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Abstract—Fully homomorphic encryption (FHE) offers the
ability to perform computations directly on encrypted data by
encoding numerical vectors onto mathematical structures. How-
ever, the adoption of FHE is hindered by substantial overheads
that make it impractical for many applications. Number theoretic
transforms (NTTs) are a key optimization technique for FHE
by accelerating vector convolutions. Towards practical usage of
FHE, we propose to use SPIRAL, a code generator renowned
for generating efficient linear transform implementations, to
generate high-performance NTT on vector architectures. We
identify suitable NTT algorithms and translate the dataflow
graphs of those algorithms into SPIRAL’s internal mathematical
representations. We then implement the entire workflow required
for generating efficient vectorized NTT code. In this work, we
target the Ring Processing Unit (RPU), a multi-tile long vector
accelerator designed for FHE computations. On average, the
SPIRAL-generated NTT kernel achieves a 1.7× speedup over
naive implementations on RPU, showcasing the effectiveness
of our approach towards maximizing performance for NTT
computations on vector architectures.

Index Terms—Fully homomorphic encryption, number theo-
retic transform, SPIRAL, code generation, vectorization

I. INTRODUCTION

Fully homomorphic encryption (FHE) [1] enables direct
computation on sensitive data by applying mathematical op-
erations on encrypted information. FHE utilizes lattice-based
cryptography to encode vectors of numerical data onto math-
ematical structures, such as lattices and rings. This encryption
scheme allows for the execution of basic arithmetic opera-
tions while the data remains encrypted. Various applications,
including pattern matching, linear algebra, basic statistics,
and machine learning, can be achieved by combining basic
homomorphic operations.

To handle different types of data, several schemes have been
proposed for FHE, such as BGV [2], BFV [3], CKKS [4],
TFHE [5] and FHEW [6]. These schemes are based on lattice
cryptography and require a fundamental set of mathematical
operations in the form of integer modulo vector arithmetic.
Although these schemes offer ideal privacy protection target-
ing different data types, their real-world adoption is limited
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due to prohibitive overheads. On CPU, FHE computations
are remarkably slower, ranging from 10,000× to 100,000×
compared to equivalent unencrypted computations, even when
utilizing highly optimized FHE libraries [7].

Achieving efficient implementation of FHE schemes is
crucial for their adoption. A major optimization technique
is utilizing number theoretic transforms (NTTs) to accelerate
the computation of vector convolutions that represent the
product of two polynomials whose coefficients are stored
in the vectors. This process is similar to the fast Fourier
transform (FFT)-based convolution in the signal processing
domain. Consequently, numerous previous research efforts
have been dedicated to accelerating NTT on multiple platforms
[8]–[10], especially for specialized accelerators with a vector
architecture [7], [11], [12].

The need for high-performance vectorized NTT with differ-
ent algorithmic settings targeting different platforms is there-
fore imminent. This requires automatic code generation and
autotuning of various NTT implementations, similar to prior
work in the FFT domain [13], [14]. We propose to use SPIRAL
[15]–[17], a code generation system that excels in generating
high-performance code in the realm of linear transforms such
as the discrete Fourier transform (DFT), to automatic generate
high-performance NTT code targeting various architectures.

Contributions. Our key contributions are:

• Introducing the utilization of SPIRAL to generate high-
performance NTT code on vector architectures, thereby
improving the practicality of FHE.

• Identifying and translating suitable NTT algorithms into
SPIRAL’s internal mathematical representations.

• Implementing an end-to-end workflow that begins with
C APIs and progresses through SPIRAL scripts and
breakdown rules, ultimately resulting in the generation
of optimized vectorized NTT code.

• Demonstrating the effectiveness of the SPIRAL-based
approach by achieving an average speedup of 1.7× than
naive implementations on a vector architecture designed
for FHE computations.



II. BACKGROUND

Number Theoretic Transform. The DFT is defined by

y(k) =

n−1∑
j=0

x(j)ωjk
n , 0 ≤ k ≤ n− 1, (1)

where ωn = e−2πi/n and i =
√
−1. NTT is the special case of

DFT which operates on integers over a finite field Fp = Z/pZ,
where p is a prime number. NTT is defined as

y(k) =

n−1∑
j=0

x(j)ωjk
n mod p, 0 ≤ k ≤ n− 1, (2)

where ωn is the n-th primitive root of unity. As the Fourier
transform converts a signal from the time domain to its
representation in the frequency domain, NTT can be seen as
a transform of a polynomial from the coefficient form (e.g.,
p(x) = 3x3 + 4x2 + 4x + 1 mod 5) to the evaluation form
over the finite field ({p(0), p(1), p(2), p(3), p(4)}), thereby
reducing the time complexity of polynomial multiplication to
O(n log n). Given the close mathematical nature of NTT and
DFT, FFT algorithms can be easily applied to NTT.

