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Our approach

Have you ever wondered about this?

Convolution
Correlation
Upsampling

Poisson solver

No analogue to LAPACK for spectral methods
* Medium-size 1D FFT (1k—10k data points) is most common library call

applications break down 30 problems themselves and then call the 10 FFT library
* Higher-level FFT calls rarely used

FFTW guru interface is powerful but hard to use, leading to performance loss
e {ation of FFT. "

hard

ppr
and FFT calls non-FFT code

FFTW is de-facto standard interface for FFT

= FFTW 3.X is the high-performance reference implementation:
supports multicore/SMP and MPI, and Cell processor

= Vendor libraries support the FFTW 3.X interface:
Intel MKL, IBM ESSL, AMD ACML (end-of-life), Nvidia cuFFT, Cray
LibSci/CRAFFT

Issue 1: 1D FFTW call is standard kernel for many appli

= Parallel libraries and applications reduce to 1D FFTW call
P3DFFT, QBox, PS/DNS, CPMD, HACC,..

= Supported by modern languages and environments
Python, Matlab,...

Issue 2: FFTW is slowly becoming obsolete
= FFTW 2.1.5 (still in use, 1997), FFTW 3 (2004) minor updates since
then Risk: loss of high-performance FFT standard library

itions

= Development currently dormant, except for small bug fixes

= No native support for accelerators (GPUs, Xeon PHI, FPGAs) and
SIMT

= Parallel/MPI version does not scale beyond 32 nodes

FFTX: FFTW revamped for Exa

Modernized FFTW-style interface
= Backwards compatible to FFTW 2.X and 3.X

old code runs unmodified and gains substantially but not fully

= Small number of new features

futures/delayed execution, offloading, data placement, callback

kernels

Code generation backend using SPIRAL

= Library/application kernels are interpreted as specifications
inDSL

extract semantics from source code and known libr:

= C and

scale FFTX and SpectralPACK: long-term

Numerical Linear Algebra Spectral Algorithms

ralPACK

Define the analogue to LAPACK for spectral algorithms

= Define FFTX as the analogue to BLAS

-ary semantics
provide user FFT functionality as well as algorithm building blocks

cross-call and cross library optimization, accelerato

of

r off-loading,...

= Define class of numerical algorithms to be supported by

= Fine control over resource
" P

D
PDE solver classes (Green's function, sparse in normal/k space, ..,

, invocation time,

pi
resources.

= Reference library implementation and bindings to vendor

libraries

signal processing, .
= Define SpectralPACK functions
circular convolutions, NUFFT, Poisson solvers, free space

library-only reference i for ease of

Front end

Hock

Poisson’s equation in free space

Partial differential equation (PDE) ~ Solution characterization
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Approach: Green'’s function
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Solution: .

ifk#Na Green's function kernel in frequency domain

ney free-space convolution
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int rank
batch_

nk

o,

FFTX source code for Hockney

£tx_plan pruned_real_convolution plan(fftx_real *in, £ftx_real *out,
omplex *symbol, int n, int n_in, int n_out, int n_freq) {
3

££tx_plan plans(5];

££ex_plan p;

Describing the Green’s function symmetry

// FFTX data access descriptors.
1/ hecess is to four octants of a symmetric cube
// Cube size is NA3 and M = N/2.

££ex_iodimx 0ct00(] = (

1,
24m, 1

oct01[] = {
— - B e T A e, asen_an, L, 0 0 00 el taen), awen, 1)
Convolution via FFT ‘_'_, (O M-1, M-1, M#1, 0, -(M+1), 2*M, 1 },
in requency domain Pians (2] = Teen pian Gurapoincrise 42e (rank, GEreq_dinn, batch_rank, ccnit) 2 ¢ e ”
ot e o et e v stem (wer) 0,0, by ey, aeww, 1) 1
(i) = (G + p) (&) batch_dims, tmp3, tmpd, MY_FFTX_MODE_SUB) ; f£ftx_temp_complex half G_k = £ftx_create_zero_temp_complex(rk, £_d);
N - . plans = x_plan_guru_copy_real(rank, &out_dimx, tmpd, = e e T F (o1 :
Hockney: Convolution + problem-specific zero padding and output subset b, MY _FTTX MoDE AUR) plans(3] = fftx_plan_guru_copy_complex(rk, oct0l, G_k, half Gk, MY _FFTX MODE_SUB);

P = £ftx_plan_compose (numsubplans, plans, MY_FFTX_MODE_TOP) ;

return p;

Looks like FFTW calls, but is a specification for SPIRAL.

Back end

FFTX backend: SPIRAL

Other C/Ct+ Code

L and progra

FrXcallsite
¢ Core system:

SPIRAL module:
SPIRAL engine

Code synthesis, trade-offs
reconfiguration, statistics

Automatically
generated

components

Extensible platform
ing
model definitions

b FFTW-like library

DARPA BRASS

Platform-aware formal program synthesis

Model: common abstraction
= spaces of matching formulas

abstraction

abstraction

rewriting
search

pick

architecture algorithm
space

Architectural parameters:
vector length, problem size,
algorithm choice

Hprocessors,

Autotuning in constraint
solution space
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Translating an OL expression into code

Constraint Solver Input:
onstraint Solver Inpu DFTy
AVX(2-way C,
Output = ( v €)
Ruletree, expanded nto
OL expression:

Recursive descer
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[E——— C code:
code (code) void dfts (_Complex double *¥,

Recursive descen

_Complex double *X) {

_mm256_add pd (38, s39) ;
“mm256_sub_pd (38, s39) ;

552 = _mm256_sub pd (45, s50);
ST

Technology

Generated code For Hockney convolution

vosd soprunedcon 130 (aounie vx, dowble rx, double + 5) (
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FFTX/SPIRAL with OpenACC backend
Compared to cuFFT expert interface

+ Results

Algorithms: rules in domain-specific language

Graph algorithms

Linear transforms
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SPIRAL: success in HPC/s

NCSA Blue Waters
PAID Program, FFTs for Blue
Waters

RIKEN K computer

FFTs for the HPC-ACE ISA

LANL RoadRunner

FFTs for the Cell processor
PSC/XSEDE Bridges

Large size FFTs

LLNL BlueGene/L and P

FETW for BlueGene/L’s Double FPU
ANL BlueGene/Q Mira

Early Science Program, FFTW for
BGQ QPX

B T o T e

2006 Gordon Bell Prize (Peak Performance Award) with LLNL and 1BM
2010 HPC Challenge Class Il Award (Most Productive System) with T T

ANL and IBM

upercomputing

GlobalFFT (1D FFT, HPC Challenge)
6.4 Tflop/s on

SPIRAL 8.0: available under open source

BlueGene/P
o0 = = Open-source SPIRAL available
- eorcsipesk = non-viral license (BSD)
= Initial version, effort ongoing to
L open source whole system

(R— a Commercial support via

SpiralGen, Inc.

N e ec ;e eam
R = Developed over 20 years

= Funding: DARPA (OPAL, DESA,

BlueGene/P at Argonne National
Laboratory HACMS,

128k cores (quad-core CPUs) at PERFECT, BRASS), NSF, ONR,  Procescings 1c5= Bt
850 MHz DoD HPC, JPL,

DOE, CMU SEI, Intel, Nvidia,
Mercury

= Open sourced under DARPA
PERFECT
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