
A framework for low communication approaches for large scale
3D convolution

Anuva Kulkarni
anuvak@alumni.cmu.edu
Carnegie Mellon University

USA

Jelena Kovačević
jelenak@nyu.edu

New York University
USA

Franz Franchetti
franzf@ece.cmu.edu

Carnegie Mellon University
USA

ABSTRACT
Large-scale 3D convolutions computed using parallel Fast Fourier
Transforms (FFTs) demand multiple all-to-all communication steps,
which cause bottlenecks on computing clusters. Since data transfer
speeds to/from memory have not increased proportionally to com-
putational capacity (in terms of FLOPs), 3D FFTs become bounded
by communication and are difficult to scale, especially on modern
heterogeneous computing platforms consisting of accelerators like
GPUs. Existing HPC frameworks focus on optimizing the isolated
FFT algorithm or communication patterns, but still require multiple
all-to-all communication steps during convolution. In this work,
we present a strategy for scalable convolution such that it avoids
multiple all-to-all exchanges, and also optimizes necessary commu-
nication. We provide proof-of-concept results under assumptions
of a use case, the MASSIF Hooke’s law simulation convolution ker-
nel. Our method localizes computation by exploiting properties
of the data, and approximates the convolution result by data com-
pression, resulting in increased scalability of 3D convolution. Our
preliminary results show scalability of 8 times more than traditional
methods in the same compute resources without adversely affect-
ing result accuracy. Our method can be adapted for first-principle
scientific simulations and leverages cross-disciplinary knowledge
of the application, the data and computing to perform large-scale
convolution while avoiding communication bottlenecks. In order
to make our approach widely usable and adaptable for emerging
challenges, we discuss the use of FFTX, a novel framework which
can be used for platform-agnostic specification and optimization
for algorithmic approaches similar to ours.

CCS CONCEPTS
• Theory of computation → Parallel algorithms; • Data in-
tensive parallel algorithms; • Computer systems;

KEYWORDS
Scalable Convolutions, Fast Fourier Transform, GPU, Green’s func-
tions, scientific simulations
ACM Reference Format:
Anuva Kulkarni, Jelena Kovačević, and Franz Franchetti. 2022. A framework
for low communication approaches for large scale 3D convolution. In 51th
International Conference on Parallel Processing Workshop (ICPP Workshops

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9445-1/22/08.
https://doi.org/10.1145/3547276.3548626

’22), August 29-September 1, 2022, Bordeaux, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3547276.3548626

1 INTRODUCTION
Large-scale 3D convolutions are key components of many scien-
tific simulations that are used in important applications in mate-
rials science, physics, earthquake studies, and many other fields
[1]. The Fast Fourier Transform (FFT) is an efficient algorithm
for performing convolution since it reduces the complexity of
computation from O(N 2) to O(N logN) [35]. Hence, the FFT is
widely used in many important large-scale computing applications
like MASSIF[17, 18, 21], LAMMPS [26, 28], HACC [14], XGC [6],
WarpX [34], NWChemEx [30, 33].

However, applications using large-scale convolutions face scal-
ability issues due to the FFT algorithm. 3D FFTs, which form the
core of 3D convolution computations, while relying on Message
Passing Interface (MPI) [29] require all parallel workers to exchange
data two or three times, which becomes a scalability barrier be-
cause it causes a severe communication bottleneck when number
of workers are in the thousands.

The prohibitive all-to-all communication cost for thousands of
workers undermines the advantage of parallelism and high com-
pute speeds. The skewed compute-to-communication ratio can cost
thousands of dollars when expensive GPU nodes are not used ef-
ficiently. Many scientific applications used in US Department Of
Energy labs using legacy code face this issue due to difficulty in
scaling FFT applications [4].

In order to increase scalability and reduce communication cost,
we propose leveraging properties of the kernel like sparsity, sym-
metry, and impulse-like behavior, which are known to be present
in many scientific applications using large-scale convolutions. For
example, an FFT-based Hooke’s law stress-strain simulation for
composite materials called MASSIF, which belongs to the class of
partial differential equations (PDEs) solved using integral equations
with a Green’s function-based kernel, has symmetric and rapidly
decaying convolution kernels. Green’s functions are used in inte-
gral equation solvers that use Fourier methods, and generally are
impulse-like functions with symmetries [19]. In this paper, we lever-
age these properties to demonstrate an approach for highly scalable
3D convolutions that avoids all-to-all communication bottlenecks.
Our approach involves algorithmic changes to the convolution
pipeline to localize computation while reducing the memory re-
quired to store the computation result. We exploit the properties
of the input data and kernel to approximate the convolution result
with minimal loss in accuracy. The approximate result is stored in
a compressed form using smaller amount of memory, and therefore
reduces communication between processes. A simplified illustra-
tion of traditional approaches versus our approach is shown in Fig.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3547276.3548626
https://doi.org/10.1145/3547276.3548626

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Anuva Kulkarni, Jelena Kovačević, and Franz Franchetti

(a) (b)

Figure 1: Comparison of traditional FFT approach and proposed method. (a) Traditional distributed FFT-based convolution
involving several all-to-all communication steps. (b) Our approach reduces the number of all-to-all communication steps, as
well as optimizes the amount of data communicated in them. The FFT-based convolution computation is local to the workers
till the last step of accumulation of results.

1(a). Traditional parallel FFT-based convolution involves multiple
all-to-all communication steps to compute the FFT, followed by
multiplication with a convolution kernel. An additional inverse FFT
also needs to be computed, but it is not shown here. As opposed to
this, our approach, illustrated in Fig. 1(b), keeps computation local
and avoids data communication until the all-to-all exchange in the
last step. The gains of our approach can be realized particularly for
resource-demanding scientific applications since the inputs, out-
puts or convolution kernels in many of them have advantageous
and well-known properties, such as infinite domain boundary con-
ditions, symmetry, zero regions, or regions-of-interest as opposed
to requirement of the full solution.

This paper makes two main contributions. First, we validate our
method with a proof-of-concept implementation with the MASSIF
simulation as a use case. Our preliminary results show improved
scalability of 8× on a proof-of-concept implementation on a GPU.

Secondly, we discuss ways to make such new algorithmic so-
lutions portable so that they may be adapted to other large-scale
FFT-based applications for improving scalability. Currently, algo-
rithm design with complex data mappings is often not portable
due to the shortcomings of available FFT libraries and frameworks.
We discuss converting specifications with complex mappings into
optimized code using FFTX [9], an upcoming framework for build-
ing exascale FFT applications, which can be widely used by the
scientific community.

2 BACKGROUND
2.1 Scalability limited by all-to-all

communication
For the past decade, it has been known that parallel FFT compu-
tation is communication-bounded [8]. Typically, the N × N × N
point 3D FFT is decomposed into N 2 1D FFTs, each of length N ,
distributed evenly among P nodes. In total, each node sends ap-
proximately N 3/P data points. Then, for a fully connected network

with link bandwidth βl ink , the communication time for a node is

TComm,F FT = 2 × N 3

P ∗ βl ink
(1)

where multiplication with 2 indicates two all-to-all communication
stages during 3D FFT computation [7]. There is also additional
setup cost for every round of communication, which is accounted
for in the α-β model. In this model, the time required to send a
message between two workers is approximated by a linear function:

t = α + β ×m (2)

where α is the latency of setting up a link for one communica-
tion round, β is the communication bandwidth cost andm is the
message length. Lower bounds for the FFT algorithm’s all-to-all
communication cost for P workers are derived in [5] and show that
the lower bound for number of communication rounds, as well as
for message length is a function of P and thus communication cost
for FFT worsens for large-scale problems that require thousands of
processors P .

