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ABSTRACT initial iter. 4 iter. 6 iter. 128 converged
Active models are widely used in applications like image
segmentation and tracking. Region-based active models al

] i B) l > 2 B 3
known for robustness to weak edges and high computation (II lII ‘ I ‘
complexity. We found previous region-based models car

easily get stuck in local minimums if initialization is fanoim

the true object boundary. This is caused by an inherent am

biguity in evolution direction of the level set function whe

minimizing the energy. To solve this problem, we propose

an intensity re-weighting (IR) model to bias the evolution

process in certain direction. IR model can effectively dvoi Fig. 1. An example for which LBF converges to local mini-
local minimums and enable much faster convergence of the, ;s First row shows contour evolution, second row illus-

evolution process. The proposed mgthod is applied to both 1o areas where > 0 (white) ande < 0 (black). B; and

real and synthetic images with promising results. B, marked true object boundary discussed in the text. (view
Index Terms— active contours, level set, image segmen-in color)

tation

1. INTRODUCTION minimums for some initializations. Fig. 1 shows such an
example. In the followingR;, R» refer to the brighter and

Active contour models are widely used in image segmentatioffarker region in an image respectively, , S, refer to two
problems, especially for medical images with a lot of noiseSegmented areas; is the level set function5; is the seg-
and intensity inhomogeneity. State-of-the-art activetoors ~ ment of¢ > 0, andS; is the segment of < 0. The goal
[1, 2, 3, 4] are implemented using the level set method [5] ifPf LBF model is to evolvep such that) has different signs
Eulerian framework. The level set method has several advai 1 and R, to minimize energy. In the first example, the
tages such as regular computation on a grid and being easy@8ntour is initialized to be close to boundasy. After a few
handle topological changes. iterations, contour is formed around bounddyto reflect
Existing active contour models can be roughly categothe intensity contrast, and contour around boundarys at-
rized into edge-based models and region-based models. GefRcted towards the true boundary. However, evolutio of
erally speaking, region-based models are more robust whe¥oundB; and B, are independent in the first few iterations.
weak edges exist and less sensitive to initialization, botem  This resultsp < 0 aroundB; and¢ > 0 aroundB, in Ry,
computationally expensive than edge-based models. and leads to region 1 separated into two at convergence. The
In this paper, we choose LBF (local binary fitting) model '€ason is that' the .initial contour is far froB), Iegding to two
[4] as our baseline, which represents state-of-the-art o@mbiguous directions to evolvg aroundB;: either¢ > 0
region-based active contour models. Earlier region-basel@’ £1 and¢ < 0 for Ry, or the other way round. Small per-
models either lack the ability to handle image inhomoggneitturbat'or‘ W|Il_cause;$ to evolye in one of the two d|rect_|ons,
like the PC (piecewise constant) model [2], or too expensiv@€cause having the same signjodlong true boundary is an
in computation like the PS (piecewise smooth) model [3]Unstable state of high energy. But which directiprvolves
The LBF model minimizes an energy term which encour" IS hard to predict when initialization is far_away, d_epmgd
ages smooth intensity variation locally within each region®n factors like boundary shape and numerical precision.
and tolerates abrupt intensity change along region bound- Summary of proposed method.To remove ambiguity in
ary. We focus on the 2-region segmentation problem (forethe evolution direction, we propose intensity re-weigttin
ground/background) in this paper. the evolution process to bias> 0 for the brighter region and
Motivation. LBF model can easily get stuck in local and¢ < 0 for the darker region, or the other way round. The



basic assumption is that one region is always brighter then t of 7(x) with the average intensity of; nearx. Largere;

other along the boundary. In this way, the level set functiormeans less coherent. Eq.(6) can be interpreted as incgeasin

will evolve towards the biased direction and different patt  the belief ofx in S; if e; < e3_;, 71 =1, 2.

the same region have consistent signg at convergence. The complete energy definition has two extra regulariza-
Synopsis. In the following, we briefly review the LBF tion terms:£ = ELBF + uP(p) + vL(4). P(¢) keepssp to

model in section 2. Section 3 details our approach of intenbe close to the signed distance functidti¢) minimized the

sity re-weighting. Section 4 shows experimental results ancontour length. We keep these two terms unchanged.

section 5 concludes.

