
Learning to Predict Performance

from Formula Modeling and Training Data

Bryan Singer bsinger��cs�cmu�edu

Manuela Veloso mmv��cs�cmu�edu

Computer Science Department� Carnegie Mellon University� Pittsburgh� PA ������ USA

Abstract
This paper reports on our work and re�
sults framing signal processing algorithm op�
timization as a machine learning task� A sin�
gle signal processing algorithm can be repre�
sented by many di	erent but mathematically
equivalent formulas� When these formulas
are implemented in actual code� they have
very di	erent running times� Signal process�
ing optimization is concerned with
nding a
formula that implements the algorithm as ef�

ciently as possible� Unfortunately� a correct
mapping between a mathematical formula
and its running time is unknown� However
empirical performance data can be gathered
for a variety of formulas� This data o	ers
an interesting opportunity to learn to predict
running time performance� In this paper we
present two major results along this direc�
tion� �� Di	erent sets of features are iden�
ti
ed for mathematical formulas that distin�
guish them into partitions with signi
cantly
di	erent running times� and �� A function
approximator can learn to accurately predict
the running time of a formula given a limited
set of training data� Showing the impact of
selecting di	erent features to describe the in�
put� this work contributes an extensive study
on the role of learning for this novel task�

�� Introduction

In simple terms� signal processing includes the study of
algorithms that take as an input a signal� as a numer�
ical dataset and output a transformation of the signal
that highlights speci
c aspects of the dataset� For ex�
ample� the Fast Fourier Transform �FFT takes as an
input the values of a signal over time and returns the
corresponding frequency variations�

In general� signal processing algorithms can be repre�
sented by a transform matrix which is multiplied by
an input data vector to produce a desired output vec�
tor �Rao � Yip� ����� Tolimieri et al�� ����� Sig�
nal processing is particularly challenging for very large

datasets for which an implementation of the transform
as a straightforward matrix multiplication would re�
quire expensive numerical manipulations� However�
the transform matrices often can be factored into a
product of structured matrices� allowing for faster im�
plementations of signal processing algorithms� Fur�
thermore� these factorizations can be represented by
mathematical formulas and a single signal processing
algorithm can be represented by many di	erent� but
mathematically equivalent� formulas �Auslander et al��
����� Singer � Veloso� ����� Interestingly� when
these formulas are implemented in actual code and ex�
ecuted� they often have very di	erent running times�
Thus� a crucial problem is
nding the formula that im�
plements the signal processing algorithm as e�ciently
as possible �Moura et al�� �����

Unfortunately� a correct mapping between a mathe�
matical formula and its running time is unknown� But
a large amount of data can be easily gathered on the
empirical performance of a variety of formulas� This
data o	ers an interesting opportunity to study the role
of learning in performance prediction�

This paper reports on our work in formulating and rep�
resenting formula performance prediction as a machine
learning task� A major step involves the selection of
features to represent the data� We present several pos�
sible sets of features extracted from the mathematical
formulas� We show the signi
cant impact of these dif�
ferent choices both in the partition of the performance
data sets and in performance prediction� We support
our work with extensive empirical studies that process
real performance data from a complex signal process�
ing transform� the Walsh�Hadamard Transform�

In summary� this paper contributes two main results
in our work towards the ambitious goal of learning to
predict performance of signal processing algorithms�

� Simple features describing formulas can be used
to distinguish formulas with signi
cantly di	erent
running times�

� A function approximator can learn to accurately
predict the running time of a formula given a lim�
ited set of training data�

�� Walsh�Hadamard Transform

In this paper� we present results from our work
with the Walsh�Hadamard Transform �WHT� one of
several important and fundamental signal processing
transforms �Johnson � P�uschel� ����� We had previ�
ously explored the Fast Fourier Transform �FFT and
obtained results similar to those presented here �Singer
� Veloso� �����

The Walsh�Hadamard Transform of a signal x of size
�n is the product WHT ��n � x where