SPIRAL. SPIRAL is a program generation/synthesis sys-
tem that takes in high-level mathematical specifications and
selected architectural and microarchitectural parameters and
produces highly optimized implementations. The system uses
domain-specific language based on mathematics, which is
declarative and platform-independent, to represent algorithm
knowledge in the form of breakdown rules. The breakdown
rules are divide-and-conquer algorithms that enable the map-
ping to various forms of parallelism, and the recursion step
closure helps derive the library structure for general input
size implementations. Platform knowledge is organized into
paradigms, which are features of a platform that require struc-
tural optimization and possibly source code extensions. Each
paradigm consists of a set of parameterized rewrite rules and
base cases that interact with the breakdown rules to produce
optimized algorithms for the considered paradigm. SPIRAL
also uses empirical search to automatically explore choices
in a feedback loop, generating candidate implementations and
evaluating their performance. This approach enables further
optimization for intricate microarchitectural details that may
be unknown or not well understood.

SPIRAL has demonstrated across a wide range of hard-
ware architectures that it is able to produce software that
outperforms the best human programmers, especially for linear
transforms such as DFT. Early work in SPIRAL has already
provided support for modular FFT for the Maple computer
algebra system [18], which paves the way for us to expand
SPIRAL to NTT and associated helper functions.

III. RELATED WORK

As FHE gains popularity, there has been a large body of
work on accelerating NTTs over the past few years, with a fo-
cus on hand-optimized implementations on CPU, GPU, FPGA,
and ASIC. We also discuss past work on auto-generating FFT-
based implementations using SPIRAL.

NTT Acceleration. Takahashi [8] implements parallelized
NTT using Intel Advanced Vector Extensions 512 (AVX-
512) on the CPU. The author uses AVX-512 instructions to
vectorize NTT kernels and OpenMP to parallelize NTT using
the six-step FFT algorithm. Ye et al. [10] designed the first
FPGA architecture specifically for TFHE primitives. In order
to facilitate the effective utilization of multi-level parallelism,
the authors tailor the data arrangement of TFHE ciphertext for
on-chip SRAM in FPGA. Özerk et al. [9] develop an efficient
and fast implementation of NTT for GPU. To demonstrate the
practical application of the GPU implementation, they conduct
experiments on the key generation, encryption, and decryption
operations in FHE using Microsoft’s SEAL homomorphic
encryption library on GPU. Samardzic et al. [7] introduce
CraterLake, the first FHE wide-vector uniprocessor with spe-
cialized functional units, supporting FHE computations of
unbounded depth. Soni et al. [12] introduce B512, a novel
vector instruction set architecture (ISA) tailored to the needs
of ring processing in homomorphic encryption. B512 supports
a vector length of 512 for highly parallel execution.

Code Generation. To the best of our knowledge, lim-
ited work has been done for NTT code generation targeting
different platforms. Yang et al. [19] propose NTTGen, a
framework to automatically generate low latency NTT designs
targeting homomorphic encryption-based applications, which
takes in application parameters, latency, and hardware resource
constraints and outputs synthesizable Verilog code based on
the hardware templates.

SPIRAL is known for its success in generating high-
performance FFT code. Powered by SPIRAL, FFTX [13] is
a novel framework designed to facilitate the development of
high-performance applications that utilize FFT on exascale
machines. The complex architectures of these machines intro-
duce multiple levels of parallelism, requiring efficient meth-
ods for data communication. In the graph domain, GBTLX
[20] transforms graph processing programs written using the
GraphBLAS Template Library (GBTL) into high-performance
C programs. This code generator is capable of producing C
programs that achieve performance comparable to manually
optimized implementations. NTTX, the SPIRAL-based code
generator for NTT and its applications, has been briefly
discussed in terms of how it functions in an end-to-end
FHE accelerator [21] and its significant speedup over expert
implementations of certain NTT sizes on GPU [22]. In this
work, we will discuss in detail the code generation process in
NTTX and how to target vector architectures via generating
single instruction, multiple data (SIMD) instructions, using the
Ring Processing Unit (RPU) [12] as an example.