3. PROPOSED METHOD
2. BRIEF REVIEW OF THE LBF MODEL
The goal of segmentation is to make = R; or S; = R3_;
In LBF model, the energy ter&”2¥ is defined for each point (i = 1, 2) at convergence. Without lose of generality, we as-

x in the image as following sume the goal i$; = R;, i.e.,¢ > 0 in brighter region and
L BF ¢ < 0 in darker region at convergence. We propose to in-
ETT (o, [1(x), f2(x) = corporate bias in the level set function evolution process b

adjusting the intensity weight when computifigand f> in
Eq.(5). From Eq.(5), we knowi; (y) measures the average in-
9 tensity of S; around pointy. Given the assumption thdt,
+ )\Q/Kn(y = X)) = LX)["Ha2(o(y))dy (1) s prighter thanR, along the boundary, we can put higher
weights on brighter pixels when computirfg and higher
ELBE measures the summation of intensity variation within aveights on darker pixels when computifig
local neighborhood of point for two regions.K,, (y — x) is a

M / Koy = X)|1(y) — £1(<)[2Hy (6(y))dy

Gaussian kernel that diminishes with distance foon§; and fi= Ko (x) * [Hi (ST Wi (I (x))] =12 (8
S, refers to segment af > 0 and¢ < 0 respectively.f; (X) Ko (X) * [Hi(o(x)W;(1(x))]

and f»(x) are spatially fitting functions, capturing weighted Wh(I(x)) =I1(x) 9)
average intensities ¢f; andS; from a local view of. I(y) is Wa(I(x)) =255 —I(x)  (10)

the intensity ay. Hy(¢(y)) and H2(¢(y)) capture the belief
of pointy in S; and.S,. H1(¢) is a Heaviside function.
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An intuitive explanation of minimizinggL 2 is that I(y) 5y 5 50 3 7005% =) 700
should be close tqfy(x) if Hi(¢(y)) is high, and close to - o 50 (b)

f2(x) otherwise. The complete LBF energy is defined as I I
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Keepingo fixed, minimizingS “ B with respect tof; (X), f2(X) % 5 50 100°% 50 100
gives '

fi(x) = Ko () % [Hi (6()] 1=1,2 (5)  Fig. 2. Comparison of LBF and IR for the first example in
7 ! Fig. 1. Here we only show value for the middle row of the
Keepingj; and f, fixed, minimizingcZ 5% with respecttas, ~ image. Initialization is the same as the convergence state |

we derive the gradient descent flow: Fig. 1. One the left, we shoyi, f> and! in the first iteration.
On the right, we show evolution af. ¢ is ¢ at iterationt.
0o 6£LBF #° is the initialization, and® is ¢ at convergence. LBF does
- = = —5((]5)()\161 )\262) (6) . . . . .
ot not change sign ap in evolution process, so getting stuck in
) local minimum. IR drives sign o to flip in iteration 1, and
/K X =y)I(x) = fi(y)["dy (") converges to global minimum.

In EQ.(6),6(¢) is the smooth Dirac function, which is the We call LBF with intensity re-weighting as IR model,
derivative of H;(¢). e;(x) measures the intensity coherencewhich naturally encourages of brighter pixels to increase



iter. 4 iter. 8 iter. 16 iter. 32 iter. 64

and ¢ of darker pixels to decrease along boundary. Fig. 2
shows for the first example in Fig. 1, why LBF gets stuck at
local minimum and IR converges to the desired global mini-
mum. We initialize sign of) to be the convergence state in
Fig. 1, with absolute value of 0.1. Here we just show value,
for the middle row in the image (other rows are similar given
no vertical intensity variation in the image). Eq.(7) carelpe
proximated as;(x) = |1(x) — f;(x)|? because;(y) ~ fi(x)
wheny is close tox. Eq.(6) can be interpreted as increasing

if |[7(x)— f1(X)| < |I(X)—f2(x)|, and decreasing otherwise.

In LBF around boundary3;, ¢ > 0 for darker pixels and

¢ < 0 for brighter pixels when initialized, resultinfy < f».

So nearB;, Eq.(6) drivesp to increase ir; (¢ > 0) and de-
crease in inSz(¢ < 0), as shown in Fig. 2(b). In IR, around tg the true boundary to guide evolution in the right direatio
By, f1 > f2 because brighter pixels are weighted mor¢in  \Whereas IR provides additional driving force from intepsit
and darker pixels are weighted morefin So neatB;, Eq.(6)  contrast to guide evolution even when current contour is far
drives¢ to decrease ¥ (¢ > 0) and increase ii¥2(¢ < 0),  from the true boundary. Fig. 4 gives such an example.
causing the sign a to flip aroundB;. At convergencep has Implementation. The implementations of IR model and
consistent sign in each region. LBF model are very similar. The only difference comes from
computingf; in Eq.(5) and Eq.(8). In LBHY, * I and K, « 1

(1is an array of 1s, and of the same sizelagan be pre-
computed once. In each iteration, Eq.(5) can be computed
from two convolutiong™; andCs.

