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Abstract— Improving trust in the state of Cyber-Physical Sys-
tems becomes increasingly important as more Cyber-Physical
Systems tasks become autonomous. Research into the sound
of Cyber-Physical Systems has shown that audio side-channel
information from a single microphone can be used to accurately
model traditional primary state sensor measurements such as
speed and gear position. Furthermore, data integration re-
search has shown that information from multiple heterogeneous
sources can be integrated to create improved and more reliable
data. In this paper, we present a multi-microphone machine
learning data fusion approach to accurately predict ascend-
ing/hovering/descending states of a multi-rotor UAV in flight.
We show that data fusion of multiple audio classifiers predicts
these states with accuracies over 94%. Furthermore, we signifi-
cantly improve the state predictions of single microphones, and
outperform several other integration methods. These results
add to a growing body of work showing that microphone side-
channel approaches can be used in Cyber-Physical Systems to
accurately model and improve the assurance of primary sensors
measurements.

I. INTRODUCTION

Obtaining high-assurance state information (such as speed,
location, direction, etc.) from Cyber-Physical Systems (CPS)
becomes increasingly important, especially as more of their
tasks become autonomous. A self-driving vehicle that cannot
accurately determine its own position, or a unmanned deliv-
ery drone flying in the wrong direction are examples of how
incorrect state information can lead to catastrophic incidents
and/or mis-delivered packages.

To determine CPS state, such as speed, acceleration or
location of CPS, we commonly rely on information from one
or more primary sensor measurements such as speedometers,
accelerometers or GPS. However, it has been shown that
most, if not all sensors are susceptible to attacks. This
problem is accelerated by the trend of increased sensors
connectivity with (wireless) networked systems and the
Internet [1], [2], [3], [4]. For GPS for example, this can
result in a false estimation of position. Multiple solutions
to improve trust in sensor information have been proposed.
Most of these rely on improving sensor security through
cryptographic solutions or data analysis of the sensor signal
to find anomalies that are indicative of falsification [5].
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Fig. 1. Quadcopter equipped with microphones (positioned in the red cir-
cles) close to each rotor. After classifying the sound of each rotor separately,
we fuse the classifier outputs to obtain improved ascend/hover/descend state
predictions.

A different approach to improving trust in CPS state
estimation is to use side-channel information from sensors
that use data from a different domain. Such state estimations
from side-channel information can be used to verify or enrich
primary sensor state estimations. For example, in a previous
study it was shown that microphone audio can be used to
accurately estimate states of a moving vehicle [6]. These
side-channel estimations can be used in conjunction with
primary sensors to improve the trust of state estimation.

In this paper, we introduce an approach to multi-
microphone state prediction of a quadcopter drone in flight.
More specifically, we investigate the use of multiple micro-
phones as side-channel sensors for state prediction. We show
that using multiple microphones, we can predict with near-
perfect accuracy whether a quadcopter is either descending,
hovering or ascending. Furthermore, we show that using a
data fusion technique, we can accurately assess the relative
quality of microphone data, by investigating their deviation
from the consensus between the microphones.

Contribution. The contributions of this paper are as
follows. First, we show that we can predict ascending,
descending and hovering states from the sound a quadcopter
makes. Secondly, we show how predictions from multiple
microphones can be integrated to obtain an improved state
prediction using data fusion. Thirdly, we show we can
accurately estimate the relative quality of microphone side-
channel data using data fusion.

Synopsis. The remainder of this paper is structured as
follows. Section III introduces our method of improving
quadcopter state assurance by predicting and integrating
machine learning outputs from multiple microphone sources.
Section IV details the way we evaluate our system. Section
V provides results of these integration methods, and Section
VI closes with conclusions.
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II. BACKGROUND

To establish high trust in a state, humans assess their
environment using information from different domains. For
example, assume we drive a vehicle at a constant speed, and
the speedometer suddenly indicates zero while the sound of
the engine stays the same. We will immediately assume that
the speedometer is faulty and trust our other senses that the
vehicle is still driving at the same speed. We can use this
intuition in CPS by using side-channel information to make
state predictions. For example, research has shown that audio
data from a microphone can be used to accurately estimate
various states (i.e. speed and gear position) from a moving
vehicle with [6].

Audio state estimation of CPS. Research into using sound
for the analysis of physical systems is not new. Nevertheless,
nearly all of this research is aimed at detecting low-level
system states, such as malfunction or fault detection of
engines, gears or bearings [7], [8]. We propose to estimate
more complex states from the sound a CPS produces. For this,
we take inspiration from a research area related to digital
signal processing called audio content analysis. Instead of
just detecting whether a CPS behaves faulty compared to a
baseline measurement from the sound it makes, we propose
to investigate more complex states. Some examples are
detecting the state a quadcopter can be in, for example
hovering, descending and ascending.