Most popular high-performance libraries like Intel MKL,
FFTW [12], or cuFFT [23] compute multi-dimensional FFTs as a
sequence of 1D FFT calls with all-to-all communication between
the multiple stages. The all-to-all cost becomes prohibitively high
when number of communication rounds is high among P workers.
When GPUs are used, data transfers into and out of the GPU are
needed repeatedly because large-scale 3D FFTs do not fit within
small on-device memory of a GPU. A study in [3] shows that when
a 10243 FFT was computed in parallel on 4 CPU nodes, 49.45% of the
runtime is spent in communication and only 11.77% in computing
the FFT. When accelerated using 4 GPU nodes, the communication
time was 97% of the runtime, even though computation was 43×
faster. Thus, for a simulation that runs for many days, 97% of the
allocated resource budget, amounting to several thousand dollars,
is wasted because of communication latency.

Recent years have seen new strategies that are more commu-
nication aware. heFFTe [2] uses an asynchronous approach and

A framework for low communication approaches for large scale 3D convolution ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

includes a routine to provide better management of multi-rail com-
munication. But the routine has several all-to-all communication
kernels. So, heFFTe can scale to a greater number of nodes than
MPI FFT, but eventually also reaches a scalability limitation at a
larger node count.

New frameworks such as Halide [27] and AccFFT [13] target
optimization of FFTs on CPUs and GPUs. However, most of these
frameworks still treat the FFT computation in isolation and/or re-
sort to MKL, CUFFT or FFTW calls. P3DFFT [25] was developed
to maximize parallelism but it also relies on MPI and FFTW. Thus,
ultimately the frameworks become limited by the same problems
faced by all-to-all communication routines in MKL, FFTW and
CUFFT. Other high-performance FFT libraries such as FFTE[16] or
NukadaFFT[22] are non-ideal due to difficulty of use or restrictions
on problem sizes. Recently, there has been a trend towards approxi-
mate FFTs. Algorithms such as Peter Tang’s low-communication
1D FFT [31], or the sparse FFT (sFFT) [15] may be used by some
applications. But Tang’s method is not useful for dense 3D convo-
lutions. The sFFT is useful for stricter sparsity conditions on the
FFT.

Hence, libraries or frameworks that optimize the FFT algorithm
in isolation with strategies like better communication patterns
still suffer from communication bottlenecks because they require
multiple all-to-all stages and therefore, have limited scalability. It is
crucial to reduce communication in order to increase scalability. We
believe that the emphasis should be on new algorithmic strategies
for parallelizing the convolution pipeline, with a way to avoid data
movement. Data movement can be avoided if the memory footprint
of the computation can be managed in a better way.

2.2 Use case: MASSIF Simulation
MASSIF is a fixed-point iteration method for solving Hooke’s law
PDEs. The MASSIF simulation is legacy code written originally in
Fortran for single-CPU use and has been well-studied by domain
experts. Recently, a multi-CPU version is also available [32]. In
each iteration, MASSIF runs a stress-strain computation on a 3D
grid which represents the discretized microstructure of a composite
material. Larger grid sizes allow scientists to better study material
properties at high resolution. Scaling and acceleratingMASSIF has a
wide range of applications for studying micromechanical properties
of polycrystals.

We choose the convolution in MASSIF as our use case because of
the following reasons. First, because the assumptions of the problem
including boundary conditions are well-stated. Secondly, and more
importantly, MASSIF is one example of a Green’s function-based
differential equation solver. Some other examples are simulations
modeling heat flow, or elasticity. Other simulations belonging to
the same family of linear inhomogeneous PDEs can benefit from
adapting our approach. Thirdly, the closed form of the Green’s
function for MASSIF is known in frequency domain, so it can be
computed on-the-fly during convolution, further reducing memory
requirement. Finally, MASSIF is a good use case because it is a per-
fect example of how large-scale convolutions become a bottleneck
with high parallelism - each iteration of MASSIF requires multiple
3D convolutions, so the number of all-to-all communication rounds
for each iteration is very high, along with the memory required

to store results. A parallel FFTW MPI implementation of MASSIF
(CPU only) on 1024 × 1024 × 1024 grids has a memory requirement
of more than 2TB [32]. Scaling to larger 3D grids increases the
number of parallel workers, and due to multiple FFTs computed in
each iteration, the all-to-all communication results in exponentially
high time cost. We choose the MASSIF convolution example as our
use case to show that avoiding all-to-all reduces bottlenecks and
increases scalability in fewer resources.

2.3 FFTX and the need for specification
frameworks

Our proposed algorithm design involves complex sampling pat-
terns and interpolation interwoven with FFT and convolution oper-
ations on the 3D grids. These operations are not easily expressible
in any off-the-shelf FFT library like FFTW[11]. Other scientific
applications also use approximation algorithms or complex data
mappings. For example, Poisson’s equation solvers using Hockney’s
method [20] exploit zero-structure and Maxwell’s equation solvers
[34] have properties which allow the 3D space to be processed as
overlapping local sub-problems. But it is difficult to find a single
platform-agnostic framework for converting algorithm design into
clean, correct and optimized code. Ideally, the code should contain
user interfaces to a library that handles optimization operations in
the back-end. In addition, the application should be portable and
optimized for various hardware platforms. An emerging framework
that can fill this gap is FFTX[9].

FFTX is a new framework for building large-scale FFT-based
applications. FFTX builds on the FFTW interface while extending
it to enable high-performance on exascale machines. FFTX is de-
signed to enable application developers to leverage expert-level,
automatic optimizations while navigating a familiar interface. FFTX
is backwards compatible to FFTW and extends the FFTW Interface
into an embedded Domain Specific Language (DSL) expressed as a
library interface. The novelty of the FFTX API is that it can express
complex mappings of multidimensional data to well-optimized FFT-
based kernels, while a SPIRAL-based code generation backend [10]
handles optimization across various hardware platforms. The back-
end enables build-time source-to-source translation and advanced
performance optimizations, such as cross-library calls optimiza-
tions, targeting of accelerators through offloading, and inlining
of user-provided kernels. Thus, the advantage of FFTX is that it
effectively decouples algorithm specification and code optimization.
Section 6 shows how our approach for MASSIF can be expressed
using FFTX.

3 METHOD
3.1 General approach
We present a framework for scaling convolutions and lowering all-
to-all communication cost by reducing number of all-to-all rounds,
as well as amount of data exchanged. Given a 3D input and a
convolution kernel with certain properties, our general approach, a
combination of domain knowledge, signal processing and optimized
FFT kernels, is outlined below. This approach is also applicable to
convolution kernels with limited support or Dirac-like behavior.

Domain decomposition. The 3D input is split into chunks, or
sub-domains. For now, we assume regular volumetric sub-domains
but irregular partitions can also be made.

