
First Look: Linear Algebra-Based Triangle
Counting without Matrix Multiplication

Tze Meng Low, Varun Nagaraj Rao, Matthew Lee, Doru Popovici, Franz Franchetti
Department of Electrical and Computer Engineering

Carnegie Mellon University
Email: lowt@cmu.edu, vnrao@andrew.cmu.edu, {mattlkf, dpopovic, franzf}@cmu.edu

Scott McMillan
Software Engineering Institute

Carnegie Mellon University
Email: smcmillan@sei.cmu.edu

Abstract—
Linear algebra-based approaches to exact triangle counting

often require sparse matrix multiplication as a primitive op-
eration. Non-linear algebra approaches to the same problem
often assume that the adjacency matrix of the graph is not
available. In this paper, we show that both approaches can be
unified into a single approach that separates the data format
from the algorithm design. By not casting the triangle counting
algorithm into matrix multiplication, a different algorithm that
counts each triangle exactly once can be identified. In addition,
by choosing the appropriate sparse matrix format, we show
that the same algorithm is equivalent to the compact-forward
algorithm attained assuming that the adjacency matrix of the
graph is not available. We show that our approach yields an
initial implementation that is between 69 and more than 2000
times faster than the reference implementation. We also show that
the initial implementation can be easily parallelized on shared
memory systems.

I. INTRODUCTION

It is generally known that counting the exact number of
triangles in a graph G can be described using the language of
linear algebra as

1

6
Γ(A3),

where A is the adjacency matrix of the graph G, and Γ(X)
is the trace of the square matrix X [1]. Other linear algebra
approaches [2], [3] also require a sparse-matrix multiplication
of A or parts of A as part of their computation. Alternative
approaches that are not based on linear algebra leverage other
formats for describing graphs such as the adjacency list to
design their algorithms [4], [5].

In this paper, we show that these approaches are not mutu-
ally exclusive. Using the linear algebra approach, we describe
an algorithm that computes the number of triangles exactly
once. Unlike algorithms described in the language of linear
algebra, this algorithm does not require a sparse matrix matrix
multiplication, and does not require a subsequent scaling of
the number of triangles. This suggests that our algorithm
avoids redundant computation and possibly redundant data
movement.

We also show that by selecting the appropriate data format
when implementing the linear algebra algorithm, the resulting
implementation is similar to an algorithm derived using ap-
proaches starting with a description of a graph that is not the
adjacency matrix.

Finally, we show that our implementation of exact tri-
angle counting algorithm yields sequential performance that
is between 69 and more than 2000 times faster than the
reference implementation. Initial parallelization efforts yielded
an additional factor of 1.2 to 19.7 improvement over the
sequential implementation on various architectures.

II. A TRIANGLE COUNTING ALGORITHM

Let G = (V,E) be a simple undirected graph with vertex
set V and edge set E. In addition, assume that V has been
partitioned into two disjoint sets, VTL and VBR. Under these
assumptions, a triangle in G, described using the 3-tuple
(u, v, w) where u, v, w ∈ V , can be classified into four
categories:

– Category 1: Triangles in VTL. Vertices of these triangles
are from VTL, i.e. u, v, w,∈ VTL.

– Category 2: Triangles mostly in VTL. Vertices of these
triangles are formed with two vertices in VTL and one
vertex in VBR, i.e. u, v ∈ VTL and w ∈ VBR.

– Category 2: Triangles mostly in VBR. Vertices of these
triangles are formed with one vertex in VTL and two
vertices in VBR, i.e. u ∈ VTL and v, w ∈ VBR.

– Category 4: Triangles in VBR. Vertices of these triangles
are from VBR, i.e. u, v, w,∈ VBR.

Figure 1 describes G and the four categories of triangles.