Data fusion. Recent research in data integration has shown
that information from multiple heterogeneous sources can
be integrated to create improved, and more reliable data
[9]. These data fusion techniques have for example been
successfully applied in a musical context of integrating
crowd-sourced chord sequences [10]. It was shown that
integrated data outperforms individual source data, and that
it can be used to accurately estimate the relative quality
of data sources. In this research, we will combine CPS
state estimation from audio with data fusion, to improve the
accuracy of state prediction, and therefore obtain a higher
trust in state estimations from sound.

III. QUADCOPTER STATE PREDICTION AND INTEGRATION
FROM AUDIO

This section details the method used to integrate multiple
predictions of the state of a quadcopter from the sound
its rotors make during flight. We fly a 3DR IRIS+ quad-
copter a predefined flight plan in autopilot mode, while
four microphones attached to each of the four arms of the
quadcopter record the sound of the rotors. During flight, an
on-board computer records ground truth state information,
as detailed in Section III-A.1. From the audio of each of the
microphones, we extract features that are used in a machine
learning classification task, as detailed in Section III-A.2.
We classify the audio features of each of the microphones
individually, as detailed in Section III-B. To improve the clas-
sification results of the individual microphones, we integrate
their predictions, as detailed in Section III-C.

Fig. 2. Schematic pipeline of the proposed system. The sound of each rotor
is classified using a Random Forest classifier. The outputs of all classifiers
are then integrated using Data Fusion to create an improved state prediction.

A. Data collection

The flight of a quadcopter is easily influenced by weather
conditions such as wind, and the pilot (controller) by means
of overcompensation. To control for pilot influence during
flight, we set up a controlled environment where the quad-
copter is flying a preprogrammed path in autopilot mode.
The flight plan consists of seven steps:

1) Take-off and ascend to 5 meters
2) Hover for 10 seconds
3) Ascend to 10 meters
4) Hover for 10 seconds
5) Descend to 5 meters
6) Hover for 10 seconds
7) Descend and land

A visualization of this flight path can be found in green in
Fig. 3. Flights were performed in an open field in dry weather
conditions. During the autopilot flight, we recorded both
ground truth state information through telemetry (Section III-
A.1) and the sound of each of the rotors (Section III-A.2).

1) Telemetry: During flight, we used the on-board teleme-
try system to record quadcopter flight data at a fixed sampling
frequency. In this research, we focus on predicting three
states of the quadcopter during flight: ascending, hovering
and descending (AHD). The quadcopter itself does not record
this data, but it does record data from which we can derive
these states, i.e. the absolute altitude measured by the on-
board GPS receiver.

Obtaining AHD. To calculate AHD, we compute a gradient
from the altitude data, from which we calculate a step
function that describes if the gradient is increasing, stable
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Fig. 3. Example of recorded altitude of autopilot flight plan in green and
derived ascending (1), hovering (0) and descending (-1) data in red.

or decreasing. We interpret this step function as AHD. The
gradient is calculated through a first-order discrete difference
of the sampled altitudes. Suppose we measure the altitude
at a certain sampling frequency to be [0,5,5,5,0], that is:
starting at 0 meter followed by 3 samples at 5 meter and
finally back at 0 meter again. Computing the gradient results
in differences [5,0,0,−5], from which we only keep the sign
of the numbers and the zeros. The result of this example
is [+1,0,0,−1], which we interpret as +1, 0 and −1 as
an ascending state, hovering state and descending state,
respectively. An example of derived AHD state information
from GPS altitude data can be found in red in Fig. 3.

2) Rotor audio feature extraction: To record the sound of
each quadcopter rotor during flight, we equip the quadcopter
with four microphones, one above each of the arms, close
to the rotors. We record the sound at 44.1 kHz, 16-bit. As
the spectrogram of an example recording in Fig. 4 shows,
the rotor sound is rich in content at higher frequencies.
Therefore, the audio is passed through a nonuniform filter
bank of 24 bands per octave to increases frequency content
detail at higher frequencies.

From this filtered signal, we create a logarithmically fil-
tered short-time Fourier transform spectrogram at ten frames
per second with a frame size of 8192 samples, with a
minimum and maximum frequency of 30Hz and 18kHz,
respectively. From a visual inspection of the spectrogram,
this frequency range was found to have the most important
information. From preliminary experiments, it was found that
frequency analysis beyond these bounds did not significantly
improve results. Nonuniform filtering and short-time Fourier
transform results in a spectrogram representation of the
signal in 181 bins per audio frame.

