FFT and Solvers for Exascale: FFTX and SpectralPACK
a first look

F. Franchetti, D. G. Spampinato, A. Kulkarni, T. M. Low (Carnegie Mellon University), M. Franusich (SpiralGen, Inc.),
D. T. Popovici, A. Canning, P. McCorquodale, B. Van Straalen, P. Colella (Lawrence Berkeley National Laboratory)

Our approach

Have you ever wondered about this?

Convolution
Correlation
Upsampling

Poisson solver

No analogue to LAPACK for spectral methods
* Medium-size 1D FFT (1k—10k data points) is most common library call

applications break down 30 problems themselves and then call the 10 FFT library
* Higher-level FFT calls rarely used

FFTW guru interface is powerful but hard to use, leading to performance loss
e {ation of FFT. "

hard

ppr
and FFT calls non-FFT code

FFTW is de-facto standard interface for FFT

= FFTW 3.X is the high-performance reference implementation:
supports multicore/SMP and MPI, and Cell processor

= Vendor libraries support the FFTW 3.X interface:
Intel MKL, IBM ESSL, AMD ACML (end-of-life), Nvidia cuFFT, Cray
LibSci/CRAFFT

Issue 1: 1D FFTW call is standard kernel for many appli

= Parallel libraries and applications reduce to 1D FFTW call
P3DFFT, QBox, PS/DNS, CPMD, HACC,..

= Supported by modern languages and environments
Python, Matlab,...

Issue 2: FFTW is slowly becoming obsolete
= FFTW 2.1.5 (still in use, 1997), FFTW 3 (2004) minor updates since
then Risk: loss of high-performance FFT standard library

itions

= Development currently dormant, except for small bug fixes

= No native support for accelerators (GPUs, Xeon PHI, FPGAs) and
SIMT

= Parallel/MPI version does not scale beyond 32 nodes

FFTX: FFTW revamped for Exa

Modernized FFTW-style interface
= Backwards compatible to FFTW 2.X and 3.X

old code runs unmodified and gains substantially but not fully

= Small number of new features

futures/delayed execution, offloading, data placement, callback

kernels

Code generation backend using SPIRAL

= Library/application kernels are interpreted as specifications
inDSL

extract semantics from source code and known libr:

= C and

scale FFTX and SpectralPACK: long-term

Numerical Linear Algebra Spectral Algorithms

ralPACK

Define the analogue to LAPACK for spectral algorithms

= Define FFTX as the analogue to BLAS

-ary semantics
provide user FFT functionality as well as algorithm building blocks

cross-call and cross library optimization, accelerato

of

r off-loading,...

= Define class of numerical algorithms to be supported by

= Fine control over resource
" P

D
PDE solver classes (Green's function, sparse in normal/k space, ..,

, invocation time,

pi
resources.

= Reference library implementation and bindings to vendor

libraries

signal processing, .
= Define SpectralPACK functions
circular convolutions, NUFFT, Poisson solvers, free space

library-only reference i for ease of

Front end

Hock

Poisson’s equation in free space

Partial differential equation (PDE) ~ Solution characterization

A@)

»

, R ()
@) =

D = supp(p) €
B

Approach: Green'’s function

(&) /“m: DADAT = G P@, G@) = g

)

Solution: .

ifk#Na Green's function kernel in frequency domain

ney free-space convolution

fex,

int rank
batch_

nk

o,

FFTX source code for Hockney

£tx_plan pruned_real_convolution plan(fftx_real *in, £ftx_real *out,
omplex *symbol, int n, int n_in, int n_out, int n_freq) {
3

££tx_plan plans(5];

££ex_plan p;

Describing the Green’s function symmetry

// FFTX data access descriptors.
1/ hecess is to four octants of a symmetric cube
// Cube size is NA3 and M = N/2.

££ex_iodimx 0ct00(] = (

1,
24m, 1

oct01[] = {
— - B e T A e, asen_an, L, 0 0 00 el taen), awen, 1)
Convolution via FFT ‘_'_, (O M-1, M-1, M#1, 0, -(M+1), 2*M, 1 },
in requency domain Pians (2] = Teen pian Gurapoincrise 42e (rank, GEreq_dinn, batch_rank, ccnit) 2 ¢ e ”
ot e o et e v stem (wer) 0,0, by ey, aeww, 1) 1
(i) = (G + p) (&) batch_dims, tmp3, tmpd, MY_FFTX_MODE_SUB) ; f£ftx_temp_complex half G_k = £ftx_create_zero_temp_complex(rk, £_d);
N - . plans = x_plan_guru_copy_real(rank, &out_dimx, tmpd, = e e T F (o1 :
Hockney: Convolution + problem-specific zero padding and output subset b, MY _FTTX MoDE AUR) plans(3] = fftx_plan_guru_copy_complex(rk, oct0l, G_k, half Gk, MY _FFTX MODE_SUB);

P = £ftx_plan_compose (numsubplans, plans, MY_FFTX_MODE_TOP) ;

return p;

Looks like FFTW calls, but is a specification for SPIRAL.

