
Algorithm/Hardware Co-optimized SAR Image
Reconstruction with 3D-stacked Logic in Memory

Fazle Sadi, Berkin Akin, Doru T. Popovici, James C. Hoe, Larry Pileggi and Franz Franchetti
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA, USA
Email: {fsadi,bakin,dpopovic,jhoe,pileggi,franzf}@andrew.cmu.edu

Abstract—Real-time system level implementations of complex
Synthetic Aperture Radar (SAR) image reconstruction algorithms
have always been challenging due to their data intensive char-
acteristics. In this paper, we propose a basis vector transform
based novel algorithm to alleviate the data intensity and a 3D-
stacked logic in memory based hardware accelerator as the
implementation platform. Experimental results indicate that this
proposed algorithm/hardware co-optimized system can achieve
an accuracy of 91 dB PSNR compared to a reference algorithm
implemented in Matlab and energy efficiency of 72 GFLOPS/W
for a 8k×8k SAR image reconstruction.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) is a technique for con-
structing a high resolution image of a remote target by sending
repeated radio frequency pulses and receiving the reflections
containing the phase shift information of the pulses. The
collected phase shift information constitutes a set of frequency
domain data distributed on a polar/curvilinear grid. Advanced
signal processing algorithms are applied afterwards to construct
the target image on a rectangular grid. Among the SAR image
reconstruction algorithms, Polar Format Algorithm (PFA) is
among most mature and widely used algorithms [1], [2]. PFA
mainly accomplishes reconstruction through a non-uniform 2D
Fourier transform performed in two steps, namely re-gridding
followed by a regular 2D Fast Fourier Transform (FFT). The re-
gridding constructs a frequency domain data set distributed on
a rectangular grid through re-mapping and interpolation. This
re-gridding operation is known to be the most data intensive,
and hence expensive, part of SAR image reconstruction [3],
[4]. An overview of the entire process is depicted in Figure 1.

Despite the well developed signal acquisition sensors and
mature reconstruction algorithms, high performance imple-
mentation of SAR algorithm on Hardware (HW) is still
challenging. The reason is that the reconstruction algorithms
are extremely data intensive and SAR applications require real-
time computation. More importantly, energy efficiency is of
prime concern for SAR applications in small form factors like
for unmanned aerial vehicles (UAVs).

With the advent of parallel processing through multi-
cores, a number of state of the art architectures have used
for efficient implementations of SAR. In [5], a SAR image
reconstruction algorithm has been implemented on a eight core
DSP processor (C6678-Shanon from Texas Instruments Inc.).
The authors report an energy efficiency of 12.8 GFLOPS/W
for a single precision implementation. In [4], Intel Quad
Core CPUs are used along with automatically generated
program which provides efficient parallelization, vectorization

and memory hierarchy tuning. The reported performance in
this work is 0.3 GFLOPS/W. IBM’s Cell Broadband Engine
(CBE) utilizing high-bandwidth XDR main memory has been
exploited for efficient SAR image reconstruction in [3]. Using
eight synergistic processing elements, this platform achieves
a performance of 23.8 Mpixel/s. However, the authors of this
work have not reported any estimation of energy efficiency.

In this work, we approach the SAR image reconstruction
as an algorithm/HW co-optimization problem. We propose a
novel basis vector transform based algorithm for re-gridding
of the polar data. This algorithm is highly optimized to reduce
memory accesses. In addition, as the implementation platform
we propose a Logic in Memory (LiM) enhanced 3D DRAM
stacked HW accelerator which enables both high bandwidth and
energy efficiency. We propose an offload accelerator design,
as shown in Figure 2, where the accelerator resides on the
main memory side rather than the conventional CPU side (e.g.
OMAP processor [6]). The advantage of this offload design
is that the accelerator has access to the entire off-chip main
memory which is essential for data intense applications. The
computing unit in this proposed system is an application specific
LiM layer which tightly integrates logic for the proposed SAR
algorithm and embedded memory blocks. This LiM layer is
stacked between 3D DRAM dies where communication among
the layers are done through Through Silicon Vias (TSVs) [7],
[8]. These TSVs enable high data bandwidth to match the
high computation power achieved by the optimized algorithm
and LiM topology. For the efficient implementation of the
2D inverse FFT, we have used FFT designs automatically
generated by Spiral [9]. End-to-end RTL level simulation of
our algorithm/HW co-optimized system reports an accuracy of
91dB PSNR and energy efficiency of 72 GFLOPS/W for the
SAR image reconstruction at 32 nm technology node.
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Fig. 2: 3D-stacked offload accelerator.
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Fig. 1: Different stages of SAR image reconstruction algorithm.