Fig. 4. Comparing evolution contour (in red) at iteration 2—
64 for the same initialization (in cyan) for LBF and IR model.
(view in color)

C1 = K, (X) * Hi(¢(x)) (11)

Ca = Ko (X) * [H1(o(X))1(X)] (12)
f1=C2/Ch (13)
fo=(K,*xI—Cy)/(Kyx1—Ch) (14)

In IR model, we need to pre-computg, = 12, K, * I and
K, = 1once. In each iteration, Eq.(8) can be computed from
three convolution€’;, Cy, andCs. C;, Cy are the same as

Eq.(11-12),
Fig. 3. Comparingfi(X), f2(x) and% in LBF and IR mod-
els. ‘+ and *-’ indicates sign of the level set functign (view C3 = Ky (X) * [Hi(o(X))I*(X)] (15)
in color) f1=0C3/Cy (16)
Fig. 3 shows a real example. Evolution directiongof fo = 255(Ko + I — Ch) — Ko x 12 + Cy (17)
is visualized in the last column: increasefor bright pix- 255(Ko#1—Ch1) — Ko x 1+ Co

els ¢ > 0) and decrease for dark pixels €2 < 0). In

both LBF and IR, if a pixel is close to initial contour and

true boundary (like A, B), therf; > fo. So Eq.(6) drives

¢ to increase for bright pixel B and decrease for dark pixel

A. However, if a pixel is close to true boundary but far from 4. EXPERIMENTAL RESULT

initialization (like C, D), in LBF f; ~ f5. This makes it un-

clear how¢ evolves to reflect the intensity contrast on thatAll experimental results use the same parameter setting

boundary. Either increasing for C and decreasing forD Xy = 1,v = 0.001 x 2552, u = 1,0 = 3.0, ¢ = 1, except for

or vice versa can decrease the energy. Such uncertainty tife first example in Fig. 5, we set= 0.003 x 2552

which direction to go is exactly the reason that can leadto lo  We first show some examples for which LBF get stuck in

cal minimums (convergence shown in Fig. 6 first column). Inlocal minimums, but IR successfully converges to the ddsire

IR model, f; > f2 near C and D, driving to evolve in the boundary in Fig. 6. The last column shows an example where

desired direction. IR model does not work. This is an example when the ba-
Another advantage of IR model is that it enables fastesic assumption is violated. The two regions are of completel

convergence. LBF relies on the closeness of current contosymmetric intensity. Unsurprisingly, at convergence> 0

Compared to LBF, we observe about 10%—15% increase in
the computing time for each iteration in IR model.



Fig. 5. Comparison of LBF (row 1) and IR (row 2) model, with initzditions in cyan and final contours in red. (view in color)

maps to brighter areas. Preprocessing the image (like comimgID 1 2 3 4 5 6
puting the gradient image) can meet the basic assumption. | LBF(CPU time) | 3.16 4.23 7.47 0.80 7.02 2.33
iter # 350 225 350 75 275 17§
In Fig. 5, we show both real and synthetic examples, and IR(CPU time) 0.78 214 180 0.64 5.18 1.47
compare CPU time using LBF and IR in Table 1. To make fair iter # 75 100 75 50 175 100
comparison of computing time, we choose examples in which

both models converge (or closely) to desired region boundlable 1. CPU time (in second) and iteration number at con-
aries. Table 1 lists CPU time for Matlab code on a Dell XPsvergence for LBF and IR model in Fig. 5.

720 machine with 2.66G Hz Intel Core 2 Extreme QX6700

CPU and 2GB memory. We check convergence at every 25 5. CONCLUSION

iterations. If the average percentage of pixels that chémge

sign of ¢ is less than 0.2%, then the model converges. It isn this paper, we propose an intensity re-weighting (IR)
clear that IR model converges much faster than LBF mOdELmodeL which is an extension of LBF model. LBF model can
easily get stuck in local minimums if initialization is fanoim

the true region boundary. Given the basic assumption thet on
region is brighter than the other along the region boundary,
IR model can effectively avoid local minimums and allow
much faster convergence. Experimental results demoastrat
the effectiveness of the proposed method.

When multiple regions exist, it's very common to see
one region been split when initialization is not close erfoug
to true boundary. Current IR model cannot handle mul-
tiple regions. Extending the idea of IR may enable auto-
segmentation without manual initialization.
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