3) Context window: Research in a large number of audio
content analysis experiments has shown that better prediction
accuracies can be achieved by aggregating information over
several frames instead of using a single frame. Research in
speech recognition [11] and automatic chord estimation [12]
provide examples where context windows have proven to be
successful in improving classification.

Therefore, we concatenate consecutive frames (context
window) of the spectrogram to form the input to a classifier.
More specifically, to classify frame fi from the spectrogram,
we concatenate the frames fi−n/2 to fi+n/2 to create a context
window Wi of size n, where n ∈ 2N>0. These concatenated
spectrogram frames are used as input for a classifier. We
experiment with different window sizes to find the optimal
amount of context in terms of classification accuracy.

B. Classification

Although recent advances in deep learning have shown
great results in machine learning using deep architectures,
we choose a fast, lightweight solution that in theory can run
from an on-board quadcopter computer in real-time. From
a preliminary experiment, it was found that the commonly
used Random Forest Classifier (RF) produced the best results
from a selection of learning algorithms. RF [13], [14] is an
ensemble classifier that uses unpruned classification trees
created from bootstrap samples of the training data and
random feature selection in tree induction. Prediction is made
by aggregating (majority vote or averaging) the predictions
of the ensemble, thereby creating a strong classifier from
multiple weaker ones. It is beyond the scope of this paper
to fully describe RF. For a complete description we refer to
[13], [14].

The context window frames of each of the four micro-
phones are classified using RF, resulting in four heteroge-
neous classification streams. An example of this can be
found in Table I, where the classification results of four
consecutive context windows from the four microphones
M0,M1,M2 and M3 can be found. We hypothesize that the
shared information between the microphones can be used
to improve the classification accuracy over using a single
microphone. To integrate the shared information between the
microphones, we propose to use data fusion and compare its
results with other integration methods.

C. Integration

To find the best state predictions among the classification
results of four individual microphones, we explore several
integration methods. We compare the baseline methods ran-
dom picking and majority voting with data fusion integration,
and compare them with the average microphone accuracy.
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Fig. 4. Example of a spectrogram of rotor audio, while a quadcopter
performs the sequence described in Section III-A and Fig. 3
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TABLE I
STATES (ASCEND, HOOVER, AND DESCEND) PREDICTED FROM A

SEQUENCE (Wi . . .Wi+3) OF AUDIO CONTEXT WINDOWS FROM FOUR

MICROPHONES M(0...3).

Wi Wi+1 Wi+2 Wi+3
M0 Ascend Descend Descend Hover
M1 Ascend Hover Hover Hover
M2 Ascend Hover Descend Descend
M3 Ascend Hover Descend Descend

1) Random Picking (RND): selects a state from a ran-
domly picked microphone for every context window. For the
example in Table I, RND essentially picks one state from
34 possible state combinations by picking a state from a
randomly chosen microphone per context window.

2) Majority Voting (MV): selects the most frequent state
shared between the microphones for every context window.
In case multiple states are most frequent, we randomly pick
from the most frequent states. For the example in Table I,
MV would result in either Ascend, Hover, Descend,
Hover or Ascend, Hover, Descend, Descend.

3) Data Fusion (DF): can be viewed as an extension of
majority voting in the sense that in addition to finding the
most common state per audio context window, it also uses
the agreement between microphones to integrate data. Mi-
crophones with higher agreement with other microphones are
considered to be more trustworthy. We propose to a method
adapted from ACCUCOPY model introduced by Dong et al. in
[9], [15] to integrate conflicting databases. This model was
previously successfully applied in a musical context, where
it showed to outperform baseline methods in an automatic
chord extraction task [10]. In this study, we propose to
integrate RF state predictions from four microphones. In the
following sections, we refer to the RF output of a single
microphone as a source, which provides a sequence of
state predictions. Calculating DF involves the computation
of source accuracy, vote counts, and state probabilities.

Source accuracy is calculated by taking the arithmetic
mean of the probabilities of all states the source provides.
As an example, suppose we estimate the probabilities of
the states in Table I based on their frequency count (c.q.
likelihood). That is, Ascend for the first column is 1,
Descend for the second column is 1/4, etc. Taking the
average of the state probabilities of the first source in our
example of Table I we can calculate the source accuracy
A(M0) of M0 as follows:

A(M0) =
1+ 1/4+ 3/4+ 1/2

4
= 0.625 (1)

In the same way, we can calculate the source accuracies for
the other three sources which are 0.625, 0.75 and 0.75 for
M1, M2 and M3 respectively.