WHT ��n �
nO
i��

DFT ���

DFT �� �

�
� �
� ��

�
�

and � is the tensor or Kronecker product �Johnson �
P�uschel� ����� If A is a m�m matrix and B a n� n
matrix� then A� B is the block matrix product�

��
a���B � � � a��mB

���
� � �

���
am��B � � � am�mB

�
�	 �

For example�

WHT ��� �

�
� �
� ��

�
�
�

� �
� ��

�

�

�
��

� � � �
� �� � ��
� � �� ��
� �� �� �

�
�	 �

While this provides a potential algorithm for comput�
ing the WHT� more e�cient algorithms usually take
advantage of the fact that larger WHTs can be cal�
culated by combining smaller WHTs appropriately�
Computing tensor products with large matrices can
be very computationally expensive� to the point that
doing more tensor products of smaller matrices is of�
ten considerably faster than computing fewer tensor
products with larger matrices� So� signal processing
optimization involves searching for optimal methods
of decomposing large transforms into smaller ones�

For positive integers ni such that n � n� � � � � � nt�
WHT ��n can be rewritten as

tY
i��

�I
�
n������ni�� �WHT ��ni� I

�
ni�������nt

where Ik is the k � k identity matrix �Johnson �
P�uschel� ����� This formula can then be recursively
applied to each of the WHTs that appear on the right
side� Thus� WHT ��n can be rewritten as any of a
large number of di	erent but mathematically equiva�
lent formulas�

Any of these formulas for WHT ��n can be uniquely
represented by a tree� See Figure � for two example
split trees� Each node in the split tree indicates the
size of the WHT �given simply as the exponent at
that level� and the children of a node indicate how the
node�s WHT is recursively computed� As an example�
the split tree shown in �a can be derived as follows�

WHT ���

� �WHT ��� � I�� ��I�� �WHT ����

� �f�WHT ��� � I���I�� �WHT ���g � I�� �

�I�� � f�WHT ���� I���I�� �WHT ���g�
with the split tree representing the
nal formula�

5

3 2

21 1 1

5

2 1 2

�a �b

Figure �� Two di�erent split trees for WHT ����

There are a very large number of possible split trees
for a WHT of any given size� and thus there are large
number of formulas equal to that WHT� Speci
cally� a
WHT of size �n has on the order �����

p
�n�n��� dif�

ferent possible split trees �Johnson � P�uschel� �����
For example�WHT ��� has ������ di	erent split trees
�Johnson � P�uschel� �����

Since we had previously investigated the Cooley�Tukey
expansion for the FFT which can be visualized with
binary split trees �Singer � Veloso� ����� this work
reports only on binary WHT split trees� This helps to
slightly reduce the total number of possible split trees�
but there are still on the order of ���n�n��� possible
binary split trees �Johnson � P�uschel� �����

The formulas that the di	erent split trees express can
have very di	erent running times when implemented
in code� Even what may seem like subtle changes such
as swapping the left and right children of a node in the
split tree changes the formula that the tree represents
and can signi
cantly change the running time� Split
trees capture the order and sizes of the computations
that are performed in a computer� Any change to the
split tree will mean a change in the order and�or size of
the computations performed� Unlike simple addition
or multiplication� the di	erent orderings and di	erent
sized subcomponents of these matrix operations can
often produce very di	erent running times on a com�
puter� Ideally� we would like to be able to predict
which of these formulas will have the fastest running
time for any given computer on which it is run�

�� Relevant Features for Predicting
Running Time

Given that there are many di	erent expansions of large
WHTs with di	erent running times� we would like to

nd the one with the fastest running time� One simple
approach would be to produce all of the formulas and
to time each one on each di	erent machine that we
might be interested in� Then the formula with the
fastest time can be determined for each machine�

There are two problems with this approach� �� each
formula may take a non�trivial amount of time to run�
and �� there are a very large number of formulas that
need to be run� These problems make the approach
intractable for WHTs of even fairly modest sizes�

In this paper� we present an approach to help solve the

rst problem� In particular� our approach is as follows�

� Generate a small set of formulas automatically
and time each of these formulas�

� Describe the formulas by appropriate features�

� Use this data to learn to quickly and accurately
predict the running times of the other formulas�

Elsewhere �Singer � Veloso� ����� we present a
method for generating formulas automatically in a
principled way� In this section� we discuss and eval�
uate feature sets that will enable us to perform the
learning experiments discussed in the next section�

In selecting and evaluating features� an important
question is what aspects of the formulas determine
their running times� Or� equivalently� what are good
features for predicting a formula�s running time�

To answer these questions� we begin by introducing
several di	erent feature sets to describe WHT formu�
las� After each of these di	erent feature sets have been
described� we then compare them along several mea�
sures to see how well the features can di	erentiate for�
mulas with di	erent running times�

��� Feature Sets

We begin by introducing a simple set of features to
describe formulas� as well as a number of successive
re
nements of these features� In almost all of the fea�
tures� we take advantage of the fact that we can visu�
alize WHT formulas as split trees� Note that these fea�
tures are not unique to the WHT and many have been
used in our early study of the FFT �Singer � Veloso�
����� However� we do take advantage of the fact that
we have limited ourselves to binary split trees� We
consider feature sets from two broad categories� node
count features and features corresponding to the shape
of the split tree� These features were chosen to capture
both the size of the computations being performed as
well as the ordering of those computations and thus to
hopefully capture the running time�

����� Counting Nodes

A general category of formula features we have ex�
plored is counting the number of nodes of various
types� The following paragraphs describe several such
features and Table � gives an example of each feature
set for the split tree shown in Figure ��a�

One simple and yet important set of features of aWHT
split tree is the number and sizes of the leaves� These
leaves correspond to the WHTs that must actually be
computed directly and that appear in the formula rep�
resented by the split tree� Speci
cally� we count the
number ofWHT ����s� the number ofWHT ����s� the
number of WHT ����s� and so on that appear in the
formula� We call this feature set �Leaf Nodes�

One modi
cation of the above features is to count all
of the nodes of the split tree instead of just the leaves�
This not only indicates what size WHTs must be di�
rectly computed but also what intermediate sizes are
combined from smaller ones �although this feature set
can not distinguish leaf from internal nodes� We call
this feature set �All Nodes�

For su�ciently large split trees� it is possible for two
di	erent formulas to have the exact same All Nodes
counts� but to have di	erent Leaf Nodes counts� For
example� see Figure �� So� a simple re
nement of the
previous two feature sets is to include both� We call
this feature set �Leaf and All Nodes�

9

5 4

23

1 1

9

5 4

13

12

Figure �� Two split trees with the same All Nodes counts
but di�erent Leaf Nodes counts

Consider again the
rst set of features which simply
counted all of the leaf nodes� A di	erent re
nement of
this is to separate nodes that are right children of their
parents in the tree from those that are left children�
In particular� we count the number of leftWHT ����s�
the number of right WHT ����s� the number of left
WHT ����s� and so on in the formula� We call this
feature set �Left�Right Leaf Nodes�

Combining the previous idea along with the idea of
counting all the nodes in the split tree produces yet
another set of features� In particular� we can count
the number of di	erent sized left and right nodes ap�
pearing in the tree� excluding the root node� We call
this feature set �Left�Right All Nodes�

Table �� Example values of the di�erent node count feature sets for the tree shown in Figure ��a�� Each row corresponds
to a feature set and each column corresponds to a particular feature� For example� the column marked 	leaf �
 is the
feature representing the number of leaf nodes of size � �corresponding to WHT ����� in the split tree� The entries in the
table are the count of nodes of the given feature or an X if the feature is not present in the feature set�

leaf all right leaf left leaf right all left all
WHT size� � � � � � � � � � � � � � � � � � �

Leaf � � X X X X X X X X X X X X X X X
All X X X � � � X X X X X X X X X X X X

Leaf � All � � � � � X X X X X X X X X X X X
L�R Leaf X X X X X X � � � X X X X X X
L�R All X X X X X X X X X X X X � � � �

L�R Leaf � L�R All X X X X X X � � � � � � �

Once again� counting Left�Right All Nodes can�t al�
ways distinguish two trees that counting Left�Right
Leaf Nodes can distinguish� Thus� we can combine
the two for a large set of features that include all
those in the previous two sets� We call this feature
set �Left�Right Leaf and Left�Right All Nodes�

����� Features of the Shape of the Tree

All of the above features count the number of vari�
ous kinds of nodes of di	erent sizes� Another feature
category pertains to the general shape of the tree�

A simple feature is the �leftness or �rightness of a
tree� More formally� let the leftness of a node in a
tree be the number of left children minus the number
of right children along the path from the root to the
given node� Then the leftness of the tree is de
ned to
be the sum of the leftness of all of the tree�s nodes�
We call this single number feature �Leftness�

This single number feature can be expanded to provide
a vertical pro
le of the tree� In particular� the verti�
cal pro
le is an array of numbers� with each number
indicating how many nodes have a particular leftness
value� We call this feature set �Vertical Pro
le�

For example� the split tree shown in Figure ��a has
nodes with leftness as shown in Figure �� and a total
leftness of � since it is balanced�

� � nodes with leftness �

� � node with leftness �

� � node with leftness �

� � node with leftness ��

� � node with leftness ��

-1 -22 1 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

5

2 1

3 2

1 1

leftness:

Figure �� Leftness of nodes in tree of Figure ��a�

There are several possible single numbers that cap�
ture some aspect of a tree�s depth� A feature we call
�Total Path Length is the sum of the path lengths
of every node to the root� A feature we call �Average

Path Length divides the total path length by the total
number of nodes in the tree� A feature we call �Hori�
zontal Pro
le is constructed by counting the number
of nodes at each possible depth�

For example� the split tree shown in Figure ��a has
the following features�

� A total path length of ��

� An average path length of ����

and the horizontal pro
le is�

� � node at depth �

� � nodes at depth �

� � nodes at depth �

As has been suggested by previously described feature
sets� it is possible to combine multiple feature sets to
produce other feature sets� A few of these combina�
tions will be shown in the following sections� and we
have investigated many more than are reported here�

��� Evaluating Features

We now turn to evaluating the de
ned feature sets�

����� Number of Partitions

Because several di	erent formulas can have the same
set of feature values� the features can be thought of
as generating a set of equivalence classes or partitions�
Under a set of features� formulas are indistinguishable
if they have the same set of feature values� while for�
mulas are distinguishable if they have di	erent feature
values� For example� the two split trees shown in Fig�
ure � have the same feature values under the All Nodes
feature set but have di	erent feature values under the
Leaf Nodes feature set�

Ideally� we would like all of the formulas that fall into
the same partition to have very close running times�
One straightforward method for achieving this is to
create a large number of partitions causing few formu�
las to fall into any one partition� Thus� a very simple
measure of the e	ectiveness of a set of features is the
number of partitions it creates for a set of formulas�

Table �� Number of partitions generated by di�erent feature sets for all binary trees of di�erent sized WHTs

WHT size
Features �� �� �� �� �� ���

Node Count�
Leaf � �� �� �� �� �
All �� �� �� ��� ��� ���

Leaf � All �� �� �� ��� ��� ���
L�R Leaf �� �� �� ��� �� ���
L�R All �� ��� ��� ���� ���� �����

L�R Leaf � L�R All �� �� ��� ���� ���� �����
Shape�

Leftness �� �� �� �� �� ��
Vert Prof � �� �� �� ��� ���

Tot Path Len � �� �� �� �� ��
Avg Path Len � �� � �� �� ��

Horz Prof � �� �� �� �� ���
Vert � Horz Prof �� �� ��� ��� ��� ���

Composite�
All Nodes � Leftness �� ��� ��� ���� ���� �����

All Nodes � Vert Prof �� ��� �� ���� ���� �����
All Nodes � Tot Path Len �� �� �� �� ��� ����

All Nodes � Horz Prof �� �� �� �� ��� ����
All Nodes� Vert � Horz Prof �� ��� �� ���� ���� ����

All Formulas �� ��� ��� ��� ����� �����

Some results are shown in Table �� For each of the
sizes of the WHT in the table� all possible binary trees
were generated� The bottom line of the table shows
the number of di	erent formulas produced� The re�
maining lines show how many di	erent partitions or
equivalence classes are generated by the di	erent fea�
tures for each set of formulas�

First� consider the top portion of the table with node
count features� In general� the feature sets that are
re
nements of other feature sets have more partitions�
For example� the All Nodes feature set has many more
partitions than the Leaf Nodes feature set� and likewise
all of the Left�Right feature sets have more partitions
than their corresponding plain feature sets� The
nal
feature set in this group� the Left�Right Leaf Nodes
and Left�Right All Nodes features� is able to almost�
but not quite� uniquely identify all the formulas� How�
ever� as the size of WHT grows� this feature set is less
and less able to uniquely identify formulas�

The middle portion of the table considers features per�
taining to the shape of the split trees� The leftness fea�
ture and the vertical pro
le produce more partitions
than the path length features or the horizontal pro�

le� However� none of these features produce as many
partitions as a couple of the node count feature sets�

The lower portion of the table combines the All Nodes
features with some of the shape features� The fol�
lowing sections will make it clear why the All Nodes
features were chosen instead of some of the other node
count features� Combining the leftness feature or the
vertical pro
le greatly increases the number of parti�
tions over the simple All Nodes features while adding

path lengths or the horizontal pro
le does not� This
indicates that the All Nodes features incorporate more
of the horizontal features than the vertical ones�

����� Relative Standard Deviation

While being able to partition a set of formulas into a
large set of equivalence classes is important� ultimately
we are only concerned that all of the formulas within a
partition have roughly the same running time� A good
set of features can separate formulas with signi
cantly
di	erent running times into di	erent partitions so that
all formulas within a single partition have roughly the
same running time� As a measure of this� we consider
both the �weighted average relative standard devia�
tion and the maximum relative standard deviation�

For each partition we calculate the standard deviation
of the running times of all the formulas that fall into
that partition� We then calculate the relative standard
deviation for each partition by dividing the standard
deviation by the mean running time for that partition�
To calculate the weighted average relative standard de�
viation� we then take a weighted average over all par�
titions� weighting each relative standard deviation by
the number of formulas in the partition� See Table ��
The weighted average relative standard deviation indi�
cates on average how close running times of formulas
in the same partition are� The maximumrelative stan�
dard deviation indicates how far apart running times
of formulas are in the worst partition�

The weighted average and maximum relative standard
deviations are shown in Table �� For each WHT size
shown in the tables� formulas for all possible split trees

Table �� Calculating weighted average relative standard deviation

� Let Pk be the set of formulas in partition k�
� Let ti be the running time of formula i�
� Let mk be the mean running time of the formulas in Pk� Then� mk � �

jPkj

P
i�Pk

ti�

� Let �k be the standard deviation of the running times of the formulas in Pk�

Then �k �
q

�

jPkj

P
i�Pk

�ti �mk��

� Let rk be the relative standard deviation of the running times of the formulas in Pk� Then rk � �k
mk

�

� Then� the Weighted Average Relative Standard Deviation is

P
k
jPkjrkP
k
jPkj

�

Table �� Weighted average and maximum relative standard deviation of di�erent feature sets for all binary trees of di�erent
sized WHTs� Entries in each cell are percentages� weighted average followed by maximum�

WHT size
Features �� �� �� �� �� ���

Node Count�
Leaf ��� ��� ��� ���� ���� ���� ��� ���� ���� ���� ���� ����
All ��� ��� ��� �� ��� ��� ��� ���� ��� ��� �� ���

Leaf � All ��� ��� ��� �� ��� ��� ��� ���� ��� ��� �� ���
L�R Leaf �� ��� ��� ���� ���� ���� ���� ���� ���� ���� ���� ����
L�R All �� ��� �� ��� �� ��� �� ��� �� ���� �� ����

L�R Leaf � L�R All �� ��� �� �� �� ��� �� ��� �� ���� �� ���
Shape�

Leftness ���� ���� ��� ���� ���� ���� ���� ��� ���� ���� ��� ����
Vert Prof ��� ���� ���� ���� ���� ���� ���� ���� ���� ��� ���� ����

Tot Path Len ��� ���� ���� ���� ���� ���� ���� ��� ��� ��� ���� ����
Avg Path Len ��� ���� ���� ���� ���� ���� ���� ���� ���� ��� ���� ����

Horz Prof ��� ���� ���� ���� ���� ���� ���� ���� ���� ��� ���� ����
Vert � Horz Prof ��� ���� ���� ���� ���� ���� ��� ���� ���� ��� ���� ����

Composite�
All Nodes � Leftness ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ����

All Nodes � Vert Prof ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���
All Nodes � Tot Path Len ��� ��� ��� �� ��� ��� ��� ���� ��� ���� ��� ����

All Nodes � Horz Prof ��� ��� ��� �� ��� ��� ��� ���� ��� ���� ��� ����
All Nodes� Vert � Horz Prof ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ��� ���

All Formulas ��� ��� �� �� ���� ���� ���� ���� ���� ���� ���� ����

were generated� These formulas were timed using a
WHT package �Johnson � P�uschel� ���� on a Pen�
tium II running Linux�

Looking at the top portion of the table� we see that
using the Left�Right features tends to improve the
weighted average over the plain features while causing
mixed results for the maximum� The features that look
at all nodes signi
cantly outperform those just using
the leaves� The middle portions of the tables show that
the shape features are signi
cantly poorer than the All
Nodes features in both measures� However� the lower
portions of the tables show that the leftness feature
and vertical pro
le can help the weighted average of
All Nodes but at the expense of sometimes increasing
the maximum� Note that the plain All Nodes features
and the Leaf and All Nodes features consistently have
amongst the lowest maximums�

When considering both the relative standard deviation
results along with the number of partitions� the All

Nodes features and the Leaf and All Nodes features are
surprisingly impressive� Not only do these feature sets
produce some of the best relative standard deviation
results� but they do so with relatively few partitions�

�� Learning to Predict Running Times

With the features discussed in the previous section and
with some training data obtained by timing a few for�
mulas� we can use machine learning techniques to pro�
duce a function approximator that can quickly predict
the running times of new formulas� Note that this still
does not solve the problem of searching through a large
space of potential formulas� However� we can now ob�
tain a predicted running time much more quickly than
we could have obtained an actual running time�

While accurately predicting a formula�s running time
allows the fastest formula to be determined through
exhaustive search over all formulas� it is actually more

than necessary� In particular� accurately predicting
which of two formulas runs faster would also allow the
fastest formula to be determined through exhaustive
search over all formulas� Thus� a learning algorithm
need not learn the exact running time if it can accu�
rately predict which of two formulas runs faster�

��� Experimental Setup

The results that are presented in this section are for
WHT ��� and are similar to those collected for other
sizes� All ���� possible formulas corresponding to bi�
nary trees of WHT ��� were generated and timed us�
ing a WHT package �Johnson � P�uschel� ���� on a
Pentium II running Linux�

We used a back�propagation neural network as the
function approximator� For all of the results presented�
we used �� hidden units� a learning rate ���� and a mo�
mentum of ������ These parameters obviously are not
highly tuned due to the fact that they were used across
several di	erent input feature sets �of varying number
of inputs and across desired output �running time or
faster of two formulas�

The various node count feature sets were used as in�
puts to the neural network� The set of formulas were
partitioned into training and testing sets of di	erent
sizes� Except in the cases where all of the formulas
are used for both the training and testing sets� the re�
sults presented are averages over four random splits
into training and testing sets�

As was suggested earlier� neural networks were trained
on two di	erent tasks� In the
rst task� neural net�
works were trained to predict the running times of for�
mulas� In the second task� di	erent neural networks
were trained to predict which of two formulas would
run faster�

��� Results

Results are shown in Table �� The column marked
�Cost reports the running time prediction error on
the test set� In particular� it is calculated by dividing
the absolute di	erence between predicted running time
and actual running time by the actual running time�
and then averaging over all formulas in the test set�

� Let ci be the actual running time of formula i�

� Let pi be the predicted running time of formula i�

� Then the average percent error on predicting cost

is

P
i�test�set

jci�pij
ci

jtest�setj
�

The column marked �Faster corresponds to predict�
ing the faster of two formulas� This column reports
the prediction error on a random sampling of pairs of
formulas in the test set� In particular� the number of
samplings was ��� times the number of formulas in the
test set� The percentage was calculated by taking the

Table �� Neural network prediction accuracy forWHT ����
with node counting features� The column marked 	Cost

is the average percent error on predicting running time�
The column marked 	Faster
 is the percent mistakes on
predicting the faster of two formulas� Note that the 	Cost

and 	Faster
 columns should not be directly compared as
they report di�erent measures of performance� The size of
the training and test sets are shown in percentages�

Features Train Test Cost Faster
� � ����� �����
�� �� ����� �����

Leaf � � ����� �����
�� �� ����� ����
� � ����� �����
� � ���� ����
�� �� ��� ����

All � � ���� ����
�� �� ��� ����
� � ���� ����
� � ���� ����
�� �� ���� ����

Leaf � All � � ���� ����
�� �� ��� ���
� � ���� ����
� � ����� �����
�� �� ����� ����

L�R Leaf � � ����� ����
�� �� ����� �����
� � ����� �����
� � ��� ����
�� �� ���� ��

L�R All � � ���� ����
�� �� ���� ����
� � ��� ����
� � ���� ���

L�R Leaf �� �� ���� ���
and � � ���� ���

L�R All �� �� ���� ���
� � ���� ����

number of pairs of formulas the network predicted in�
correctly which ran faster and dividing it by the total
number of pairs of formulas tested� The �Cost and
�Faster columns should not be directly compared as
they report di	erent measures of performance�

The �Left�Right Leaf Nodes and Left�Right All
Nodes model yields the best learning results� These
results were quite good with less than �! error on pre�
dicting the faster of two formulas and less than �! er�
ror on predicting the running times even when trained
on only ��! of the formulas� The All Nodes model and
the Leaf and All Nodes model� which were discussed
earlier for their excellent performance at partitioning
the formulas� also perform well here�

The Leaf Nodes and Left�Right Leaf Nodes mod�
els both perform signi
cantly worse than all of the
other models� This is not surprising� given that these
two models had much larger weighted average relative
standard deviations�

�� Conclusions

We have explored a wide variety of feature sets to de�
scribe mathematical formulas� We identi
ed di	erent
feature sets with di	erent abilities to partition formu�
las according to their running times� By describing
formulas with features� we can present formulas to a
function approximator� While performance varied� as
expected� according to what set of features were used�
we showed that a neural network can learn to accu�
rately predict the faster of two formulas or the running
time of a formula given a limited set of training data�

A few researchers have addressed similar goals� FFTW
�Frigo � Johnson� ���� uses dynamic programming
to search for an optimal FFT implementation� assum�
ing that the optimal implementation of a particular
size FFT is still optimal if used as a subpart of a
larger FFT� Outside the signal processing
eld� Brewer
����� learned to predict the running times of various
implementations of an algorithm� He only considers
four di	erent implementations as opposed to the thou�
sands of formulas that we have considered� However�
for each implementation� Brewer uses linear regression
to predict that implementation�s running time across
di	erent input sizes� In Brewer�s framework� the user
speci
es the �terms or features that are used in the
linear regression� PHiPAC �Bilmes et al�� ���� and
ATLAS �Whaley � Dongarra� ���� use a set of pa�
rameterized linear algebra algorithms� For each algo�
rithm� a pre�speci
ed search is made over the possible
parameter values to
nd the optimal implementation�
Adding to these successful approaches� we have intro�
duced the use of machine learning in this domain�

We are currently pursuing several lines of research that
build upon the work presented in this paper� including�

� Determining how well a function approximator
can interpolate and extrapolate to di	erent size
WHTs� Trained with expansions of WHT ���
and WHT ���� could a function approximator
predict well for WHT ��� or WHT ���	�

� Investigating learning across machines and com�
pilers� Can a function approximator learn to pre�
dict running times for di	erent machines and com�
pilers� given features of the machine and compiler�

� Investigating other signal processing algorithms
besides the WHT and the FFT as well as consid�
ering non�binary WHTs�

� Finding a method to search through the extremely
large number of possible formulas representing
signal processing algorithms� Since it is not feasi�
ble to exhaustively generate all possible formulas
for large transforms� we are developing heuristic
methods for searching the space of formulas�

Further� this work could be extended to other mathe�
matical algorithms outside of signal processing or even
general algorithms�

Acknowledgements

We would especially like to thank Jeremy Johnson�
Jos"e Moura� and Markus P�uschel for their many help�
ful discussions on this research�

This research was sponsored by the DARPA Grant No�
DABT������������� The content of the information in
this publication does not necessarily re#ect the posi�
tion or the policy of the Defense Advanced Research
Projects Agency or the US Government� and no o��
cial endorsement should be inferred� The
rst author�
Bryan Singer� is partly supported by a National Sci�
ence Foundation Graduate Fellowship�

References

Auslander� L�� Johnson� J� R�� � Johnson� R� W�
������ Automatic implementation of FFT algo�
rithms �Technical Report ������ Department of
Mathematics and Computer Science� Drexel Univer�
sity� Philadelphia� PA�

Bilmes� J�� Asanovi"c� K�� Chin� C�� � Demmel� J�
������ Optimizing matrix multiply using PHiPAC�
a Portable� High�Performance� ANSI C coding
methodology� Proceedings of the ���� International
Conference on Supercomputing �pp� ���$����

Brewer� E� A� ������ High�level optimization via au�
tomated statistical modeling� Proceedings of the
Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming �pp� ��$���

Frigo� M�� � Johnson� S� G� ������ FFTW� An adap�
tive software architecture for the FFT� Proceed�
ings of the International Conference on Acoustics�
Speech� and Signal Processing �pp� ����$�����

Johnson� J�� � P�uschel� M� ������ In search of the
optimalWalsh�Hadamard transform� Proceedings of
the International Conference on Acoustics� Speech�
and Signal Processing� �In press�

Moura� J� M� F�� Johnson� J�� Johnson� R�� Padua� D��
Prasanna� V�� � Veloso� M� M� ������ SPIRAL�
Portable Library of Optimized Signal Processing Al�
gorithms� http���www�ece�cmu�edu��spiral��

Rao� K� R�� � Yip� P� ������ Discrete cosine trans�
form� Boston� Academic Press�

Singer� B�� � Veloso� M� ������ Automated formula
generation and performance learning for the FFT
�Technical Report CMU�CS�������� Computer Sci�
ence Department� Carnegie Mellon University�

Tolimieri� R�� An� M�� � Lu� C� ������ Algorithms for
discrete Fourier transforms and convolution ��nd
edition� New York� Springer�Verlag�

Whaley� R� C�� � Dongarra� J� J� ������ Automat�
ically tuned linear algebra software� SC���	 High
Performance Networking and Computing	 Proceed�
ings of the ���� ACM
IEEE SC�� Conference�

