
Exploration of Fine-Grained Parallelism for Load
Balancing Eager K-truss on GPU and CPU

Mark Blanco∗, Tze Meng Low†
∗† Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, United States
{markb1 lowt}@cmu.edu

Kyungjoo Kim‡
∗‡ Center for Computing Research

Sandia National Laboratories
Albuquerque, United States
{kyukim}@sandia.gov

Abstract—In this work we present a performance exploration
on Eager K-truss, a linear-algebraic formulation of the K-truss
graph algorithm. We address performance issues related to load
imbalance of parallel tasks in symmetric, triangular graphs by
presenting a fine-grained parallel approach to executing the
support computation. This approach also increases available
parallelism, making it amenable to GPU execution. We demon-
strate our fine-grained parallel approach using implementations
in Kokkos and evaluate them on an Intel Skylake CPU and an
Nvidia Tesla V100 GPU. Overall, we observe between a 1.26-
1.48x improvement on the CPU and a 9.97-16.92x improvement
on the GPU due to our fine-grained parallel formulation.

Index Terms—Graph Algorithms, K-truss, Linear Algebra,
Parallelism, High Performance, GPU, CPU, Kokkos, Eager K-
truss, Performance Portability

I. INTRODUCTION

The K-trusses of a graph G are highly connected subgraphs
of G where each edge in a subgraph is an edge in at least
K − 2 distinct triangles in the subgraph [1].

In this work, we present a fine-grained parallel implemen-
tation of the Eager K-truss algorithm [2], a linear algebraic
formulation of an edge-centric K-truss algorithm, on both the
CPU and the GPU. The key observation is that the existing
Eager K-truss algorithm uses a coarse-grained approach to par-
allelism by dividing the edges into blocks that are distributed
between parallel workers based on the common vertex that the
edges are connected to; typically the ‘source’ vertex. As each
edge may be connected to different number of neighboring
edges (i.e. edges that share the same vertex), the performance
of this approach suffers from potential load imbalance. In
addition, the Eager K-truss algorithm computes with an upper-
triangular adjacency matrix, which means this load imbalance
may be skewed significantly as the algorithm proceeds.

We resolve the load imbalance problem by introducing a
finer-grained task unit upon which parallel workers compute
edge membership in triangles - the edge support values. This,
in essence, introduces parallelism within each block of edges
assigned to a processing element.

In Sections II and III, we present details of our proposed
algorithm. For an efficient implementation, we use a perfor-
mance portable parallel programming model, Kokkos [3]. In
particular, we report our K-truss performance for several fixed
K values on NVIDIA V100 and Intel Skylake architectures.

Algorithm 1: Linear algebraic K-truss algorithm. Lower-
case letters are vectors and capital letters are matrices.

Input: A is the adjacency matrix of input graph
Output: S represents the support of edges in A

1 converge← false
2 while not converge do
3 S ← ATA ◦A // Step 1: computeSupports
4 M ← S ≥ (k − 2) // Step 2: pruneEdges
5 A← A ◦M
6 converge← isUnchanged(M)

7 return S

We report our results in millions of edges processed per second
for each graph, and provide a summary table with timings in
milliseconds for specific configurations.

II. BACKGROUND

To keep this paper self-contained, we provide a brief de-
scription of the Eager K-truss algorithm in this section. For
the detailed algorithmic derivation, we refer to Low et al. [2].

A. Linear Algebraic K-truss Algorithm

Similar to many other K-truss implementations, Eager K-
truss takes a two-step approach. Specifically, the first step
computes the support of all edges, and the second step prunes
edges whose support are below a specified threshold. This two-
step approach is then repeated on the pruned graph(s) until no
more edges can be removed.

These two steps of the K-truss algorithm can generally
be expressed using linear algebraic notation as described in
Algorithm 1, where A is given as the adjacency matrix of the
input graph, and M is a binary matrix where M [i, j] = 1 when
S[i, j] ≥ (k − 2) [4]. The ◦ operator represents an element-
wise multiplication of the input operands. Note that Step 1
computes matrix S, where each value at S[i, j] is the number
of triangles containing the edge between nodes i and j.

B. Eager K-truss Algorithm

The Eager K-truss algorithm derives its name for the eager
manner in which it updates the support values of all edges
for each triangle that has been identified. Specifically, the



Algorithm 2: computeSupports in Eager K-truss. Greek,
lower-case and upper-case letters are scalars, vectors and
matrices respectively. Loop range is defined with a start
value and a non-inclusive upper bound.