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Anuva Kulkarni, Jelena Kovačević, and Franz Franchetti

Local FFT and convolution with compression. One or more
chunks are batch processed locally inside a worker node. Zero struc-
ture is implicit in the 1D calls, so padding is applied to the 1D data,
and not to the full 3D array. 1D FFT is applied in each dimension,
avoiding redundant computation on the implicit zero structure. Af-
ter all dimensions are processed, the pointwise multiplication with
the convolution kernel takes place. However, during the inverse
FFT (iFFT), a compression algorithm is applied after each 1D iFFT
stage. Our goal is to reduce communication, which can be achieved
if the result to be communicated has a smaller memory footprint.
Hence, we perform lossy compression of the convolution result.
We use a multi-resolution adaptive sampling technique for com-
pression. The compression algorithm’s hyperparameters depend on
properties of the input and convolution kernel. This step requires
the assumptions of the application to be considered, and we will
elaborate more about this in the context of MASSIF.

Accumulation of results and interpolation. Exchange of
samples between the workers in the last step followed by interpo-
lation gives us the approximate result of the full convolution.

The approach is illustrated in Fig. 2. Given the reduced memory
requirement of our method, multiple chunks can be batch pro-
cessed by a single worker. Unlike traditional methods, the FFT is
not computed in parallel. Rather, the entire convolution pipeline
is parallelized using domain decomposition and local computing.
In order to elaborate on each of the steps above, we require a real-
world example which can lend us assumptions that allow us to
define the hyperparameters of our approach. The next subsection
discusses the MASSIF use case and convolution kernel.

3.2 Applying the approach to MASSIF
As discussed before, the MASSIF simulation is a PDE solver for
simulating stress and strain in composite materials. It consists of
iterative updates to stress and strain fields, σ and ϵ respectively,
by convolving stress fields with the Green’s function kernel Γ. In
the algorithm below, describing the iterative update, the subscripts
indicate tensor component indexing, x is a 3D spatial grid point, ξ
is a frequency domain grid point and .̂ indicates the Fourier domain.

Algorithm 1MASSIF Inner loop, Iteration (i + 1)
1: while not converged do
2: FFT of stress tensor: σ̂ (i)mn (ξ) ← FFT(σ (i)mn (x))
3: Convolution with Green’s function: ∆ϵ̂

(i+1)
kℓ (ξ) ←

Γ̂kℓmn (ξ) : σ̂
(i)
mn (ξ)

4: Update strain: ϵ̂ (i+1)kℓ (ξ) ← ϵ̂
(i)
kℓ(ξ) − ∆ϵ̂

(i+1)
kℓ (ξ)

5: Inverse FFT of strain tensor: ϵ (i+1)kℓ (x) ← iFFT(ϵ̂ (i+1)kℓ (ξ))

6: Update stress: σ (i+1)mn (x) ← Cmnkℓ(x) : ϵ
(i+1)
kℓ (x)

7: Check convergence
8: end while

The stress-strain computation consists of convolution of rank-2
3D tensor fields with rank-4 Green’s function tensors. Hence, 9
convolutions are performed for updating each stress component.
There are a total of 9 stress components at each 3D grid point. This
amounts to multiple large 3D convolutions per iteration, as seen in

steps 2-5 above. The closed form of the Green’s function is known
in Fourier domain as stated in [21] and as shown in Eqn. 3.

Γ̂i jkl (ξ) =
1

4µ0 |ξ |2
(δkiξl ξ j + δl iξk ξ j + δk jξl ξi + δl jξk ξi)−

λ0 + µ0
µ0(λ0 + 2µ0)

ξiξ jξk ξl

|ξ |4

(3)

Here, µ0, λ0 are Lamé coefficients δ is the Kronecker delta func-
tion and ξi , where i ∈ {1, 2, 3} are components of the frequency
vector ξ . When computationally converted to spatial domain, we
observe that the Green’s function tensor has the property of rapid
decay which is useful in compressing the convolution result.

Properties of Green’s functions. Convolution with Green’s
functions is a commonly used technique to solve differential equa-
tions, mainly certain types of linear inhomogeneous PDEs. For a
given second order linear inhomogeneous differential equation,
the Green’s function is a solution that yields the effect of a point
source, which mathematically is a Dirac delta function. Consider a
linear, inhomogeneous equation of the form given below and its
solution in the form of an integral equation (inverse of a differential
equation), shown on the right:

Lu(x) = f (x) → u(x) =
∫
Ω
G(x, x0)dx0 (4)

where u, f are functions whose domain is Ω and L is a linear
differential operator. The integral operator G(x, x0) is the Green’s
function. The integral can be understood as sum over influences
created by sources at each value of x0. For this reason, G is some-
times called the influence function, typically has decaying behavior,
and is used in differential equation solvers to obtain the influence
of a particular input. Thus, the Green’s function is the solution to
LG(x, x0) = δ (x − x0). Typically, the appropriate Green’s function
is derived by using knowledge of the initial state, boundary con-
ditions, etc. of the differential equation. In the case of Poisson’s
inhomogeneous equation, the Green’s function is

G(x, x0) =
1

4π |x − x0 |
(5)

which also has properties in common with MASSIF i.e. decay ∝ 1/x .
Similar Green’s functions can also be used to solve complicated
equations relating to heat flow, light and particle scattering. Hence,
our approach for theMASSIF use case can benefit similar differential
equation solvers.

Approach for scaling convolutions in MASSIF. Algorithm
(2), our method for scaling the 3D convolutions in MASSIF, com-
putes an approximate convolution with compression performed by
a multi-resolution adaptive sampling incorporated in the convolu-
tion pipeline. Let us consider the specifics of our approach from
the perspective of our use-case.

Step 1: Domain decomposition. The N × N × N 3D input
grid is divided into smaller chunks or k × k × k 3D ‘sub-domains’
where k < N . The sub-domains can be thought of as composing a
‘microstructure’ in the case of MASSIF.

Step 2: Local FFT-based convolution. In this step, the goal is
to compute FFT and convolution locally on each sub-domain within
a worker node. However, this step can present a problem to the
traditional FFT. Performing convolution on each small sub-domain
(which is embedded in a larger volume of zero values) would yield

A framework for low communication approaches for large scale 3D convolution ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

Sparse samples

… Other chunks in batch processed similarly …

Parallel worker node

Step 3: Exchange/accumulate
sparse samples with other workers
before next iteration

Step 1: Domain
decomposition

Step 2: Local FFT, convolution & compression

Figure 2: The outline of the proposed method on parallel workers. Operations taking place inside one worker node are shown.
The larger grid resides in main memory and is divided into sub-domains, each sub-domain processed separately. Each sub-
domain is locally convolved using FFT with the Green’s function and the result is compressed. The .∗ indicates element-wise
multiplication. A small amount of data is exchanged between all workers in the accumulation step after completion of each
sub-domain convolution.

a full grid-sized non-zero result because the FFT needs to be zero-
padded for correct results. As the grid size scales, local computations
for a sub-domain cannot be contained on individual workers. Our
solution to avoid this problem scenario is to apply a compression
strategy derived from properties of the data and Green’s function
convolution kernel. The compression technique used is adaptive
multi-resolution sampling, where the convolution result is sampled
at different rates throughout the 3D grid. The high rate of decay
of the Green’s function particularly plays a role since it results
in a decaying convolution result over a sub-domain embedded in
zeros. Such a convolution result lends itself favorably to compressed
representation by sampling. Adaptive sampling lowers memory
usage and our method performs FFT-based convolution on each
sub-domain locally as seen in Fig. 2 and Fig. 4.

