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Abstract—Several computer architectures offer fused mul-
tiply–add (FMA), also called multiply-and-accumulate (MAC)
instructions, that are as fast as a single addition or multiplication.
For the efficient implementation of linear transforms, such as
the discrete Fourier transform or discrete cosine transforms, this
poses a challenge to algorithm developers as standard transform
algorithms have to be manipulated into FMA algorithms that
make optimal use of FMA instructions. We present a general
method to convert any transform algorithm into an FMA algo-
rithm. The method works with both algorithms given as directed
acyclic graphs (DAGs) and algorithms given as structured matrix
factorizations. We prove bounds on the efficiency of the method. In
particular, we show that it removes all single multiplications except
at most as many as the transform has outputs. We implemented
the DAG-based version of the method and show that we can
generate many of the best-known hand-derived FMA algorithms
from the literature as well as a few novel FMA algorithms.

Index Terms—Automatic program generation, discrete co-
sine transform (DCT), discrete Fourier transform (DFT), fast
algorithm, implementation, multiply-and-accumulate (MAC)
instruction, multiply and accumulate (MAC).

I. INTRODUCTION

SEVERAL modern processor architectures such as Intel
Itanium and IBM Power implement fused multiply–add

(FMA) instructions, also called multiply-and-accumulate
(MAC) instructions. Given three input operands , an
FMA computes one of the following expressions:

The availability of these instructions has important consequences
for numerical algorithms. First, in software, an FMA often exe-
cutes as fast as a single multiplication; in hardware, the cost of an
FMA unit is typically lower than the cost of a separate adder and
multiplier. This motivates the need for special FMA algorithms
that balance additions and multiplications. Second, FMAs can
improve the numerical accuracy. For example, [1] shows that
the use of FMAs can significantly improve the accuracy of gen-
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eral matrix operations. The inclusion of FMA is planned in the
revised IEEE 754 floating-point numbers standard.

For some numerical computations, a conversion to FMAs
is straightforward. For example, in a generic matrix-vector or
matrix–matrix multiplication, additions and multiplications are
naturally paired. For other computations, an efficient conversion
to FMAs may require nontrivial transformations. Ideally, com-
pilers should perform this task, but they typically will not change
the algorithm to improve FMA utilization. However, in many
cases this is necessary. An example are linear transforms such as
the discrete Fourier transform (DFT), discrete cosine transforms
(DCTs), and others. Consequently, their adaptation to FMA
architectures has been the subject of research, and several algo-
rithms have been hand-derived. Examples include for the DFT
[2]–[7]. Further, [8] presents FMA algorithms for the scaled DCT
of type II and size 8 and its inverse in one and two dimensions. In
[9], the authors show how to trade additions for multiplications in
the Walsh–Hadamard transform (WHT) to make use of FMAs.

Contribution of This Paper: This paper is an extension of
our preliminary results in [10]. We show how to systematically
adapt transform algorithms to FMA architectures. Our method
is 1) general, i.e., it can be applied to any linear transform and
transform algorithm, real or complex; 2) mechanical, i.e., it can,
in principle, be performed by a computer; and 3) it enables anal-
ysis of the quality of the result. In particular, we show that our
method fuses all multiplications with additions except at most
as many as the transform has outputs.

We present three instantiations of the FMA optimization
method. They are mathematically equivalent but operate with
different representations of a transform algorithm. Namely,
with algorithms given as directed acyclic graphs (DAGs),
algorithms given as sparse structure matrix factorizations using
the Kronecker product formalism, and algorithms given recur-
sively. There exist both floating-point and integer (or fixed-
point) FMAs, and our algorithm can be used for both data types.

We implemented the DAG-based version as backend to the
Spiral program generation system [11], [12] and show that we
can automatically generate FMA algorithms that match many
of the hand-derived FMA algorithms in operations count. Fur-
ther, we can also generate FMA algorithms for other transforms
and algorithms that were not considered before for FMA op-
timization. Using Spiral, we also show runtime experiments on
an Itanium 2, demonstrating a speed-up for all except very small
transform sizes.

Organization of the Paper: The rest of this paper is or-
ganized as follows. Section II gives the background on linear
transforms, fast transform algorithms, and their different rep-
resentations. Further, we formally state the problem of FMA
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optimization addressed in this paper. The next three sections
then present the three different flavors of our FMA optimization
method: Section III for algorithms given as dataflow graphs,
Section IV for algorithms given as sparse matrix factorizations,
and Section V for recursive algorithms. The application to
complex transforms and algorithms is explained in Section VI.
Section VII compares our generated FMA algorithms with
hand-derived FMA algorithms from the literature and shows
runtime results. Further, we briefly discuss other known FMA
optimization methods. Section VIII concludes the paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we provide basic background about trans-
forms, their fast algorithms, and our formula notation for al-
gorithms. We discuss alternative algorithm representations and
formally state the problem of FMA optimization of algorithms.

Transforms: In this paper, we consider linear signal trans-
forms. A linear signal transform performs a matrix–vector
product , where and are, respectively, the input
and output vectors, and is the transform matrix. Important
examples include the DFT, the real DFT, the DCTs of types
1–4, and the inverse modified DCT (IMDCT). They are defined
by the following matrices:

DFT

RDFT

DCT-

DCT- DCT-

DCT-

IMDCT

In each case, the subscript specifies the length of the input
vector , i.e., the number of columns of the matrix. All above
matrices are square, except for the matrix IMDCT .