A. Intuition

Let ∆ be the sum of (1) the number of triangles whose
vertices are all in VTL (Category 1), and (2) the number of
triangles created with two vertices in VTL and a vertex in VBR

(Category 2). To compute the number of triangles G, we start
with all vertices in VBR. Trivially ∆ = 0 since no vertices
are in VTL. As we move each vertex from VBR into VTL, we
update ∆ accordingly. When all vertices in VBR have been
moved to VTL, i.e. VTL = V , we will have computed all
triangles in G since all the triangles in G will fall in the first
category, i.e. all three vertices of each triangle are in VTL.This
means that when VTL = V , ∆ will contain the exact number
of triangles in G.

Consider an arbitrary vertex v11 in VBR that is selected to
be moved to VTL. Triangles where one of the vertices is v11

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

must fall into categories 2, 3, or 4. We consider how ∆ is
updated based on the different categories.

– Category 2. Recall that triangles in this category have
two vertices in VTL and v11 as the third vertex. These
triangles will become triangles in Category 1 when v11

is added to VTL. Since ∆ is the total number of triangles
in both categories 1 and 2, no change to ∆ is required
since these triangles were previously added to ∆.

– Category 3. Triangles in this category have one vertex in
VTL and two vertices in VBR, where v11 is one of those
two vertices. This means that when v11 is moved into
VTL, these triangles will become Category 2 triangles.
Therefore, the number of triangles in Category 3 that are
connected to v11 needs to be added to ∆.

– Category 4. When v11 is moved into VTL, any triangle
in Category 4 will now have two vertices in VBR, and
only one vertex, namely v11 in VTL. Hence, there is no
update to ∆ is required.

To summarize, in order to count the number of triangles in
G, we start with all vertices in VBR. We move an arbitrary
vertex, v11, in VBR to VTL. When v11 is moved, we add the
number of Category 3 triangles that has v11 as a vertex to ∆.
When all vertices in VBR are moved to VTL, ∆ would hold
the number of triangles in G.

B. In the language of linear algebra
In this section, we discuss how the above algorithm can be

described in the language of linear algebra. In the subsequent
discussion, upper case, lower case and greek letters represent
matrices, column vectors and scalar elements respectively.

Let A be the N × N adjacency matrix of our simple
undirected graph G with N vertices. As G is simple and
undirected, we know that A is symmetric and has zeros along
the diagonal.

The total number of triangles in G, denoted as ∆G , can be
computed with the operation:

∆G =
1

6
Γ(A3). (1)

G

VTL

VBR

Fig. 1. The graph G and the different components. Vertices are split into
two disjoint subsets VTL and VBR, where gray vertices belong to VTL and
black vertices belong to VBR. The dashed and dotted lines denote edges in
the edge-set EBL. Dashed lines form part of a triangle with two vertices in
VTL and one vertex in VBR, while dotted lines form part of a triangle with
two vertices in VBR and one vertex in VTL.

Recall that we start by partitioning the vertex set V into
two disjoint subsets. This means that matrix A is similarly
paritioned into disjoint submatrices in the following manner,

A→
(
ATL ATR

ABL ABR

)
,

where ATL and ABR are |VTL| × |VTL| and
(N − |VTL|) × (N − |VTL|) square matrices respectively.
ATL and ABR are adjacency matrices for vertices in VTL and
VBR. ABL and ATR describe edges (u, v) whereu ∈ VTL and
v ∈ VBR.

Equation 1 can then be re-expressed in terms of the different
submatrices as follow,

∆G =

∆︷ ︸︸ ︷
1

6
Γ(A3

TL) +
1

2
Γ(ABLATLATR) +

1

2
Γ(ATRABRABL) +

1

6
Γ(A3

BR). (2)

The four components of the sum in Equation 2 correspond
to the four different category of triangles in G. In addition, the
sum of the first two components is ∆.

We next consider moving an arbitrary vertex v11 from VBR

to VTL. For convenience, we move the (|VTL| + 1)th vertex
from VBR to VTL. This can be represented by repartitioning
the submatrices of A as follows:(

ATL ATR

ABL ABR

)
→

 A00 (a01|A02)(
aT10

A20

) (
α11 aT12

a21 A22

)  ,

where the row and column in A representing the edges of
the (|VTL + 1)th vertex are exposed. Here, the double lines
indicate the original partitioning of A while the single lines
describe how the submatrices have been repartitioned.