II. LOGIC IN MEMORY

LiM is a topology where fine-grained interspersion of
logic and memory is exploited to build a energy efficient and
high internal bandwidth system. This topology has become
possible in deeply scaled technology nodes due to the sub-
20nm regular pattern construct based IC design [10], [11].
LiM yields tremendous benefits at the system level mainly
due to two attributes—proximity and flexibility. The proximity
enables high data bandwidth, whereas the flexibility provides
more freedom to optimize the algorithm. However, to fully
harness the benefits, a design automation framework for LiM
HW synthesis is necessary which is developed in [12]. Our work
utilizes this framework for simulation. However, the description
of these design tools is beyond the scope of this paper.

III. PROPOSED RE-GRIDDING METHOD

The re-gridding for SAR image reconstruction is imple-
mented in two steps, namely re-mapping and interpolation. The
re-mapping stage converts the polar/curvilinear grid input data
into a rectangular grid data set. As a result, the points of interest
which are originally in rectangular grid becomes warped after
re-mapping as shown in Figure 1. However, this warped grid in
the re-mapped plane represents the expected rectangular grid
data points in the data acquisition plan required for SAR image
reconstruction with uniform 2D inverse FFT.

We propose a basis vector transform based re-mapping
algorithm. At first we present the ideal algorithm where no
optimization is applied. Later we extend the ideal algorithm to
an optimized version which is significantly less data intensive
and more energy efficient.

A. Ideal Re-mapping Algorithm

In the data acquisition plane, the polar/curvilinear grid
is constructed with trapezoidal grid blocks. For example,
in Figure 3, the trapezoid mnok in data acquisition plane
constructs the grid block. To compute the value of any point of
interest (gx, gy) by applying bilinear interpolation, we would
need to compute the distances w1→4 by the Pythagorean
theorem four times. This requires square-root operation which
is very expensive in HW. More importantly, for each corner
points of the trapezoid, three memory accesses are needed (two
for the coordinate position and one for the data value). Thus
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Fig. 3: Data re-mapping through basis vector transform for
each grid block.

the entire operation becomes both computation and memory
intensive.

However, if we convert each trapezoidal grid block into
a square grid block, bilinear interpolation would only need
the distances c1 and r1 which can be computed by simple
subtraction as shown in Figure 3. Moreover, as the memory
addresses for the data values of the corner points can serve
as the coordinate positions, we would only need one memory
access (for the data value) to interpolate each point.

To re-map the point of interest (gx, gy) to (gc, gr), we
transform the basis vectors of (gx, gy) from the standard
Cartesian unit vectors to

−→
h and −→v as shown in Figure 3.

This transformation can be done by the formula shown in
Equation 1.

[
gc
gr

]
=

1

hxvy − vxhy
×

[
vy −vx
−hy hx

]
×

[
gx
gy

]
(1)



Performing such a transformation for all the points of interest
for their corresponding trapezoidal block would result in a fully
re-mapped rectangular grid with square blocks. Afterwards,
interpolation can be done using these square blocks with much
less computation compared to the trapezoidal blocks. However,
this ideal re-mapping still needs to access memory for the
coordinates of three corner points (in this case k,m and n) for
each grid block, rendering the process to be data intensive.

B. Optimized Re-mapping Algorithm

For optimization, the entire data set is divided into smaller
tiles and the curvilinear grid lines are approximated as straight
lines for each individual tile as shown in Figure 4(a). The tile
size is selected so that one entire tile data fits in the embedded
memory of the LiM layer. The straight line approximation
allows us to use one common basis vector for all the points
of interest encompassed by a tile. For the tile shown in
Figure 4(b), the common basis vector is −→pq. It will be shown
in Subsec. VI-A that the straight line approximation incurs
very insignificant pixel shift in the resultant image. As can be
intuitively understood, the effect of straight line approximation
diminishes as the tile size decreases.

To remap any arbitrary point of interest, the other basis
vector used is the vector connecting that point and the origin
of the data acquisition plane, having a length of the tile size in
the range direction [1], [2]. In Figure 4(b), for point (gx, gy),
the second basis vector would be

−→
bd.

For processing each tile, the coordinates of the four corner
points (p, q, r and s in Figure 4(b)) are passed as parameters to
the LiM core. Therefore, computing the common basis vector,−→pq, for the entire tile is straightforward. However, we need
the coordinates of points b and d for the second basis vector.
As
−→
bg passes through the origin of the coordinate we can find

(bx, by) with the following formulae.

bx =
py(qx − px)− px(qy − py)

(gy/gx)(qx − px)− (qy − py)
, by =

gy
gx
bx

To find (dx, dy), we first define,

α =
bx

qx − px
=

by
qy − py

.