Input: A is the upper-triangular adjacency matrix of the input graph
Output: S represents the support of edges in A

1 parallel for i in range(0, numRows(A)) do
2 partition A and S where α11 and σ11 are scalar corresponding to

the diagonal values of Aii and Sii as follows: A00 a01 A02

α11 aT12
A22

 and

 S00 s01 S02

σ11 sT12
S22


3 sT12 ← sT12 + aT12A22 ◦ aT12
4 ST

22 ← ST
22 + a12aT12 ◦A22

5 return S

support of all three edges that form a triangle is updated
by the edge with the smallest two vertex labels. By re-
arranging S ← ATA ◦ A, using a block-partitioned matrix
form, the first step of the Eager K-truss algorithm is described
in Algorithm 2. To be consistent with the notation used in [2],
we use upper-case, lower-case and Greek letters to represent
matrices, column vectors, and scalar elements, respectively.
Since Eager K-Truss specifically focuses on undirected and
unweighted graphs, it uses the upper triangular adjacency
matrix in its computations. Therefore, the adjacency matrix
A used in algorithm [2] is upper-triangular.

Iterating over the rows of the adjacency matrix A and ex-
ploiting the symmetry of the undirected graph, the computation
of the support matrix S follows two updating rules: lines 3
and 4 depicted in Algorithm 2. From now on we will refer to
these as the s12 and S22 update rules, respectively. As data
dependencies exist among different iterations, the updates are
performed in an atomic fashion.

In essence, the Eager algorithm in Algorithm 2 computes
edge supports by performing set intersections for vertex neigh-
borhoods on either side of a current edge and updating all
edges in each triangle found. Neighborhood intersections are
grouped by their common source vertex, whose outgoing
neighborhood is a12. Imbalances can occur since vertices do
not have identically sized outgoing neighborhoods.

III. FINE-GRAINED PARALLEL EAGER K-TRUSS

In this section, we discuss the source of load imbalance in
the existing coarse-grained approach and describe our fine-
grained solution. We also discuss implementation details of
our approach using the Kokkos framework.

A. Source of Load Imbalance in Eager K-truss

For each matrix partitioning i at a given iteration, the s12
and S22 update rules are applied. As matrix A is upper triangu-
lar, the computational cost of the two updates may decrease as
the iteration count i increases. Further, the imbalanced nature
of the graph connectivity can lead to significant performance
degradation especially when a large number of computing
units are used in parallel. Intuitively, this imbalance arises
in part from the decrease in length of vector aTi12 and also

Algorithm 3: computeSupports in fine-grained Eager K-
truss. Greek, lower-case and upper-case letters are scalars,
vectors and matrices respectively. Loop and vector or
matrix dimension ranges are defined with a start value,
colon, and either a non-inclusive upper bound or no upper
limit indicating inclusion of the remaining space.

Input: A is the upper-triangular adjacency matrix of the input graph
Output: S represents the support of edges in A

1 parallel for i in range(0, numRows(A)) do
2 partition A and S where α11 and σ11 are scalar corresponding to

the diagonal values of Aii and Sii as follows: A00 a01 A02

α11 aT12
A22

 and

 S00 s01 S02

σ11 sT12
S22


3 parallel for j in nonZeros(aT12) do
4 κ← aT12(j) // index of A22 row w.r.t A

// A(κ, :) is the row in A22 for task (i, j)
// S(κ, :) is the row in S22 for task (i, j)

5 sT12(j) ←sT12(j) + A22(κ, :)a12
6 sT12(j + 1 :)← sT12(j + 1 :) + aT12(j + 1 :) ◦A(κ, :)
7 S(κ, :)← S(κ, :) + aT12(j + 1 :) ◦A(κ, :)

8 return S

0 1 0 1 0 0 1 0 1 0

…

…

Task (i,1)

Coarse-Grained Task Fine-Grained Tasks

𝑎𝑖12

𝐴𝑖22

Task (i)

…

…

𝑎𝑖12

𝐴𝑖22

Task (i,j)

Fig. 1: Partitioning i corresponding to a specific set of inputs to
the support updates. The left side illustrates that the the work
is roughly proportional to the number of non-zero elements in
aTi12 . The right side shows a fine-grained set of tasks, where
each task is further refined by the ith partitioning and the jth

non-zero value in aTi12 . Task (i, j) updates s12 on the ith row,
and a row in S22 indicated by the jth value in aTi12 .

from the shrinking size, both in width and height, of the sub-
matrix Ai22 . However, because the matrix A is typically highly
sparse, the width and height of Ai22 is far less relevant than the
number of non-zero elements in aTi12 . Even the number of non-
zero elements in Ai22 does not directly influence imbalance.
The major reason for this is that the number of row vectors in
Ai22 that are relevant to the update rules is directly determined
by the non-zero elements present in aTi12 .

