FAST BILATERAL FILTERING BY ADAPTING BLOCK SIZE
Wei Yu!, Franz Franchetti!, James C. Hoe' , Yao-Jen Chang?, Tsuhan Chen?

LCarnegie Mellon University, Cornell University

ABSTRACT of image intensity in this method may significantly degrade
the quality of the filtering output. Also, memory footprire:-r
quirement is large for storing the integral histograms. gran

e?—t al. [6] propose &(1) bilateral filtering which extends Du-
rand and Dorsey’s piecewise-linear bilateral filtering inoet

[3]. It can achieve) (1) complexity with arbitrary spatial and

F\rbitrary range kernels (assuming the exact or approxiinate

spatial filtering isO(1) complexity), with much better accu-

racy and less memory footprintthan [5]. In [6], they distzet
the image intensities. For each quantization value, they-co
ute a linear spatial filtering, whose output is defined as-Pri
iple Bilateral Filtered Image Component (PBFIC). The final

Directimplementations of bilateral filtering sha(r?) com-
putational complexity per pixel, whereis the filter window
radius. Several lower complexity methods have been dev
oped. State-of-the-art low complexity algorithm is @(1)
bilateral filtering, in which computational cost per pixsl i
nearly constant for large image size. Although the overal
computational complexity does not go up with the window
radius, it is linearly proportional to the number of quaatiz
tion levels of bilateral filtering computed per pixel in thie a
gorithm. In this paper, we show that overall runtime dependg

on two factors, computing time per pixel per level and aVer'li)ilateral filtering output is a linear interpolation betwethe

?rgZerlngggtr\/\?;;ﬁ\/tilsszet\rmgl);:éto\r/\s/e eﬁ.zlﬁ'gaﬁ ;ansrr::jirl]lftwo closest PBFICs. For typical parameter settings (see sec
: Wi . tion 4), processing time of [6] on a 2.67GHz CPU with 2GB
RAM for image of size600 x 800 is on the order of tens of

run time and search for the optimal block size. Using thlsmilliseconds to several seconds.

model, we demonstrate an average speedup of 1.2—26.0x over . .
the pervious method for typical bilateral filtering paraerst Overview of proposed method. In this paper, we pro-
pose an extension of [6], to further reduce the run time based
Index Terms— bilateral filtering, algorithm complexity, on an important trade-off we found. The overall computing
real time time depends on two factors, the computational cost pet pixe
per PBFIC, and the average number of PBFICs computed per
pixel. O(1) cost per pixel only reflects the first factor. We
will show there is a fundamental trade-off between these two
factors, and changing the block size can control the trade-

et al. in 1998 [1]. It smoothes out an image by averagingf’ﬁ' Block size ofl x 1 corresponds to direct implementation,

neighborhood pixels like a Gaussian filter, but preservagsh 2nd block size up to the original image size corresponds to
edges by decreasing weights of pixels when the intensity difn® implementation in [6]. The optimal block size should be
ference is large. Bilateral filtering is useful in many imagesomewhere in between for general cases. We build a modelto

processing and vision applications such as image denoisirﬂjediCt run time given a fixed block size, and use this model

[1, 2], tone mapping [3], and stereo matching [4]. to search for the best block size. , _
Direct implementation of bilateral filtering from defini- Synopsis.In the following, we briefly review thé)(1) bi-

tion is computationally expensive. There are generaligahr |ateral filtering proposed in [6], and explains the fundataen
directions to make an algorithm run faster. First, desigreio trade-off in Section 2. Section 3 details a model to estimate
complexity algorithms without degrading accuracy: secondthe c_omputlng time. Section 4 shows experiment results and
optimize code extensively for a given algorithm: third, op- S€ction 5 concludes.
timize code on a more powerful hardware platform. In this
paper, our focus is along the first path. 2. OBSERVATION OF A FUNDAMENTAL

Related work. The computational complexity per pixel TRADE-OFF
for direct implementation i€ (r?), wherer is the filter win-
dow radius. Recently, several methods have been proposedfoom the definition of bilateral filtering, it is a compound of
reduce the arithmetic complexity of the algorithm. Porédli linear spatial filtering and non-linear range filtering. &ala
al. [5] proposed a constant time bilateral filtering withgest ~ filtering kernel is usually a simple box filtering kernel or a
to filter size for three types of bilateral filters. Quantisat Gaussian kernel, both havirig(1) (approximate) algorithms.