Fast Recursive Algorithms as Breakdown Rules: A
general matrix vector product for an matrix requires

arithmetic operations [13]. In contrast, for most trans-
forms, there exist fast algorithms that exploit the structure of
the transform to reduce the complexity to . Every
fast algorithm can be viewed as a factorization of the dense
transform matrix into a product of structured sparse matrices
(e.g., [11] and [14]). We will call such factorizations breakdown
rules, following [11]. A breakdown rule typically decomposes
a transform into several smaller transforms or converts it into a
different transform of usually lesser complexity. The left-hand
side of a breakdown rule is a transform, and the right-hand side
is the corresponding factorization, expressed as a formula. Here
are a few examples of breakdown rules; for example, (1) is the
Cooley–Tukey fast Fourier transform (FFT)

DFT DFT

DFT (1)

DCT- DCT- DCT-

(2)

DCT- DCT- (3)

IMDCT DCT- (4)

Above, is an identity matrix, is with columns
reversed, and with is the stride permutation
matrix defined by the underlying permutation
for . In words, transposes an
matrix stored in row-major order. is also called perfect
shuffle. Further, is an diagonal matrix with
diagonal entries :

. . .

In (1) and (3)

The operators and denote the direct sum and tensor product
of matrices, respectively, defined as

Further

. . .

For a complete description of a transform algorithm we need,
besides breakdown rules, also base case rules, or base cases, as
follows:

DFT (5)

DCT- (6)

For a given transform, the recursive composition of breakdown
rules and the choices of rules at each level yields a large space
of alternative formulas. Each formula corresponds to a fast algo-
rithm. These formulas can be automatically generated and con-
verted into code using Spiral [11].

We will call a set of breakdown rules and base cases sufficient
for a transform , if it is possible to fully expand for a set
of sizes using these rules. For example, rules (2), (3), and (6)
are sufficient for DCT-2 and DCT-4 of 2-power sizes. Rules (2)
and (6) are not sufficient for DCT-2, since the rule for DCT-4 is
missing.
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Additional Formula Notation: Besides the formula con-
structs described above, we will also use the following addi-
tional notation.

When the size of a diagonal matrix (say, ) is obvious
from the context, we will write

Sometimes, we will also explicitly enumerate the entries of di-
agonals as in

We will occasionally use permutation matrices other than the
stride permutation matrix . Given a permutation on points,
i.e., a one-to-one mapping of onto itself, the
corresponding permutation matrix is written as

perm

where is a column basis vector, i.e., a vector of “0”s with a
single “1” at the th position.

The above and some additional notation are summarized in
Table I for the convenience of the reader.

Algorithm Representations: A transform algorithm can be
represented in several different ways, as illustrated in Fig. 1 for
the DCT-3 computed using the transpose of (2), as follows:

1) as a formula, i.e., as a structured sparse matrix factorization
shown in Fig. 1(a);

2) as a dataflow graph, i.e., directed acyclic graph (DAG),
shown in Fig. 1(b);

3) as a computer program as shown in Fig. 1(d).
In the DAG representation, we assume binary nodes only, i.e.,
every node has at most two operands. A DAG that does not
satisfy this property can be converted into a binary DAG of equal
operations count.

The FMA variants of the algorithm [as a DAG in Fig. 1(c)
and as a program in Fig. 1(e)] were obtained using the method
presented in this paper. In Fig. 1(c), the boxes represent
FMAs; the bold edge denotes the input being multiplied. In
Fig. 1(e), the macros are defined as and

.
Derivation of FMA Algorithms—Problem Statement:

Since we consider linear transforms, the only arithmetic op-
erations occurring in their fast algorithms are additions (we
consider subtractions as additions in this paper) and multi-
plications by constants. We define the (arithmetic) cost of
an algorithm as the total number of arithmetic operations.
Multiplications by 1 are not counted. FMAs are counted as a
single operation. This implies that the cost is minimized when
FMAs are used to the maximal extent. The FMA optimization
problem is formulated next.

Problem 1 (FMA Optimization): Given: a transform algo-
rithm consisting of additions and multiplications. Find: a cor-
responding FMA algorithm consisting of additions, multiplica-
tions, and FMAs of minimal cost.

In this paper, we present an algorithm that makes the FMA
optimization mechanical, i.e., in principle, it could be done by
a computer. The FMA optimization algorithm comes in three

TABLE I
NOTATION SUMMARY

flavors, which differ in the representation of the input transform
algorithm.

First, we present a method for FMA optimization using the
DAG representation [see Fig. 1(b)]. The method uses local DAG
transformation rules that fuse additions and multiplication to
the extent possible. We implemented this method as a backend
to Spiral and were able to generate many of the best known
hand-derived FMA algorithms from the literature. The down-
side of this method is that it requires the explicit construction
of the DAG that represents the entire computation. Such a DAG
can only be constructed for straightline code, i.e., for code
without loops. Therefore, the method is inherently limited to
small transforms.

To overcome this limitation, we present next an equivalent
FMA optimization method that works with the formula rep-
resentation of transform algorithms [see Fig. 1(a)]. This time,
formula rewriting rules are used to create FMAs. Formulas are



VORONENKO AND PÜSCHEL: MECHANICAL DERIVATION OF FMA ALGORITHMS FOR LINEAR TRANSFORMS 4461

Fig. 1. Different representations of an algorithm for DCT-3 . For brevity, a =
1=
p
2, c = � cos(5�=8), s = sin(5�=8). The macros in (e) are defined as

fma(u; v;w) = u + vw and fms(u; v;w) = u � vw. (a) Sparse matrix
product (or formula); (b) standard DAG; (c) FMA DAG; (d) standard code; and
(e) FMA code.

more compact than DAGs (for example, tensor products can
represent loops), and therefore large size transforms can be han-
dled efficiently. Further, the structure of the computation (rep-
resented by and ) is preserved. However, this method is in-
herently limited to transforms of a fixed size.

To overcome the latter restriction, we finally describe an FMA
optimization method that operates directly on the breakdown
rules [e.g., (1)–(4)]. This is useful when the size of the transform
is not known in advance.

As stated previously, we implemented the DAG-based FMA
optimization as a backend to Spiral. For formulas and break-
down rules, the FMA optimization can, in principle, again be
automated and implemented within Spiral but it is more in-
volved. In many DSP applications, only small transforms are
needed.