Step 3: Adaptive octree-based multi-resolution sampling
as the compression algorithm. Compression using sampling
reduces memory footprint of convolution on the local worker node
and allows large memory savings for local convolution. An octree
data structure is used to determine sampling patterns in various
regions of the 3D grid.

Step 4: Accumulation. Accumulating sub-domain results by
interpolation and minimal data communication avoids all-to-all
between FFT stages. Only sparse samples are exchanged at the end
of the computation.

In the pseudocode for our method expressed in Algorithm 2, line
3 computes local FFT of stress field for domain d . Line 4 computes
Fourier space convolution and tensor contraction. Line 5 depicts

Algorithm 2 Proposed MASSIF inner-loop, Iteration (i+1)
1: Initialize:

Sub-domain d , Ωd = {x |x ∈ Sub-domain d }. σd,mn
denotes the tensor component (m, n) local to d .

2: While not converged, do
3: σ̂ (i)d,mn (ξ) ← Local FFT(σ (i)d,mn (Ωd))

4: ∆ϵ̂ (i+1)d,kℓ (ξ) ← Γ̂kℓmn (ξ) : σ̂
(i)
d,mn (ξ) // Convolution

5: ∆ϵ
(i+1)
d,kℓ (Ωd) + exterior sub-domain samples← iFFT

(
∆ϵ̂
(i+1)
d,kℓ (ξ)

)
// sampling and iFFT

6: Accumulate over all sub-domains, get ∆ϵ (i+1)accum,kℓ(Ωd).

7: ϵ (i+1)d,kℓ (Ωd) ← ϵ
(i)
d,kℓ(Ωd) − ∆ϵ

(i+1)
accum,kℓ(Ωd) // local strain up-

date
8: σ (i+1)d,mn (Ωd) ← Cmnkℓ(Ωd) : ϵ

(i+1)
d,kℓ (Ωd) // local stress update

the inverse transform with adaptive sampling to get updated strain
∆ϵd,kℓ . This yields a dense field over the sub-domain Ωd and some
sparse samples which are used to accumulate results on the remain-
ing sub-domains.

Estimated reduction in memory footprint. For local convo-
lution proposed in our method, memory requirement on a single
worker for double-precision convolution is 8 · N × N × k bytes.
For various values of N and k , Table 1 shows memory required to
store the full N × N × N convolution result and also the estimated

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Anuva Kulkarni, Jelena Kovačević, and Franz Franchetti

 Input Green’s function
Decay rate
Lamé coeff.

Adaptively sampled result

Figure 3: Octree-based sampling result for sub-domain of
size 32 × 32 × 32 in a larger 128 × 128 × 128 grid convolved
with Green’s function. The adaptive sampling used here
downsamples the grid by factors of 2 around the sub-domain
in a region of widthk/2. Further out, the downsampling rate
increases and samples aremore sparse. The edges of the grid,
subject to specific boundary conditions, are densely sampled
again.

memory for processing a sub-domain using our method. The re-
duced memory footprint of our method means we can scale the
3D convolution possible on a single worker node. Localizing the
computation on a worker node means that all-to-all exchange is
not needed during the computation except in the last step.

Thus, we expect to achieve higher scalability of convolutions
in fewer resources than previously possible. In the next section,
we provide the proof-of-concept implementation and experimental
results to validate these estimates.

4 PROOF-OF-CONCEPT IMPLEMENTATION
Our focus is on improving the compute-to-communication ratio
by making optimal use of compute resources on worker nodes and
avoiding communication. Instead of adding more parallel resources
to attack larger problems, our work shows the increased capability
of a single worker in handling computation of very large-scale 3D
convolutions using faithful approximations. The proof-of-concept
(POC) implementation aims to compute the largest possible 3D
convolution using the proposed algorithm on a sub-domain using
a single worker node. Then, based on the results, we can justify
deploying the algorithm on multi-node platforms in the future.

Choice of convolution kernel. The convolution kernel used
in each iteration of MASSIF is the Green’s function, which has two
properties that should be noted: (1) it is rapidly-decaying and (2)
it has a real-valued FFT. The exact values of the Green’s function
depend on the stiffness tensor for the material in question, but
generally, for different materials, it has the same decaying behavior.
For the POC implementation, we simplify this by using a decaying
functionwith the same properties but withoutmaking it specific to a
particular material. A sharp Gaussian function fits the requirement.
The center of the Gaussian should be at (N /2+ 1,N /2+ 1,N /2+ 1)
when using an N × N × N grid. This makes sure that the Fourier
transform of the Gaussian is real-valued.

Octrees for adaptive sampling.The adaptive sampling criteria
partitions the 3D grid into regions with varying sample density.
Fig. 3 shows the adaptive sampling pattern derived for convolving
a sub-domain in the 3D grid with the Green’s function. Since the
result magnitude reduces with distance from the domain, partitions
of the grid with increased distance from the sub-domain are more
aggressively down-sampled, thus reducing the memory required to
store the result.

The adaptive sampling operation must translate into an efficient
implementation for realizing the gains of the proposed algorithm.
An efficient data structure is needed to store the sampled result
in a compressed format. Storing zeros in the full 3D grid is not
memory efficient. If storing in Compressed Sparse Row (CSR) for-
mat, it is not easy to localize the result over the different domains
or to quickly identify which samples to exchange. Hence we use
octrees as a data structure to overcome both these problems. An
octree-based adaptive sampling strategy is used to select and store
relevant samples. Essentially, the octree captures an estimate of
where the hotspots (densely sampled region) will occur once the
convolution with the sub-domain is performed. The user parameter-
izes the sampling strategy around the sub-domain with the spread,
decay rate of the Green’s function and the size of the sub-domain
as parameters to determine sample density in different regions. The
sub-domain itself is always sampled at full resolution. The octree
metadata is stored in an array, with five consecutive integers cap-
turing the details of one octree cell. The five numbers represent the
co-ordinates of the corner point (x ,y, z), the downsampling rate
of that cell and a count of the total number of samples in the cells
that come before the current cell. The last entry helps to decode the
octree. The memory footprint is quite small and can be compressed
further using lower precision (since we store only integers). The
structure of the octree also makes it easier to accumulate results
on a distributed system.

Hardware setup. A CPU node is used to verify correctness by
comparison with FFTW. Different GPUs are used to compare the
scalability limits on devices with varying amounts of memory ca-
pacity.We use the following compute nodes available on the Bridges
Supercomputer at the Pittsburgh Supercomputing Center[24]: (1)
HPE Apollo 2000 node: CPU with 2 Intel Broadwell E5-2683 v4
CPUs; 16 cores/CPU, 128 GB RAM (DDR4-2400) with NVIDIA Tesla
P100 Pascal architecture GPUs. (2) HPE Apollo 6500 node: 2 Intel
Xeon Gold 6148, 20 cores/CPU (40 cores total), 192 GB RAM (DDR4-
2666) and NVIDIA Volta V100 GPUs with 16 GB/ GPU. (3) AI node:
DGX-2 with 16 V100 GPUs, each with 32 GB/GPU. The CPU is Intel
Xeon Platinum 8168 with 24 cores/CPU.

