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Abstract—Implementing complex arithmetic routines with Sin-
gle Instruction Multiple Data (SIMD) instructions requires the
use of instructions that are usually not found in their real
arithmetic counter-parts. These instructions, such as shuffles
and addsub, are often bottlenecks for many complex arith-
metic kernels as modern architectures usually can perform
more real arithmetic operations than execute instructions for
complex arithmetic. In this work, we focus on using a variety
of data layouts (mixed format) for storing complex numbers at
different stages of the computation so as to limit the use of
these instructions. Using complex matrix multiplication and Fast
Fourier Transforms (FFTs) as our examples, we demonstrate
that performance improvements of up to 2x can be attained
with mixed format within the computational routines. We also
described how existing algorithms can be easily modified to
implement the mixed format complex layout.

I. INTRODUCTION

Complex arithmetic is often required in many different
computational domains such as signal processing, material
sciences [16], and machine learning [15]. In all these do-
mains, the complex data is typically stored in the traditional
interleaved data format where real and imaginary components
of a complex number are stored in sequential locations in
memory. This default layout is convenient as it allows us to
treat complex numbers in the same manner as real numbers
when it comes to laying out the data in memory, or performing
computation on them.

The reality of implementing complex arithmetic is that
while complex addition is an extension of real addition, the
same does not hold for complex multiplication. Consider how
complex multiplication is implemented':

(a+bi) x (c+di) = (ac —bd) + (ad + bc)i. (1)

Notice that the result is dependent on both the real and
imaginary components of the source operands. Additional op-
erations, such as addition and subtraction, are also performed.
These differences between real and complex multiplication
becomes even more apparent when high performance math
kernels involving the multiplication of complex numbers are
implemented using Single Instruction Multiple Data (SIMD)

IThere is an alternative method for computing a complex multiplication,
known as the 3M method, described by Higham [8]. This computation requires
3 real multiplication and 5 real additions. This method of computation is not
discussed in this paper.
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Fig. 1. Performance as FLOPs/cycle for point-wise complex multiplication
using interleaved and split data layout. The interleaved data layout has shuffle
instructions on the critical path.

instructions. The traditional format necessitates permuting
elements to facilitate the multiplications of real with imagi-
nary components of different complex numbers. Furthermore,
instructions such as addsub are required to perform the addi-
tional computation required by the complex multiplication. As
the throughput (i.e. number of parallel instructions executed
per cycle) of such instructions are usually limited, this creates
a bottleneck in the computation of complex kernels.

This bottleneck is illustrated by the performance plot in
Figure 1. We report performance numbers for computing a
point-wise complex multiplication between two vectors of
various lengths on an Intel Haswell architecture. The Haswell
processor can compute two fused-multiply-add instructions per
cycle, whereas only one permutation can be performed in each
cycle. As the operations required for complex multiplication
are dependent on the completion of the permutations, the lim-
ited throughput of the permutation becomes a bottleneck that
lowers the achievable performance when using the interleaved
format (blue line with circle markers). Changing the data
layout eliminates permutations, and therefore performance
increases (red line with square markers).

We make the observation that while the input and output
values of complex mathematical routines have to be conformal
with the traditional interleaved data format, the intermediate
values can be stored in a computationally more convenient data
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Fig. 2. Two implementations of the SIMD complex multiplication when data is stored in complex interleaved (left) and block interleaved (right) data formats.
The SIMD vector length is ¥ = 4. When data is stored in interleaved format, each vector register can hold two complex numbers. When data is stored in block
interleaved, each vector registers stores four real components or four imaginary components. The real components of the complex numbers are represented
by the yellow color, while the imaginary components are represented by the dark gray color.

format that reduces the number of special instructions used
and increases overall performance. In this paper, we leverage
this observation that allows us to design complex arithmetic
kernels that change the data layout during the computation in
order to reduce the use of the special instructions.
Contributions Specifically our contributions are as follows:

— Mixed data layout complex arithmetic kernel. We intro-
duce the use of different data layout formats at different
stages of the complex arithmetic kernels to reduce and
even eliminate permutations and other instructions that
have limited throughput on most systems. These instruc-
tions are often bottlenecks of complex arithmetic kernels,
and by limiting their use, even highly optimized kernels
can benefit in yielding higher performance.