IV. NTT ALGORITHMS IN OPERATOR LANGUAGE

FFT/NTT Algorithms. Given the similarities between def-
initions of DFT and NTT, FFT algorithms can be directly
applied to NTT computations. We started with the classic
Cooley-Tukey FFT/NTT algorithm [23] and added the Korn-
Lambiotte FFT/NTT algorithm [24] and its inverse, the Pease
FFT/NTT algorithm [25] to SPIRAL for vector architectures.



Both algorithms’ dataflow graph is shown in Fig. 1 and Fig. 2,
respectively. In the following texts, FFT/NTT algorithms will
be referred to as NTT algorithms for simplicity.

We chose the Korn-Lambiotte and Pease NTT algorithms
due to their constant geometry characteristics. That is, the
butterfly (i.e., the cross in the dataflow graphs) accessing pat-
tern and communication pattern are all the same across stages
[26]. This is due to the fact that most vector architectures
have expensive shuffle instructions while having relatively
limited shuffle capability. RPU, for example, has a reduced
ISA working with long vectors (vector length of 1,024).

Fig. 1. Dataflow of the Korn-Lambiotte FFT/NTT Algorithm.

Fig. 2. Dataflow of the Pease FFT/NTT Algorithm.

Operator Language. SPIRAL represents linear transform
algorithms and beyond using the Operator Language (OL)
[27]. OL is a mathematical domain-specific language to
describe structured divide-and-conquer algorithms for data-
independent kernels, based on the Kronecker product for-
malism summarized in [28]–[30]. Here we provide a brief
overview.

In SPIRAL, linear transforms are treated as matrix-vector
multiplications. For example, the NTT definition (2) is viewed

as the matrix-vector product, defined as

y = NTTn x, NTTn =
[
ωkℓ
n mod p

]
0≤k,ℓ<n

, (3)

where ω is defined the same as in (2).
Using this point-free notation, we drop the explicit represen-

tation of x and y and consider NTTn as the transform matrix
that is implicitly multiplied with x. NTT algorithms can be
expressed as factorizations of NTTn. We denote the n × n
identity matrix as In and the butterfly matrix as

NTT2 =

[
1 1
1 −1

]
. (4)

The Kronecker product of matrices A and B is defined as

A⊗B = [ak,ℓB] , for A = [ak,ℓ] , (5)

which essentially replaces every entry of matrix A by the
matrix ak,lB. The stride permutation matrix Lmn

m permutes
the elements of an input vector according to the following
pattern:

in+ j 7→ jm+ i, 0 ≤ i < m, 0 ≤ j < n. (6)

Using OL, NTTs of size rk have different representations
according to different breakdown strategies (i.e., algorithms):

NTTrk =

(
k−1∏
i=0

(Iri ⊗NTTr ⊗ Irk−i−1)Drk

i

)
Rrk

r , (7)

NTTrk = Rrk

r

(
k−1∏
i=0

Lrk

rk−1 D
rk

i (NTTr ⊗ Irk−1)

)
, (8)

NTTrk =

(
k−1∏
i=0

Lrk

r (Irk−1 ⊗NTTr)D
rk

i

)
Rrk

r , (9)

which correspond to the Cooley-Tukey algorithm, the Korn-
Lambiotte algorithm, and the Pease algorithm, respectively.
Here, D is the twiddle factor diagonal matrix and R is the bit
reversal permutation matrix.

V. NTTX SYSTEM WALKTHROUGH

NTTX C API. We developed an initial C API for NTTX
that closely follows the FFTW [14] coding style and pattern,
using a plan/execute paradigm. Listing 1 showcases single
NTT/inverse NTT (iNTT) invocation while batch NTT/iNTT
invocation is supported as well.



1 // NTTX C API example: compute a single NTT
2 #include "nttx.h"
3

4 nttx_int n = NTT_SIZE;
5 nttx_uint modulus = NTT_MODULUS,
6 in[NTT_SIZE],
7 out[NTT_SIZE];
8

9 nttx_plan *p;
10

11 // initialize NTTX and plan
12 nttx_initialize(MY_NTTX_MODE);
13 p = nttx_plan_ntt(in, out, n, modulus,
14 NTTX_FORWARD);
15 if (!p) exit(NTTX_ERROR);
16

17 // execute the plan
18 nttx_execute(p);
19

20 // cleanup
21 nttx_free(p);
22 nttx_shutdown();

Listing 1: NTTX C API for single NTT invocation.