Software setup. The POC implementation is done on a GPU in
order to show successful scaling of computation within memory
constraints. Our POC implementation uses cuFFT in order to con-
duct a first-order study of performance. Following the idea in Fig.
2, the CUDA program in the POC performs the FFT in two stages:
first, the small domain undergoes a 2D transform to a slab. The slab
is then transformed in a batch fashion by taking 1D transforms of
B pencils at a time in the z-dimension. We use callback functions in
cuFFT calls (Fig. 4) to perform padding in the desired regions and
point-wise multiplication. In the reverse stage, callback functions
implement compression and the full 3D result is not materialized
on the GPU.

Performance metrics and benchmarks. As this work is in a
preliminary stage, the key validation of the algorithm design is the
ability to yield a correct result for a larger-than-previously-possible
3D convolution performed domain-by-domain on a single worker.
Other performance metrics like compute time and memory usage
on the worker are also monitored.

A framework for low communication approaches for large scale 3D convolution ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

Table 1: Back-of-envelope calculation formemory required for traditional FFT (stores result in full resolution) and our domain-
local FFT (stores result in compressed form) for various grid sizes and sub-domain choices. Our method is estimated to have
a lower memory footprint.

Memory for Memory for
Problem size Domain size traditional FFT local FFT (ours)

N × N × N k × k × k [GB] [GB]
1024 × 1024 × 1024 128 × 128 × 128 8 1
1024 × 1024 × 1024 512 × 512 × 512 8 4
2048 × 2048 × 2048 128 × 128 × 128 64 4
2048 × 2048 × 2048 512 × 512 × 512 64 16
4096 × 4096 × 4096 128 × 128 × 128 512 16
4096 × 4096 × 4096 512 × 512 × 512 512 64
8192 × 8192 × 8192 64 × 64 × 64 4096 32
8192 × 8192 × 8192 128 × 128 × 128 4096 64

FFT Plan 0
cube to

FFT Plan 1
Batch transform B pencils from

slab.

FFT Plan 2
Inverse transform Z dim

FFT Plan 3
Inverse transform X & Y dim

Load Callback
 Zero pad cube to

slab shape

Load Callback
 Zero pad pencils

to size N

Store Callback
 Pointwise with

Green’s function

Store Callback
 Adaptive

sampling Z dim

Store Callback
 Adaptive

sampling X,Y dim

Figure 4: Illustrating CUDA program flow diagram where
FFT plans are created and callback functions are attached
to them to enable extra functionality.

5 RESULTS
For our proof-of-concept implementation, our aim is to establish
that a single worker node can successfully (1) perform local convo-
lution on a sub-domain for larger 3D grids than previously possible,
and (2) yield an approximate result within error tolerance. The re-
sults here deal with maximizing resource usage of a single worker,
which has direct benefits to reducing costs of large-scale simula-
tions. Further work can be focused on extending this algorithm to
multiple worker nodes. In our results, we consider GPU worker
nodes. Scalability of convolutions locally on GPUs considerably
impacts acceleration of large-scale convolutions.

5.1 Scaled convolution & low communication
GPUs are a particularly challenging platform for large-scale FFTs
because GPUs have limited on-device memory, requiring many
more data transfers than a CPU during computation. The value of
our method is in processing convolutions on sub-domains for large
N within a GPUwithout storing the full-resolutionN ×N ×N result.
Our POC implementation demonstrates that our compression algo-
rithm allows successful scaling of MASSIF convolutions to larger
3D grids on a GPU. Moreover, for smaller 3D grids, the method
retains its advantage by batch processing multiple 3D convolutions
on a GPU, optimizing cluster usage with fewer resources.

As seen in Table 2, our method enables double-precision con-
volutions of size up to 2048 × 2048 × 2048 on a single GPU. This
is 8× points more than traditional cuFFT, which processes up to
1024 × 1024 × 1024 grids without compression. Our method works

for combinations of N and k up to a certain k for which GPU mem-
ory usage is optimized and sufficient for computation. We use a
NVIDIA Volta V100 GPUs with 16 GB/ GPU for grid sizes up to
N = 512, and one V100 GPU from the DGX-2 with 32 GB/GPU for
N > 512. For the sake of preliminary results, the GPU sequentially
processes the sub-domains. Due to the decaying properties of the
Green’s function, the convolution result of each sub-domain can be
localized on and around the sub-domain, with sparse sampling in
the remaining volume without much loss of accuracy. Moreover, the
global communication in the FFT stages has been eliminated since
each sub-domain is convolved locally on a GPU. As seen before,
a traditional parallel 3D FFT’s communication time is estimated
by equation 1. By reducing the number of all-to-all rounds and
by reducing the data exchange in the last round, we can estimate
communication time for our method as

Tours =
k3 + sparse samples

P ∗ βl ink
(6)

where if a k × k × k sub-domain is embedded in a N × N × N
grid and average downsampling rate is considered to be r in each
dimension, number of sparse sampled points is (N 3 − k3)/r3. Thus
Tours < TComm,F FT . The downsampling rate r can be increased to
reduce the memory requirement further if needed, but at the cost
of accuracy.

Recall that the state-of-the-art MASSIF code currently scales
only up to 1024×1024×1024 on parallel CPUs and scaling on GPUs
is inefficient due to communication bottlenecks.

Our work enables a GPU implementation for N = 2048 that
yields an approximate result for MASSIF, which helps MASSIF
acceleration efforts. Currently, we do not scale to N > 2048 on a
single GPU due to high actual memory usage on account of using
cuFFT, which creates intermediate temporary variables (see Table
4).
5.2 Speedup & Scalability on GPU
Next, we compare speedup and scalability between a traditional
CPU implementation and our POC GPU version. A comparison
of the runtimes using an Intel Xeon Gold 6148 CPU FFTW imple-
mentation vs. our proof-of-concept GPU implementation (NVIDIA
V100, 32GB) is seen in table 3 for a convolution on a single sub-
domain. We fix the sub-domain size k = 32 and vary the grid size

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Anuva Kulkarni, Jelena Kovačević, and Franz Franchetti

Table 2: Use of ourmulti-resolutionmethod allows us to pro-
cess convolution on grid sizes upto than 2048 × 2048 × 2048
in double precision within the memory of a single GPU. N
is the grid size and k is the sub-domain size.