— Opportunities for introducing mixed format. Using ex-
amples from two different domains where complex arith-
metic are used, we illustrate different opportunities where
the switching of mixed format can be introduced. By
leveraging existing data movement patterns in existing
kernels, we show that the cost of switching between data
formats within the computation can be hidden effectively.

II. DATA LAYOUT FOR COMPLEX NUMBERS

In this section, we discuss the pros and cons of two differ-
ent data layout for storing complex numbers when complex
multiplication is required.

A. Traditional / Interleaved Data Layout

Traditionally, sequences of complex numbers have been
stored in interleaved format, where the real and imaginary
components are located in consecutive memory locations.
While this format is natural, implementing complex multipli-
cation with SIMD instructions will require the permutation of
the individual components of the complex numbers.

Complex multiplication on interleaved data requires three
separate permutations to reorder the data into the appropriate
location in order to perform SIMD computation. Data needs
to be unpacked, then multiplied to obtain the intermediate
results and finally added together with an addsub instruction
to obtain the final result. It is important to notice that the
shuffle operations must be executed before the floating point
computation could start. Having the permutations on the
computation’s critical path will degrade performance. Figure 2
(left) describes one possible way of computing the complex
multiplication on interleaved data using SIMD instructions.

B. Split Data Layout

The split data format stores the real and imaginary compo-
nents as two disjoint sequences. using this format, a sequence
of N complex numbers is split into a sequence of N contigu-
ous real components and a sequence of [N contiguous imag-
inary components. Storing complex number as two disjoint
sequences of real and imaginary components allows one to
perform the complex multiplication as if one would perform
the scalar complex multiplication, i.e.

(@+ i) x (G+di) = (at — bd) + (ad + be)i.

The difference is that instead of computing one complex
multiplication at a time, the SIMD implementation computes
v complex multiplications at a time, where v is the SIMD
vector length. Figure 2 (right) shows the steps required to do a
complex multiplication if data is stored in split layout. It can be
seen that this implementation does not require shuffle/permute
operations before each multiplication. A variant of the split
data layout is the block interleaved layout [2], where every
block of b contiguous complex numbers is stored in the split
data format. Typically, the value of b is equal to the length of
the SIMD register v.



While we suspect that these benefits of the split data format
may be known?, it is not commonly seen in implementations
of complex arithmetic kernels. One possibility is that many
existing software only support the interleaved data format,
and switching from the interleaved data format to split format
is time-consuming as data has to be packed and unpacked
between library routines.

III. MIXED FORMAT COMPLEX ARITHMETIC KERNELS

In this section, we discuss how both interleaved and blocked
interleaved data format can be introduced into state-of-the-
art implementations of matrix multiplication, and fast Fourier
transforms. In each of the domains, we highlight opportunities
within the computational routine to perform the data layout
transformation and how the computation needs to be updated
to incorporate these mixed format kernels.

A. Complex Matrix Multiplication

High performance matrix multiplications are built with
loops around a small but highly optimized matrix multiplica-
tion as the kernel [12], [7]. Within the BLAS-like Instantiation
Software (BLIS) framework [17], a relatively recent open-
source framework for implementing high performance BLAS-
like operations using the Goto approach [6], the kernel is
known as the micro-kernel. This micro-kernel computes the
operation C' = «AB + SC where where C is a m, X n,
matrix, A is m, X k. and B is k. X n,, and k. > m, n,.
« and [ are complex scalar values. In addition, matrices A
and B are assumed to be packed into two separate blocks of
consecutive memory, and are stored in column-major order and
row-major order respectively. Pictorially, the BLIS framework
is shown in Figure 3.