As −→ps,
−→
bd and −→qr pass through the origin of the data acquisition

plane, coordinates of d can be derived from the following
equations.

dx = (1− α)sx + αrx, dy = (1− α)sy + αry

After the coordinates of b and d are found in the data acquisition
plane, Equation 1 can be used to remap (gx, gy) to (gc, gr)

using
−→
bd and −→pq as the basis vectors. Alternatively, we can use

the following equations to remap (gx, gy).

gc = α, gr =
gx − bx
dx − bx

=
gy − by
dy − by

It should be noticed that in this optimized remapping algorithm,
memory accesses for the curvilinear data point coordinates are
no longer required. Only the coordinates of the four corner
points of each tile in data acquisition plane are needed, which
can be passed as parameters to the computational LiM core of
the system.
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Fig. 4: Data re-mapping through basis vector transform for
each grid block.

C. Interpolation with Rectangular Access LiM

For the interpolation in 2D space, multiple memory ac-
cesses are generally needed, depending on the order of the
interpolation. For example, in bilinear interpolation four data
points are needed (two memory accesses), and in bicubic
interpolation sixteen data points are needed (four memory
accesses). However, using LiM topology we are able to
implement a rectangular access memory, which can provide all
the required data points in a single memory access. As shown
in Figure 4(c, d), for the given address (i, j) all the four points
(assuming bilinear interpolation) (i, j), (i+1, j), (i, j +1) and
(i+1, j+1) are provided in a single memory access. In addition,
we need the distances c1 and r1 for the interpolation which
can be computed by the following equations.

c1 = gc × (number of columns in one tile)− j
r1 = gr × (number of rows in one tile)− i

Thus, the LiM based HW specially tuned for 2D inter-
polation and the optimized remapping algorithm enables an
algorithm/HW co-optimized system for high performance and
energy efficient regridding operation.

IV. 2D-IFFT AND SYSTEM INTEGRATION

After re-gridding, a 2D inverse FFT operation is needed to
reconstruct SAR image. For an efficient HW implementation
of FFT we use Spiral [9] formula generation and optimization
framework. Spiral features block data layout FFTs for large
datasets of SAR images to address the DRAM bandwidth
utilization [13], [14]. These DRAM-optimized FFT implemen-
tations make use of the tiled memory layout by mapping each
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Fig. 5: Integration of re-gridding and 2D-IFFT.

tile to a DRAM row hence minimize the number of row buffer
misses.

The overall architecture shown in Figure 5 demonstrates the
integration of the SAR re-gridding with the 2D-FFT hardware.
The re-gridding and FFT units are implemented in the logic
layer of a 3D-stacked DRAM similar to [15], [16]. The 2D-
FFT requires double-buffered local memory that performs data
permutations and a local FFT core that executes the FFT kernel
[13], [16]. We also construct a double-buffered interpolation
unit that streams the interpolated rectangular grid data into
the 2D-FFT unit. We term the LiM block needed for the
interpolation as Interpolation memory and the SRAM block
needed to permute the local as Permutation memory. Tile size
of the interpolation and the tile size of the 2D-FFT are matched
to a DRAM row to minimize the row buffer misses in the data
read/write from/to DRAM layers. Our architecture exploits the
parallelism provided by multiple banks/ranks/layers/TSVs by
transferring multiple elements in parallel. Further, it overlaps the
computation and the data transfer via double-buffering. Finally,
tiled memory layout allows reading/writing large contiguous
data chunks exploiting the data locality. Thus, the overall
architecture constitutes a DRAM-optimized LiM based SAR
image reconstruction unit.

V. EXPERIMENTAL METHODOLOGY

Given the SAR input data set and hardware parameters, our
tool generates the HDL as well as simulation and synthesis
scripts. The generated HDL is then synthesized targeting
a commercial 32 nm standard cell library using Synopsis
Design Compiler following the standard ASIC synthesis flow.
In addition to the standard ASIC synthesis flow, for non-
HDL components, we use the following tools: CACTI 6.5
for on-chip RAMs and ROMs [17], McPAT for DRAM
memory controllers [18], and DesignWare for single and
double precision floating point units [19]. For the 3D-stacked
DRAM model we use CACTI-3DD [20]. Finally, for the overall
performance estimation, we use a custom performance model
calibrated by cycle-accurate simulation. All of the tools are
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Fig. 8: Effect of curvature approximation.

integrated resulting in an automatic push-button end-to-end
design generation and exploration tool.

VI. EXPERIMENTAL RESULTS

We evaluate our 3D-stacked LiM HW accelerator in terms
of accuracy, performance and energy efficiency. While accuracy
of the reconstructed image is mainly dictated by the re-gridding
algorithm, performance and energy efficiency depend on the
HW design parameters and resources used.