B. Fine-grained Tasks for Updating Edge Supports

Our load balancing strategy is to take advantage solely of
the information provided by a particular aTi12 : the number
of non-zero elements which directly indicate the number of
neighborhoods in Ai22 that must be visited. Thus, a fine-
grained task can be defined as a row-wise update by selecting
a row in Ai22 based on the jth value of aTi12 , rather than
updating multiple rows in Ai22 from the outer product of aTi12 .
As a result, our fine-grained Eager algorithm iterates over a



pair iterator (i, j) that corresponds to the number of non-zero
elements of A. Fig. 1 illustrates the difference between the two
parallel approaches. To distinguish these two algorithms, we
refer the original Eager K-truss algorithm as coarse-grained
parallel since each parallel task in the algorithm operates on a
group of edges that share the same source vertex. In contrast,
we refer to our parallel approach using tasks defined by each
non-zero element of the matrix as fine-grained parallel; it is
described in Algorithm 3.

The actual work to be performed is determined by both
the number of non-zero elements in aTi12 and the non-zero
elements within the relevant row of Ai22 indicated by a non-
zero value in aTi12 . Therefore, the update rules could then
further divided into smaller tasks by grouping the elements
within a row of Ai22 . However the information as to exactly
how many elements of a row of Ai22 should be grouped is not
straightforward and precise determination of this information
can cost similarly to the actual cost of applying the update
rules. Therefore we leave it to future work to explore the merits
of such ultra-fine-grained tasks. Finally, we note that in either
approach outlined above, the Eager K-truss algorithm is still
edge-centric; it is simply that the expression of parallelism is
changed from parallel over groups of edges within a row (on
the order of number of vertices) to parallel over tasks identified
by individual edges (on the order of non-zero elements).
1 using namespace Kokkos;
2 using SpT = Cuda; // Serial, OpenMP, Cuda
3 using IJ_ViewType = View<uint32_t*,SpT>;
4 // ++, += operators are overloaded by atomic updates
5 using S_ViewType = View<uint16_t,SpT,MemoryTraits<Atomic> >;
6 // CSR input (IA and JA) and support matrix S are stored on device memory
7 uint32_t fine_grained_parallel_eager(
8 IJ_ViewType IA, IJ_ViewType JA, // CSR input of a graph (matrix A)
9 S_ViewType S, // support of edges

10 uint32_t K) // K-truss parameter
11 const uint32_t nnz = JA.extent(0), nverts = IA.extent(0)-1;
12 uint32_t tri_new(1);
13 while (tri_new) {
14 tri_new = 0;
15 // Step 1: computeSupports
16 parallel_for(RangePolicy<SpT>(0, nnz),
17 KOKKOS_LAMBDA(const uint32_t ij) const {
18 auto a12_pred = JA(i);
19 if (a12_pred != 0) {
20 auto a12_start_off = i+1;
21 auto A22_start_off = IA(a12_pred);
22 auto A22_end_off = IA(a12_pred+1)-1;
23 uint16_t SL(0);
24 while (JA(a12_start_off)!=0 && JA(A22_start_off)!=0){
25 const auto flag = (JA(A22_start_off) == JA(a12_start_off));
26 if (flag) {
27 ++(S(a12_start_off));
28 ++(S(A22_start_off));
29 SL++;
30 a12_start_off++;
31 A22_start_off++;
32 } else if (JA(A22_start_off) > JA(a12_start_off)){
33 a12_start_off++;
34 } else {
35 A22_start_off++;
36 }
37 }
38 S(i) += SL;
39 }
40 });
41 fence();
42 pruneEdges(); // Step 2 (omitted due to space constraints)
43 }
44 return tri_new;
45 }