III. FMA OPTIMIZATION OF DATAFLOW DAGS

In this section, we review the results of our preliminary
paper [10] and explain how to automatically adapt transform
algorithms to FMA architectures by transforming the algorithm
dataflow graph. Since the method works with DAGs, it is inher-
ently nonscalable and can only be used for small transforms. In
Sections IV and V, we will generalize this algorithm to handle
formulas and breakdown rules and, therefore, transforms of
arbitrary size.

A. Algorithm

The main idea behind converting standard DAGs into FMA
DAGs is a straightforward mechanic application of local DAG
transformation rules at each node in the DAG. The rules in the
DAG fuse multiplications with additions to create FMAs and
propagate unfused multiplications towards the output nodes.
The algorithm is given in Algorithm 1.

Algorithm 1 (FMA Optimization of DAGs):

Input: a DAG with add and multiply nodes only; output: an
equivalent DAG with add, multiply, and FMA nodes.

Traverse all nodes in , starting at the input nodes and
visiting every node exactly once. In each step, choose a node,
whose predecessors were already visited, and apply one of the
transformation rules from Table II, replacing the node by the
rule’s right-hand side. For each node do the following.

If the node is a multiplication apply:
• rule 1, if a predecessor is an input node or an addition;
• rule 2, if a predecessor is a multiplication.

If the node is an addition, apply:
• rule 3, if both predecessors are input nodes or additions;
• rule 4, if exactly one predecessor is a multiplication;
• rule 5, if both predecessors are multiplications.

Terminate when all nodes have been visited. Return the obtained
FMA DAG .

Example: The FMA DAG in Fig. 1(c) is the output of
Algorithm 1, when applied to the standard DAG in Fig. 1(b).
Observe, that the nodes from the first layer of four additions
become FMAs and that further multiplications are propagated,
which, in turn, convert the second layer of additions into
FMAs.
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TABLE II
DAG TRANSFORMATION RULES

B. Analysis

Bound on the Number of Unfused Multiplications: Inter-
estingly, we can prove a strong theorem about the operation
count or cost of the resulting FMA DAG.

Theorem 1: Assume that the input DAG of Algorithm 1 has
output nodes and contains additions and multiplications.

Further, assume that the output DAG of Algorithm 1 contains
additions, multiplications, and FMAs. Then

(7)

(8)

cost (9)

Further, if rule 2 in Table II is never used, then

(10)

Finally, the bounds in (8)–(10) are sharp.
Proof: Inspecting rules 2–5 in Table II shows that each

one leaves the number of additions (in the mathematical sense,
i.e., also counting the additions in FMAs) unchanged. This
yields (7).

Inspecting rules 3–5 shows that each multiplication node with
a successor is either converted into an FMA (rule 4), or propa-
gated (rules 2 and 5). Thus, every multiplication in has to be
at the output. Since the number of outputs is , (8) follows; (9)
is the sum of (7) and (8).

Rules 1 and 3–5 do not decrease the number of actual multi-
plications (i.e., also counting those in FMAs). Thus, (10) holds
if rule 2 is never applied.

Consider a DAG for a diagonal matrix, i.e., every input is
multiplied by a constant to yield the output. In this case equality
holds in (8)–(10). Thus, these bounds are sharp.

Note the inequality in (10) in contrast to the equality in (7).
This means that the number of multiplications (counting also
those in the FMAs) can actually increase in contrast to the
number of additions. A simple example where this happens is
( is a constant)

(11)

Fig. 2. Example where Algorithm 1 produces a suboptimal solution.

Namely, the DAG for the left formula has , and the DAG
for the FMA optimized DAG (right formula) has and

.
Asymptotic Runtime: Algorithm 1 visits every node of the

given DAG exactly once; therefore, the asymptotic runtime of
the algorithm is , where is the number of nodes in the
DAG, or equivalently the arithmetic cost of the input transform
algorithm.

Optimality: In general, Algorithm 1 does not produce an op-
timal solution (i.e., with minimum cost) for a given transform
algorithm. The simplest case where this happens is shown in
Fig. 2. The input DAG has three inputs, two outputs, and
contains three multiplications and two additions. Algorithm 1
produces an FMA DAG with four operations: two FMAs and
two unfused multiplications. However, a better solution
with only three operations can be obtained, if the shared multi-
plication by is not propagated. The result is one multiplication
and two FMAs.

Theorem 1 still holds, but a better solution can be obtained if
one of the multiplications is not propagated.

Implementation: We implemented Algorithm 1 as a
backend to the Spiral program generator [11] and applied it to a
number of transforms and sizes. The results and a comparison
to published, hand-derived FMA algorithms are in Section VII.

IV. FMA OPTIMIZATION OF FORMULAS

In this section, we show that the FMA optimization per-
formed on a DAG can be performed directly on an equivalent
formula. This allows us to derive FMA algorithms for large
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transforms, for which the DAG-based method is unpractical.
Further, the derivation of FMA formulas maintains the struc-
tural information in a formula represented by , , and (see
Table I). We will first explain the notation used in this section,
then present the algorithm and give a simple FMA optimization
example for a DCT- formula.

A. Problem Statement

From Theorem 1, we know that any DAG corresponding to a
linear transform can be transformed into an FMA DAG with all
unfused multiplications collected at the outputs. We will cap-
ture this at the formula level using the notions of perfect FMA
formula and FMA factorization.

Informally, a perfect FMA formula leaves no unfused multi-
plications when mapped to code (a rigorous definition is below).
FMA factorization is the process of factoring any formula as

, where is the diagonal collecting the unfused mul-
tiplications at the output, and is a perfect FMA formula.

The problem of FMA optimization of formulas is now equiv-
alent to the problem of FMA factorization and can be stated as
follows.