A. Accuracy

The proposed re-mapping algorithm along with bicubic
interpolation using LiM topology is implemented in Verilog.
Computation is done in single precision. To measure the
accuracy of only the re-gridding technique, a spatial domain
polar grid image is constructed from a benchmark image
(1024× 1024 with 32× 32 tile size) and passed through our
re-gridding algorithm. An example of the benchmark and the
result of proposed re-gridding technique is presented in Figure 6
for which the calculated SNR is 48.4dB and PSNR is 58.8dB.

To test the accuracy of the overall proposed system, the
resultant image is compared to an image reconstructed by a
Matlab double precision gold standard reference implementa-
tion of SAR with FFT-based interpolation. As the frequency
domain interpolation is done locally by our system and globally
by Matlab’s implementation, interpolated data are renormalized
before inverse FFT to allow for a fair comparison. Examples of
the reconstructed images are shown in Figure 7. Here, the SNR
and PSNR of the proposed reconstruction with respect to gold
standard is 19.7dB and 91.1dB. The difference between SNR
and PSNR can be attributed to slight low-frequency disturbances
due to non-conservation of overall energy. The effect is a small
location-dependent average energy level mismatch that has
a stronger impact on SNR than PSNR, but does not impact
further processing of the reconstructed image.

Effect of Curvature Approximation: To explore the effect of
the straight line approximation of of the optimized re-mapping
algorithm, ideal re-mapping is applied on a 1024× 1024 point
polar grid. The resultant rectangular grid is then super-imposed
on the grid found by optimized re-mapping. The result is shown
in Figure 8. The peak shift is less than 1/20 of a pixel size
and, as can be seen, is very insignificant.

B. Performance and Energy Efficiency

The measurement of performance and energy of SAR
reconstruction on our proposed platform leads to a design
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Fig. 6: Result of accuracy test of the proposed re-gridding method.
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Fig. 7: Accuracy comparison between Matlab’s golden benchmark algorithm and proposed system.

space rather than a single efficient design. Figure 9 shows the
design space of an 8k×8k size SAR image reconstruction with
bicubic interpolation using a 3D-stacked DRAM configuration
given in Table I. Here, Nstack, Nbank and NTSV are the number
of DRAM dies stacked, banks per die and TSVs per bank.
The overall system configuration and the parameters for the
design space exploration are given in Table II. Single precision
accuracy is considered for all computations.

TABLE I: 3D-stacked DRAM configuration.
Configuration tCL-tRCD-tRP-tTSV Max BW
Nstack/Nbank/NTSV/Row(Kb)/Tech(nm) (ns) (GB/s)

4 / 8 / 512 / 8 / 32 12.2-7.89-16.8-0.68 337.2

TABLE II: Design space exploration parameters for the system.

System configuration Design space parameters

8Gbit, 4-layer DRAM 1-layer logic FFT radix: 2 cpx words
8 banks/layer 512 TSVs/bank Streaming Width: 2 → 16 cpx words

Row buffer = 1KB Max BW = 335GB/s Tile size: 0.125x → 2x row-buffer
Frequency: 0.4 → 2 GHz

Finding the most suitable system configuration given the
task/platform constraints establish an optimization problem.
Naively choosing the highest performance or the lowest power
consumption design point is not sufficient to get the most
efficient system. Therefore, our design automation framework
selects the best design point in terms of the power efficiency
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for a given task/platform. As can be seen from Figure 9, our
proposed system can reach 72 GFLOPS/W, which outperforms
the SAR energy efficiencies in state of the art architectures.
Furthermore, to explore the effect of image size on performance
and energy efficiency, in Table III the power (W), performance
(GFLOPS) and power efficiency (GFLOPS/W) numbers of the
selected best designs for the given configurations provided.

TABLE III: Power, performance and energy efficiency of
different images sizes.

Image Size Total Power Performance Energy Efficiency
(cpx words) (W) (GFLOPS) (GFLOPS/W)

29 × 29 28.64 1820.8 63.6
210 × 210 29.08 1985.4 68.3
211 × 211 32.16 2310.1 71.8
212 × 212 33.58 2446.9 72.9
213 × 213 32.14 2318.2 72.1

VII. CONCLUSION

In this paper we demonstrated a real-time SAR imple-
mentation platform finely tuned for a novel basis vector
transform based re-gridding algorithm. The presented system
exploits LiM topology along with 3D-stacking technology and
comprehensively outperforms the SAR implementations on
traditional architectures in terms of accuracy, performance
and energy efficiency. The optimized algorithm reduces the
data intensity while the LiM 3D-stacking topology enables
high bandwidth and power efficiency. To the best of our
knowledge, this is the first such co-optimized system proposed
for SAR image reconstruction. Moreover, this work shows that
by leveraging the state of the art IC technologies and topologies
algorithm/HW co-optimization approach can break through the
difficulties that many modern day data intensive applications
pose.
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