
A High Throughput Hardware Accelerator for
FFTW Codelets: A First Look

Larry Tang, Siyuan Chen, Keshav Harisrikanth, Guanglin Xu, Ken Mai, Franz Franchetti
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA
{lawrenct, siyuanch, kharisri, guanglix, kenmai, franzf}@andrew.cmu.edu

Abstract—The Fast Fourier Transform (FFT) is a critical com-
putation for numerous applications in science and engineering. Its
implementation has been widely studied and optimized on various
computing platforms, with the FFTW library becoming the
standard interface in HPC. In this work, we propose hardware
acceleration of the FFTW library by putting a software codelet
into hardware. The hardware is exposed to the user through
an FFTW-compatible software library while actual computation
takes place behind the scenes on a custom accelerator. To
demonstrate a first look at this idea, we design a high throughput
accelerator for FFTW twiddle codelets. The FFT hardware
is automatically generated using SPIRAL and a test chip is
fabricated in a TSMC 28nm process. We provide measured
results of the test chip and discuss many opportunities for future
work.

I. INTRODUCTION

The Fast Fourier Transform (FFT) is one of the most funda-
mental algorithms in scientific computing, finding widespread
use in domains such as signal/radar processing, digital com-
munications, machine learning, and scientific HPC simula-
tions. For example, in telecommunications a number of wire-
less standards require a 1D complex FFT/IFFT for OFDM
transmission [1]. Some fast convolution algorithms via FFTs
compute over inputs of real numbers that are zero-padded,
such as 2D convolutions in convolutional neural networks [2].
Scientific applications include simulation of flow [3] and FFT-
based partial differential equation solvers for computation of
material properties [4].

To satisfy various application requirements, FFT perfor-
mance has been highly optimized on many different computing
platforms. One of the most well known FFT software libraries
is FFTW [5] which supports DFTs of arbitrary size and
dimension and is further optimized for real/complex data.
Although software implementations are suitable for many ap-
plications, custom hardware solutions still provide advantages
over software. For example, a real-time DSP application may
require a dedicated FFT accelerator that can achieve low
latency while also being highly energy efficient.

The implementation of FFT hardware accelerators has been
well studied in prior literature [6]. Many recent hardware
accelerators for variable-length FFTs support a variety of
wireless standards [7] [8]. Another recent implementation [9]
targets a broader range of scientific applications by supporting
FFT sizes from 4 to 410 and single-precision floating point.
Industry designs, such as a TI DSP [10], are another option

for applications needing FFT acceleration. In general, custom
FFT hardware is designed as its own functional block and
then integrated into a system or used as a standalone design.
Once the design is implemented or generated the functionality
becomes fixed to certain sizes and is relatively inflexible.

A RISC-V system now enables one to tightly integrate an
accelerator with the processor through custom instructions
and interfaces. Thus unlike previous FFT hardware designs,
we propose a different design paradigm for FFT accelerators
based on the FFTW kernel approach. We propose hardware
acceleration of only the computational kernel of FFTW, where
the software still invokes and defines how the kernels are tied
together. In this work, we observe that the FFTW approach of
combining and executing highly-optimized, small size pieces
of FFT code known as codelets can be hardware accelerated.
The hardware accelerator carries out the equivalent compu-
tation of a codelet in a non-blocking manner and can be
exposed to the user through a FFTW-like C library. Defining
the procedure for the FFT computation is left to the software,
enabling an enormous amount of flexibility similar to that of
FFTW.

Contributions In this paper we discuss the hardening of
FFTW codelets and demonstrate a first look with a fabricated
test chip and measured results. We make the following con-
tributions:

• The idea that FFTW codelets can be accelerated in
hardware with the composition still defined in software
to maintain the flexibility of FFTW.

• A codelet accelerator test chip that is fabricated in a
TSMC 28nm process.

• An end-to-end system in which the codelet accelerators
are exposed to the user as an FFTW-like library.

First we discuss relevant background and in Section III
detail the idea of hardening an FFTW codelet. Section IV goes
over the design of a high throughput codelet accelerator test
chip and Section V discusses the measured results. Finally, we
conclude with avenues for future work including integration
in a RISC-V based SoC and additional functionality.

II. BACKGROUND

This section discusses the background related to the Fast
Fourier Transform algorithms and recent software frameworks.