Listing 1: Fine-grained support computation in Kokkos

C. Performance Portable Implementation via Kokkos

Kokkos provides a performance portable parallel program-
ming model with node-level device abstractions i.e., execution
space, memory space, execution policy and parallel patterns.
We briefly explain Kokkos features that we primarily used for
our fine-grained-parallel implementation. An execution space

and a memory space define where the code is executed and
where data resides. For example, an execution space supports
Serial, OpenMP and Cuda for GPUs while a memory space
includes HostSpace, CudaUVMSpace (host accessible) and
CudaSpace. Then, a device can be described as a combination
of an execution space and corresponding memory space. An
execution policy defines how computing units are mapped to
concurrent tasks. In our implementation, we use RangePolicy
that maps a single thread to a single work unit defined in a
range of an iteration space. Kokkos also provides commonly
used parallel algorithms i.e., parallel for, reduce, and scan,
which are interfaced via a functor provided by users.

Listing 1 illustrates the implementation of fine-grained
support computation using Kokkos. The pruning subroutine is
identical to [2] and is omitted for brevity. As input, the code
expects an upper-trianglular CSR input matrix of IA and JA
arrays where they represent row pointers and column indices.
S indicates an array for storing edge supports and the array is
decorated with an Atomic memory trait. Using Kokkos, this
code works for both CPUs and NVIDIA GPUs by changing
a single line of the code specifying an execution space. Note
that while we use a flat range policy in the implementation,
Algorithm 3 is expressed as nested parallel for readability.

D. Zero-terminated CSR

Recognize that the information determining which ai,j12 and
Ai,j22 (notated A(κ, :) in Algorithm 3) sub-vectors are used
as inputs to a particular task is almost entirely characterized
by the location and contents of the element in ai,j12 located
at A(i, j). By defining each task based on the matrix element,
we are able to avoid adding an additional data structure for
tracking tasks.

However, we did modify the triangularized CSR graph rep-
resentation such that each vertex neighborhood is terminated
with an additional zero value. This increases the length of the
entire vector of non-zero elements by the number of vertices,
but allows the ends of each task’s input vectors to be implicitly
coded without external bookkeeping. This change is minor
because the pruning step already introduces zeros as a way of
implementing early termination. Therefore, zero-terminating
the rows at the start simplifies the implementation and enables
fine-grained parallel implementation.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we cover our experimental setup for testing
performance of our parallel implementations on CPU and
GPU. We then present and discuss selected performance
results on a set of graphs.

A. Experimental Setup

Input graphs from the Stanford Network Analysis Project
(SNAP) [5] were downloaded from the GraphChallenge col-
lection [6]. These graphs were made upper-triangular before
being used as inputs. Our CPU test platform was a single-
node, dual-socket machine with two 24-core, 48-thread Intel
Xeon Platinum 8160 CPUs, each operating at 2.10 GHz with



0.5

1

1.5

2

2.5

3

Fi
n

e-
o

ve
r 

C
o

ar
se

-G
ra

in
ed

 S
p

ee
d

u
p

K=K-Max: Fine- over Coarse-Grained Speedup for Increasing Threads on CPU8 16 32

Fig. 2: Speedup of fine- over coarse-grained performance for K = Kmax for each graph and number of threads. Speedup
improvement from threading is highly graph-dependent. The red line indicates coarse-grained the normalization baseline.

a total of 187 GB of main memory. Our GPU is an Nvidia
Tesla V100 hosted on a second machine with a Power9 IBM
processor. Experiments were run for the cases when K = 3,
and K = Kmax, i.e. the largest value of K that returns
a non-empty K-truss. The K = 3 case is consistent with
experiments in Bisson et al [7], [8]. Performance numbers are
provided in terms of millions of edges processed per second
(ME/s), and the mean of 10 trials is reported. Correctness of
all implementations was verified against the reference K-truss
code provided by Low et al. [2].

Table I reports runtimes and ME/s results comparing be-
tween the coarse- and fine-grained using 48 CPU threads and
on the GPU for the K = 3 case. Due to space constraints,
we do not also include a similar table for K = Kmax. Where
named in a plot, graphs are ordered from least number of edges
(non-zero entries) to greatest, left to right. Where a plot bar
for coarse-grained performance is not visible, vertical text is
placed to state the ME/s rate achieved.

CPU Performance

Fig. 2 shows speedup of fine-grained versus coarse-grained
parallelism for K = Kmax. We omit the plot for K = 3
except to state that speedups are slightly higher.