1) Implementation with interleaved data format: Inspecting
the BLIS micro-kernel that computes a complex matrix mul-
tiplication [18], we observe that the micro-kernel is computed
as a sequence of three distinct operations,

T = AB
T = ol
C = pC+T,

where A, B C and the temporary matrix 7' are stored in
interleaved format. As most of the complex multiplications
required to compute the micro-kernel occur in the first op-
eration, T' := AB, the expert avoids performing multiple
permutations for each complex multiplication by storing the
four intermediate values (i.e. ab, ac, bc and bd as described
in Equation 1) separately. These four intermediate values are
accumulated (either added or subtracted) to form the real and
imaginary components of the values to be stored in 7' at
the end of the first operation. The latter two operations are
then performed via a point-wise multiplication when input and
output operands are stored in interleaved data format.

2Fastest Fourier Transform in the West (FFTW) library [4], a commonly
used FFT library, offers an interface for computing FFTs using the split data
layout.
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Fig. 3. Structure of the high performance matrix multiplication within the
BLIS framework [17]. Image taken from [18]. By providing an optimized
micro-kernel, a high performance implementation for matrix multiplication is
obtained.

The cost of this approach is that twice as much memory
is required to store the intermediate results. Four intermediate
values are required to store each complex number as opposed
to storing just the real and imaginary values. For the case,
where C' and T are kept in registers (as is the case with the
micro-Kernel), this means that m, and n,, the dimensions of
C and T, are restricted to smaller values, thus requiring more
round-trips through the data to perform the computation.

2) Mixed format implementations: In order to implement
the mixed format, recall that A and B are packed into
contiguous storage. As data packing is inherently a memory-
bound operations, this is a natural opportunity to switch the
data format of matrix B from interleaved to the blocked
interleaved format.

Given that matrix B has been packed accordingly, the
computation within the kernel can be simplified. Firstly, both
real and imaginary components of elements from matrix B
is scaled by a real component of an element from matrix
A to yield temporary values for matrix 7. Subsequently,
the imaginary component of the element from A is used to
scale the same real and imaginary components of B and
accumulated (or subtracted) into the same matrix 7' to finish
computing the complex multiplication. This reduces the need
for storing twice as many intermediate values in 7.

This approach eliminates any permutation required for the
complex multiplication. As data in matrix 7" is already grouped
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Fig. 4. The dataflow for a DFT of size 8 if implemented for a vector length
v = 4. The DFT is decomposed in several stages. It is important to notice
that the DFT requires one stage of in-register permutations and two stages of
complex multiplications with twiddle factors.

into the real and imaginary components, the scaling with «
can be performed without permutation as well. Finally, the
permutation back to interleaved format can be performed either
before or after the last operation, C' = SC + T, preserving the
input and output behavior of the complex kernel.

The net effect of this simplification are multi-fold. Firstly,
the output matrix C' of the micro-kernel has to be made
larger to hide the latency of the computational instruction [13].
Secondly, the reduction in the number of intermediate values
also allows us to create a larger micro-kernel. Finally, the
blocking parameters of the loops around the micro-kernel
has to be changed to optimize for the new micro-kernel. To
determine the new sizes of the micro-kernel and the parameters
of the surrounding loops, we derived these new values using
the analytical models introduced in [13].

B. Discrete Fourier Transform (DFT)

Fast Fourier Transform (FFT) algorithms for computing the
discrete Fourier Transform (DFT) such as the Cooley-Tukey
algorithm [1] decompose the discrete Fourier Transform (DFT)
of a composite size IV into smaller DFTs, in order to reduce
computational complexity. Thus, a DFT of size N = mn can
be expressed as: the computation m DFTs of size n, followed
by a point-wise complex multiplication with the roots of unity
(commonly known as twiddle factors [5]), and the computation
of n DFTs of size m. If m and n are composite numbers, the
smaller DFTs are recursively decomposed following the same
steps. The decomposition stops when the size of the DFT is
two. The DFT5 is represented by the butterfly matrix.