Generator Script. When the user uses the NTTX frontend
C API to plan an NTT, the code generation backend of NTTX
starts with a script file written in the GAP programming
language [31]. We wrote a SPIRAL generator script for high-
performance NTT code for vector architectures, as shown in
Listing 2 (simplified), which breaks down as follows:
Lines 2-5: Loading and importing the necessary SPIRAL

domain-specific libraries, namely FFTX and NTTX. The
NTTX package can be seen as an expansion of the FFTX
package.

Lines 8-9: Setting up NTT size to be 4,096 and the target
backend to be a vector ISA (discussed in Section VI).

Lines 12-18: Choosing whether forward or inverse NTT, set-
ting the breakdown algorithms, switching on or off certain
algorithmic optimizations.

Lines 21-29: Configuring the NTT given the above settings.
Lines 33-45: Declaring multiple variables that will be ref-

erenced in the code generation, depending on the NTT
configuration. For example, forward NTT does not need
the cyclo parameter.

Lines 49-59: Attaching the above settings and configurations
to NTT.

Lines 62-66: Loading implementation options for NTT and
tagging the NTT with hardware features and constraints.

Lines 69-72: Code generation for NTT. SPIRAL will take
in all the information from the algorithm and the target
hardware to find the best path to break the NTT down
into smaller pieces using the breakdown rules (discussed
next). There are multiple stages in the SPIRAL code
generation backend that continuously apply optimizations
and use backtrack search in the end to find the best NTT
implementation.

Breakdown Rules. As discussed in Section II, SPIRAL
explores the code implementation space through recursive
expansions of the transform of size n by applying breakdown
rules (e.g., (7)-(9)). The choice of the specific breakdown
strategy can be guided by heuristics or performance feedback

1 // load SPIRAL FFTX and NTTX package
2 Load(fftx);
3 ImportAll(fftx);
4 Load(nttx);
5 ImportAll(nttx);
6

7 // NTT size and target ISA
8 n := 4096;
9 isa := B1024x128i;

10

11 // algorithmic settings
12 fwd := true;
13 useBarrettMult := false;
14 useIter := false;
15 useCT := false;
16 usePease := true;
17 useShuffle := true;
18 useTwiddleGen := true;
19

20 // NTT configuration
21 conf := LocalConfig.nttx.simdBigIntConf(
22 rec(useBarrettMult := useBarrettMult,
23 useIter := useIter,
24 usePease := usePease,
25 useCT := useCT,
26 useShuffle := useShuffle,
27 useTwiddleGen := useTwiddleGen,
28 isa := isa,
29 fwd := fwd));
30

31 // declare variables based on
32 // the NTT configuration
33 vlen := isa.v;
34 name := When(fwd, "ntt", "intt")::StringInt(n)
35 ::"x"::StringInt(vlen)::When(useBarrettMult,
36 "bmul", "")::"_b1024";
37 p := var("modulus", conf.type());
38 if not fwd then cyclo :=
39 var("cyclo", conf.type()); fi;
40 if useBarrettMult then mu :=
41 var("mu", conf.type()); fi;
42 twiddles := var("twiddles", TPtr(conf.type()));
43

44 // declare the transform as NTT
45 ntt := When(fwd, NTT, iNTT);
46

47 // the transform carries a record of
48 // settings and configurations
49 twrec := CopyFields(
50 rec(n := n, modulus := p,
51 twiddles := twiddles),
52 When(fwd, rec(), rec(cyclo := cyclo)),
53 When(useBarrettMult,
54 rec(mu := mu), rec()));
55 funcrec := CopyFields(
56 rec(abstractType := conf.type(),
57 fname := name, params := [p, twiddles]
58 ::When(fwd, [],[cyclo])
59 ::When(useBarrettMult, [mu], [])), twrec);
60

61 // load NTT options
62 opts := conf.getOpts(t);
63

64 // tag the tranform with hardware
65 // features and constraints
66 tt := opts.tagIt(t);
67

68 // multi-stage code generation for NTT
69 c := opts.genNttx(tt);
70

71 // output final code
72 opts.prettyPrint(c);

Listing 2: SPIRAL script for generating high-performance
NTT code for vector architecture.



loops. Listing 3 is the core of the breakdown rule implemen-
tation of the Pease NTT algorithm in SPIRAL.