Substituting these repartitioned submatrices of A into Equa-
tion 2, we know that before v11 is moved,

∆ =
1

6
Γ(A3

00) +
1

2
Γ

((
aT10

A20

)
A00(a01|A02)

)
=

1

6
Γ(A3

00) +
1

2
Γ(aT10A00a01) +

1

2
Γ(A20A00A02) (3)

When v11 has been moved to VTL, the edges of v11

connecting to and from other edges in VTL must be similarly
moved to the submatrix ATL as follows:

(
A00 a01

aT10 α11

) (
A02

aT12

)
(A20|a21) A22

→ (
ATL ATR

ABL ABR

)
,

and

∆ =
1

6
Γ

((
A00 a01

aT10 α11

)3
)

+

1

2
Γ

(
(A20|a21)

(
A00 a01

aT10 α11

)(
A02

aT12

))
.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

which can be expended and simplified into

∆ =
1

6
Γ(A3

00) +
1

2
Γ(aT10A00a01) +

1

2
Γ(AT

20A00A02) + Γ(A20a01a
T
12). (4)

Comparing Equation 4 with Equation 3, the update to be
performed when vertex v11 is moved is simply

∆ = ∆ + Γ(A20a01a
T
12),

or
∆ = ∆ + aT12A20a01, (5)

since the trace of a matrix is invariant under rotation, and the
result of aT12A20a01 is a scalar element.

III. IMPLEMENTATION

We assume that the adjacency matrix is stored in the
compressed sparse row (CSR) format.

A. Updating ∆

The main operation to be performed in each iteration is the
computation aT12A20a01. This can easily be computed using
two sparse-matrix, sparse-vector multiplications performed
sequentially. However, a more efficient implementation is
obtained if we make the following observations:

1) aT12A20 is a sum over selected rows of A20, while the
second matrix-vector multiplication can be computed as
a sequence of (sparse) inner-products between the rows
of A20 and a01. This means that instead of performing
two sparse-matrix, sparse-vector multiplications, we can
perform loop fusion to merge the two operations into a
single operation resulting in a single pass through A20.
We first use a12 to select the appropriate row of A20,
and then perform the inner-product of that selected row
with a01.

2) a01 = aT10. a01 is currently a column vector which is
expensive to access when the data is stored in CSR
format. As A is symmetric, we know that a01 = aT10.
Therefore, by reading aT10 instead of a01, we turn random
data access into sequential access.

The final implementation is shown in Figure 2. The main
computation in each iteration of the loop is between Lines 34
and 51. The loop at Line 34 iterates over the rows of A20 to
select them using the non-zero elements in aT12. The loop at
Line 42 performs the inner-product with the selected row and
a01. Finally, Line 47 increment the number of triangles when
there is an edge in the appropriate row and column of A20.

B. Parallelism

Notice that once the vertex v11 is identified, the adjacency
matrix A can be partitioned accordingly. This also means that
the computation of aT12A20a01 in Equation 5 can be performed
independently. However, care must be taken to perform the
addition across multiple threads to prevent a race condition.

These properties suggest that parallelism can be easily
introduced with the OpenMP [6] parallel for construct

around the outer-most loop which iterates over the vertices in
VBR. To ensure that there is no race condition when updating
∆, we include the reduction clause on the variable delta
which holds the number of triangles.

The astute reader will also recognize that the shape of
A20 changes across iterations. When there are few vertices
in VTL, A20 is tall and skinny. However, near the end of
the computation, A20 is short and fat. This suggest that the
iterations have varying amount of computation (assuming that
the non-zeros in A is uniformly distributed). As such, the
scheduling of the iterations to threads was set to dynamic
scheduling.

C. Triangle Enumeration

The triangle counting algorithms presented can easily be
adapted to enumerate triangles. When a triangle is identified,
the identified triangle can be printed out immediately or stored
for later retrieval. The vertices of the identified triangle (using
variables from Figure 2) are i, *A_col, and *y_col. As
each triangle is counted exactly once, we are assured that each
triangle is never enumerated multiple times. In the case of
storing the identified triangles for later retrieval, the storing
of the triangle will cause contention for the limited memory
bandwidth, and thus triangle enumeration is expected to be
slower than triangle counting.

IV. THE COMPACT-FORWARD ALGORITHM

The compact-forward algorithm [4] is an exact triangle
counting algorithm that was derived using the adjacency array
representation of a graph G. In this section, we show that linear
algebra based algorithm described in the previous sections is
equivalent to the compact-forward algorithm.

The compact-forward algorithm can be described as a two-
stage algorithm in the following manner:

1) Stage 1. Vertex sorting. Each vertex is first assigned a
unique number, and sorted according to that number.

2) Stage 2. Triangle counting. For each vertex v taken in
increasing order of the unique number, iterate over all
elements u with a larger unique number than v and is
in the neighborhood of v. For each element u, check if
the neighbor of u whose assigned number is less than
that for v is also a neighbor of v. If so, increment the
triangle count by 1.

We make the following observations to demonstrate the
similarities between our algorithm when implemented using
the CSR format, and the compact-forward algorithm:

1) Vertex sorting is performed naturally as part of our
implementation because the CSR format naturally orders
the vertices when it maps each vertex to a particular row
and column in the adjacency matrix.

2) The neighborhood of v whose elements have higher
unique numbers than v is simply the aT12 vector in our
description of the partitioned adjacency matrix A.

3) The neighbors of v with smaller assigned number than
v is simply a01.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

1 u i n t 6 4 t c o u n t t r i a n g l e s (u i n t 6 4 t ∗IA , / / row i n d i c e s
2 u i n t 6 4 t ∗JA) / / column i n d i c e s
3 {
4 u i n t 6 4 t d e l t a = 0 ; / / number o f t r i a n g l e s
5
6 / / f o r e v e r y v e r t e x i n V {BR}
7 # pragma omp p a r a l l e l f o r s c h e d u l e (dynamic) r e d u c t i o n (+ : d e l t a)
8 f o r (u i n t 6 4 t i = 1 ; i<N−1; i ++)
9 {

10 u i n t 6 4 t ∗cu r r row x = IA+ i ;
11 u i n t 6 4 t ∗curr row A = IA+ i +1;
12 u i n t 6 4 t num nnz curr row x = ∗curr row A − ∗cu r r row x ;
13 u i n t 6 4 t ∗x c o l b e g i n = (JA + ∗cu r r row x) ;
14 u i n t 6 4 t ∗x co l end = x c o l b e g i n ;
15 u i n t 6 4 t ∗row bound = x c o l b e g i n + num nnz curr row x ;
16 u i n t 6 4 t co l x min = 0 ;
17 u i n t 6 4 t col x max = i−1;
18
19 / / p a r t i t i o n t h e c u r r e n t row i n t o x and y , where x == a01 ˆ T == a10 t and y == a12 t
20 whi le (x co l end < row bound && ∗x co l end < col x max)
21 ++ x co l end ;
22 x co l end −= (∗ x co l end > col x max | | x co l end == row bound) ;
23
24 u i n t 6 4 t ∗y c o l b e g i n = x co l end + 1 ;
25 u i n t 6 4 t ∗y co l end = row bound−1;
26 u i n t 6 4 t num nnz y = (y co l end − y c o l b e g i n) + 1 ;
27 u i n t 6 4 t num nnz x = (x co l end − x c o l b e g i n) + 1 ;
28
29 u i n t 6 4 t y c o l f i r s t = i + 1 ;
30 u i n t 6 4 t x c o l f i r s t = 0 ;
31 u i n t 6 4 t ∗y c o l = y c o l b e g i n ;
32
33 / / compute y∗A20∗x (E q u a t i o n 5)
34 f o r (u i n t 6 4 t j = 0 ; j< num nnz y ; ++ j ,++ y c o l)
35 {
36 u i n t 6 4 t row index A = ∗y c o l − y c o l f i r s t ;
37 u i n t 6 4 t ∗x c o l = x c o l b e g i n ;
38 u i n t 6 4 t num nnz A = ∗(curr row A + row index A + 1) − ∗(curr row A + row index A) ;
39 u i n t 6 4 t ∗A col = (JA + ∗(curr row A + row index A)) ;
40 u i n t 6 4 t ∗A col max = A col + num nnz A ;
41
42 f o r (u i n t 6 4 t k = 0 ; k < num nnz x && ∗A col <= col x max ; ++k)
43 {
44 u i n t 6 4 t row index x = ∗x c o l − x c o l f i r s t ;
45 whi le ((∗ A col < ∗x c o l) && (A col < A col max))
46 ++A col ;
47 d e l t a += (∗A col == row index x) ;
48
49 ++ x c o l ;
50 }
51 }
52 }
53 re turn d e l t a ;
54 }

Fig. 2. Implementation of a triangle counting algorithm without matrix multiplication.

4) Counting the number of neighbors of u who are also
neighbors of v is simply a inner-product of the appro-
priate row in A20 with the a01.

5) The last two observations allows us to conclude that
aT12A20a01 computes exactly the same operation as
Stage 2 of the compact-forward algorithm.

The key result arising from this similarity comparison is
that the theoretical results for the compact-forward algorithm
naturally applies to our linear algebra-based algorithm. Specifi-
cally, we know that our algorithm lists (counts) all the triangles
in G in time Θ(m

3
2), which demonstrates its optimality based

on the bounds shown in [5].

V. RESULTS

In this section, we compare our performance against the
serial C++ reference miniTri implementation [3] provided as

part of the Graph Challenge [7]. We use the Stanford Network
Analysis Project (SNAP) [8] datasets found on the Graph
Challenge website.

A. Experiment Setup

We report performance attained on the following systems:

1) Intel Core i3 M380, 2.53GHz, 4 cores,
2) Intel i7 E5-2667 v 3 Haswell , 3.2GHz, 2 x 8 cores.
3) ARM big.LITTLE Junoboard, 2 x Cortex-A57, 4 x

Cortex-A53

In all experiments, we assume that the input data resides
in main memory and is stored in the compressed-sparse-row
(CSR) format. Timings reported are for computing the number
of triangles. All implementations were compiled with gcc
with the -O2 flag.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

1) Accuracy: We verified the number of triangles via
two methods. Firstly, we compared the number of triangles
provided by the miniTri reference implementation and our
implementation whenever possible. Secondly, we compared
the number of triangles with the information from the SNAP
website. In all cases apart from one, the number of triangles
computed by miniTri and our implementation were the same
as those presented on the SNAP website.

We highlight a peculiar observation with the Friendster
dataset. We are unable to verify with miniTri as there is no
appropriate input data format for this particular dataset. In
addition, we are unable to verify with the number of triangles
reported on the SNAP website as the dataset from the Graph
Challenge had a different number of nodes (119,432,957
unique nodes) than what is reported on the SNAP website
(65,608,366 unique nodes) . This suggests that the datasets
are different. Nonetheless, we counted 191,716 triangles in
the Graph Challenge dataset and 4,173,724,142 triangles in
the dataset from SNAP.

2) Performance: Time to compute (in milliseconds) are
reported for all SNAP datasets found on the Graph Challenge
website are reported in Table I. Timings with the reference
implementation is only performed on the M380 and the
Haswell architecture. We have no comparison timings for
the reference implementation on the M380 as the reference
implementation computing on the Cit-Patents dataset did not
complete after running for more than five hours.

