-
urations. Calling DP recursively would inevitably apply
this rule again, even though the children are vector ter-
minals, i.e., should be expanded using rule (1). As a
result, the wrong breakdown strategies are found.

Vector DP. The first obvious change is to disable the
vector rule (26) for vector terminals. This already leads
to reasonable structured formulas. But there is a second
problem: DP optimizes all vector terminals like DFTk

as scalar constructs thus not taking into account the con-
text DFTk⊗Iν of DFTk. Thus, we make a second mod-
ification by expanding DFTk by scalar rules but always
measuring the runtime of the vector code generated from
DFTk ⊗ Iν . For the other construct containing a vector
terminal in (26), DFTm ⊗ In

ν
⊗ Iν , also DFTm ⊗ Iν is

measured, independent of n
ν .

Stride Sensitive Vector DP. This variant is directly
matched to rule (26). For a given DFTn, this search
variant first creates all possible pairs (n1, n2) with n =
n1n2. For any pair (n1, n2), it searches for the best im-
plementation of the vector terminals required by equa-
tion (26) using Vector DP. But when searching for the
best DFTn2

by a call to Vector DP a variant is used that
finally measures DFTn2

⊗ In1

ν

⊗Iν instead of DFTn2
⊗

Iν , which makes the search sensitive to the stride n1

ν .
The best DFTn1

is found by a call to standard Vector
DP. This exactly optimizes the required vector termi-
nals, including the stride. This DP variant requires much
more runtime measurements compared to the other two
DP variants and thus saving the results for earlier mea-
sured pairs (n1, n2) speeds up the search crucially. Run-
ning the search without this memorization leads to a
context and stride sensitive version (“nohash” variant),
but the additional search time does not pay off.

Implementation Degrees of Freedom. In addition
to the formula space, we consider two implementation
degrees of freedom arising for a DFT formula generated
from (26). Both degrees of freedom are machine spe-
cific, and not formula or transform size specific. Thus
they can be checked and fixed at install time.

Replicated Constants. Any constant in the code gen-
erated for a vector terminal becomes a vector constant of
ν times the same number in the final code. Depending
on the machine, either loading the constant with vector
memory access (thus storing ν numbers) or loading the
scalar and using a vector fill (splat) operation may be
better.

Constant Fusion. The other degree of freedom is con-
nected to the twiddle matrix in equation (26): the mul-
tiplications can be fused with either of the vector ter-
minals, which changes the locality of memory accesses
for loading the constants and changes whether expensive
arithmetics (complex scaling) is done immediately after

loading or prior to storing data elements.

4. Experimental Results

In this section we present experimental results for our
automatically generated short vector code for the DFT
of size n = 2k. We benchmark against the best avail-
able DFT implementations across different architec-
tures, compare our different search methods, and show
the structure of the best algorithms found.

To validate our approach we chose the SSE and SSE2
extensions on binary compatible, yet architectural very
different platforms: (i) Intel Pentium III with SDRAM
running at 1 GHz; (ii) Intel Pentium 4 with RDRAM
running at 2.53 GHz; and (iii) AMD Athlon XP 2100+
with DDR-SDRAM running at 1733 MHz. These ma-
chines feature different chip sets, system busses, and
memory technology, and the processors are based on dif-
ferent cores and have different cache architectures.

The theoretical speed-up achievable by vectorization
(ignoring effects like smaller program size when us-
ing vector instructions) is a factor of four for SSE on
Pentium III and Pentium 4. For SSE on Athlon XP and
SSE 2 on Pentium 4 the limit is a factor of two.

By finding differently structured algorithms on dif-
ferent machines, we achieve high performance across
architectures and across short vector extensions, which
demonstrate the success of our approach in providing
portable performance independent of the vector length ν
and other architectural details.