Assuming that the sources are independent, then the prob-
ability that a source provides a correct state is its source
accuracy. Conversely, the probability that a source provides
an incorrect state is the fraction of the inverse of the source
accuracy over all possible incorrect values n: (1−A(M))

n . In our

case n = 2, since we have three possible states. The states of
sources with higher source accuracies are more likely to be
selected through the use of vote counts.

Vote counts are used as weights for the probabilities of
the states they provide. With n and A(Mi) we can derive a
vote count VS(Mi) of a source Mi. The vote count of a source
is computed as follows:

VS(Mi) = ln
nA(Mi)

1−A(Mi)
(2)

Applied to our example, this results in vote counts of 2.62
for M0 and M1, and 2.80 for M2 and M3. The higher vote
count for M2 and M3 means that its values are more likely
to be correct than those of M0 and M1.

State probabilities: After having defined the accuracy of
a source, we can now determine which states provided by all
the sources are most likely correct, by taking into account
source accuracy. In the computation of state probabilities we
take into account a) the number of sources that provide those
states and b) the accuracy of their sources. With these values
we calculate the vote count VC(L ) of a state L , which is
computed as the sum of the vote counts of its providers:

VC(L ) = ∑
σ∈SL

VS(σ) (3)

where SL is the set of all sources that provide the state L .
For example, for the vote count of Hover in the last column
of the example in Table I, we take the sum of the vote counts
of M0 and M1. For the vote count of Descend we take the
sum of the vote counts of M2 and M3. To calculate state
probabilities from state vote counts, we take the fraction of
the state vote count and the state vote counts of all possible
states D:

P(L ) =
exp(VC(L ))

Σl∈D exp(VC(l))
(4)

Applied to our example from Table I, we see that solv-
ing this equation for Hover results in a probability of
P(Hover) ≈ 0.39, and for Descend results in a proba-
bility of P(Descend) ≈ 0.56. Instead of having to choose
randomly as would be necessary in a majority vote, we can
now see that Descend is more probable to be the correct
state, because it is provided by sources that are overall more
trustworthy.

Iterative computation. State likelihoods and source ac-
curacy are defined in terms of each other, which poses
a problem for calculating these values. As a solution, we
initialize the state likelihoods with equal probabilities and
iteratively compute state likelihoods and source accuracy
until the state probabilities converge or oscillation of values
is detected. The resulting state is composed of the states with
the highest likelihoods.

For detailed Bayesian analyses of the techniques men-
tioned above we refer to [15], [16]. With regard to the
scalability of data fusion, it has been shown that DF with
source dependency runs in polynomial time [15]. Further-
more, [17] proposes a scalability method for very large data
sets, reducing the time for source dependency calculation by
two to three orders of magnitude.
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4) Average Microphone Accuracy (AVG): To assess the
improvement over the average microphone in terms of
classification accuracy, we also compare the results of DF,
RND and MV with the average classification accuracy of
the microphones. Computing AVG simply produces the non-
weighted mean of the accuracies (i.e. the proportion of
true correct classifications compared to the ground truth)
of all four microphones. Comparing the integration methods
with AVG will show how much on average the integration
methods will improve the classification results of the average
microphone.

IV. EVALUATION

We evaluate our system of audio feature extraction, classi-
fication and data integration integration accuracy using cross-
validation (Section IV-A). Furthermore, we investigate the
Data Fusion source accuracy measure (Section IV-B).

A. Integration Accuracy

To evaluate the integration methods, we perform cross-
validation on 15 different iterations of the flight plan men-
tioned in Section III-A.1. For each of the 4 microphones,
for all 15 flights, we perform 20-fold frame-wise cross
validation on randomly selected 70/30% train/test set splits
of the shuffled data. For each fold, a RF classifier is trained
on the training set of the folds and tested on the testing
set of the folds. The output of RF on the test set of each
the microphones is integrated using each integration method
(DF, RND, and MV). The average accuracy of the 20 folds
is reported as the classification accuracy of each integration
method. We repeat this process for each context window size.

To evaluate the output quality of each integration method,
we compare their accuracies (i.e. the fraction of correct
classifications with regard to the ground truth). We also
compare these scores with the average microphone accuracy
(AVG) to see how much integration improves classification
from an average microphone. These results show whether we
can improve the trust in quadcopter state estimation by data
fusing audio side-channel data from multiple microphones,
compared to using a single microphone.

B. Data Fusion Source Accuracy

Research in other domains has shown that DF Source
Accuracy can be used as a way to rank sources by their
quality without having ground truth knowledge [9], [10]. To
evaluate it in the context of CPS in this paper, we compare
for each microphone its DF Source Accuracy with its ground
truth accuracy. This reveals if DF Source Accuracy is useful
for estimating microphone data quality from their agreement
with the other microphones.