Problem 2 (FMA Optimization of Formulas): Given: a for-
mula . Find: an FMA factorization with minimal
arithmetic cost, where is a perfect FMA formula and is a
diagonal matrix collecting the leftover multiplications.

Now, we define perfect FMA formulas rigorously. The defi-
nition is recursive.

Definition 1 (Perfect FMA Formula): Diagonal matrices with
entries 1, all permutation matrices, and all explicit matrices
with at least one entry 1 in each nonzero row are perfect FMA
formulas. Further, if and are perfect FMA formulas, then
so are , , , and .

For example, and are both perfect FMA for-

mulas. Diagonal matrices with entries other than 1 are not per-
fect FMA formulas. If is a permutation matrix, then

(12)

is a perfect FMA formula, but the equivalent

(13)

is not, since one of the subformulas, , is not a perfect
FMA formula. The intuition behind the definition is to make
the mapping of perfect FMA formulas to code straightforward
by constructing these formulas from perfect FMA building
blocks. In (13) above, the matrix–vector product of
with an input vector can only be implemented using a single
unfused multiplication, i.e., it is not a perfect FMA building
block, while

can clearly be implemented with two FMAs.

B. Algorithm

An FMA factorization of a transform algorithm given as a
formula is obtained using Algorithm 2.

Algorithm 2 (FMA Optimization of Formulas):

Input: a formula ; output: a factorization ,
where is a perfect FMA formula.

Apply the rewrite rules (14)–(23) in Table III to , starting from
the right of , and proceeding towards the left, until no more
rules are applicable.

Similarly to Algorithm 1, Algorithm 2 uses a set of local for-
mula rewrite rules. Each rule moves diagonal matrices towards
the left in the formula. The rewriting process stops when no
more rules are applicable, and when this happens, the formula

will be in the form as desired.
As in Algorithm 1, Algorithm 2 also requires the modification

of the constants used in the algorithm. Therefore, even though
Algorithm 2 is simple in concept, maintaining the exact closed
form of the modified constants can become cumbersome.

Example: To demonstrate Algorithm 2, we compute the
FMA factorization of a DCT- formula. A formula for any
2-power size of DCT-2 or DCT-4 can be obtained by using the
breakdown rules (2) and (3) and by terminating with the base
case (6). The result for size 4 is

DCT- DCT- DCT-

(24)

where , , and
.

We apply Algorithm 2 to (24). Since the first (rightmost)
factor is already a perfect FMA formula, we start with the
second factor—the direct sum. The left summand is already
in the desired form. We apply rule (23) twice to the right
summand, as follows:

Thus, we get

DCT-

Now we apply rule (17) to the direct sum and get

DCT-

(25)
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Applying rule (20) completes the FMA factorization

DCT-

(26)

Above, we identified the principal components of the obtained
FMA factorization of in (24): the perfect FMA formula ,
and the collected unfused multiplications .

C. Analysis

Since Algorithm 2 is effectively equivalent to Algorithm 1, all
statements made in Section III-B remain valid. We adapt The-
orem 1.

Theorem 2: Assume that the input formula of Algorithm 2
is an algorithm for a transform matrix with rows (or outputs)
and requires additions and multiplications. Further, assume
that the output FMA factorization of Algorithm 2 requires

additions and FMAs for (since is a perfect FMA for-
mula, it does not use standalone multiplications), and multi-
plications for (i.e., has diagonal elements ). Then

cost (27)

cost (28)

cost (29)

Further, the bounds above are sharp.

V. FMA OPTIMIZATION OF BREAKDOWN RULES

The FMA optimization methods Algorithm 1 and Algorithm
2 are only applicable if the size of the transform is known in
advance. Ideally, we should also be able to perform FMA op-
timization for transforms of variable size . This requires us
to work directly with the breakdown rules. Algorithm 2 as is
cannot be applied to breakdown rules, because they are recur-
sive. Hence, we extend Algorithm 2 in this section to handle
breakdown rules such as (1)–(4). We will state the problem,
describe the algorithm, give an example, and analyze the algo-
rithm.

A. Problem Statement

We would like to apply an analogue of Algorithm 2 to the
right-hand sides of breakdown rules. These contain transforms,
and therefore the FMA optimization procedure is necessarily
recursive. For example, the right-hand side of the DCT-2 rule
(2) includes a smaller DCT-2 and DCT-4.

The problem can be stated as follows.
Problem 3 (FMA Optimization of Breakdown Rules):

Given: transforms and a sufficient set (as defined in Section II)
of breakdown rules (this includes base cases). The rules
can be written as

where the are not necessarily different transforms (each trans-
form usually requires several rules). Find: a sufficient set of
FMA breakdown rules and base cases

and

The auxiliary transforms , , arise in
the process of FMA optimization in our algorithm as explained
below. Specifically, the are scaled variants of the original
transforms; they are obtained because of the propagation of un-
fused multiplications inside the rule. This will become clear in
the next section, when we explain the actual algorithm.

B. Algorithm

Basic Idea: Recall that the main idea of Algorithm 2 is to use
rewriting to propagate multiplications in the formula from right
to left. The formulas in breakdown rules contain again trans-
forms that must be handled recursively. Our solution is to re-
place each transform with a corresponding auxiliary transform
that has a perfect FMA breakdown rule.