We benchmarked our generated vector code against
state-of-the-art C code by FFTW 2.1.3 [3] or generated
by SPIRAL, against compiler vectorized C code gen-
erated by SPIRAL, and against short vector code pro-
vided by the Intel Math Kernel Library MKL 5.11. Fur-
ther, we included FFTW-GEL, which supports SSE2 and
3DNow! [5], and the DFT runtime results from [9]. In
all cases we use the Intel C++ Compiler 6.0.

The MKL features separate versions optimized for
Pentium III and 4. We note that the MKL uses in-
place computation and memory prefetching instructions,
which gives it an advantage over our code, which com-
putes the DFT out-of-place and without prefetching.

FFTW-GEL is an extension of FFTW that supports
2-way vector code, made possible by a short vector
“codelet” generator for small DFT sizes. The vector-
ization technique is restricted to 2-way vectors and gen-
erates straight-line assembly code.

All results are given in “pseudo flop/s” computed
as 5n log2(n)/(runtime in s) for a DFT of size n.
5n log2(n) is an upper bound for the arithmetic cost of
FFT algorithms, thus the numbers are slightly higher

1http://developer.intel.com/software/products/mkl

7

than real flop/s, but the relation is preserved. SPIRAL
generated scalar code was found using a DP search, SPI-
RAL generated vector code (using our extensions) using
the best result of the two different vector DPs in Sec-
tion 3.3. In both cases we included the global limit for
unrolling (the size of subblocks to be unrolled) into the
search.

We now present and discuss the results in detail.
Pentium 4. On this machine (2.53 GHz) we achieved

the best performance per cycle and the highest speed-ups
compared to scalar SPIRAL generated code (or FFTW).
Using SSE (see Figure 2(a)), we achieved up to 6.25
pseudo Gflop/s and a speed-up of up to 3.1. Using SSE2
(see Figure 2(b)), we achieved up to 3.3 pseudo Gflop/s
and a speed-up of up to 1.83. The performance of our
code is best within L1 cache and only slightly decreases
outside L1. For SSE2 we also included an exhaustive
search for small DFT sizes, which yielded significant
improvement only for n = 64. Analysis of our gener-
ated programs shows that the best found code features
very small loop bodies (as opposed to medium and large
unrolled blocks that typically lead to high performance)
and very regular code structure. This is due to the Pen-
tium 4’s new features, namely (i) its new core with a very
long pipeline, (ii) its new instruction cache that caches
instructions after they are decoded (trace cache), and
(iii) its small, but very fast data caches. Our generated
SSE code outperforms the MKL for sizes n < 29 and is
about equal for n ≥ 29. Our generated SSE2 code com-
pares favorably to the MKL across all considered sizes.
For SSE2, FFTW-GEL achieves about the same perfor-
mance as our code. However, it cannot be used for SSE
as FFTW-GEL’s vectorization is restricted to two-way
short vector extensions. We include the results reported
in [9] obtained on a similar machine which was running
at 1.4 GHz. As we could not get the source code, we
scaled the reported results up to the frequency of our test
machine (of course, these performance numbers are only
a very rough but instructive estimate). See Figure 2(a)
and (b) for details.

Pentium III. We achieved up to 1.7 pseudo Gflop/s
and a speed-up of up to 3.1 on a 1 GHz machine with a
Coppermine core (see Figure 2(c)). The best implemen-
tations featured moderate sized loop bodies. On this ma-
chine, our code delivers the highest speed-ups for larger
sizes. The Intel MKL offers lower performance com-
pared to our codes (when comparing to the Pentium 4),
which reflects Intel’s additional tuning effort for the Pen-
tium 4. The new short vector FFT rule presented in this
paper removes the performance degradation on the Pen-
tium III for larger sizes in [2] and sped up our implemen-
tation significantly. It now runs at a high performance
level across all tested problem sizes. See Figure 2(c) for
details.