Speedup is above unity for most graphs, indicating that fine-
grained has better performance per graph and per number of
threads. Some larger graphs show drops in speedup below
unity for threads greater than 8. This may be because K =
Kmax aggressively prunes edges from the graph and reduces
overall opportunities for parallelism. Some graphs show peaks
in speedup for 32 threads even if the 16 thread run has worse
speedup than 8. In future work we will examine the graphs’
properties to determine causes for these peaks and troughs.

Fig. 3 shows performance of the CPU parallel implementa-
tions across all input graphs for 48 threads. Overall, the geo-
metric mean speedup across graphs of the fine-grained parallel
implementation over coarse-grained is 1.48x for K = 3 and
1.26x for K = Kmax, both for 48 threads.

GPU Performance
The difference in performance between the two parallelism

approaches is much larger on the GPU. Fig. 4 shows that, for
the majority of the input graphs, the fine-grained implementa-
tion achieves significantly higher performance. For the case of
K = 3, the mean geometric speedup between the two parallel
schemes on the GPU is 16.93x; for K = Kmax, it is 9.97x.

In addition to reducing load imbalance, executing in parallel
over fine-grained tasks appears to benefit the GPU by increas-
ing the amount of parallel work. This seems to be the case for
the oregon networks and as-caida20071105, which have on
the order 10,000 - 1,000 vertices and are among the smallest.
However, larger graphs such as the roadNet graphs and cit-
Patents show lower performance on the GPU. Determining the
sources of these performance degradations will be the subject
of future work. Overall, the fine-grained GPU implementation
are 1.92x and 1.56x faster, for K = 3 and Kmax respectively,
than the fine-grained CPU implementation.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a Kokkos implementation of the Eager
K-truss algorithm and improves performance by exploiting
fine-grained parallelism. We presented results for our fine-
grained approach of Eager K-truss on both CPU and GPU,
showing that fine-grained parallelism gives significantly im-
proved performance on GPUs and some benefits on the CPU
system. By switching parallelism strategies, we observe a
mean improvement of 16.93x and 9.97x on the GPU for K = 3
and K = Kmax, respectively, and an improvement on the CPU
of 1.48x and 1.26x for the two K settings.

An alternative to the presented parallel approach is hierar-
chical parallelism (team parallelism in Kokkos) for expression
of ultra-fine-grained parallelism and further improved work-
load balancing. In addition, while the fine-grained approach
generally performs well on both platforms, larger graphs tend
to show nearly the same performance on the GPU for both
approaches. Determining the source of this behavior will be
the subject of future work.



101

102

Mi
llio

ns
 o

f E
dg

es
 p

er
 S

ec
on

d 
(M

E/
s)

3.
38

5.
99

6.
30

ME/s for K=3 on CPU (48 Threads)
CPU-CoarseGrain
CPU-FineGrain

as
20

00
01

02

ca
-G

rQ
c

p2
p-

Gn
ut

el
la

08

or
eg

on
1_

01
04

07

or
eg

on
1_

01
03

31

or
eg

on
1_

01
04

14

or
eg

on
1_

01
04

28

or
eg

on
1_

01
05

05

or
eg

on
1_

01
05

12

or
eg

on
1_

01
05

19

or
eg

on
1_

01
04

21

or
eg

on
1_

01
05

26

ca
-H

ep
Th

p2
p-

Gn
ut

el
la

09

or
eg

on
2_

01
04

07

or
eg

on
2_

01
05

05

or
eg

on
2_

01
03

31

or
eg

on
2_

01
05

12

or
eg

on
2_

01
04

28

p2
p-

Gn
ut

el
la

06

or
eg

on
2_

01
04

21

or
eg

on
2_

01
04

14

p2
p-

Gn
ut

el
la

05

or
eg

on
2_

01
05

19

or
eg

on
2_

01
05

26

p2
p-

Gn
ut

el
la

04

as
-c

ai
da

20
07

11
05

p2
p-

Gn
ut

el
la

25

p2
p-

Gn
ut

el
la

24

p2
p-

Gn
ut

el
la

30

ca
-C

on
dM

at

p2
p-

Gn
ut

el
la

31

em
ai

l-E
nr

on

ca
-A

st
ro

Ph

lo
c-

br
ig

ht
kit

e_
ed

ge
s

cit
-H

ep
Th

em
ai

l-E
uA

ll

so
c-

Ep
in

io
ns

1

cit
-H

ep
Ph

so
c-

Sl
as

hd
ot

08
11

so
c-

Sl
as

hd
ot

09
02

am
az

on
03

02

lo
c-

go
wa

lla
_e

dg
es

ro
ad

Ne
t-P

A

ro
ad

Ne
t-T

X

am
az

on
03

12

am
az

on
05

05

am
az

on
06

01

ro
ad

Ne
t-C

A

cit
-P

at
en

ts

Input Graph

101

102

Mi
llio

ns
 o

f E
dg

es
 p

er
 S

ec
on

d 
(M

E/
s)