1. INTRODUCTION

Bilateral filtering is a non-linear filter introduced by Tosna

Range filtering kernel is usually a Gaussian kernel thagassi box filtering can be roughly estimated as
lower weight to pixels with large intensity difference. The

filter output of a pixek is 7, ~ COnt2r) (b + 2r) @
(bh : bw)
Svenon Fs(¥X) - fr(I(y), I(X)) - 1(y) C is a constant depending on computing platforms. Gener-
IB(x) = YEN(X) (1) ally speaking, most images contain a large portion of slowly

ZyEN(x) fs(yv X) ' fr(I(y)v I(X))

InEq. (1),/(x) isintensity of pixek. f,(y,x)andf,(I(y), (X))
are spatial and range filter kernel$(x) denotes a neighbor-
hood window aroun&. The key idea in [6] is to turn both
dividend and divisor in Eq. (1) into linear spatial filters by
fixing I(x) to be constant. This is achieved by quantizing
intensity value into multiple levels and computing so-edll
Principle Bilateral Filtered Image Component (PBFIC). As-
suming intensity is quantized intb levels Iy, Iy, ..., I 1.
Thel-th PBFIC is computed as

varying regions, therefore intensity range within smatldiis
are smaller than the intensity range of the whole image.
Fig. 1 shows for an example image on the left side, how
T, andL, changes with the block siZg x b,,. The trend is
similar for other images. Heré = K for each block. Im-
age size i$12 x 512. We test square blocks, atha,(b,,)
varies from 0 to 9. As expected;, (¢) decreases with the
increasing block size, anfl, ((J) increases with the increas-
ing block size. For different, T,, - L, () reaches minimum
at differentb,,. It is no surprise to see that for smallL,, is
the dominating factor and prefers smal; for larger, T, is
the dominating factor and prefers largg. When block size
5 ZyeN(x) Fs(y,X) - fr(I(y), I}) - I(y) eqyals_ image size, it beco_mes exactly th@) bilateral fil-
17 (x) = 5 AN (2) tering in [6]. When block size equalsx 1, every block has
yen o s X) - o (L(Y), D only one intensity and., = 1. The filtering cost isD(r?)
t per pixel, which degenerates to the naive implementation of
bilateral filtering.

The final output/Z(x) is interpolated from two closes
PBFICs. In the following, we assume spatial filtering to be
simple box filtering to simplify the complexity analysis. Bu
the idea in this paper is applicable to otligl) spatial filters
as well. The range filter is assumed to be commonly use
Gaussian filterf,.(I1, Io) = exp(—(I1 — I2)?/(c?)). Here a
constant is omitted because it does not affect the final dutpu§

Given O(1) spatial filtering complexity for computing o
1P (x), the total complexity of computing bilateral filtering is 8 e 0 3 8 9
O(1) per pixel with respect to filter window radius How- ' /f”
ever, the computational complexity also grows linearlyhwit 05
the number of quantization levels andL is roughly propor- i ><1
tional to the intensity range of the image for a given accyrac o % 339 1)
requirement. We useto control accuracy. We fix the lowest 0 3 "6 °9 3 6 9
and highest quantization values 1g,;, and I,,,., which
are minimal and maximal intensity values in the image. Th
number of quantization levels

T,—— L, T, L,

1 r=2 1

B os % 0.5 -
AN N

%ig. 1. Tradeoff betweerl, and L, for varying r =
2,4,8,16. Here L = K for each block. x-axis shows
log,(by). We only test square blocks of sizg x b,,. Y-
m))) 3 axis showsl,, L, andT, - L, normalized to their maximum
values. Optimab,, for T, - L, is circled.

L = max(min(XK, 2), min(K, round

K is the intensity range, which equdl§,. — Imin+1. When

e< ﬁ L equalsk, the bilateral filtering output is exact. The above analysis is an approximation of run time. Fig. 2

Whene increases, accuracy decreases. We fx1.0, where further demonstrates the relationship between run time and

we observe PSNR50dB for almost all images. This is con- block size by measuring the real run time for varying block

sidered of the same visual quality to the exact output. size. We use the same example image. Block size is the same
Let's partition the image into blocks of sizg x b,,, and as in Fig. 1. 2560, varies in{1, 16}. The code of [6] is

apply the above method to each block. Here we do a rougpublicly available on website. We simply modify the code

estimation of the run time, without considering interpmat such that bilateral filtering is looped on each block. When

step. More accurate modeling can be found in Section 3. Th2560,. = 1, L. = K, the trend of normalized run time with

computing time is roughly proportional @8, - L,, whereT, respect ta,, is close to Fig. 1. Whef560, = 16, which is

is the average computing time per pixel per PBFIC level ané typical setting for image denoising, increasd gfis much