V. RESULTS

A. Integration Accuracy.

Classification results for several context window sizes
for the different integration methods DF, MV and RND can
be found in Fig. 5. The figure shows that DF produces
the best results of all integration methods, up to 94.2%,
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Fig. 5. Average 20-fold cross-validation classification results for Data Fu-
sion (DF), Majority Voting (MV), and Random Picking (RND) of integrating
the classifications of four microphones for several audio context window
sizes. Average accuracy (AVG) shows the average microphone accuracy.

outperforming all other integration methods by around 10
to 20 percentage points. For every context window size DF
performs significantly better than MV with p � 0.01 using
a Wilcoxon signed-rank test for the null hypothesis that
two related paired samples come from the same distribution
[18]. MV improves the average microphone accuracy with
5.5 percentage points on average for every context size.
RND does not improve the average microphone classification,
performing equally with the average microphone at every
context window size.

Effect of context window size. Fig. 5 shows that classifi-
cation results for all methods improve with context window
size, but DF seems to be more robust to this effect. DF, in
contrast to the other integration methods, takes into account
the agreement between sources through the DF Source Ac-
curacy measure. This way, information shared between the
sources over all windows is used to integrate data, instead
of just using information from a single frame in MV, RND.

Increasing the context window size increases the reaction
time of the system: if more frames are needed to make a
good state estimation, more time is needed. Therefore, the
smaller the frame size the better. We find that DF integration
stabilizes after around context windows sizes of 13 frames
(or 1.3 seconds). For the other integration methods, we
find that accuracy increases almost linearly with context
window size. This shows that DF is better at finding useful
shared knowledge between the microphones to make a good
integration, compared to the other integration methods.

B. DF Source Accuracy.

An important part of data fusion is the computation of a
DF source accuracy per source. DF source accuracy provides
an agreement score for each source relative to the other
sources, which is used for selecting the best values from
the most accurate sources. This ranking can be used in CPS
for the estimation of sensor quality. For example, in our
application of data fusion for the integration of microphone
classifications, DF source accuracy can provide a ranking
of microphone trustworthiness, without having ground truth
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Fig. 6. Correlation between accuracy of each microphone and the DF
source accuracy. The strong correlation shows that DF source accuracy is a
strong indicator of the classification accuracy of the microphones.

knowledge. This knowledge can for example be used as side-
channel information providing rotor or microphone quality.
As an example, if a rotor is damaged, its sound will be
different from the consensus and therefore will have a low
DF source accuracy.

Microphone quality assessment. Investigating the rela-
tionship between DF source accuracy and the actual micro-
phone classification accuracy provides insight whether data
fusion is capable of assessing the relative quality of micro-
phone state estimations. This relationship is shown in Fig.
6, in which microphone classification accuracy are plotted
against the DF source accuracy. Fig. 6 shows the microphone
accuracies and DF source accuracy for all microphones,
window sizes, and cross-validation folds.

Fig. 6 shows that both DF source accuracies and the
microphone accuracies the values follow a similar normal
distribution with µ ≈ 0.8. Furthermore, it shows that the
values are scattered along a diagonal line, indicating that
a higher DF source accuracy is associated with a higher
microphone accuracy, and vice versa. The strong correlation
is confirmed by Pearson’s measure of linear dependence. We
find a Pearson’s coefficient of 0.92 with a p-value of p �
0.001, indicating a strong linear correlation. These results
show that using DF source accuracy, we can accurately assess
the relative quality of microphone classifications without
ground truth knowledge.

VI. CONCLUSIONS

We have shown that through audio content analysis and
classification of quadcopter rotor sound, we can predict
ascending, hovering and descending states of a quadcopter
with accuracies over 94%. More specifically, we have shown

that through data fusion of classifications from multiple
microphones, we can improve ascending, hovering and de-
scending state prediction compared to a single microphone.
Furthermore, we have shown that we can accurately assess
the relative quality of microphone classifications using data
fusion source accuracy.

Our research contributes to a growing body of work of
research into state prediction of Cyber-Physical Systems
from the sound they make. Our results show the benefit of
using multiple microphone side-channels to obtain state pre-
dictions with high assurance. Microphones are inexpensive
sensors which are relatively hard to attack. Furthermore, the
proposed feature extraction and machine learning prediction
techniques are computationally cheap, yet robust. Therefore,
we believe that microphones are an obvious side-channel
choice for further research into obtaining state estimations
with high assurance.
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