5.
05

5.
46

5.
97

ME/s for K=KMAX on CPU (48 Threads)
CPU-CoarseGrain
CPU-FineGrain

Fig. 3: Performance for 48 CPU threads of coarse- and fine-grained implementations. Top: K = 3. Bottom: K = Kmax.

101

102

103

Mi
llio

ns
 o

f E
dg

es
 p

er
 S

ec
on

d 
(M

E/
s)

0.
08

3.
64

0.
35

0.
36

0.
35

0.
34

0.
34

0.
34

0.
33

0.
35

0.
33

0.
48

0.
44

0.
47

0.
44

0.
45

0.
46

0.
47

0.
44

0.
42

0.
38

1.
02

3.
86

2.
27

2.
69

3.
91

0.
70

3.
20

3.
07

0.
18

ME/s for K=3 on GPU
GPU-CoarseGrain
GPU-FineGrain

as
20

00
01

02

ca
-G

rQ
c

p2
p-

Gn
ut

el
la

08

or
eg

on
1_

01
04

07

or
eg

on
1_

01
03

31

or
eg

on
1_

01
04

14

or
eg

on
1_

01
04

28

or
eg

on
1_

01
05

05

or
eg

on
1_

01
05

12

or
eg

on
1_

01
05

19

or
eg

on
1_

01
04

21

or
eg

on
1_

01
05

26

ca
-H

ep
Th

p2
p-

Gn
ut

el
la

09

or
eg

on
2_

01
04

07

or
eg

on
2_

01
05

05

or
eg

on
2_

01
03

31

or
eg

on
2_

01
05

12

or
eg

on
2_

01
04

28

p2
p-

Gn
ut

el
la

06

or
eg

on
2_

01
04

21

or
eg

on
2_

01
04

14

p2
p-

Gn
ut

el
la

05

or
eg

on
2_

01
05

19

or
eg

on
2_

01
05

26

p2
p-

Gn
ut

el
la

04

as
-c

ai
da

20
07

11
05

p2
p-

Gn
ut

el
la

25

p2
p-

Gn
ut

el
la

24

p2
p-

Gn
ut

el
la

30

ca
-C

on
dM

at

p2
p-

Gn
ut

el
la

31

em
ai

l-E
nr

on

ca
-A

st
ro

Ph

lo
c-

br
ig

ht
kit

e_
ed

ge
s

cit
-H

ep
Th

em
ai

l-E
uA

ll

so
c-

Ep
in

io
ns

1

cit
-H

ep
Ph

so
c-

Sl
as

hd
ot

08
11

so
c-

Sl
as

hd
ot

09
02

am
az

on
03

02

lo
c-

go
wa

lla
_e

dg
es

ro
ad

Ne
t-P

A

ro
ad

Ne
t-T

X

am
az

on
03

12

am
az

on
05

05

am
az

on
06

01

ro
ad

Ne
t-C

A

cit
-P

at
en

ts

Input Graph

101

102

103

Mi
llio

ns
 o

f E
dg

es
 p

er
 S

ec
on

d 
(M

E/
s)

0.
14

2.
97

0.
60

0.
59

0.
60

0.
57

0.
56

0.
57

0.
55

0.
59

0.
54

0.
69

0.
63

0.
60

0.
59

0.
59

0.
62

0.
61

0.
65

0.
64

0.
57

1.
07

2.
08

4.
00

3.
75

0.
86

2.
56

2.
91

0.
32

ME/s for K=KMAX on GPU
GPU-CoarseGrain
GPU-FineGrain

Fig. 4: Performance on GPU of coarse- and fine-grained implementations. Top: K = 3. Bottom: K = Kmax.



TABLE I: Runtimes and ME/s Performance Numbers for all graphs tested. Postfix in subgroup heading refers to coarse or
fine-grained parallelism. All CPU results presented in this table are for 48 threads, and all runs are for K = 3.