Back end

FFTX backend: SPIRAL

Other C/Ct+ Code

L and progra

FrXcallsite
¢ Core system:

SPIRAL module:
SPIRAL engine

Code synthesis, trade-offs
reconfiguration, statistics

Automatically
generated

components

Extensible platform
ing
model definitions

b FFTW-like library

DARPA BRASS

Platform-aware formal program synthesis

Model: common abstraction
= spaces of matching formulas

abstraction

abstraction

rewriting
search

pick

architecture algorithm
space

Architectural parameters:
vector length, problem size,
algorithm choice

Hprocessors,

Autotuning in constraint
solution space

WX 2-way
_Complex double

P OF TG mupp o

AVX(2-way C)

OL expression

(P26)T30202)1450) 15 (Lo L (Rad1)(14902)

vec®) vec(2)

Translating an OL expression into code

Constraint Solver Input:
onstraint Solver Inpu DFTy
AVX(2-way C,
Output = (v €)
Ruletree, expanded nto
OL expression:

Recursive descer

s et S 0L loon) OF-)LAG o = ;
S L . Breskilown ul oresion |)TH(L0F)L3EL) T8 (be L (F6h))(LidLk)
AP | (1 AN (1, BLE (A 51,)) PP +OFTaBLITE® Contuestrm rewriing | o2 o2

0 w8 (laoDFT,)L vec(2) vec(2)
y o, e e
) o — &
o i el (57 (8,0, FaMaD?_ait; Guror) X (S0pnenF2Cisirs) T2
iy AP g1, (A QL)8l =0 e =0
S5 Rbstract code
L i 4

[E——— C code:
code (code) void dfts (_Complex double *¥,

Recursive descen

_Complex double *X) {

_mm256_add pd (38, s39) ;
“mm256_sub_pd (38, s39) ;

552 = _mm256_sub pd (45, s50);
ST

Technology

Generated code For Hockney convolution

vosd soprunedcon 130 (aounie vx, dowble rx, double + 5) (
505,000, (-0/50000000000001132), (-

= o

2 saesaze) 1

FFTX/SPIRAL with OpenACC backend
Compared to cuFFT expert interface

+ Results

Algorithms: rules in domain-specific language

Graph algorithms

Linear transforms

iy + e+ assamy 15% faster I~
st onTITANV
O e A TR
L ol aositesnsraseranes ix + ety
PRI = x In collaboraion with CMU-SE1
Sitod o x4 atzsen) - creasns - aameny . .
Same speed Spectral domain applications
onTesla V100 MMMiza = s - [T
Ol mues O MMM e i
R MMM ® (@pur
! (it i) @ MMMy)0
: T WL @ 1) i)
1,0005 of lines of code, cross-call optimization, etc., transparently used v, .
MMM, 00

SPIRAL: success in HPC/s

NCSA Blue Waters
PAID Program, FFTs for Blue
Waters

RIKEN K computer

FFTs for the HPC-ACE ISA

LANL RoadRunner

FFTs for the Cell processor
PSC/XSEDE Bridges

Large size FFTs

LLNL BlueGene/L and P

FETW for BlueGene/L’s Double FPU
ANL BlueGene/Q Mira

Early Science Program, FFTW for
BGQ QPX

B T o T e

2006 Gordon Bell Prize (Peak Performance Award) with LLNL and 1BM
2010 HPC Challenge Class Il Award (Most Productive System) with T T

ANL and IBM

upercomputing

GlobalFFT (1D FFT, HPC Challenge)
6.4 Tflop/s on

SPIRAL 8.0: available under open source

BlueGene/P
o0 = = Open-source SPIRAL available
- eorcsipesk = non-viral license (BSD)
= Initial version, effort ongoing to
L open source whole system

(R— a Commercial support via

SpiralGen, Inc.

N e ec ;e eam
R = Developed over 20 years

= Funding: DARPA (OPAL, DESA,

BlueGene/P at Argonne National
Laboratory HACMS,

128k cores (quad-core CPUs) at PERFECT, BRASS), NSF, ONR, Procescings 1c5= Bt
850 MHz DoD HPC, JPL,

DOE, CMU SEI, Intel, Nvidia,
Mercury

= Open sourced under DARPA
PERFECT

www.spiral.net

Carnegie
Mellon

SpiralGen

Accelerating Innovation in Computing

<
A
essaals

BERKELEY LAB

ince Berkeley National Laboratory

’ ~

EXASCALE
COMPUTING
PROJECT

\
]

http://www.spiral.net/
http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