Discrete Fourier Transform. The Discrete Fourier Trans-
form (DFT) is the critical mathematical transformation be-



tween time and frequency domain representations of finite-
length, discrete data that is used in many applications. The
DFT is defined by the following formula [11]:

Xk =

N−1∑
n=0

xne
−j2πkn/N , (1)

where (xn)
N−1
n=0 is a sequence of N complex inputs that is

transformed to a complex, length-N sequence, (Xk)
N−1
k=0 . The

complex roots of unity, e−j2πkn/N , are commonly referred to
as twiddle factors in the context of the DFT.

Computing a length-N DFT using Equation (1) results in
a computational complexity of O(N2). In practice, a DFT
computation is implemented using the Fast Fourier Transform
(FFT) algorithm to reduce the complexity to O(N logN). The
most well known and commonly used FFT algorithm is the
Cooley-Tukey algorithm [12], which recursively decomposes
the computation to smaller sized FFTs when N is not prime.
FFT algorithms have since been extensively studied, resulting
in many variants that optimize for arbitrary input size or
different compute platforms and application requirements.

FFTW. FFTW [5] is a general-purpose, adaptive software
library for computing the FFT and has become widely used
in FFT-based scientific applications. The system combines
a domain specific language, code generator, and autotuning
infrastructure to produce a portable and high performance
FFT library. FFTW provides a number of different routines,
with some of its key functionalities including FFTs of multi-
dimensions, arbitrary size, and of real or complex data.

The core computational kernels of FFTW are called
codelets, which are automatically generated, optimized code
blocks that enable computation of FFTs for various sizes. In
the standard FFTW library they compute power-of-2 sizes up
to 64 and some smaller prime sized FFTs. The composition
of codelets for a particular FFT problem is determined by
the planner and specified through a specialized data structure,
and is then executed by calling the codelets as specified by
the plan. The FFTW API has become the standard interface
for computing FFTs, with a number of current vendor FFT
libraries, such as Intel MKL [13] and Nvidia cuFFT [14]
implementing a part of the FFTW interface.

FFTX and SPIRAL. The FFTX [15] project looks to build
a more modern framework for FFT based applications while
still maintaining exposure to the familiar FFTW interface. The
first component is a front end library interface that maintains
backwards compatibility with FFTW but also provides a
means to target higher level operations and new hardware
platforms. For example, FFTX targets higher level FFT-based
applications such as 1D pruned convolutions which require
point-wise operations in addition to FFT calls. At the back end,
automatic code generation for the application uses SPIRAL
[16]. SPIRAL is a code generation system that targets a
wide range of numerical and digital signal processing kernels,
originally focusing on FFTs. FFTX will make it easier to
target new hardware platforms, including accelerators, for high
performance FFT applications and exascale computing efforts.

III. HARDWARE ACCELERATOR FOR FFTW CODELETS

We now discuss the idea of accelerating FFTW codelets in
hardware. We then detail the design flow and FFT hardware
generation process for the test chip.

Hardening of FFTW Codelets. The fixed, small size
transforms computed by codelets are the fundamental kernel
of the FFTW approach to computing FFTs. The transform is
completely composed by invoking codelets with their respec-
tive parameters including I/O base addresses and strides. There
exists two types of codelets: a twiddle codelet that computes
an in-place fixed size FFT followed by general twiddle factor
multiplications and a no-twiddle codelet that computes only
a small, out-of-place FFT. Combining codelets in different
ways then enables computing FFTs of real/complex data and
of arbitrary size or dimension.

The structure of an example FFTW application is shown
in Fig. 1. The function fftw_plan_dft_1d constructs and
stores the plan as a composition of codelets and the actual
execution takes place at the fftw_execute function call.
We observe that once an FFTW codelet is invoked, there is

1 #include <fftw3.h>
2

3 int main() {
4 // Declare in/out arrays and plan
5 fftw_complex *in, *out;
6 fftw_plan p;
7

8 // Allocate/Init
9 in = (fftw_complex *)

fftw_malloc(sizeof(fftw_complex) * N);↪→

10 out = (fftw_complex *)
fftw_malloc(sizeof(fftw_complex) * N);↪→

11 ...
12

13 // Construct 1D complex FFT plan
14 p = fftw_plan_dft_1d(2*N, in, out,

FFTW_ESTIMATE);↪→

15

16 // Execute FFT plan
17 fftw_execute(p);
18

19 // Post-process and cleanup
20 ...
21 fftw_destroy_plan(p);
22 fftw_free(in), fftw_free(out);
23 }

Fig. 1. FFTW example code

no requirement that the computation takes place in software.
The codelet can instead be accelerated in hardware with the
actual composition of the codelets still defined in software.
Accelerating only the kernel of FFTW enables a large degree
of flexibility for the FFT computation.