N Allowable k NVIDIA GPU used
128 ≤ 64 V100, 16GB
256 ≤ 128 V100, 16GB
512 ≤ 256 V100, 16GB
1024 ≤ 256 V100, 32GB
2048 ≤ 64 V100, 32GB

N and downsampling rate r . GPU use provides high speedup: for
N = 512, the GPU speeds up the execution by a factor of 21. For
N = 1024, GPU speed up is 24×, while using high compression
and also preserving result accuracy. For N > 1024, the memory
limit on the CPU running the FFTW code is reached and compari-
son is not possible. This is a significant result because we achieve
higher scalablity for 3D grids on a GPU than on CPU, even though
GPUs have a much smaller on-device memory. In addition to ≈ 20X
speedup with a GPU, our GPU implementation can compute local
FFT for grids with N > 1024 due to the compression algorithm,
whereas the CPU FFTW’s traditional implementation only scales
up to N = 1024.
5.3 Approximation error
We compute approximation error as the L2 relative error norm
between the actual and the approximate convolution result. Our
POC GPU implementation is compared against a CPU-only FFTW
implementation that does not use any approximations. In our ap-
proach for MASSIF, we choose adaptive sampling rates for various
problem sizes seen in Table 3 to ensure approximation error is low
(therefore, accuracy is high). For MASSIF, a fixed-point simulation,
convolution error up to 3% did not largely impact convergence or
number of iterations, hence we design a heuristic sampling strategy
accordingly.

In reality, the accuracy can be tuned to the needs of the applica-
tion in terms of trade-offs between compute time, downsampling,
accuracy and scalability. The error stems from sampling and in-
terpolation. Hence, error bounds for popularly used interpolation
methods derived with Taylor’s theorem are applicable. Future work
will rigorously derive error bounds as a function of our design
choices N , k and r .
5.4 Selecting hyperparameters
We are limited to using cuFFT for our POC implementation, requir-
ing hand-tuning of hyperparameters.

Downsampling rate r depends on the size of the grid, applica-
tion requirements and octree granularity. A sweep search for the
right downsampling rate, domain size and desired accuracy can be
performed under known application requirements. In our experi-
ments, we use r = 2 for distance k/2 from sub-domain, increase it
to r = 8 for distance > k/2 and < 4k , and set it to high values like
r = 16 or 32 beyond.

Batch parameter. During local computation of convolution
within the GPU, the N × N × k slab is transformed in batches of B
1D FFTs in order to keep memory usage low. Changing the number

of 1D ‘pencils’ processed in a batch using cuFFT has performance
gains with respect to GPU compute time. For N = 256 , changing
B from 512 to 1024 results in a speedup of 19.9%. These gains are
smaller for larger sizes, as other operations might dominate runtime.
For example, for N = 1024, changing B from 1024 to 2048 gives a
modest 7.35% speedup in time. For the 2048 cube with k = 64, the
speedup is modest and in the range of 5-7% for B = 4096, 8192 or
32768 due to eventually saturating the parallel concurrency capacity
of the batched transforms. None of these are as large as for the N =
256 case, which shows that for smaller sizes, the choice of B matters
more.

Sub-domain size k should be such that the N × N × k slab fits
in GPU memory. The GPU memory dictates maximum k = 32 in
our proof-of-concept implementation as seen in Table 2.

6 FFTX FOR ALGORITHM SPECIFICATION
It is highly difficult to hand-optimize the FFT-based approximate
convolution with octree-based sampling across various heteroge-
neous platforms. Using a popular framework such as cuFFT requires
the user to write complicated callback functions to get the correct
answer stored in a compressed array. Additionally, the pruned
or sampled points need to be mapped back into their location in
the dense output cube eventually. To solve these problems, the
FFTX platform provides two key components: a library interface
and a code generation backend. In this section, we show how our
algorithm can be written using FFTX API calls, thus decoupling
algorithm specification and code optimization. Instead of users
writing their own callback functions, FFTX API calls can be used
in the code, just like calling a library. The convolution pipeline for
MASSIF (forward FFT, point-wise multiplication, inverse FFT with
sampling) can be expressed as shown in Fig. 5.

Structure of the program. The calls to the fftx_init and
fftx_shutdown functions set up the environment with appropri-
ate options, such as declaring that FFTX should operate in high-
performance mode (i.e., enabling symbolic analysis, code gener-
ation, and autotuning in the backend). Next, the computation is
defined. Similarly to FFTW, this is achieved by first building a plan,
i.e., a sequence of computational and data movement steps that,
when executed, applies the computation to the application input.

Plan composition. The overall FFTX plan is composed of a se-
quence of sub-plans. Each sub-plan handles a separate task, such as
a forward transform, an inverse transform, input padding or output
pruning. Fig. 5 shows how FFTX callback functions are used while
composing sub-plans. The optimization and code-generation are
applied to the overall plan, and hence, across all the sub-plans. The
plan can be executed more than once and is an FFTX specification
which is transformed into highly optimized code. The FFTX ap-
proach allows for fine control over resource expenditure during the
optimization. Users can control compile-time, initialization-time,
invocation time and optimization resources if they need to [9].

Code generation. The core code generation, symbolic analysis,
and autotuning software for FFTX is based on SPIRAL [10]. SPIRAL
automatically maps computational kernels across a wide range of
computing platforms to highly efficient code, and proves the cor-
rectness of the synthesized code. This addresses two fundamental
problems that software developers are faced with: (1) performance

A framework for low communication approaches for large scale 3D convolution ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

Table 3: Speedup in execution onGPU vs CPU FFTW.Here,N is the grid sizeN ×N ×N ,k is sub-domain size, r is downsampling
factor. The convolutions are local to a single CPU and single GPU. For a GPU with a much smaller on-device memory than a
CPU, our method enables scalability and high speedup.

N k r Our method runtime (ms) FFTW runtime (ms) Speedup Our Approx. Error
128 32 4 25.12 104.67 4.17 

≤ 3%
256 32 4 88.15 1050.25 11.91
512 32 4 468.01 9002.29 19.24
512 32 8 419.82 9009.95 21.46
1024 32 32 2947.96 72016.2 24.43

Table 4: Estimatedmemoryusage and actualmemoryusage of aGPUwhile performing approximate convolution on ak × k × k
sub-domain inside aN × N × N grid. r is the downsampling rate. The difference between the values is due to the use of CUFFT,
which creates temporaries in the midst of calculations.

N k r Estimated Memory(GB) Actual Memory(GB)
512 32 16 0.62 1.29
1024 32 32 2.49 4.33
2048 8 128 3.52 5.67
2048 16 128 5.02 8.16
2048 32 128 8.00 13.16
2048 32 64 9.97 16.20
2048 64 64 15.92 26.20

portability across the ever-changing parallel platforms, and (2) ver-
ifiable correctness of sophisticated floating-point code. Thus, the
application developer does not have to worry about optimization
across hardware platforms, which will be handled by SPIRAL. Thus,
writing GPU code involving approximations for FFTs in scientific
applications will become easier for application developers.

7 CONCLUSION
This paper demonstrated a framework for designing approximate
FFT-based convolution algorithms for large-scale 3D convolutions
applicable for convolution kernels with Green’s function-like prop-
erties widely used in scientific simulations. The highlights of our
method are (1) avoidance of all-to-all during the FFT operation (2)
adaptive sampling as an approximation and compression strategy
(3) increase in scalability, savings in parallel computing resources
in exchange for tolerable approximation error. Using a single-GPU
proof-of-concept implementation, our experimental results show
reduction of memory footprint due to the adaptive sampling tech-
nique, coupled with high accuracy of the approximate result, while
also taking advantage of the GPU to accelerate computing speed.
Our result sampling strategy avoids all-to-all communication during
FFT stages, reducing memory footprint of the parallel convolution
and computing using fewer memory resources, making GPUs good
target platforms for accelerating our implementation.