Consider an example. Suppose, we want to compute FMA
factorizations based on the rules (2) and (3). Starting with rule
(2) we proceed as in Algorithm 2. The rightmost factor does
not incur multiplications. Next, we have to recursively obtain
FMA factorizations of DCT- and DCT- . Assume we
have done this already and obtained

DCT- DCT- and

DCT- DCT-

where and are diagonal matrices. Inserting into rule
(2) yields

DCT- DCT- DCT-

(30)

Next, we apply rule (17) to obtain

DCT- DCT-

and then rule (20) to get

DCT- DCT-

DCT-

(31)

Equation (31) gives a recurrence for and a breakdown rule
for DCT- , namely

(32)
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TABLE III
REWRITE RULES FOR FMA CONVERSION OF FORMULAS. A AND B DENOTE m �m AND n � n FORMULAS (THE RULES ARE ALSO APPLICABLE TO

FORMULAS FOR NON-SQUARE MATRICES WITH VERY MINOR MODIFICATIONS). IN THE LAST TWO RULES FOR MATRICES WE USE z(k) TO DENOTE THE COLUMN

INDEX OF THE PROPAGATED MULTIPLICATION IN THE kTH ROW OF THE MATRIX. THERE IS A DEGREE OF FREEDOM IN CHOOSING THIS VALUE, BUT TO MINIMIZE

THE TOTAL OPERATIONS COUNT, IT SHOULD BE CHOSEN SO THAT THE PROPAGATED DIAGONAL HAS AS MANY 1S AS POSSIBLE

DCT- DCT- DCT-

(33)

The example above illustrates why new auxiliary transforms
arise, and it shows that the diagonal matrices collecting the left-
over multiplications have to be computed via a recurrence.

Performing the FMA factorization of rule (3) reveals ad-
ditional necessary auxiliary transforms. Namely, in (3) we
encounter DCT- , where is a diagonal matrix. Fol-
lowing Algorithm 2, we have to propagate this diagonal
through the transform. We will do this by creating a new
auxiliary transform DCT- DCT- , where is an
arbitrary diagonal, and then handle the propagation as before.
Namely, assume that we already obtained the FMA factoriza-
tion DCT- DCT- , then inserting into
rule (3) and propagation yields

DCT- DCT-

DCT-

DCT- (34)

Above, , and we used the fact
that has ones on the main diagonal to propagate the un-
changed using rule (23). This gives us a recurrence for

and also a breakdown rule for DCT- , as follows:

(35)

DCT- DCT- (36)

Note that the set of breakdown rules obtained above is insuffi-
cient, because a breakdown rule for DCT- is missing. It
can be obtained by multiplying (2) by from the right and re-
peating the procedure outlined above.

General Algorithm: We generalize and formalize the idea
illustrated in the above example in Algorithm 3. The new algo-
rithm is essentially an extension of Algorithm 2. The rule set of
Table III is extended with two additional rewrite rules to handle
transforms, and the FMA optimization procedure consists of
three distinct steps, in contrast to the single rewriting pass of
Algorithm 2.

Algorithm 3 (FMA Optimization of Breakdown Rules):

Input: A sufficient set of breakdown rules including base
cases for the transforms
(not necessarily different). Output: a sufficient set of FMA
breakdown rules and base cases

, and .
The are auxiliary transforms, the are perfect FMA
formulas, and the are diagonal matrices.

For each distinct transform , define the following auxiliary
transforms: , , and , where is a diagonal
matrix. Extend the rule set of Algorithm 2 with the following
rewrite rules:

(37)

(38)

(39)

Each transform is replaced by the corresponding perfect
FMA auxiliary transform and a leftover diagonal, which
we denote with here. A transform followed by a diagonal
matrix is replaced by an auxiliary transform , which in
turn is FMA factorized using the rule (39) as .
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Using the extended rule set, perform the following three steps.
Step 1: FMA optimization of the base cases. FMA factorize

the base cases using Algorithm 2.
Step 2: FMA optimization of the given breakdown rules.

Apply the rewrite rules in Table III to the right-hand side of
every given breakdown rule. Two sets of FMA breakdown rules
will be obtained: for the original transforms

and for the corresponding perfect FMA auxiliary transforms
obtained implicitly by omitting the left (propagated) diagonal
matrix (i.e., as matrices, )

Step 3: FMA optimization of auxiliary transform rules. In
Step 2, rule (38) introduces auxiliary transforms . Create
breakdown rules for the auxiliary transforms by multiplying the
rules for with a diagonal matrix on the right, and apply the
rewrite rules to the right-hand side of the new rules to obtain
breakdown rules of the form and, implicitly,

. Repeat this step until no new auxiliary transforms
appear.

C. Example

The best way to explain the algorithm is with an example. We
continue and complete our example from Section V-B and show
the FMA optimization of DCT-2 and DCT-4 using the sufficient
set of breakdown rules consisting of (2), (3), and (6).

The FMA conversion will require auxiliary transforms and
will also involve propagated diagonals defined by a set of re-
currences. Both of these were already briefly discussed earlier
in Section V-B. We use the following notation for the necessary
auxiliary transforms and FMA factorizations:

DCT- DCT-

DCT- DCT-

DCT- DCT-

DCT- DCT-

In the above, denotes an arbitrary diagonal matrix.
Now, we follow the three steps in Algorithm 3 to obtain

the FMA breakdown rules and base cases for the following
transforms: DCT-2, DCT-4, DCT- , DCT- , DCT-2( ),
DCT-4( ), DCT- , and DCT- . We will also obtain
recurrences for the propagated diagonals , , , and

.
Step 1: FMA optimization of the base case. There is only

one base case DCT- , and it is already
FMA factorized. This implies the following:

DCT-

Step 2a: FMA optimization of rule (2). This step was
already performed in Section V-B. The results are (31), (32),
and (33).

Step 2b: FMA optimization of rule (3). This step was al-
ready performed in Section V-B. The results are (34), (35), and
(36).