A hardware accelerator for codelets can be exposed as a
FFTW compatible API and can also be targeted by FFTX.
While the FFTW API is still maintained to the user, a custom
hardware accelerator carries out the actual execution of the
codelets. The software infrastructure can be provided through



Fig. 2. Overview of the test chip design flow from SPIRAL script to generated RTL code to physical implementation. The SPIRAL script defines the
parameters of the generated RTL-level description of the FFT hardware. Other functional blocks are hand designed and integrated with the generated code
which then goes through the ASIC design flow.

a C library which looks like FFTW to effectively hide the
dispatching of codelets in hardware. Then, the hardware is
designed such that it is compatible with the software library
and can interpret and execute codelet launches. Fig. 3 shows
a software abstraction of how codelets are composed and then
invoked in a 4-point FFT example. The first two launches
of the hardware kernel computes two DFTs of size 2 with
the respective base address and stride parameters. A memory
fence is issued due to the data dependency and the final two
kernel launches then complete the computation. The software
attempts to batch up as many independent codelets as possible,
but has the freedom to compose them in any way.

1 // Function executing 4-point DFT
2 void execute_dft4(_Complex double *X,

_Complex double *Y) {↪→

3

4 _Complex double U[4];
5 _Complex double T[1] = {__I__};
6

7 // Launch hardware kernels
8 dft2_kernel(U, X, NULL, 1, 2, 0);
9 dft2_kernel(U+2, X+1, T, 1, 2, 0);

10

11 // Memory Fence
12 #pragma pipeline fence
13

14 // Continue invoking kernels
15 dft2_kernel(Y, U, NULL, 1, 2, 0);
16 dft2_kernel(Y+1, U+1, NULL, 1, 2, 0);
17 }
18

19 }

Fig. 3. Example of a 4-point FFT invoking hardware codelets.

Fig. 4 then shows how that sequence of codelets would be
stored in a specialized data structure and then executed by a
separate function call.

1 // Data structure containing codelet
parameters↪→

2 descriptor_t dft4[] = {
3 {U, X, NULL, 1, 2, 0},
4 {U+2, X+1, T, 1, 2, 0},
5 FENCE,
6 {Y, U, NULL, 1, 2, 0},
7 {Y+1, U+1, NULL, 1, 2, 0},
8 DONE
9 };

10

11 // Execute plan
12 execute(dft4);

Fig. 4. Example 4-point FFT codelet plan and execution call.

Such an accelerator can be designed to concurrently process
many codelet invocations and also built into a real system
targeting FFT applications. Furthermore, the FFT hardware
can be automatically generated through the use of SPIRAL.
We demonstrate a first look of this idea through a hardware
accelerator test chip that executes only the twiddle codelet
computation. The accelerator processes independent fixed size
FFT computations and twiddle factor multiplications in a
pipelined fashion. In the following section we discuss in more
detail the design flow for developing this hardware accelerator.

Hardware Generation. To facilitate design of the FFT
hardware, we use SPIRAL to automatically generate the RTL
code for a radix-8 complex FFT. The design flow proceeds as



Fig. 5. System block diagram of test chip. The input FIFOs feed 16 single-precision numbers to the radix-8 FFT every cycle and output FIFOs capture 16
single-precision numbers from Diag. The chip can be run in a looping mode for power measurements.

follows and is illustrated in Fig. 2.
SPIRAL uses a script that first defines the parameters for

the generated FFT hardware. Within the SPIRAL system an
algorithm is chosen and the problem is represented in an
Operator Language (OL) formula. Through a rewrite system,
the OL formula is translated to lower-level DSLs for analysis,
compiler optimizations, and pipeline register insertion until the
generated code is wrapped in an RTL module.