Athlon XP. We achieved up to 2.8 pseudo Gflop/s
and speed-ups of up to 1.7 on an 1733 MHz machine
(see Figure 2(d)). The best implementations featured
large loop bodies. On this machine, the performance of
our code decreases at the L1 boundary, where the Intel
MKL can keep the performance level. Analysis shows,
however, that the performance level achieved by our
codes for 2n−1 is the same as the Intel MKL achieves
for 2n. This is in part due to the in-place computation
by the Intel MKL which results in smaller memory re-
quirements. Although the 3DNow! professional exten-
sion (binary compatible to 3DNow! and SSE) features 4-
way SIMD, the maximum obtainable speed-up is a fac-
tor of two, as the Athlon XP’s two floating-point units
then both operate as two-way SIMD units.

FFTW-GEL achieves up to 35 % higher performance
as our approach; it gains the advantage from the fol-
lowing facts: (i) FFTW-GEL generates assembly code.
(ii) FFTW-GEL directly utilizes the two-way native
3DNow! (iii) FFTW-GEL features an AMD specific
assembler backend. On the other hand, our generated
code faces the following disadvantages: (i) We utilize
3DNow! professional’s compatibility to SSE. AMD sup-
ports SSE instructions for compatibility reasons, how-
ever, is not specific about the performance of its SSE
implementation. (ii) AMD does not supply its own com-
piler (extension). We have to resort to the Intel compiler
on the AMD machine which produces fair but not op-
timal code, however, is still among the best compilers
with SSE support available for the Athlon XP. Barring
these differences, we speculate that, for 2-way vectoriza-
tion, both approaches are equally successful (as in Fig-
ure 2(b)). Comparing the performance of our code with
the Intel MKL on the Athlon XP shows that we achieve
high performance within the boundaries of AMD’s SSE
implementation. However, using AMD 3DNow!, higher
performance can be obtained as shown by FFTW-GEL.

Compiler Vectorization. Automatic compiler vec-
torization in tandem with SPIRAL code generation pro-
vides a fair evaluation of the limits of this technique. By
running a DP search, SPIRAL can find algorithms that
are best structured for compiler vectorization. Further,
the code generated by SPIRAL is of simple structure
(e.g., contains no pointers or variable loop limits). Even
though the compiler can improve on SPIRAL’s scalar
code, the performance is far from optimal (see “SPIRAL
vect” in Figure 2(a)–(d)). As an aside, due to its struc-
ture, FFTW cannot be compiler vectorized.

Evaluation of the Search Methods. One of the
main observations was that DP works well on some ma-
chines while on others it misses the best implementation
considerably, thus requiring the modified versions intro-
duced in Section 3.3. Specifically, on the Pentium III
and Athlon XP, Standard DP finds implementations very

8

4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8

Pentium 4 SSE
ps

eu
do

 G
flo

p/
s

SPIRAL SSE
MKL SSE
SPIRAL C
FFTW
SPIRAL C vect
Rodriguez

(a)

4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

ps
eu

do
 G

flo
p/

s

Pentium 4 SSE2

SPIRAL C
SPIRAL C vect
SPIRAL SSE2
FFTW−GEL
MKL SSE2
FFTW
SPiRAL SSE2 exhaust

(b)

4 5 6 7 8 9 10 11 12 13
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Pentium III SSE

ps
eu

do
 G

flo
p/

s

MKL SSE
SPIRAL SSE
SPIRAL C vect
SPIRAL C
FFTW

(c)

4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

ps
eu

do
 G

flo
p/

s

Athlon XP SSE

SPIRAL SSE
MKL PIII
MKL P4
FFTW
SPIRAL C
SPIRAL C vect
FFTW−GEL (3DNow!)