Time (ms) Millions of Edges per Second (ME/s)
Input Graph Vertices (k) Edges CPU-C CPU-F GPU-C GPU-F CPU-C CPU-F GPU-C GPU-F
ca-GrQc 5.2k 14.5k 1.660 1.051 3.982 0.762 8.724 13.784 3.637 19.003
p2p-Gnutella08 6.3k 20.8k 0.343 0.230 3.334 0.472 60.663 90.178 6.232 44.028
as20000102 6.5k 12.6k 3.715 1.062 148.729 1.837 3.384 11.839 0.085 6.843
p2p-Gnutella09 8.1k 26.0k 0.404 0.316 2.000 0.506 64.309 82.242 13.006 51.409
p2p-Gnutella06 8.7k 31.5k 0.333 0.303 1.153 0.320 94.727 104.112 27.342 98.516
p2p-Gnutella05 8.8k 31.8k 0.380 0.409 1.326 0.417 83.831 77.808 24.015 76.316
ca-HepTh 9.9k 26.0k 0.924 0.860 2.135 0.458 28.115 30.191 12.164 56.660
oregon1 010331 10.7k 22.0k 2.511 1.338 61.248 1.475 8.763 16.448 0.359 14.918
oregon1 010407 10.7k 22.0k 2.433 1.916 62.416 1.408 9.040 11.484 0.352 15.628
oregon1 010414 10.8k 22.5k 2.161 2.023 63.569 1.428 10.396 11.106 0.353 15.730
oregon1 010421 10.9k 22.7k 2.081 1.892 64.603 1.421 10.932 12.021 0.352 16.011
p2p-Gnutella04 10.9k 40.0k 0.413 0.319 0.740 0.241 96.838 125.216 54.024 166.088
oregon1 010428 10.9k 22.5k 1.964 1.330 66.396 1.482 11.453 16.916 0.339 15.174
oregon2 010331 10.9k 31.2k 2.938 2.049 65.880 1.568 10.613 15.216 0.473 19.881
oregon1 010505 10.9k 22.6k 1.801 1.842 66.031 1.399 12.552 12.272 0.342 16.163
oregon2 010407 11.0k 30.9k 2.515 1.860 64.638 1.846 12.269 16.588 0.477 16.715
oregon1 010512 11.0k 22.7k 1.961 1.518 66.446 1.443 11.562 14.937 0.341 15.713
oregon2 010414 11.0k 31.8k 3.120 2.020 67.370 1.816 10.180 15.727 0.471 17.488
oregon1 010519 11.1k 22.7k 1.882 1.600 68.218 1.438 12.076 14.199 0.333 15.800
oregon2 010421 11.1k 31.5k 2.917 2.002 68.057 1.899 10.813 15.756 0.463 16.610
oregon2 010428 11.1k 31.4k 3.107 1.960 70.229 1.710 10.116 16.035 0.448 18.380
oregon2 010505 11.2k 30.9k 2.703 2.122 70.168 1.550 11.447 14.583 0.441 19.967
oregon1 010526 11.2k 23.4k 1.945 1.554 70.848 1.445 12.034 15.067 0.330 16.206
oregon2 010512 11.3k 31.3k 3.060 1.585 70.707 1.687 10.229 19.753 0.443 18.551
oregon2 010519 11.4k 32.3k 3.372 2.085 74.135 1.696 9.575 15.482 0.436 19.041
oregon2 010526 11.5k 32.7k 3.253 2.011 77.051 1.639 10.061 16.274 0.425 19.976
ca-AstroPh 18.8k 198.1k 14.461 10.928 51.303 2.055 13.695 18.123 3.860 96.365
p2p-Gnutella25 22.7k 54.7k 0.548 0.468 0.340 0.171 99.790 116.791 160.755 320.662
ca-CondMat 23.1k 93.4k 3.090 1.996 9.496 0.990 30.239 46.804 9.840 94.431
as-caida20071105 26.5k 53.4k 6.659 4.417 139.697 2.238 8.016 12.085 0.382 23.847
p2p-Gnutella24 26.5k 65.4k 0.483 0.507 0.410 0.186 135.452 129.009 159.475 352.204
cit-HepTh 27.8k 352.3k 19.929 12.755 131.030 5.291 17.677 27.619 2.689 66.586
cit-HepPh 34.5k 420.9k 20.176 12.628 42.338 2.693 20.860 33.328 9.941 156.291
p2p-Gnutella30 36.7k 88.3k 0.593 0.507 0.381 0.198 148.951 174.183 231.832 446.326
email-Enron 36.7k 183.8k 16.768 7.101 180.731 4.599 10.963 25.887 1.017 39.975
loc-brightkite edges 58.2k 214.1k 28.003 10.038 94.141 2.903 7.645 21.326 2.274 73.749
p2p-Gnutella31 62.6k 147.9k 1.116 0.930 0.431 0.203 132.508 159.058 343.376 727.099
soc-Epinions1 75.9k 405.7k 67.730 24.453 582.784 5.599 5.991 16.593 0.696 72.472
soc-Slashdot0811 77.4k 469.2k 42.498 14.202 146.617 3.968 11.040 33.037 3.200 118.232
soc-Slashdot0902 82.2k 504.2k 45.469 14.729 164.038 5.865 11.090 34.233 3.074 85.977
loc-gowalla edges 196.6k 950.3k 150.897 103.023 5332.719 14.762 6.298 9.224 0.178 64.376
amazon0302 262.1k 899.8k 11.741 7.625 10.346 1.275 76.634 118.009 86.967 705.830
email-EuAll 265.0k 364.5k 12.535 9.439 93.244 4.771 29.078 38.616 3.909 76.389
amazon0312 400.7k 2349.9k 56.524 33.074 131.514 5.975 41.573 71.049 17.868 393.303
amazon0601 403.4k 2443.4k 67.959 36.734 383.056 6.454 35.954 66.516 6.379 378.594
amazon0505 410.2k 2439.4k 60.062 34.748 140.891 6.161 40.615 70.204 17.314 395.923
roadNet-PA 1088.1k 1541.9k 2.894 2.821 0.627 0.644 532.736 546.617 2458.775 2395.740
roadNet-TX 1379.9k 1921.7k 3.955 3.696 0.812 0.837 485.881 519.887 2367.159 2296.164
roadNet-CA 1965.2k 2766.6k 5.733 4.956 1.149 1.189 482.601 558.234 2407.210 2326.053
cit-Patents 3774.8k 16518.9k 195.765 138.447 82.991 35.532 84.382 119.316 199.046 464.903