For this first test chip, we hand design all other functionality
including complex multipliers, FIFOs, control circuitry, and
test infrastructure that surrounds the radix-8 FFT hardware.
The final generated code is integrated with the other hardware
modules and then passed to the ASIC design and verification
process to produce a test chip that can be fabricated. We use a
standard-cell based ASIC tool flow for synthesis and physical
design, and verification is performed against our own Python
golden models.

IV. SPIRAL-FFT ASIC

An initial test chip of a FFTW codelet accelerator kernel
is designed and taped out in a TSMC 28 nm process. The
core computation consists of a fixed radix-8 FFT followed by
eight general twiddle factor multiplications. In this section we
discuss the function and micro-architecture of each of the main
components of the test chip.

A. Radix-8 FFT Architecture

The SPIRAL-generated FFT hardware is a fully unrolled
radix-8 architecture, giving the highest possible throughput at
one full vector of outputs per cycle. Additionally, the design
uses single-precision floating point arithmetic to support a
wider variety of scientific applications which may have dif-
ferent dynamic ranges.

As shown in Fig. 6, the FFT hardware implements exactly
the signal flow diagram of an 8-point FFT where every

arithmetic operation is mapped to a dedicated adder/multiplier.
The dataflow is also optimized such that the multipliers in the
FFT unit are constant multipliers with one fixed input since
the twiddle factors within the radix-8 FFT are fixed constants.
Pipeline registers are automatically inserted to ensure that
each set of FFT computations remains aligned in the datapath.
Each floating point adder is further pipelined to three stages:
one for the exponent comparison, another for the mantissa
addition, and a final stage for normalization. The floating
point multiplier is pipelined to two stages where one stage
performs the mantissa multiplication and the other completes
the normalization stage. The radix-8 FFT is aggressively
pipelined to 13 stages to increase throughput of the accelerator.

B. Diag Unit

The eight complex outputs of the FFT are fed directly to
the Diag unit, which consists of eight complex multipliers
to perform all complex twiddle multiplications in parallel.
General twiddle multiplication at the end of the fixed 8-point
FFT forms the FFTW equivalent of a ”twiddle codelet“. A
complex multiplier is implemented using four floating point
multipliers and two floating point adders. The design of each
adder is exactly the same as those in the FFT core, however
the multiplier is instead a two-input single-precision multiplier
since the twiddle factors are not fixed constants in the Diag
unit. All complex multiplies occur in parallel to maintain
steady-state pipeline, the Diag unit is pipelined to a total of 5
stages.

C. Memory

In order to sustain steady-state pipeline operation, we design
18-stage shift register FIFOs which directly input and capture
complex single-precision numbers to and from the FFT/Diag
units every cycle. One set of FIFOs holds the input FFT data,
another holds complex twiddle factors, and the final set holds



Fig. 6. Internal architecture of the Spiral-generated radix-8 FFT and Diag
complex multiplier block. The FFT unit uses single-precision adders and
constant multipliers. The Diag unit has 8 complex multipliers, where each
complex multiplier has four multipliers and two adders.

the output data coming from the Diag block. The input FIFOs
are designed so that their outputs can loop back to the input
so that the system continuously run. The design contains a
total of 3.375 kB of FIFO memory which is implemented as
synthesized memories. The on-chip memory is designed in
this way so that we can demonstrate the achievable throughput
performance of the hardware kernel.

D. Control Unit

The control unit processes incoming data from off-chip
through an asynchronous I/O protocol to load in test vectors
to the FIFOs. We load 4-bit nibbles which the control unit
then assembles together to form the 32-bit FP numbers which
populate the FIFOs. The load-in data includes a set of bits
allocated as metadata to inform the control unit which mode
to operate the chip in. The FFT/Diag core can be configured
to run in “compute” mode to run through one full set of test
vectors in the input FIFOs and write to the output FIFO, or
“looping” mode which continually runs the test inputs through
the FFT/Diag units to obtain power measurements.

V. MEASURED RESULTS

The FFT accelerator test chip is fabricated in a TSMC 28nm
process and has a core size of 0.7mm x 0.7mm. The radix-
8 FFT core occupies 0.078mm2 and the Diag unit occupies
0.088mm2, with the remaining area occupied by FIFO memory
and control/test infrastructure. Figure 8b shows a more detailed
area breakdown by functional block. Since the design is a
fully unrolled architecture, it achieves a throughput of 8×fclk
complex samples per second.

