
Optimized Quantum Circuit Generation with
SPIRAL

Scott Mionis
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania
smionis@andrew.cmu.edu

Franz Franchetti
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania
franzf@andrew.cmu.edu

Jason Larkin
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania

jmlarkin@sei.cmu.edu

Abstract—Quantum computers have been at the bleeding edge
of computing technology for nearly 40 years and research contin-
ues to progress due to their immense promise. However, despite
hardware and algorithm breakthroughs, the software infrastruc-
ture that compiles programs for these devices requires further
development and has traditionally been under-emphasized. In
this work, we present a novel approach to compiling more
efficient quantum programs. We capture the input algorithm as
a high-level mathematical transform and generate a multitude of
architecture-compliant programs directly from that specification;
this is achieved by casting the problem as a sparse matrix factor-
ization task and recursively searching over a host of applicable
divide-and-conquer decomposition rules. This approach allows
us to leverage high-level symmetries of the target transform to
explore global rewrites and select the best factorization from the
top-down, a task that is nearly impossible given only a program
stream. We implement the proposed framework with SPIRAL [4],
a code generation platform founded on the GAP [6] computer
algebra system; we ultimately demonstrate that SPIRAL is a
viable supplemental tool for future quantum frameworks.

Index Terms—compilers, Fourier transform, SPIRAL, quan-
tum computing, circuit optimization, code generation

Introduction. Unearthing the full taxonomy of applications
benefiting from quantum technology has only just begun.
However, while both this nascent quantum theory and the
hardware supporting it are developing rapidly, it fast out-
paces the true capabilities of current software infrastructure.
Compiling quantum circuits is non-trivial for three reasons.
First, current-era devices maintain only sparse connectivity
between qubits. Since many operations require the operand
qubits to be physically connected in the target device, this
means that quantum programs assuming dense connectivity
must often be routed onto the hardware. If done naı̈vely, this
process often requires the compiler to insert an overwhelming
number of data movement operations. Additionally, these
data movement operations alone can violate the practicability
of a program since quantum states are fragile and degrade
rapidly if the critical path is too long. Finally, the problem
of minimizing such data movement operations can be reduced
to the maximum common edge subgraph problem [5], and
thus is NP-complete. Current compilation technologies, such
as IBM’s Qiskit platform [1], take in programs expressed at
the circuit level, a low-level and imperative representation of
quantum programs. These technologies then map an input
circuit assuming full connectivity to the true geometry of

the target device by inserting SWAP operations through a
localized, peephole heuristic algorithm. These algorithms are
often insufficient, and the number of SWAP operations can
grow exponentially with circuit size. The inherent problem
with this approach lies in the input representation; mapping a
specific circuit onto an architecture is a fundamentally more
restricted version of the problem we actually wish to solve.
Rather, the compiler should find the most efficient circuit, that
when run on the target architecture, produces the same result
as the input circuit.

Fig. 1. Proposed generative approach. Example shown is for a 4-qubit
quantum Fourier transform (QFT).

To address the aforementioned motivations, we will take,
as input, a declarative representation of the target algorithm
as expressed as a high-level symbolic transform object. We
will use SPIRAL to decompose this transform in a variety of
ways, leveraging algorithm-specific decomposition identities
such as the Cooley-Tukey [3] rule for Fourier transforms. The
sparse factorizations of our symbolic transform uniquely map
to circuits that implement the desired algorithm. We can then
search over this global space of possible factorizations with
algorithm-informed heuristics and choose the best with respect
to some measure, in our case, SWAP count.

Circuit Generation as Matrix Factorization. The state
of an N -qubit system for arbitrary N can be represented by
a 2N -length complex column vector. Every quantum program
(excluding those with intermediate measurements) can perform
computation solely by rotating this state vector in a length-
preserving manner; the effect of an N -qubit quantum program
is thus succinctly described by a 2N × 2N unitary matrix.
Quantum devices typically support different sets of basic linear
algebra operators, called quantum gates, as atomic operations.
These gates, when combined into a circuit, represent a sparse
matrix factorization of the overall transformation; the global
transform can be derived by composing the matrix definitions



Fig. 2. Swap minimization comparison between SPIRAL and Qiskit on low-level benchmark circuits [top], QFT [bottom]. Target architectures are annotated.

of parallel and sequential gates with the tensor and matrix
product respectively. Unfortunately, since the overall transform
matrix is exponential in size with respect to N , it is typically
impossible to reconstruct from circuit representation, and
hence no high-level scheduling decisions can be informed by
it. We address this in SPIRAL by starting with a symbolic
representation of the desired transformation and searching over
various ways of breaking it down into a gate-level expression,
a process that allows us to leverage the definition of our
algorithm to generate intelligent schedules.