L, is the average number of PBFIC levels per blogk.for slower thank for smallb,,, but7, remains a decreasing func-

tion of increasing,,. That is why we observe decreasing run All parametersCy, Co, Cs3, Cy, andC5 are platform de-
time for smallb,, values. pendent, and should be calibrated for each hardware piatfor
We use the example image in Fig. 1 and varyipg,, to cal-
ibrate those parameters. Bdtly, b, andlog, b, vary from
2 to log, min(w, h), and they can be different. For each of

2560, = 1 2560, = 16

1

[——r=2 =4 8-r=8 =16 [-—r=2 & r=4 —8-r=8 *r=16

\
AN 7 050\ counter) to measure elapsed time. Fittitig Cs, C3 are sim-

b
\%/ 4?// ple, e.q.Cs is average off3/(b,b,, L). Cy, Cs are estimated
/ﬁ:ﬁj N e usingr obust fi t () in Matlab.

0 3 e 2.0 3 & 2, Intel Core2 Duo E6750 2.67GHz CPU and 2GB RAM. Esti-

matedC; = 28.56, Cy = 17.96, C5 = 32.45, Cy = 32.52,

Cs = 140.48. Fig. 3 shows for each of the four parts,

Fig. 2. Measured run time vs. block width, for varyimg= the measured run timé&,) and run time predicted from the
2,4,8,16. x-axis showdog, (b,). y-axis shows normalized model (). Average prediction error|% — 1|) of part 1

o
3

normalized runtime

o
o

X the four parts, we use RDTSC() function (Intel time-stamp

e S — We do the experiment on a Dell XPS 720 desktop, with

run time to the maximum values.(best view in color) to 4 are 0.01, 0.05, 0.03, 0.10, standard deviations are30.01

0.055, 0.027, 0.113. Using the safie—C’5 on other images
gives very similar results.
3. PROPOSED MODEL

Part1 Part 2 Part 3 Part 4

g, 15
In this section, we build a much more detailed model to ess s o 1
timate relationship between run time and block size. Thisg
model should be accurate enough to enable us to search fér ,

Optlmal or near Optlmal bIOCk Size- It ShOL”d aISO be Simple predicted runtime predicted r:ntime pregiscted r;ntim;s pregiscted r;ntimz—;5
so that modeling overhead is low.

The total run time of bilateral filtering for a block of size
by, X by, includes four parts. Fig. 3. Measured run time vs. predicted run time from model

e Part 1: time to compute, (Z(y), 1)) andf, (1(y), 1) - for part1—4 (Unit for both run time is Giga-cycles).
I(y) in Eq. (2). f-(I(y), I;) can be pre-computed and
stored in a table. For 8-bitintensities, only 256 table en-
tries are needed. The computing time can be estimated 4. EXPERIMENTAL RESULT

as’) = Cl (bh -+ 27")(bw + QT)L . .
Part 2: time to compute dividend and divisor in Eq. (2). In this section, we show how well the model works, and how

Both are box spatial filtering, which can be decom

_much speedup can be achieved compared to the method pro-

posed into horizontal sum filter followed by a vertical posed in [6]. The dataset includes randomly downloaded 50

images from website, size ranging fra®0 x 120 to 600 x

r — 1) additions/subtractions (after computing summa-300- For bilateral fiIFering parametersandar,_ we testr in
tion of neighbors for the first pixel, for consecutive pix- 12 4 8, 18, 2560, in {1, 2, 4, 8, 16, 3, which represent
els, summation is computed by adding a new pixel andYPica! range of these parameters.

subtracting an old pixel from the previous summation). X
Total number of rows ié;, + 2r. For vertical filter, each ~ duestions.

column takeg (b, + — 1) additions/subtractions. To- ¢ 6w much extra cost does this model introduce?

tal number of columns i,,. So the time is estimated e Is the optimal block size searched by this model
asTy = Co((bw 7 —=1)(bp +2r) + (bn +7 — 1)bw) L. matches the real optimal one?
e Part 3: time to compute division in Eq. (2), estimated

asT3 = Cs3bpb,, L.

e Part 4. time to interpolate. The way we implement
interpolation is that after computing theth level of For the first question, modeling time involves collecting
PBFIC, we check all pixels in the block #(x) is in ~ number of quantization levels for a given block size, which
[I;-1, ;). If so, then interpolate as Eq. (3). So roughly needs the information of,,;,, and I,,,., for every block.
speaking, every pixel is checked for— 1 times, and We limit our search range to all square blocks, (x b,
only one time its final bilater filtering output is interpo- log, b,, varies from 0 tolog, min(w, h)), and all blocks
lated. The time is estimated @5 = C4bpb,,(L —2)+ whose height is twice of width2¢,, x b,, log, b,, varies
Csbpby,. from 0 tolog, min(w, h) — 1). For these block sizes, we can

sum filter. For horizontal filter, each row take@®,, +

worse is the searched block size from the real one?