On the whole, our implementation achieves performance
that is between 69 and 2699 times faster than the reference
implementation. While there are no distinct patterns in the
improvements over the reference implementation, the improve-
ments over the reference implementation are similar across
both the M380 and the Intel Haswell for the same dataset.

We also report parallel performance for the different ar-
chitectures. The number of threads used for each architecture
is the maximum number of hardware threads available. This
means that for the Intel architectures, hyper-threading was
enabled. On most datasets, we obtained an additional factor
of 1.2 to 19.7 improvement over our sequential implemen-
tation. For some of the smaller datasets, we see a drop in
performance when we parallelize our implementation on the
Haswell architecture.

We highlight the results obtained with the Friendster
datasets. As it is the largest dataset, we only obtained timings
with the Haswell architecture. With the dataset from the Graph
Challenge (Friendster), we counted the number of triangles in
16.5s with 32 threads. This is a speed up of 12.5 times over our
sequential implementation. With the Friendster dataset from
SNAP (Friendster-SNAP), we obtained an execution time of
68.9s with 32 threads, and a speed up of 23.1 above our
sequential implementation. The large difference in execution
time is most likely related to the vastly different number of
triangles in the two datasets.

VI. FUTURE WORK & CONCLUSION

In this paper, we present a linear algebra-based approach
to identify an exact triangle counting algorithm that does not
include matrix multiplication as a primitive operation. We also
showed that our linear algebra based algorithm is similar to
an algorithm derived assuming that the graph is stored as an
adjacency list. We show that our sequential implementation
obtains between 69 to more than 2000 times improvement
over the reference implementation. Initial parallelization effort
yielded an additional factor of 1.2 to 19.8 improvement over
our sequential implementation on most datasets.

As the title of the paper suggests, this is a first look
at triangle counting algorithms in the language of linear
algebra that do not require matrix-multiplication as a primitive
operation. Opportunities for optimization remains. An obvious
improvement is a deeper look into the parallelization of the
code. While decent speedup is obtained with our simple
OpenMP parallelization, a better distribution of the data across
the threads will reduce redundant data movement, prevent
cache thrashing and should yield even better scaling behavior.

Another avenue of improvement we are pursuing is in the
out-of-core approach to graph algorithms. While we obtain
decent performance once the data is in memory, reading the
data from disk is the main bottleneck of the entire graph
processing pipeline. Often, the time for reading from disk is
longer than the compute time time. This, we believe, is where
improvement to the overall graph processing pipeline can be
made.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center [DM17-0413].

REFERENCES

[1] P. Burkhardt, “Graphing trillions of triangles,” Information Visualization,
p. 1473871616666393, 2016.

[2] A. Azad, A. Buluc, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop, May 2015, pp. 804–
811.

[3] M. M. Wolf, J. W. Berry, and D. T. Stark, “A task-based linear algebra
building blocks approach for scalable graph analytics,” in 2015 IEEE
High Performance Extreme Computing Conference (HPEC), Sept 2015,
pp. 1–6.

[4] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, no. 1-3, pp.
458–473, November 2008. [Online]. Available: http://dx.doi.org/10.1016/
j.tcs.2008.07.017

[5] A. Itai and M. Rodeh, “Finding a minimum circuit in a graph,” SIAM
Journal on Computing, vol. 7, no. 4, pp. 413–423, 1978.

[6] OpenMP Architecture Review Board, “OpenMP application program
interface,” November 2015. [Online]. Available: \url{http://www.
openmp.org/#}

[7] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“Static graph challenge: Subgraph isomorphism,” http://graphchallenge.
mit.edu/, 2017.

[8] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, June 2014.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Dataset Sequential Performance Parallel Performance
Haswell M380 ARM Haswell M380 ARM

Ours miniTri SpeedUp Ours miniTri SpeedUp 32 threads SpeedUp 4 threads SpeedUp 6 threads SpeedUp
(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

amazon0302 34.02 4,600 135 58.426 7,338 126 207.04 2.29 14.8 23.41 2.5 46.21 4.5
amazon0312 140.73 35,860 255 284.471 58,590 206 914.82 10.64 13.2 106.41 2.7 190.36 4.8
amazon0505 147.45 38,923 264 290.673 61,639 212 949.15 11.81 12.5 123.29 2.4 202.85 4.7
amazon0601 146.58 40,945 279 288.728 60,055 208 932.37 11.72 12.5 117.88 2.4 200.09 4.7
as20000102 0.49 968 1,996 0.731 1,629 2,229 2.81 0.27 1.8 0.49 1.5 0.95 3.0
As-caida20071105 5.20 7,752 1,492 7.759 13,783 1,776 59.19 1.28 4.0 4.14 1.9 10.1 5.9
Ca-AstroPh 31.44 10,871 346 40.623 18,770 462 119. 2.15 14.6 16.85 2.4 40.3 3.0
Ca-CondMat 5.41 1,010 187 7.16 1,616 226 19.96 0.51 10.5 6.09 1.2 5.71 3.5
Ca-GrQc 0.52 102 195 0.709 170 240 4.44 0.23 2.2 0.37 1.9 0.61 7.2
Ca-HepPh 28.14 12,001 427 35.875 32,906 917 141.45 2.39 11.8 17.14 2.1 33.12 4.3
Ca-HepTh 0.95 142 150 1.308 230 176 3.68 0.92 1.0 0.59 2.2 1.03 3.6
Cit-HepPh 58.05 20,802 358 77.366 35,341 457 233.24 3.48 16.7 30.29 2.6 61.6 3.8
Cit-HepTh 62.76 33,989 542 86.124 59,207 687 279.89 7.44 8.4 36.1 2.4 96.25 2.9
Cit-Patents 1,267.07 195,096 154 2832.069 - - 7865.62 130.17 9.7 1854.43 1.5 2745.75 2.9
Email-Enron 31.06 18,343 591 42.503 33,108 779 143.76 6.34 4.9 23.98 1.8 58.01 2.5
Email-EuAll 42.96 101,705 2,367 64.04 172,854 2,699 278.48 6.56 6.5 29.76 2.2 122.54 2.3
facebook 17.83 6,247 350 22.153 12,129 548 87.55 2.19 8.2 12.52 1.8 32.02 2.7
flickrEdges 1,756.72 1,089,880 620 2343.625 2,548,270 1,087 7701.95 144.7 12.1 1055.68 2.2 1815.27 4.2
Friendster 205,575 - - - - - - 16,481 12.5 - - - -
Friendster-SNAP 1,591,835 - - - - - - 68,914 23.1 - - - -
Loc-brightkite 20.67 8,525 412 29.019 14,356 495 102.72 2.89 7.1 14.09 2.1 24.88 4.1
Loc-gowalla 196.12 188,176 959 307.689 455,236 1,480 1438.38 50.22 3.9 243.59 1.3 931.91 1.5
Oregon1 010331 2.03 2,788 1,373 3.141 4,377 1,393 27.79 0.71 2.8 2.24 1.4 12.62 2.2
Oregon1 010407 2.03 2,670 1,316 3.146 4,443 1,412 22.43 0.73 2.8 2.1 1.5 6.57 3.4
Oregon1 010414 2.16 2,957 1,369 3.34 4,616 1,382 19.14 0.79 2.8 2.26 1.5 9.37 2.0
Oregon1 010421 2.20 2,989 1,359 3.436 4,765 1,387 19.56 0.94 2.3 2.58 1.3 9.68 2.0