SPIRAL Quantum Compiler. Formalizing the above, we
use SPIRAL to solve the following minimization problem.

circuitopt(Mat) = argmin
m ∈ Factorizations(Mat)

Cost(m)

Mat is the desired 2N × 2N transform matrix and
Factorizations returns a set of valid decompositions of Mat
into gate-level expressions. Cost is a minimization metric, in
our case, the number of SWAP operations. We capture Mat as
a composition of symbolic transform kernels such as qHT(n)
and qFT(n), an n-qubit Walsh-Hadamard transform or QFT
respectively. SPIRAL generates factorizations by applying a
rule-based decomposition procedure to recursively reduce the
input to a gate-level expression, after which this sparse factor-
ization can be unparsed as quantum assembly (QASM) [2]. For
example, the Hadamard transform can be easily decomposed
into the tensor product of 2 × 2 Hadamard gates with the
following rules.

qHT(nm) 7→ qHT(n)⊗ qHT(m) (1)
qHT(2) 7→ H (2)

Decomposing the top-level object in a manner that minimally
satisfies connectivity constraints involves not only searching
over algorithmic decompositions, however, but also over the
possible placements of these kernels onto specific hardware
qubits in connectivity map of the hardware, a process we
call embedding. Exploring various embeddings equates to
introducing permutation matrices into our factorization, and
can similarly be enumerated as breakdown rules. The resulting
expression from any particular partial order of rule applica-
tions, or rule tree, can be simplified via a set of semantics-

preserving rewrite rules and then evaluated based on cost.
SPIRAL finds the best of these expressions, and hence the
best output circuit, by implementing a dynamic programming
search procedure to find the best rule tree in a manner similar
to constructive proof search. SPIRAL has access to both a
high-level definition of the transform and the architecture
geometry; it uses these to heuristically prune the search space.

Results. We implemented the aforementioned system in
SPIRAL and evaluated it on a series of test programs with
stringent connectivity requirements. These programs were
specified to SPIRAL at a low level of abstraction, our goal
being to show that SPIRAL generalizes to arbitrary programs
and still produces circuits that require fewer SWAP operations
than those produced by Qiskit for the same input. As seen in
Figure 2, SPIRAL performs competitively on these programs
as it has access to a strictly larger search space than does
Qiskit, and we would expect these results to generalize to
a larger set of benchmarks. However, since these inputs are
already sparse formulas, much of the SPIRAL compilation
framework is bypassed. Therefore, a more exciting application
of SPIRAL beyond these small test programs lies in our ability
to apply algorithm-specific placement heuristics for high-level
operators. We specifically looked at the QFT and developed
a series of initial heuristics that inform SPIRAL breakdown
by adapting various parallel Fourier transform algorithms. We
show distinct savings when compared to Qiskit on common
mesh architectures; these promising initial results indicate that
similar approaches could be valuable.

REFERENCES

[1] H. Abraham et al., “Qiskit: An Open-source Framework for Quantum
Computing,” 2019. doi:10.5281/zenodo.2562110

[2] A. W. Cross et al., “OpenQASM 3: A broader and deeper quantum
assembly language” [arxiv:2104.14722].

[3] F. Franchetti and M. Püschel, “Fast Fourier Transform,” in Encyclopedia
of Parallel Computing, D. A. Padua (Editor).

[4] F. Franchetti and M. Püschel et al. “Spiral,” in Encyclopedia of Parallel
Computing, 2011, D. A. Padua (Editor).

[5] G. G. Guerreschi, “Scheduler of quantum circuits based on dynamical
pattern improvement and its application to hardware design,” 2019,
arXiv:1912.00035v1 [quant-ph].

[6] Martin Schönert et al. GAP – Groups, Algorithms, and Programming –
version 3 release 4 patchlevel 4. Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany, 1997.