Our preliminary results are demonstrated on the MASSIF use
case but future work will extend design to other spectral appli-
cations. Field calculations for particle-in-cell simulations require
large 3D FFTs of 109 -1012 points. Other simulations may require
relatively small sizes (around 2563 data points) but many instances
of 3D FFTs per iteration. These first-principle simulations may be
handed down over the years as legacy code, which is difficult to

scale with traditional parallel FFTs. Future work will involve adapt-
ing our multi-resolution approach to these methods to help reduce
memory footprint and increase scalability. This paper also discussed
how existing frameworks fall short in efficient and portable im-
plementation of approximate algorithms like ours, which require
complex data mappings. As an alternative, we highlighted use of
FFTX and presented a sketch of how FFTX API calls can be used to
easily implement MASSIF and other similar spectral algorithms.

ACKNOWLEDGMENTS
This work used the Extreme Science and Engineering Discovery
Environment (XSEDE) supported by National Science Foundation
grant number ACI-1548562 and the Bridges system, supported by
NSF award number ACI-1445606, at the Pittsburgh Supercomputing
Center (PSC). The authors also sincerely thank Dr. Anthony Rollett
for valuable feedback and discussions.

REFERENCES
[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, et al. 2006. The landscape of parallel computing
research: A view from berkeley. Technical Report. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley.

[2] Alan Ayala, Stanimire Tomov, Azzam Haidar, and Jack Dongarra. 2020. heFFTe:
Highly Efficient FFT for Exascale. In Computational Science – ICCS 2020, Vale-
ria V. Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees, Jack J. Dongarra,
Peter M. A. Sloot, Sérgio Brissos, and João Teixeira (Eds.). Springer International
Publishing, Cham, 262–275.

[3] Alan Ayala, Stanimire Tomov, Xi Luo, Hejer Shaiek, Azzam Haidar, George
Bosilca, and Jack Dongarra. 2019. Impacts of Multi-GPU MPI Collective Commu-
nications on Large FFT Computation. In 2019 IEEE/ACM Workshop on Exascale
MPI (ExaMPI). 12–18.

[4] Alan Ayala, Stanimire Tomov, Miroslav Stoyanov, and Jack Dongarra. 2021. Scal-
ability Issues in FFT Computation. In Parallel Computing Technologies, Victor
Malyshkin (Ed.). Springer International Publishing, Cham, 279–287.

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Anuva Kulkarni, Jelena Kovačević, and Franz Franchetti

#include <stdio.h>
#include "fftx.h"

// persistent label for top level plan
#define MY_PLAN_LABEL 0x1234
//#define USE_PERSISTENT_PLAN // Define in make file

#ifdef USE_PERSISTENT_PLAN
#define MY_FFTX_MODE FFTX_HIGH_PERFORMANCE
#else
// flags for FFTX
#define MY_FFTX_MODE FFTX_MODE_OBSERVE
#define MY_FFTX_MODE_TOP (FFTX_ESTIMATE | FFTX_MODE_OBSERVE)
#define MY_FFTX_MODE_SUB (MY_FFTX_MODE_TOP | FFTX_FLAG_SUBPLAN)

fftx_plan massif_convolution_plan(fftx_real *small_cube, fftx_real *out,
fftx_complex *greens_function, int n,
int n_in, int n_out, int n_freq){

//Initialize
int rank = 3, // 3D = rank 3
numsubplans = 4;// need 4 FFTX subplans for pruned convolution
...
// FFTX iodim definitions for 3D + pruning
//slab_dims, padded_dims, batch_dims etc defined here
...

// RDFT converts small cube into slab (FFT in X and Y dims)
slab = fftx_create_temp_complex(rank, slab_dims);
plans[0] = fftx_plan_guru_dft_r2c(rank, padded_dims,

batch_rank, &batch_dims,
small_cube, slab,
MY_FFTX_MODE_SUB);

// pointwise operation
tmp3 = fftx_create_temp_complex(rank, batch_pencils_dims);
plans[1] = fftx_plan_guru_pointwise_c2c(rank, freq_dimx,

batch_rank, &batch_dimx,
slab, tmp3, greens_function,
(fftx_callback)complex_scaling,
MY_FFTX_MODE_SUB | FFTX_PW_POINTWISE);

// iRDFT on the scaled data
tmp4 = fftx_create_temp_real(rank, batch_pencils_dims);
plans[2] = fftx_plan_guru_dft_c2r(rank, padded_dims, batch_rank,

&batch_dims, tmp3, tmp4,
(fftx_callback)adaptive_sampling,
MY_FFTX_MODE_SUB);

// copy out the rank-dimensional data cube in the right place in the output.
//the callback function copy_offset() is responsible for placing the
//samples in the right place in the output array.
plans[3] = fftx_plan_guru_copy_real(rank, out_dimx, tmp4,

out, (fftx_callback)copy_offset,
MY_FFTX_MODE_SUB);

// create the top level plan. this copies the sub-plan pointers.
p = fftx_plan_compose(numsubplans, plans, MY_FFTX_MODE_TOP);

// plan to be used with fftx_execute()
return p;

}

Figure 5: FFTX plan written using a collection of subplans.
In the context of our use case, FFTX canmake the codemuch
more portable than the current hand-tuned cuFFT imple-
mentation that requires the user to be a CUDA expert.

[5] Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weath-
ersby. 1997. Efficient algorithms for all-to-all communications in multiport
message-passing systems. IEEE Transactions on parallel and distributed systems 8,
11 (1997), 1143–1156.

[6] Choong-Seock Chang, Seunghoe Ku, and H Weitzner. 2004. Numerical study of
neoclassical plasma pedestal in a Tokamak geometry. Physics of Plasmas 11, 5
(2004), 2649–2667.

[7] Kenneth Czechowski, Casey Battaglino, Chris McClanahan, Kartik Iyer, P.-K.
Yeung, and Richard Vuduc. 2012. On the communication complexity of 3D FFTs
and its implications for exascale. In Proc. ACM Int’l. Conf. Supercomputing (ICS).
San Servolo Island, Venice, Italy. https://doi.org/10.1145/2304576.2304604

[8] Alan Edelman, Peter McCorquodale, and Sivan Toledo. 1999. The Future Fast
Fourier Transform? SIAM J. Sci. Comput. 20, 3 (Jan. 1999), 1094–1114. https:
//doi.org/10.1137/S1064827597316266

[9] F. Franchetti et al. 2018. FFTX and SpectralPack: A First Look. In IEEE International
Conference on High Performance Computing, Data, and Analytics (HiPC).

[10] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R.
Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura. 2018. SPIRAL: Extreme
Performance Portability. Proc. IEEE 106, 11 (Nov 2018), 1935–1968. https:
//doi.org/10.1109/JPROC.2018.2873289

[11] M. Frigo and S. G. Johnson. 2005. The Design and Implementation of FFTW3. Proc.
IEEE 93, 2 (2005), 216–231. Special issue on ”Program Generation, Optimization,
and Platform Adaptation”.