Oregon1 010428 2.34 2,975 1,273 3.452 4,893 1,418 19.43 0.75 3.1 2.34 1.5 16.82 1.2
Oregon1 010505 2.23 3,031 1,357 3.391 4,784 1,411 19.72 0.96 2.3 2.23 1.5 16.91 1.2
Oregon1 010512 2.23 3,063 1,371 3.402 4,753 1,397 19.56 0.7 3.2 2.24 1.5 8.22 2.4
Oregon1 010519 2.18 3,079 1,411 3.394 4,880 1,438 26.78 0.76 2.9 2.22 1.5 10.25 2.6
Oregon1 010526 2.36 3,137 1,330 3.568 5,197 1,457 24.22 0.8 2.9 2.3 1.6 16.87 1.4
Oregon2 010331 3.91 3,382 865 5.483 5,425 989 23.94 1.15 3.4 3.49 1.6 17.02 1.4
Oregon2 010407 3.79 3,455 911 5.384 5,582 1,037 23.72 1.37 2.8 3.51 1.5 16.59 1.4
Oregon2 010414 4.11 3,554 866 5.784 5,765 997 26.6 1.05 3.9 3.65 1.6 17.08 1.6
Oregon2 010421 3.92 3,558 908 5.89 5,760 978 27.67 1.53 2.6 3.49 1.7 13.89 2.0
Oregon2 010428 4.02 3,557 886 5.776 5,814 1,007 27.6 3.82 1.1 3.62 1.6 14.98 1.8
Oregon2 010505 3.81 3,552 932 5.379 5,684 1,057 26.81 0.92 4.2 3.43 1.6 21.91 1.2
Oregon2 010512 3.83 3,586 936 5.523 5,814 1,053 24.72 1.07 3.6 3.41 1.6 18.71 1.3
Oregon2 010519 4.06 3,756 926 5.946 6,134 1,032 26.12 0.97 4.2 3.5 1.7 17.65 1.5
Oregon2 010526 4.21 3,867 918 6.232 6,285 1,009 35.12 1.31 3.2 3.54 1.8 20.34 1.7
P2p-Gnutella04 1.53 251 164 2.256 404 179 9.1 0.19 8.2 0.97 2.3 2.54 3.6
P2p-Gnutella05 1.28 213 166 1.819 346 190 10.4 0.24 5.3 0.79 2.3 2.43 4.3
P2p-Gnutella06 1.25 208 167 1.678 334 199 6.74 0.44 2.9 0.75 2.2 1.95 3.5
p2p-Gnutella08 0.86 169 197 1.175 268 228 4.67 1.1 0.8 0.55 2.1 2.37 2.0
p2p-Gnutella09 1.07 205 192 1.436 326 227 6.43 0.16 6.8 0.62 2.3 2.03 3.2
p2p-Gnutella24 2.40 347 144 3.261 555 170 12.86 0.31 7.8 1.28 2.6 2.7 4.8
p2p-Gnutella25 1.86 255 137 2.541 413 162 8.29 0.22 8.5 1.14 2.2 1.91 4.4
p2p-Gnutella30 3.22 446 139 4.383 714 163 14.13 0.32 10.1 1.95 2.3 2.74 5.2
p2p-Gnutella31 5.64 754 134 7.956 1,219 153 29.63 0.59 9.6 3.14 2.5 6.66 4.5
roadNet-CA 56.97 3,949 69 96.787 6,456 67 277.62 5.4 10.5 33.43 2.9 56.01 5.0
roadNet-PA 26.74 2,204 82 52.73 3,655 69 156.34 1.94 13.8 18.64 2.8 37.16 4.2
roadNet-TX 34.35 2,725 79 65.781 4,549 69 200.72 1.74 19.8 23.07 2.9 45.05 4.5
soc-Epinions1 114.78 73,388 639 164.447 143,871 875 542.35 9.99 11.5 74.03 2.2 159.92 3.4
soc-Slashdot0811 105.49 53,269 505 157.276 91,200 580 526.09 9.85 10.7 66.5 2.4 136.74 3.8
soc-Slashdot0902 116.37 58,531 503 166.35 97,610 587 577.47 11.25 10.3 71.89 2.3 155.66 3.7

TABLE I
SEQUENTIAL AND PARALLEL PERFORMANCE OF TRIANGLE COUNTING IMPLEMENTATIONS ATTAINED ON VARIOUS ARCHITECTURES.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