About the model, we are concerned about the following

e If answer to the second question is no, then how much

sort them in an increasing order, and quantization levets of s 2%%-=! a0 220022 a0 26224

certain block size can be easily built from previous blodesi QOK 2 2

because current block contains two small previous blocksg T

The measured modeling time is low. We found for about 97% |~ T b

of all cases, modeling time is less than 10% of the measured % i : 3 2 P 3 4 log, r
run time for the optimal block size. The second and third . 2%0 =8 5 200.=16 5 200, =32
question relates to modeling accuracy. Fig. 4 (a) shows pre- fx . .

dicted run time from modelingZ{,) vs. measured run time % , P

(T, for all images and parameter settings we tested. AvE 2 2 AN =

erage prediction erroﬂ{l — 1]) is 0.04, standard deviation 1! *\\Ef il I j\%alogzr

is 0.038. Fig. 4 (b) shows measured run time of predicted

optimal block size and the true optimal block size. For 80.2%

of all cases, the optimal block size predicted by the modeFig. 5. Average speedup vs. over theO(1) bilateral filter-
matches the true optimal block size. However, for only abouing in [6] for varying2560,. The line (with(J) shows upper
0.6% of all cases, measured run time of the predicted optimdiound of speedup by using the true optimal block size, and
block size is 10% greater than that of the true optimal blockhe line (with x) shows real speedup of the proposed model.
size.

60 8 5. CONCLUSION
g ' g g 6 .
% 40 82 In this paper, we show a fundamental trade-off between two
B o 55 * factors in theO(1) bilateral filtering method in[6]. The two
8 % £ 2 factors are the computing time per pixel per quantizatigalle
RS "0 and the average number of quantization levels per pixel. The
0 20 40 60 (6] 2 4 6 8 . . .
predicted runtime runtime of true optimal block size trade-Oﬁ: can be Controlled by Varylng bIOCk SiZze. We bu”d
@ ®) a timing model to estimate run time for a given block size.

Experiments show the model gives reasonably accurate esti-

mation of the run time with negligible overhead. More im-

portantly, run time of the optimal block size predicted bg th

model is very close to the run time of the true optimal block

size for most cases. Experiments also demonstrates an aver-

age speedup of 1.2-26.0x on all images for typical parameter

settings. We expect to see even more significant speedup for
Next we will show the speedup of using this model overHDR (high dynamic range) images because intensity ranges

using full image size as block size, which is exactly@@) of HDR images are usually much larger than 256, which is a

bilateral filtering in [6]. Fig. 5 shows for varying,., aver- typical range of 8-bit digital images.

age speedup over all images vs. In each subfigure, the

line (with OJ) shows the upper bound of speedup, which is 6. REFERENCES

the speedup by using the true optimal block size. The line

(with x) shows the achieved speedup by using the optimdll] Tomasi C. and Manduchi R., “Bilateral filtering for grayc

block size predicted by the model. Here we take into ac- colorimages,” inCCV, 1998.

count the model overhead. The speedup decreases whef2] A.Buades, B. Coll, and Morel J.M., “A review of image déso

increases. This is consistent with Fig. 1. Wheis large, ing algorithms, with a new one,” iMultiscale Modeling and

T, becomes the dominating factor in run time, and encour- Smulation, 2005.

ages large block size. For large block size, bfthand L, [3] F. Durand and J. Dorsey, “Fast bilateral filtering for tisplay
changes slowly with respect to the block size, so the obderve of high-dynamic-range images,” Proc. of SGGRAPH, 2002.
speedup is small. The speedup also decreases wheéR 41 k3. Yoon and I. S. Kweon, “Adaptive support-weight apach
creases, especially for small Whenr is small,L, becomes for correspondence search,” iIBEE Trans on PAMI, 2006.
the dominating fa(.:tor. However the differencelffor small [5] Fatih Porikli, “Constant time(1) bilateral filtering,” inProc.
and large block sizes becomes smaller whergets larger. of CVPR 2008.

For example L, = 1 for 1 x 1 block, butL, ~ ;2% o o _
block equaling image size. That is why the observed speeddf] Qingxiong Yang, Kar-Han Tan, and N. Ahuja, *Real-timgl)
decreases with increasimg. In summary, we observe aver- bilateral filtering,” inProc. of CVPR, 2009.
age speedup df.2-26.0x on all images for typical parameter

settings.

Fig. 4. (a) Measured run time vs. predicted run time from
model; (b) run time of the predicted optimal block size vs.
run time of the true optimal block size. (Unit for all run time
is Giga-cycles).