1) Implementation with interleaved data format: Notice
that each decomposition of a DFT requires a point-wise
complex multiplication with the roots of unity. Therefore,
the SIMD implementation of the complex multiplication will
suffer from the permute instructions if data is preserved in in-
terleaved format. In addition, the FFT inherently performs data
transpositions, since all the input data points are required to
compute each output data point. The transpositions themselves
require permute instructions. Figure 4 illustrates the dataflow

of a DFT of size 8 using a vector length of size v = 4. It can be
seen that the DFT requires one stage of data permutations and
two stages of complex multiplications with twiddle factors.
One solution to reduce the number of permute instructions
from the critical path is to duplicate the twiddle factors and
shuffle the data at initialization. This solution comes though at
the cost of an increased memory footprint. Details on SIMD
implementations for the FFT can be found in [2].
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Fig. 5. The dataflow for a DFT of size 8 if implemented for a vector length
v = 4. The first part of the DFT is compute in the interleaved format. This
part will include the data permutations and some of the twiddle multiplication.
Once data is in the correct shape, it can be changed to the block interleaved
format. This will remove the permute instructions from the second twiddle
multiplication.

2) Implementation with mixed data format: An alternative
solution is to change the layout of the data set. Since the
twiddle factors are precomputed arrays, they can be stored in
block interleaved at initialization. However, changing the input
layout cannot be done upfront as this would incur additional
permutation instructions to ensure that every input element
is used to compute every output element. Instead, the format
change must be done as computation is performed.

Figure 5 shows the data flow for a mixed data layout
DFT of size 8 when the SIMD vector length is v = 4.
Essentially, the FFT algorithm is split into two separate stages
of computation. The first stage of the mixed data layout FFT
algorithm is identical to the traditional FFT algorithm, where
permutations and twiddle multiplications are performed using
the interleaved data format.

At the end of first stage of computation, the data is unpacked
as part of the necessary data transposition incurred by the FFT
algorithm into the blocked interleaved format. This allows us
to compute the second part of the DFT in blocked interleaved
format, thus avoiding the permutations required by the twiddle
factor multiplications. In addition, by selecting where the
second stage of the DFT starts, the permutations incurred from
data transposition can also be avoided.

The outstanding question is the duration of the first stage
of the computation. With a SIMD vector length of v, v/2
complex numbers can be held in the vector. These v/2 com-
plex numbers need to be accumulated together with log,(v/2)
DFT, butterflies, which means that there must be log,(v/2)
sets of butterflies in the first stage before we can change the
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Fig. 6. Performance of double-precision complex matrix multiplication attained on Intel Haswell and Intel Kabylake. The mixed format implementation
achieves peak performance faster than the interleaved version as indicated by the steeper slope when the k dimension is small. Overall, as k gets larger, the
performance gap between the mixed format and interleaved format decreases from 37% and 33% on the Haswell and Kabylake respectively to 2% .

format. For v = 4, we require two stages in interleaved format
before swapping to the blocked interleaved layout.

IV. RESULTS

In this section, we compare performance results attained
by the mixed format implementations against implementations
found in commonly-used software libraries. We show per-
formance results obtained on complex mathematical kernels
implemented using Advanced Vector Extension (AVX) [10]
instruction set on two architecture, the Intel Haswell 4770K
and Intel Kabylake 7700K. In all plots, the top of the chart
represents the theoretical peak of the machine.

A. Complex Matrix Multiply

In Figure 6, we report performance attained by the different
implementations of double-precision complex matrix multi-
plication. Comparison is performed against implementations
in BLIS, as the BLIS framework allows us to selectively
replace computation and packing kernels. This also permits
us to isolate the performance changes due to the data layout
swap. For each architecture, we fixed the output matrix size
to 1000 x 1000, and increases the inner dimension k£ from
16 to 1024. Performance is reported in GLOPs/second. The
theoretical peaks for Haswell and Kabylake are 56 GFLOPs/s
and 72 GFLOPs/s.and Kabylake respectively.

Of particular interest is the rate at which the kernel achieves
peak performance. This is of interest as a faster rate means
that peak is sustained over a larger range of sizes of matrices.
As shown in the plots, the mixed format achieves peak
performance with a block size of 192, while the traditional
mixed format data requires a block size of 256 to reach peak
performance. The performance improvement over small values
of k£ (k < 100) with the mixed format implementation is be-
tween 10-33 and 10-37% over the interleaved implementation
on the Kabylake and Haswell respectively.