Step 3: FMA optimization of the auxiliary transform
rules. The previous step requires an FMA breakdown rule for
DCT- . We obtain the base case and the breakdown rule
for this auxiliary transform, for the case of an arbitrary diagonal
matrix . We denote the first half of with and the second
half with , i.e., ; the sizes are omitted for
simplicity. Now, the base case is simply

DCT-

where and are scalars in this case. The breakdown rule
for DCT- based on rule (2) becomes

DCT- DCT- DCT-

DCT- DCT-

DCT- DCT-

DCT- DCT-

Note that is a diagonal matrix. Further, the above also
implies

DCT-

DCT- DCT- DCT-

Finally, we need an FMA breakdown rule for DCT- ; we
derive it for a general diagonal matrix , as follows:

DCT- DCT-

DCT-

DCT-

with . From the above, we
obtain

and

DCT- DCT-



VORONENKO AND PÜSCHEL: MECHANICAL DERIVATION OF FMA ALGORITHMS FOR LINEAR TRANSFORMS 4467

TABLE IV
FMA BREAKDOWN RULES AND DIAGONAL RECURRENCES OBTAINED BY APPLYING ALGORITHM 3 TO (2), (3), AND (6)

In summary, we obtained the FMA breakdown rules and
the recurrences for the necessary diagonal matrices listed in
Table IV [equations (40)–(55)].

Pseudocode: The breakdown rules in Table IV can be natu-
rally implemented in the setting of a recursive library. We illus-
trate this by providing MATLAB pseudocode.

First, Table V shows the code for the standard (non-FMA) im-
plementation of rules (2), (3), and (6). The occurring constants
are assumed to be precomputed for efficiency.

Second, Table VI gives pseudocode for the FMA optimized
implementation of DCT- and DCT- using the FMA rules
in Table IV. We show only the code for DCT- and
DCT- , since the other breakdown rules result in very
similar code.

D. Analysis

Bound on the Number of Unfused Multiplications: Al-
gorithm 3 eventually produces an FMA factorization for each
given transform of the form . Thus, Theorem 2 holds. How-
ever, note that this requires that all of the constants be precom-
puted using the recurrences for the occurring diagonal matrices.

Convergence: At first glance it may not be obvious that Al-
gorithm 3 converges, but it does. Namely, every given trans-
form spawns at most the three new transforms , ,
and . Similarly, each supplied rule for spawns exactly
one rule for each of these auxiliary transforms. Since each rule
is rewritten by the algorithm exactly once, the algorithm termi-
nates.

Further Improvements: In some cases, it is possible to fur-
ther reduce the number of leftover multiplications by taking into
account the position of trivial ( 1) matrix entries. This is nec-
essary in rewrite rules (22) and (23). To maximally reduce the

TABLE V
MATLAB PSEUDO CODE FOR BREAKDOWN RULES (2) AND (3)

AND BASE CASE (6)
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TABLE VI
MATLAB PSEUDO CODE FOR FMA BREAKDOWN RULES (46), (47), AND (48)

number of multiplications, one then needs to introduce addi-
tional transforms of the form , and for each pattern
of trivial entry locations in the propagated diagonals. Therefore,
the number of auxiliary transforms becomes larger, and the pro-
cedure more complicated. In the worst case, the algorithm might
not converge, but we have not encountered this case. This tech-
nique makes it possible to completely eliminate leftover mul-
tiplications in the Cooley–Tukey FFT (1), where the so-called
“twiddle factors” have several “1”s in known positions.

Implementation: Algorithm 3, as Algorithm 2, can be im-
plemented using a rewriting system [15] as part of a formula-
based program generator like Spiral [11], and the authors plan
to do so in the future. To do this in a meaningful way, however,
it is necessary to ensure that the implementation is compatible
with Spiral’s formula-based loop optimizations [16], optimiza-
tions for vector instruction sets [17], and parallelization tech-
niques [18]. Discussing these issues exceeds the scope of this
paper.

Other Comments: Note that in some applications (such as
JPEG image compression), a transform is directly followed by
a scaling step. In these cases, the leftover multiplications can be
fused with this step and the auxiliary perfect FMA transforms

become interesting in their own right.

VI. COMPLEX TRANSFORMS AND ALGORITHMS

Some transforms used in signal processing are complex,
most notably the DFT. These transform consequently also
have complex algorithms, i.e., DAGs, formulas, and break-
down rules. When implemented on a computer, the complex
arithmetic is eventually broken down into real operations, so
all our FMA optimization algorithms remain usable. However,
there are choices and some important details that we discuss
in this section.

Conversion From Complex to Real Arithmetic: The
conversion from complex to real arithmetic works as follows.
Every complex addition can be converted into two real addi-
tions. Every complex multiplication can be converted
into

(56)

where the subscripts indicate the real and imaginary parts. (56)
can be implemented using three additions and three multipli-
cations, but for our purpose, the straightforward way with two
additions and four multiplications is preferable, since multipli-
cations can be fused. If FMAs are to be used, then (56) can
be done using two additions and two FMAs. If the multiplica-
tions happen to be by a root of unity, i.e., the matrix in (56)
is a rotation, then three FMAs can be used instead (see (61) in
Section VII below).

Finally, a complex FMA of the form corre-
sponds to

which is a perfect FMA formula in the sense of Definition 1 and
can be implemented with four real FMAs.

Complex FMA Optimization: Assume a given complex
DAG (or formula) to be FMA optimized. We have the following
two choices:

1) first, we FMA optimize the complex DAG using
Algorithm 1, then we convert the resulting complex
FMA DAG to a real DAG as described above;

2) first, we convert into a real DAG as described above, then
we FMA optimize the DAG using Algorithm 1.

First, it is interesting to establish that the two methods in gen-
eral not only produce different results but also results with dif-
ferent cost. Consider the following example of a complex for-
mula, which we first FMA optimize and then convert to real
arithmetic:
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The result costs eight FMAs. Now, we do the steps in the op-
posite order: first, we convert to real arithmetic, then we FMA
optimize

(57)

The result costs six FMAs, two less than before. Note that in the
last step, we could have propagated instead of , or a mix of
both.

The question now is whether the second method is always su-
perior. This is not the case as one simple example shows. Namely,
consider a complex DAG with one input , one output , and two
consecutive multiplications: . Let . Then, the first
method will produce, via rule 2 in Table II, as follows:

with a cost of two FMAs and two multiplications. The second
method yields

with a cost of four FMAs and two multiplications.
However, it turns out that this is the only case, i.e., if rule 2 is

not used in the first method, then the second method is always
better in a specified sense. We record this in the following the-
orem including bounds on the cost.