1 children := (self, nt) >> let(
2 ...
3 i := Ind(N/vlen),
4 l := Lambda(i, cond(eq(i, V(0)), V(1),
5 vbcast(v, N/2ˆ(j+1), N/2ˆ(j+1)))),
6 l.setDomain(N),
7 List(ap, rdx -> [
8 TICompose(j, LogInt(N, rdx),
9 TCompose([

10 TTensorI(NTT(2, nt.params[2]),
11 N/rdx, APar, AVec),
12 VDiag(l, N)
13 ])
14 ).withTags(nt.getTags())
15 ])
16 )

Listing 3: Core implementation of the Pease NTT algorithm
breakdown rule in SPIRAL.

Generated Code. Listing 4 shows the SPIRAL-generated
NTT code targeting RPU that corresponds to the SPIRAL
script shown in Listing 2. As the generated code serves as an
abstract layer to be converted into RPU ISA, we designed an
API that facilitates communication between the host processor,
kernel launcher, and the kernel itself, drawing inspiration from
the CUDA framework. The host code is written in standard C.
The launch code employs abstract low-level system libraries
and built-in constructs to convert host-based C data structures
into scratchpad-based data structures on RPU. Every generated
C function can be mapped to the instruction provided by the
ISA. While Listing 4 demonstrates 4,096-point NTT code,
SPIRAL can generate NTT of any two-power sizes.

VI. EVALUATION

Vector Architecture Setup. We evaluate SPIRAL’s effec-
tiveness at targeting custom vector architectures by generating
NTT instructions for RPU [12] and its associated ISA, B1K
(successor of B512). RPU is a multi-tile vector architecture
that includes 64 128-bit vector registers, 64 128-bit scalar
registers, a 64 MiB vector data memory (VDM), and a 4 MiB
scalar data memory (SDM). It operates on fixed vector lengths
of 1,024 elements to reduce the overhead of programmable
computing and to allow for scalability in the architecture. The
tile microarchitecture is designed for simplicity and efficiency
by avoiding the complexity of caches, dynamic scheduling
logic, and branch prediction. Instead, the microarchitecture
relies on the compiler to handle scheduling and data move-
ment at compile time. This makes RPU an ideal platform to
demonstrate the capabilities of SPIRAL.

The B1K ISA is tailored to support both FHE operations
and general-purpose programming through 28 instructions.
We make use of its Butterfly, Shuffle, and strided Load
instructions when generating NTT kernels, however, more
general instructions exist for modular arithmetic, non-strided
memory accesses, control logic, and inter-tile communication.
RPU’s frontend has three independent queues for compute,
memory, and shuffle instructions. Once an instruction is

1 #include "b1024.h"
2

3 // NTT kernel
4 void _ntt4096x1024_b1024() {
5 enter(OP_DEFAULT);
6 _vload_1024x128i(REG_V64, REG_A3, 0);
7 _vbroadcast_1024x128i(REG_V1, REG_A3, 1, 1);
8 _vload_1024x128i(REG_V2, REG_A1, 32768);
9 _vload_1024x128i(REG_V3, REG_A1, 0);

10 _vbutterfly_1024x128i(REG_V4, REG_V5, REG_V1,
11 REG_V2, REG_V3, REG_M1);
12 _vunpacklo_1024x128i(REG_V6, REG_V4, REG_V5);
13 _vunpackhi_1024x128i(REG_V7, REG_V4, REG_V5);
14 _vbroadcast_1024x128i(REG_V8, REG_A3, 1, 1);
15 _vload_1024x128i(REG_V9, REG_A1, 49152);
16 ...
17 _sload_128i(REG_S3, REG_A3, 16400);
18 _vsmulmod_1024x128i(REG_V8, REG_V64,
19 REG_S3, REG_M1);
20 _vload_1024x128i(REG_V9, REG_A1, 49152);
21 _vload_1024x128i(REG_V10, REG_A1, 32768);
22 _vbutterfly_1024x128i(REG_V12, REG_V11,
23 REG_V8, REG_V10, REG_V9, REG_M1);
24 _vunpacklo_1024x128i(REG_V13, REG_V12,
25 REG_V11);
26 _vunpackhi_1024x128i(REG_V14, REG_V12,
27 REG_V11);
28 _sload_128i(REG_S3, REG_A3, 16416);
29 _vsmulmod_1024x128i(REG_V15, REG_V64,
30 REG_S3, REG_M1);
31 _vbutterfly_1024x128i(REG_V17, REG_V16,
32 REG_V15, REG_V13, REG_V6, REG_M1);
33 _vstores_1024x128i(REG_A2, 0, REG_V17, 2);
34 _vstores_1024x128i(REG_A2, 16, REG_V16, 2);
35 _sload_128i(REG_S3, REG_A3, 16432);
36 _vsmulmod_1024x128i(REG_V18, REG_V64,
37 REG_S3, REG_M1);
38 _vbutterfly_1024x128i(REG_V20, REG_V19,
39 REG_V18, REG_V14, REG_V7, REG_M1);
40 _vstores_1024x128i(REG_A2, 32768,
41 REG_V20, 2);
42 _vstores_1024x128i(REG_A2, 32784,
43 REG_V19, 2);
44 leave(OP_DEFAULT);
45 }
46