These results are as expected because the mixed format
allows us to compute with almost twice as large a micro-kernel

when compared with the interleaved micro-kernel. Since the
L1 cache is fixed, a larger micro-kernel means that less data in
the k dimension is required to utilize the L1 cache efficiently.
The mixed format implementation has also an slight and
unexpected benefit of attaining a 1% to 2% improvement
over the traditional layout implementation even as the inner
dimension of the matrices becomes larger.

B. Discrete Fourier Transform

In Figure 7, we present the performance attained by different
implementations of double-precision 1D and 2D FFTs. We
compare our approach using interleaved and mixed format
against state-of-the-art implementations offered by MKL [9]
and FFTW [11]. In addition, performance results for a number
of kernels of the form DFT, ® I,, where v represents the
vector length. These kernels are chosen as they are similar to
the codelets used by FFTW to generate implementations for
larger FFT sizes.

We implement our data layout-aware FFTs within the Spiral
framework [14]. We use Spiral to generate small 1D FFT
codelets of size n = 64,128,256,512. The 2D FFT imple-
mentations are obtained writing loops around the 1D kernels,
similar to FFTW’s implementation [3]. We report performance
for both the kernels and the 2D FFTs as FLOPs/cycle. Given
that FFTs have predominantly more additions than multiplica-
tions and/or fused multiply-add instructions, we can make the
assumption that FFTs are bounded by additions. Since the Intel
Haswell architecture can compute only one vector addition per
cycle, we can determine that for a vector length v = 4 the
theoretical peak is 4 FLOPs/cycle. Intel Kabylake has twice
the throughput (two vector additions per cycle), therefore the
FFT peak performance for the same v = 4 is 8 FLOPs/cycle.

Recall that the complex multiplication requires two multi-
plies and one addsub to compute the final result. Due to the
permutations, both multiply instructions have to be computed
before the addsub can be executed. Any deviation from the
peak performance can be attributed to this dependency.
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Fig. 7. Performance of double precision 1D kernels and 2D FFTs on Intel Haswell and Intel Kabylake. The mixed format implementations of the 1D FFT
kernels (top plots) achieves close to peak performance and match or overpass the library implementations. The mixed format 2D FFTs (bottom plots) achieve
between 10% and 30% performance improvement against MKL and FFTW implementations.

1D FFT Performance. Notice that the implementation of
the 1D FFTs using the mixed format is slightly better (5% to
15%) then the FFTW and MKL implementations. In addition,
the mixed format implementation achieves closer-to-peak per-
formance on both architectures. Similar behavior is observed
with the 1D kernels DF'T,, ® I,,, though overall performance
decreases for when the data is outside of the L1 cache.

As MKL does not offer methods to implement the kernels
of the form DF'T,,®1,, we only compare our implementations
against FFTW. Overall, our implementations are 1.3 to 2x
faster than FFTWs implementations.

2D FFT Performence. We compare the 2D FFT imple-
mented using the mixed format against MKL and FFTW. The
bottom two plots in Figure 7 show the performance of the three
implementations on the two architectures. All sizes shown
exceed the L1 cache. In addition, the 512 x 512 reside in
main memory. As shown in the plots, the performance of our
approach is between 10% and 30% over the implementations
offered by two libraries. Notice that as the size of the 2D FFT
increases the performance drops since computation requires

data to be brought frm the lower levels of the cache hierarchy.

V. CONCLUSION

In this paper, we describe how switching data layouts for
complex numbers within the computational routine can fur-
ther improve performance of highly-tuned complex arithmetic
kernels. By storing the intermediate results in computationally
convenient data formats, we reduce (and in some case elimi-
nate) the need for special instructions that are often bottlenecks
of many systems. We show that applying our approach to im-
portant kernels such as matrix-matrix multiplication and FFT
we achieve up to 2x performance improvements over state of
the art library implementations. Using important kernels in the
linear algebra and spectral domain, we highlight opportunities
for improving overall performance of applications from signal
processing, machine learning and material sciences where such
kernels are used together. One such opportunity for improving
performance is preserving the block interleaved data format
across computation kernels, thus reducing the overall number
of packing and unpacking routines.
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