Theorem 3: Let be a complex DAG with output nodes
, additions, and multiplications (all complex). Assume

method 2 is applied (first convert to real arithmetic, then FMA
optimize) to get a real DAG with additions, multiplica-
tions, and FMAs (all real). Then

(58)

(59)

cost (60)

The bounds are sharp. Further, if method 1 (first FMA optimize,
then convert to real arithmetic) is applied and rule 2 in Table II
is never used in the FMA optimization, then method 2 is better
with respect to the worst case cost of the output DAG.

Proof: The real DAG corresponding to has addi-
tions, multiplications, and outputs. Now, (58)–(60) follow
from Theorem 1. Starting with a complex diagonal matrix yields
the sharpness of all the bounds.

Now assume we use method 1. FMA optimization of yields
a complex FMA DAG with additions, multiplications, and

FMAs (all complex) and the equations in Theorem 1 hold
including (10) since we assume rule 2 is never used: ,

, . Converting to real arithmetic yields the
DAG with additions, multiplications, and
FMAs. Now, the sharp worst case bound becomes

cost

Since , the result follows.

VII. RESULTS AND DISCUSSION

A. Comparison to Published FMA Algorithms

FMA Optimization of DAGs: We implemented Algorithm 1
as backend to the Spiral program generator [11] and applied it
to a number of transforms and sizes. Spiral contains most of the
published breakdown rules and thus is able to generate many
different algorithms (or formulas) for any given transform. Each
of these formulas is compiled into actual code and its runtime
measured. A search mechanism then finds the fastest implemen-
tation for the transform on the given computing platform. In our
first experiment, we were not interested in runtime (which is
considered below in Section VII-C) but in the lowest arithmetic
cost achievable. Thus, instead of searching for the fastest, we
modified Spiral to search for the algorithm with the lowest cost.
The results are in Table VII and explained next.

First, we performed the search with standard scalar code
(counting additions and multiplications only). The results
are in the column labeled “Std.” Next, we enabled the FMA
optimization backend (Algorithm 1) in Spiral and repeated the
search, this time generating the algorithms with the minimum
FMA cost. The results are in the column “FMA.” The column
“%imp” shows the total arithmetic cost improvement in percent.

We compared our generated algorithms against the best pub-
lished (to our best knowledge) hand-derived algorithms in the
last column. This also includes FFTW [20], [21], a library that
provides some of the transforms and which also uses a program
generator for small sizes but considers only one algorithm for
each transform. For some transforms, no benchmark was avail-
able. For the others, our generated algorithms match in prac-
tically all cases the benchmarks. The fact that they match ex-
actly is not entirely surprising, since the hand-derived FMA al-
gorithms are, in most cases, obtained by implicitly performing
an instantiation of our general method.

The gains in arithmetic cost achievable with FMA optimiza-
tion increase with the transform size . Given a class of algo-
rithms, it is straightforward to obtain an upper bound on the
asymptotic behavior of this gain. For example, for DFTs of
two-power size , one of the best available algorithms is the
split-radix FFT [22], which requires
real additions and real multiplications.
Hence, if all multiplications are fused, the gain approaches 1/3.
Similarly, for the DCT, type 2 and 3, many of the best algorithms
require additions and

multiplications [23]. Hence, in the best case, the gain ap-
proaches 1/4.

We also automatically reproduced other hand-derived algo-
rithms, including the radix-2, -3, -4, and -5 DFT kernels in [4],
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TABLE VII
BEST ARITHMETIC COST FOR TRANSFORMS FOUND BY SPIRAL

FOR STANDARD AND FMA ALGORITHMS ALONG WITH THE

COST OF THE BEST KNOWN FMA ALGORITHMS

the radix-6 DFT kernel in [6], the radix-16 DFT kernel in [7],
and the 1-D and 2-D scaled DCT-2 of sizes 8 and 8 8 from
[8]. In the latter reference, the authors do not consider the ac-
tual DCT-2 but a scaled version since in the considered applica-

tion (JPEG image compression) the scaling factors can be fused
with a subsequent scaling step. Our algorithm always propa-
gates all multiplications to the output and is hence particularly
well suited for these scenarios.

FMA Optimization of Formulas and Breakdown Rules:
Reference [3] describes several DFT algorithms using formulas
and shows how to implement these algorithms with FMAs. The
authors do not express the resulting FMA algorithm using for-
mulas, but Algorithm 2 reproduces their results.

The application of Algorithm 3 to radix-2, radix-4, radix-8,
and split-radix DFT breakdown rules, yields recursive DFT
FMA algorithms similar to the ones in [2].

B. Other Ways to Perform FMA Optimization

Rotations via Lifting Steps: Many transforms are orthog-
onal and have “orthogonal” algorithms. This means that the al-
gorithm consists exclusively of butterflies and 2 2 Givens
rotation matrices defined as

For a general , incurs four additions and two multiplica-
tions, or, alternatively, two multiplications and two FMAs. It is
well known, however, that a rotation can be factored into three
lifting steps, each requiring a single FMA for a total of three
FMAs [24], [25]:

(61)

This is a simple method for FMA optimization and optimal for
a standalone rotation. However, in the context of a larger algo-
rithm lifting steps are suboptimal in general, since our propaga-
tion method produces two FMAs only and two leftover multi-
plications, which potentially can be fused with later subsequent
additions.

Converting Additions Into Multiplications: In certain
cases, it is possible to modify a transform algorithm to trade
additions for multiplications with an integer constant. The
simplest example of such a modification is . Cop-
persmith and Linzer in [9] exploit such modifications to show
that the Walsh–Hadamard transform (WHT) kernel of size 4,
which requires eight additions and no multiplications, can be
modified to use seven additions and three multiplications. The
latter are then fused with the additions for a total cost of only
seven operations.