Functionality is verified with test vectors consisting of 18
sets of eight complex single-precision floating point data and
eight complex twiddle factors to completely fill up the input
FIFOs. After running the computation we read out the contents
of the output FIFO from the test chip and compare against
the corresponding output obtained from HDL simulation. A
micrograph of the die is shown in Fig. 7 and the chip
implementation details are summarized in Table I.

Fig. 7. Die micrograph of 1mm × 1mm Spiral-FFT test chip in TSMC 28nm.
The chip has 45 I/O pads and a core area of 0.7mm × 0.7mm. FIFO memory
holds a total of 3.375 kB of data.

Technology TSMC 28nm
Core Supply 0.9 V
Chip Area 1 mm2

Core Area 0.49 mm2

Max. Frequency 270 MHz
I/O 45

Memory 3.375 KB (FIFOs)
Power 126 mW

Throughput 2.08 GS/s
FFT8 Latency 68 ns

TABLE I
IMPLEMENTATION SUMMARY

At nominal 0.9V the chip runs at 260 MHz and consumes
a total of 126 mW when computing 8-point FFTs and twiddle
factor multiplications at a throughput of 2.08 Gsamples/sec.
The FFT and Diag units consume 75 mW and the FIFOs and
clock generator consume 51 mW. A detailed breakdown of the
measured dynamic power consumption is also shown in Fig.
8a.

Across a core voltage range of 0.65V-1.15V, the chip
successfully operates at 155-270MHz. The Shmoo plot in Fig.
9 demonstrates the full voltage-frequency operating points at
which the test chip is functional. The first test chip tapeout
using SPIRAL as a part of the design flow was successful and
we look to expand on this work.



(a) Power (b) Area

Fig. 8. Breakdown of power consumption at 0.9V and area by block

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

Frequency (Mhz)

Su
pp

ly
Vo

lta
ge

(V
)

Fig. 9. Shmoo plot of SPIRAL-FFT accelerator. Green areas represent the
points at which the chip is functional. At nominal 0.9V the chip runs at 260
MHz and at a supply range of 0.65-1.15V the chip operates at 155-270MHz.

VI. DISCUSSION AND FUTURE WORK

In this section we discuss a system model to integrate the
accelerator into a RISC-V SoC and future directions to take
this work.

A Multi-Core RISC-V SoC. We look towards designing
a RISC-V SoC with a hardware codelet accelerator to build
a high performance FFT processor that could be suitable for
a number of different applications. In this section we discuss
a system model which would enable one to incorporate the
custom accelerator with low area overhead. Consider a multi-
core RISC-V machine that contains the proposed codelet ac-
celerator, dedicated FFT cores, system-management cores, on-
chip cache, and an interface to access off-chip main memory.
Suppose each core has a private, multi-banked L2 cache which
the accelerator can compute out of.

For example, we may want to incorporate a double-precision
radix-8 twiddle codelet accelerator into a multi-core RISC-
V SoC. Such an accelerator could target applications in
scientific HPC simulations such as PDE solvers. Assuming
the codelet accelerator runs at its theoretical peak throughput,
eight complex double-precision inputs and twiddle factors
need to be fed every cycle. To enable this, we can allocate
eight FFT cores each with a multi-banked L2 cache and four
additional system management cores that keep the system
running. The codelet accelerator can be attached to the FFT
cores through a specialized interface such as the Rocket Chip
[17] RoCC interface. With a multi-banked L2 cache that has
enough banks, we can perform two reads from independent
banks and a write to the third bank in parallel, where a

bank would read/write a double-precision complex number per
cycle. Another bank can then be used as a double buffer to read
and write off-chip data into and out of L2 cache. The system
can be further designed such that the accelerator compute time
is balanced with the off-chip memory bandwidth to hide the
memory latency.

SPIRAL. The test chip is the first to be fabricated using
SPIRAL as a part of the design flow to generate the HDL
source code for the FFT kernel. We look to further leverage
the SPIRAL code generation system as a part of the design
flow. First, SPIRAL can be used in a design generator that au-
tomatically produces the RTL-level description of the codelet
accelerator. Second, the algorithmic knowledge of the SPIRAL
generation system can be used to generate high performance
FFT plans targeting the accelerator.