47 // host code
48 int ntt4096x1024_b1024(unsigned __int128 *Y,
49 unsigned __int128 *X,
50 unsigned __int128 modulus,
51 unsigned __int128 *twiddles) {
52 int i305;
53 required_kernel(ntt4096x1024_b1024);
54 load_once_from_dram(SCRATCH0, 0,
55 twiddles,
56 (4096*sizeof(unsigned __int128 )));
57 load_from_dram(SCRATCH0,
58 (4096*sizeof(unsigned __int128 )),
59 X, (4*sizeof(__uint1024x128 )));
60 set_desc(SCRATCH0, REG_A1,
61 (4096*sizeof(unsigned __int128 )));
62 ...
63 // launch NTT kernel
64 i305 = execute(PROC0, SCRATCH0,
65 _ntt4096x1024_b1024);
66 store_to_dram(SCRATCH0,
67 ((4096*sizeof(unsigned __int128 ))
68 + (4*sizeof(__uint1024x128 ))),
69 Y, (4*sizeof(__uint1024x128 )));
70 swappable_kernel(ntt4096x1024_b1024);
71 return i305;
72 }

Listing 4: SPIRAL-generated 4,096-point vectorized NTT
code for RPU.



queued, it can be executed in parallel with other instruction
types without data hazards. This parallel execution through
decoupled pipelines is crucial for achieving high performance
with general-purpose processing by hiding much of the data
movement latency. Using SPIRAL, we can target RPU through
the B1K ISA without concerning ourselves with underlying
microarchitectural details.

Correctness. We generated test inputs and outputs for
various sizes of NTTs using OpenFHE, a popular open-
source software library that provides implementations of FHE
schemes [32]. We then built a C functional simulator that sim-
ulates all 28 RPU instructions by implementing its correspond-
ing functionality in C. Listing 5 shows the C implementation
of the unit-stride vector load in B1K.

1 void _vload_1024x128i(
2 reg_v &register_to,
3 reg_a register_from,
4 unsigned int offset){
5 int index = (offset / ESIZE);
6 for (int i = 0; i < VLEN; i++){
7 register_to.elements[i] =
8 register_from.address[index + i];
9 }

10 }

Listing 5: Implementaion of B1K’s unit-stride vector load in
C functional simulator.

Via the function simulator, all of the SPIRAL-generated
forward and inverse vectorized NTTs with sizes ranging from
1,024 to 131,072 are verified against OpenFHE data.

Performance. While SPIRAL has already produced the
correct vectorized NTT code that will naturally take advantage
of RPU’s vector processing power, we further tested SPIRAL’s
optimization capabilities by comparing the naive implementa-
tion with the SPIRAL-optimized code.

Fig. 3. Cycle count comparison of unoptimized and optimized NTT code.

We implemented a clock-cycle analyzer within our func-
tional simulator to count the cycles of each NTT kernel and
benchmarked NTT code from size 4,096 to 65,536. As shown
in Fig. 3, SPIRAL-optimized NTT code is on average 1.7×
faster than the unoptimized NTT implementation. The results
demonstrate that SPIRAL can effectively take advantage of

hardware-specific knowledge to schedule instructions and per-
form optimizations.

VII. CONCLUSION

The usage of FHE has been limited by significant overheads,
rendering it impractical for many real-world applications.
To address this challenge, we propose to use SPIRAL to
generate high-performance NTT code on vector architectures.
Throughout this paper, we identify suitable NTT algorithms
namely the Korn-Lambiotte and the Pease algorithm, and
translate their dataflow graphs into OL. We implement an
end-to-end workflow that starts with user-friendly library C
APIs, goes through SPIRAL scripts and breakdown rules, and
produces optimized vectorized NTT code. We choose to target
the vector accelerator designed for FHE computations, RPU,
and its associated ISA, B1K. The results of our experiments
demonstrate the effectiveness of our approach. This highlights
the potential of leveraging SPIRAL to significantly improve
the performance of NTT-based applications on different plat-
forms, thereby overcoming the limitations imposed by the
overheads for FHE applications.
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