(d)

4 5 6 7 8 9 10 11 12 13
1

1.5

2

2.5

3

3.5

4

4.5

sl
ow

do
w

n
fa

ct
or

Cross Timing on Pentium 4 SSE

Pentium 4 SSE
Pentium 4 SSE2
Athlon XP SSE
Pentium III SSE
Pentium 4 float

(e)

4 5 6 7 8 9 10 11 12 13
1

1.1

1.2

1.3

1.4

sl
ow

do
w

n
fa

ct
or

Different Search Strategies

DP
Vec DP
Stride Vec DP
Stride Vec DP w/o hash
exhaustive

(f)

Figure 2. Results for DFT of size 2k, k = 4, . . . , 13. (a)–(d) Performance in pseudo Gflop/s
= 5 k 2k/(109 × runtime in s). Higher is better. SSE is single and SSE2 is double precision.
(e) Cross timing of the best algorithms found for different architectures, all measured on the
Pentium 4, implemented using SSE. (f) Comparison of the best algorithms found by different
search methods. For (e) and (f) the slowdown factor compared to the best is shown.

close to the best found. But on the Pentium 4 the vector-
aware DPs are required to get the best performance. Fig-
ure 2(f) shows this behavior, by displaying the slow-
down factor of the best code found by different search
methods compared to the best: Standard DP misses the
best result by up to 25 %. Further, for n ≤ 27, exhaus-
tive search leads to the best result. For n > 27 Vector
DP finds code of similar performance as Stride Sensi-
tive Vector DP. Thus, the additional search time required
by the Stride Sensitive Vector DP variants does not pay
off. A combination of exhaustive search (where possi-
ble) and Vector DP (for larger sizes) is the most econom-
ical search method to obtain fast short vector code.

Crosstiming. A natural question that arises is how
the best algorithms found for one architecture perform
on the other platforms. As an example, we show in
Figure 2(e) the slow-down factor of the best found
DFT formulas for Pentium III/SSE, Athlon XP/SSE,
Pentium 4/scalar, Pentium 4/SSE2, and Pentium 4/SSE,
when implemented using SSE on Pentium 4 (using the
best compiler optimization). As expected, the Pentium 4
SSE version performs best and is the baseline. Both the
scalar and the SSE2 formula perform very bad. But in-
terestingly, also the formulas for SSE on Pentium III and
on Athlon XP are up to 60 % slower than the Pentium 4
SSE version. We obtained a similar behavior on the
other machines. This experiment clearly shows the need

for platform-adaptation to obtain optimal performance.
Best Found Algorithms. Our approach delivers high

performance on all tested systems. The structure of the
best implementations, however, depends heavily on the
target machine. As an example, Table 5(f) shows for a
DFT of size 210, the structure of the best found formulas,
displayed as trees representing the breakdown strategy
(the expansion of smaller nodes is sometimes omitted).

Generally speaking, two completely different types
of algorithms were found: 1. Algorithms with rather
balanced trees; and 2. Algorithms with unbalanced trees
tending to be right-expanded. The first type occurs when
the working set fits into the L1 cache and for codes gen-
erated using compiler vectorization. The second type
occurs for out-of-cache sizes; the actual structure de-
pends on whether scalar or vector code is generated.
For all ruletrees, parameters and structural details on
deeper levels depend on the actual target machine, and
are briefly discussed next.

Scalar Code. Right-expanded trees with machine-
dependent sizes of the left leaves are found to be the
most efficient formulas when using only the scalar FPU
for out-of-cache sizes. These trees provide the best data
locality. For in-cache sizes, balanced trees are found.
For example, In Table 5, due to the larger caches (com-
pared to Pentium 4) of the Pentium III and Athlon XP,
still balanced trees are found.

9

Pentium 4
(single)

Pentium 4
(double)

Pentium III
(single)

Athlon XP
(single)

generated
scalar code

2

10

2 6

8 2

10

2 5

8

2 2

10

4 6

2 4

10

4 6

3 32 2

generated
scalar code
compiler

vectorized

10

4 6

4 22 2

2

10

2 5

8

10

6 4

2 22 4

10

4 6

4 22 2

generated
vector code

single implies SSE
double implies SSE2

8

10

2

1 7

2 5

9

10

1

1 7

2 5

10

5 5

2 32 3

10

5 5

2 32 3

Table 5. The best found DFT algorithms for n = 210, represented as breakdown trees.

Compiler Vectorized Scalar Code. Vectorizing com-
pilers tend to favor large loops with many iterations.
Thus, the best found trees feature a top-level split that re-
curses into about equally large sub-problems. In Table 5,
on the Pentium 4 for double precision, the code was not
vectorized and thus a right-expanded tree is found.

Short Vector SIMD Code. Due to structural differ-
ences in the standard Cooley-Tukey rule (optimizing for
locality) and the Short Vector Cooley-Tukey rules (try-
ing to keep locality while supporting vector memory
access), in the first recursion step the right child prob-
lem is small compared to the left child problem and the
left child problem is subsequently right-expanded. This
leads to good data locality for vector memory access. In
Table 5, due to the larger cache sizes, on the Pentium III
and Athlon XP again balanced trees are found.

5. Conclusion

We formally derived a novel variant of the Cooley-
Tukey FFT that can be used to implement a complex
DFT using exclusively short vector instructions. We
included the FFT variant as breakdown rule into SPI-
RAL and automatically generated high performance
DFT short vector implementations across different ar-
chitectures including Pentium III/4 and Athlon XP. We
achieved speed-ups compared to the best available scalar
code that are close (70–80 %) to the vector length ν, and
matched or exceeded the performance of the best avail-
able DFT vendor library. We showed that highest per-
formance code is platform-specific, which confirms the
need for platform-adaptation and thus code generation
technologies.

We conclude by thanking Prof. Überhuber (Technical
University of Vienna) and Prof. José Moura (Carnegie
Mellon University) for initiating and supporting the au-
thors collaboration.

References

[1] F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhu-
ber. Architecture Independent Short Vector FFTs. In
Proc. ICASSP, volume 2, pages 1109–1112, 2001.

[2] F. Franchetti and M. Püschel. A SIMD Vectorizing
Compiler for Digital Signal Processing Algorithms. In
Proc. IPDPS, 2002.

[3] M. Frigo and S. G. Johnson. FFTW: An adaptive soft-
ware architecture for the FFT. In ICASSP 98, volume 3,
pages 1381–1384, 1998. http://www.fftw.org.

[4] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolim-
ieri. A methodology for designing, modifying, and im-
plementing Fourier transform algorithms on various ar-
chitectures. IEEE Trans. on Circuits and Systems, 9,
1990.

[5] S. Kral. FFTW-GEL, 2002. http://www.fftw.org/∼skral.
[6] J. M. F. Moura, J. Johnson, R. W. Johnson, D. Padua,

V. Prasanna, M. Püschel, and M. M. Veloso. SPIRAL:
Portable Library of Optimized Signal Processing Algo-
rithms, 1998. http://www.ece.cmu.edu/∼spiral.

[7] M. Püschel, B. Singer, M. Veloso, and J. M. F. Moura.
Fast Automatic Generation of DSP Algorithms. In
Proc. ICCS 2001, pages 97–106. Springer, 2001.

[8] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. John-
son, D. Padua, M. Veloso, and R. W. Johnson. SPIRAL:
A Generator for Platform-Adapted Libraries of Signal
Processing Algorithms. Journal of High Performance
Computing and Applications, 2003. To appear.

[9] P. Rodriguez. A Radix-2 FFT Algorithm for Modern
Single Instruction Multiple Data (SIMD) Architectures.
In Proc. ICASSP, 2002.

[10] B. Singer and M. Veloso. Stochastic Search for Signal
Processing Algorithm Optimization. In Proc. Supercom-
puting, 2001.

[11] R. Tolimieri, M. An, and C. Lu. Algorithms for discrete
Fourier transforms and convolution. Springer, 2nd edi-
tion, 1997.

[12] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL:
A Language and Compiler for DSP Algorithms. In
Proc. PLDI, pages 298–308, 2001.

10