[12] Matteo Frigo and Steven G Johnson. 2012. FFTW: Fastest Fourier transform in
the west. Astrophysics Source Code Library (2012).

[13] Amir Gholami, Judith Hill, Dhairya Malhotra, and George Biros. 2015. AccFFT:
A library for distributed-memory FFT on CPU and GPU architectures. arXiv
preprint arXiv:1506.07933 (2015).

[14] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann,
David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, et al.
2016. HACC: Simulating sky surveys on state-of-the-art supercomputing archi-
tectures. New Astronomy 42 (2016), 49–65.

[15] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012. Simple and
Practical Algorithm for Sparse Fourier Transform. In Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms (Kyoto, Japan) (SODA
’12). Society for Industrial and Applied Mathematics, USA, 1183–1194.

[16] Fastest Fourier Transform in The East. 2018. FFTE. http://www.ffte.jp/.
[17] Anuva Kulkarni, Jelena Kovačević, and Franz Franchetti. 2020. Massive Scaling

of MASSIF: Algorithm Development and Analysis for Simulation on GPUs. In
Proceedings of the Platform for Advanced Scientific Computing Conference (Geneva,
Switzerland) (PASC ’20). Association for Computing Machinery, New York, NY,
USA, Article 13, 10 pages. https://doi.org/10.1145/3394277.3401857

[18] R. A. Lebensohn. 2001. N-site modeling of a 3D viscoplastic polycrystal using
fast Fourier transform. Acta Materialia 49, 14 (2001), 2723–2737.

[19] Peter Li and Luen-Fai Tam. 1987. Symmetric Green’s Functions on Complete
Manifolds. American Journal of Mathematics 109, 6 (1987), 1129–1154. http:
//www.jstor.org/stable/2374588

[20] P. McCorquodale, P. Colella, G. Balls, and S. Baden. 2006. A Local Corrections
Algorithm for Solving Poisson’s Equation inThree Dimensions. Communications
in Applied Mathematics and ComputationalScience 2 (10 2006). https://doi.org/10.
2140/camcos.2007.2.57

[21] H. Moulinec and P. Suquet. 1998. A numerical method for computing the over-
all response of nonlinear composites with complex microstructure. Computer
methods in applied mechanics and engineering 157, 1-2 (1998), 69–94.

[22] Akira Nukada, YutakaMaruyama, and Satoshi Matsuoka. 2012. High Performance
3-D FFT Using Multiple CUDA GPUs. In Proceedings of the 5th Annual Workshop
on General Purpose Processing with Graphics Processing Units (London, United
Kingdom) (GPGPU-5). Association for Computing Machinery, New York, NY,
USA, 57–63. https://doi.org/10.1145/2159430.2159437

[23] Nvidia. 2018. NVidia Cuda Based FFT Library. https://developer.nvidia.com/cufft.
[24] N.A. Nystrom, M. J. Levine, R. Z. Roskies, and J. R. Scott. 2015. Bridges: A

Uniquely Flexible HPC Resource for New Communities and Data Analytics. In
Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by
Enhanced Cyberinfrastructure (St. Louis, Missouri) (XSEDE ’15). ACM, New York,
NY, USA, Article 30, 8 pages. https://doi.org/10.1145/2792745.2792775

[25] Dmitry Pekurovsky. 2012. P3DFFT: A Framework for Parallel Computations of
Fourier Transforms in Three Dimensions. SIAM Journal on Scientific Computing
34, 4 (2012), C192–C209. https://doi.org/10.1137/11082748X

[26] Steve Plimpton, Roy Pollock, and Mark Stevens. 1997. Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations. In In Proceedings of the
Eighth SIAM Conference on Parallel Processing for Scientific Computing.

[27] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices 48, 6 (2013), 519–530.

[28] Timothy W Sirk, Stan Moore, and Eugene F Brown. 2013. Characteristics of
thermal conductivity in classical water models. The Journal of chemical physics
138, 6 (2013), 064505.

[29] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. 1996. MPI: The Complete Reference. The MIT Press.

[30] TP Straatsma, EJ Bylaska, HJJ van Dam, N Govind, WA de Jong, K Kowalski, and
M Valiev. 2011. Advances in scalable computational chemistry: NWChem. In
Annual Reports in Computational Chemistry. Vol. 7. Elsevier, 151–177.

[31] P. T. P. Tang, J. Park, D. Kim, and V. Petrov. 2013. A Framework for Low-
communication 1-D FFT. Sci. Program. 21, 3-4 (July 2013), 181–195. https:
//doi.org/10.1155/2013/672424

[32] V. Tari, R. A. Lebensohn, R. Pokharel, T. J. Turner, P. A. Shade, J. V. Bernier, and
A. D. Rollett. 2018. Validation of micro-mechanical FFT-based simulations using
High Energy Diffraction Microscopy on Ti-7Al. Acta Materialia 154 (8 2018).

https://doi.org/10.1145/2304576.2304604
https://doi.org/10.1137/S1064827597316266
https://doi.org/10.1137/S1064827597316266
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1109/JPROC.2018.2873289
http://www.ffte.jp/
https://doi.org/10.1145/3394277.3401857
http://www.jstor.org/stable/2374588
http://www.jstor.org/stable/2374588
https://doi.org/10.2140/camcos.2007.2.57
https://doi.org/10.2140/camcos.2007.2.57
https://doi.org/10.1145/2159430.2159437
https://developer.nvidia.com/cufft
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1137/11082748X
https://doi.org/10.1155/2013/672424
https://doi.org/10.1155/2013/672424

A framework for low communication approaches for large scale 3D convolution ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

https://doi.org/10.1016/j.actamat.2018.05.036
[33] Marat Valiev, Eric J Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P Straatsma,

Hubertus JJ Van Dam, Dunyou Wang, Jarek Nieplocha, Edoardo Apra, Theresa L
Windus, et al. 2010. NWChem: a comprehensive and scalable open-source solution
for large scale molecular simulations. Computer Physics Communications 181, 9
(2010), 1477–1489.

[34] J-L Vay, A Almgren, J Bell, L Ge, DP Grote, M Hogan, O Kononenko, R Lehe,
A Myers, C Ng, et al. 2018. Warp-X: A new exascale computing platform for
beam–plasma simulations. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).

[35] Martin Vetterli, Jelena Kovacevic, and Vivek K Goyal. 2014. Foundations
of Signal Processing. Cambridge University Press. https://doi.org/10.1017/
CBO9781139839099

https://doi.org/10.1016/j.actamat.2018.05.036
https://doi.org/10.1017/CBO9781139839099
https://doi.org/10.1017/CBO9781139839099

	Abstract
	1 Introduction
	2 Background
	2.1 Scalability limited by all-to-all communication
	2.2 Use case: MASSIF Simulation
	2.3 FFTX and the need for specification frameworks

	3 Method
	3.1 General approach
	3.2 Applying the approach to MASSIF

	4 Proof-of-concept Implementation
	5 Results
	5.1 Scaled convolution & low communication
	5.2 Speedup & Scalability on GPU
	5.3 Approximation error
	5.4 Selecting hyperparameters

	6 FFTX for Algorithm Specification
	7 Conclusion
	Acknowledgments
	References