Graph rebalancing via full or partial sorting is another
strategy to improve load-balancing [9]. This approach could
complement our fine-grained parallelism for Eager K-truss
and warrants further investigation. Finally, our fine-grained ap-
proach may enable speedups in other motif-counting problems,
such as butterfly counting for bipartite networks [10], [11].

ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary

of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. DM19-0868.

REFERENCES

[1] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National security agency technical report, vol. 16, pp. 3–1, 2008.



[2] T. M. Low, D. G. Spampinato, A. Kutuluru, U. Sridhar, D. T. Popovici,
F. Franchetti, and S. McMillan, “Linear algebraic formulation of edge-
centric k-truss algorithms with adjacency matrices,” in 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 2018, pp.
1–7.

[3] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos:
Enabling manycore performance portability through polymorphic
memory access patterns,” Journal of Parallel and Distributed
Computing, vol. 74, no. 12, pp. 3202–3216, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

[4] P. Burkhardt, “Graphing trillions of triangles,” Information Visualization,
vol. 16, no. 3, pp. 157–166, Jul. 2017. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1473871616666393

[5] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[6] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kep-
ner, “Static Graph Challenge: Subgraph Isomorphism,” in IEEE High
Performance extreme Computing Conference (HPEC), 2017.

[7] M. Bisson and M. Fatica, “Static graph challenge on gpu,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC), Sep. 2017,
pp. 1–8.

[8] M. Bisson and M. Fatica, “Update on static graph challenge on gpu,” in
2018 IEEE High Performance extreme Computing Conference (HPEC),
Sep. 2018, pp. 1–8.

[9] V. Balaji and B. Lucia, “Combining data duplication and
graph reordering to accelerate parallel graph processing,” in
Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’19.
New York, NY, USA: ACM, 2019, pp. 133–144. [Online]. Available:
http://doi.acm.org/10.1145/3307681.3326609

[10] J. Wang, A. W. Fu, and J. Cheng, “Rectangle counting in large bipartite
graphs,” in 2014 IEEE International Congress on Big Data, June 2014,
pp. 17–24.

[11] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura, “Butterfly
Counting in Bipartite Networks,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining - KDD ’18. London, United
Kingdom: ACM Press, 2018, pp. 2150–2159. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3219819.3220097