FFTW Compatibility. We currently have a model which
performs software emulation of the hardware system. Param-
eters are passed to a software abstraction of the hardware at
each invocation of a codelet through a set of ‘descriptors’
that are specified during plan construction. The descriptors
are designed to be extensible enough to support the variety
of functionalities included in the FFTW library. This allows
the overall plan composition to be entirely described through
a set of descriptors that specify the parameters that are passed
to the hardware. The descriptors may include information
on I/O base addresses, strides at which to access data, data
dimensionality, data type or format, and more.

Additional hardware functionality can also be built around
the accelerator. The hardware could be designed to process
and launch kernel invocations, where each kernel launch is
called in a pipelined fashion. We also look to add support for
real and pruned FFTs and eventually target multi-dimensional
FFTs as well.

VII. CONCLUSION

FFTs play a critical role in modern scientific and engi-
neering applications. In this paper we proposed a hardware
accelerator for an FFTW codelet that can be tied into a real
application specific RISC-V system. The hardware can be
invoked through a familiar FFTW user interface, maintaining
the flexibility offered by the FFTW library. We presented a
first look at the hardware system with the design of a test
chip that accelerates a radix-8 FFT and twiddle multiplications
and is partially designed using the SPIRAL code generation
system. Our measured results demonstrate that the accelerator
successfully operates at a high throughput of one vector per
cycle. Ultimately we look to build an SoC that uses the
accelerator to target FFT-based applications.

REFERENCES

[1] H. G. Myung, “Introduction to single carrier FDMA,” in 2007 15th
European Signal Processing Conference, 2007, pp. 2144–2148.

[2] M. Mathieu, M. Henaff, and Y. LeCun, “Fast Training of
Convolutional Networks through FFTs,” 2013. [Online]. Available:
https://arxiv.org/abs/1312.5851

[3] D. F. Martin and P. Colella, “A cell-centered adaptive projection method
for the incompressible euler equations,” Journal of Computational
Physics, vol. 163, no. 2, pp. 271–312, 2000.



[4] H. Moulinec and P. Suquet, “A fft-based numerical method for com-
puting the mechanical properties of composites from images of their
microstructures,” in IUTAM Symposium on Microstructure-Property In-
teractions in Composite Materials, R. Pyrz, Ed. Dordrecht: Springer
Netherlands, 1995, pp. 235–246.

[5] M. Frigo and S. Johnson, “The Design and Implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[6] S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala,
Handbook of signal processing systems. Springer, 2013.

[7] S. Liu and D. Liu, “Design Space Exploration of 1-D FFT Processor,”
J. Signal Process. Syst., vol. 90, no. 11, p. 1609–1621, nov 2018.
[Online]. Available: https://doi.org/10.1007/s11265-018-1393-4

[8] C.-L. Hung, S.-S. Long, and M.-T. Shiue, “A low power and variable-
length FFT processor design for flexible MIMO OFDM systems,” in
2009 IEEE International Symposium on Circuits and Systems (ISCAS),
2009, pp. 705–708.

[9] X. Chen, Y. Lei, Z. Lu, and S. Chen, “A Variable-Size FFT Hardware
Accelerator Based on Matrix Transposition,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 10, pp. 1953–1966,
2018.

[10] Texas Instruments, “FFT Implementation on the TMS320VC5505,
TMS320C5505, and TMS320C5515 DSPs,” 2013. [Online]. Available:
https://www.ti.com/lit/an/sprabb6b/sprabb6b.pdf

[11] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing (2nd Ed.). USA: Prentice-Hall, Inc., 1999.

[12] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Mathematics of Computation,
vol. 19, no. 90, pp. 297–301, 1965.

[13] Intel, “Math kernel library.” [Online]. Available: software.intel.com/mkl
[14] Nvidia, “Nvidia cufft.” [Online]. Available:

https://developer.nvidia.com/cufft
[15] F. Franchetti, D. G. Spampinato, A. Kulkarni, D. Thom Popovici, T. M.

Low, M. Franusich, A. Canning, P. McCorquodale, B. V. Straalen, and
P. Colella, “FFTX and SpectralPack: A First Look,” in 2018 IEEE 25th
International Conference on High Performance Computing Workshops
(HiPCW), 2018, pp. 18–27.

[16] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “SPIRAL:
Extreme Performance Portability,” Proceedings of the IEEE, vol. 106,
no. 11, pp. 1935–1968, 2018.

[17] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html