The WHT of size 4 is equal to the discrete Hartley transform
(DHT) of size 4; thus, this technique could also be used to reduce
the FMA operation count of algorithms that use size-4 DHT
kernels.

Heuristic Method for DAGs: In [10], we also described an
alternative heuristic method for performing FMA optimization
of DAGs, which can yield better arithmetic cost by not always
propagating multiplications to improve on situations like Fig. 2.
The method involves using cost-weighted propagation rules and
can further reduce the number of unfused multiplications. How-
ever, when combined with search over different available algo-
rithms, it did not yield relevant improvements.
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C. FMA Optimization and Runtime

An interesting issue is the effect of FMA optimization on
the program’s runtime. It is well known that on modern
architectures, the runtime is often dominated by other fac-
tors besides arithmetic cost. For example, even though our
FMA optimization method reduces the number of instruc-
tions, it may increase the total amount of performed multipli-
cations [counting the multiplications in FMAs; see (11)]. Since
the constants are held in registers, this increases the register
pressure. Further, FMA optimization increases the number of
unique constants and hence the number of load instructions.
Both of the above reduce the performance gains achievable
by FMA optimization. Finally, the effect of FMA optimiza-
tion on performance depends on the platform and compiler
considered.

We performed an evaluation of our FMA optimization for
small transforms, implemented in straightline code (no loops)
using Algorithm 1. As in Section VII-A, we used Spiral with
FMA optimization in the backend. For a user-selected trans-
form, Spiral enumerates many different programs, measures
their runtime and returns the fastest on the computer on which
it is installed. Using Spiral, we generated the fastest imple-
mentations for the same set of transforms as in Section VII-A
with and without FMA optimization enabled. This implies that
Spiral may find different algorithms for standard and FMA
code and is, hence, a very fair evaluation of the performance
potential of FMA operations for transforms.

Our benchmark platform was a 1500-MHz Itanium 2 com-
puter with 4 GB of RAM, using the Intel Compiler 9.0 with
command line options “-O3 -IPF-fp-relaxed.”

The results for various transforms are shown in Table VIII and
organized as follows. The first column shows the transform size.
The remaining columns are organized into three groups. In each
group, the fastest found standard C code is compared with the
fastest found FMA optimized C code. In the first group, called
Ops (C), the number of operations in the C source code is com-
pared. In the second group, called Ops (assembly), the number
of arithmetic operations in the compiler generated assembly
code is compared. These numbers are important, because the
C compiler performs its own optimizations which create new
FMAs from existing adds and multiplies, and can potentially de-
stroy our generated FMAs. Finally, in the third group the actual
runtime (in processor cycles) is compared. Note that on the Intel
Itanium processors, unlike in the Pentium family, the hardware
cycle counter is very stable and precise, and these runtimes can
be reproduced to within a cycle. We have subtracted the func-
tion call overhead (14 cycles) from all runtimes.

First, we observe that the runtime improvements are directly
related to the improvements in operations in the assembly code
but not to the improvements in the C code. This is due to the
FMA optimization performed by the compiler. For example,
consider the DFT of size 32. The fastest found C code has 456
operations, which the compiler reduces to 400 in the final as-
sembly code. The fastest FMA C code, using our FMA opti-
mization, has 372 operations (including FMAs). This number
remains in the assembly code, i.e., the compiler could not fur-
ther reduce. The same behavior can be observed across all trans-

TABLE VIII
PERFORMANCE EVALUATION OF SPIRAL GENERATED TRANSFORM CODE

WITH AND WITHOUT FMA OPTIMIZATION (USING ALGORITHM 1)
ON AN ITANIUM 2 SYSTEM

forms, which means that our FMA optimization is better than
the compiler’s.
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Regarding runtimes, we also observe that small transforms
generally do not benefit from FMA optimization. They usually
have little or no multiplications. In contrast, most larger sizes
benefit from our FMA optimization.

In very few cases, there is a small performance degradation.
For RDFT and DCT- , our FMA optimization produces
slightly suboptimal arithmetic cost compared to the compiler’s
optimization. This is due to a situation similar to Fig. 2. In
two other cases of slowdowns, RDFT and IMDCT , the
C compiler destroys our generated FMAs and increases the
operations count.

The compiler options deserve special attention. The compiler
cannot be forced to use FMAs, and by default the GNU C com-
piler 4.2 (gcc) and the Intel compiler 9.0 generate suboptimal
code for a pair of “overlapping” FMAs such as and

. In this case, is treated as a common subexpres-
sion and computed separately from the addition and subtrac-
tion, resulting in three operations rather than the obvious two
FMAs. There is no way to solve this in gcc. However, the Intel
compiler developers told us that they studied this problem, and
implemented a special compiler pass [26] to reconstruct locally
optimal FMA instruction sequences. This pass is enabled with
“-IPF-fp-relaxed” and is the reason why we used this option. As
a consequence, in most cases our FMA cost is unaltered by the
compiler.

Finally, we note that performance optimization of software
is only one application of FMA optimization. For example, in
specialized hardware implementations, MAC units are always
an attractive solution, since they require little more area than a
multiplier and can increase accuracy.

VIII. CONCLUSION

We have shown that the derivation of FMA algorithms for
linear transforms is straightforward using a set of transformation
rules. The method fuses all multiplications except as many as the
transform has outputs in the worst case. Further, the method is
applicable to complex and real transform alike. We have shown
three flavors of the method in Algorithms 1, 2, and 3 that math-
ematically perform the same procedure, but differ in the repre-
sentation of the given transform algorithm.

We implemented the DAG-based method (Algorithm 1) in
Spiral and were able to automatically reproduce many hand-
derived FMA algorithms from the literature as well as produce
some new ones.

In summary, this paper provides a general tool to map any
linear transform to any FMA architecture automatically and
efficiently.
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