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Abstract 
The optimization of matrix-matrix multiplication (MMM) 
performance has been well studied on general-purpose  
desktop and server processors.  Classic solutions exploit 
common microarchitectural features including superscalar 
execution and the cache and TLB hierarchy to achieve 
near-peak performance.  Typical digital signal processors 
(DSPs) do not have these features, and instead use in-order 
execution, configurable memory hierarchies, and pro-
grammable I/O interfaces. 

We investigate the methods needed to achieve high per-
formance MMM on the Texas Instruments C6713 floating-
point DSP.  This processor has two components that can be 
used to accelerate MMM: a software-managed memory 
hierarchy, and a direct memory access (DMA) engine that 
can perform block copies from main memory to into the 
memory hierarchy.  Our MMM implementation overlaps 
computation with DMA block transfers.  For matrices lar-
ger than the data caches, we observed a 46% performance 
increase over a blocked MMM implementation, and a 
190% increase over the Texas Instruments DSP library. 

Introduction 
The availability of a high performance MMM implementa-
tion is of critical importance for a large range of numerical 
computation problems.  MMM is both a common stand-
alone function and a ubiquitous kernel of more complex 
computations. 

Texas Instruments (TI) provides an optimized single preci-
sion floating point MMM implementation for their C67x 
processors, the DSPF_sp_mat_mul() function.  This as-
sembly-coded function is optimal for matrices that can fit 
within the L1 data cache.  Its innermost loop attains 100% 
of the peak performance of the C6713 with minimal over-
head for the outer loop control code.  Unfortunately, TI’s 
triple loop MMM implementation has poor data locality 
that leads to frequent cache misses for larger matrices. 

MMM temporal data locality is improved by partitioning 
the computation so that it operates on cache resident sub-
matrices (called blocks).  The computation that is per-
formed on these cache resident blocks is called the mini-
MMM.  This blocked MMM algorithm is used by all fast 
MMM implementations for general purpose processors 
including the Goto BLAS library [4], the Intel Math Ker-
nel Library [1], and ATLAS library generator [5]. 

While blocked MMM also improves performance on 
DSPs, further performance gains car be achieved by using 
their software-managed memory hierarchies.  Specifically, 
the DMA engine can efficiently copy sub-matrices directly 
from main memory into a higher level of the memory hier-
archy.  This block copying can also be overlapped with 
mini-MMM computation.  This approach has been applied 
before for MMM on the PlayStation 2’s vector units [2]. 

We develop a faster MMM implementation than the ven-
dor implementation for a typical DSP, the TI C6713, with: 
(1) blocked computation, and (2) explicit block copies 
from main memory to scratch pad memory via DMA in 
parallel with the mini-MMM computation. 

DSP microarchitecture features 
The TMS320C6713 DSP [3] is the latest implementation 
in the C67x family of high-end floating-point (FP) DSP 
chips from Texas Instruments and is available at speeds up 
to 300 MHz.  The C6713 has two single precision FP ad-
ders, two FP comparators, and two FP multipliers that give 
it a peak performance of 1800 MFLOPS.  The peak theo-
retical performance for MMM is 1200 MFLOPS because 
only the adders and multipliers are used. 

The C6713 has two levels of cache and a 192 KB scratch 
pad SRAM, referred to by TI as “L2 mapped RAM.”  Data 
in main memory are cached normally by the L1 caches and 
the L2 cache.  Data explicitly allocated or copied into the 
scratch pad are also cached upon usage in the L1 caches.  
The 4 KB L1 data cache has a 4 cycle latency, and the 
64 KB unified L2 cache has an 8 cycle latency and can 
also be used as scratch pad memory. 

The C6713 DMA engine allows for background memory 
block transfers.  The C6713 DMA engine can also perform 
memory transfers to and from the scratch pad.  This allows 
data to be loaded directly into memory hierarchy.  Figure 1 
illustrates the major components of the C6713 DSP. 
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Figure 1: The TI C6713 DSP microarchitecture 



Measurement methodology 
All performance results are presented as MFLOPS as 
measured on the TI Code Composer Studio 3.0 cycle accu-
rate simulator.  Before each MMM implementation is 
measured, we touch the values of the input matrices to 
recreate the cache state as if the matrices had been pro-
duced by a preceding function.  The L2 cache was config-
ured at its largest possible size of 64 KB.  The TI 
TMS320C6x C/C++ Compiler 5.0 was used to compile our 
C code implementation.  Currently, our MMM implemen-
tations only support matrices that are even multiples of the 
block size.  Preliminary implementations without this limi-
tation see only minor losses of performance. 

Blocked MMM 
The first optimization we perform is to implement a 
blocked MMM to address the main shortcoming of the TI 
MMM for matrices larger than the data caches. 

We use two approaches to determine the best block size 
for our blocked MMM, a model-driven optimization by 
Yotov et al. [6], and a search similar to ATLAS [5].  The 
model-driven approach predicts that a block size of 28×28 
is best for the 4 KB L1 data cache of the C6713.  The re-
sults of the empirical search match the model’s prediction, 
as plotted in Figure 2. 

Our blocked MMM function uses the TI MMM function 
for the mini-MMM computation, and a block size of 
28×28.  The performance of this implementation is plotted 
in Figure 3 for matrices up to 336×336.  The performance 
of the TI MMM degrades as the input matrices no longer 
fit in the data caches, while the blocked MMM suffers far 
less due to its superior data locality.  The blocked MMM is 
slower than the TI MMM for small matrices because it 
performs memory block copies. 

Blocked MMM with scratch pad and DMA 
The block copy operations that are required by a blocked 
MMM implementation can be performed faster by using 
the DMA engine of the C6713 instead of explicitly reading 
and then writing floating point values.  The DMA engine 
can load matrix data faster than the CPU because it issues 
cache-line sized requests whereas the CPU must transfer 
data one word at a time. 

Allocating MMM blocks in the scratch pad is a second part 
of effectively using the architecture of the C6713.  Fig-
ure 3 plots the performance of our implementation that 
replaces conventional block copy operations with DMA 
transfers to blocks allocated in the scratch pad.  The over-

head for the setup of DMA transfers results in worse per-
formance than the non-DMA blocked MMM for the 
smallest of matrices.  However for large matrices, the 
DMA transfers improve performance by 37% on average 
over the non-DMA blocked MMM. 

Blocked MMM with background DMA 
Because the DMA operations take place with little interac-
tion with the CPU, it is possible to perform at least some of 
the DMA transfers in the background with the mini-MMM 
computation.  We modify our blocked MMM to overlap 
DMA block transfers with each mini-MMM computation. 

Our final MMM implementation with background DMA 
achieves a 7% performance gain over the serial DMA ver-
sion.  Figure 3 plots the performance of the background 
DMA implementation.  For large matrices, our MMM im-
plementation comes within 4% of the peak performance of 
the TI MMM for cache resident matrices.  This means that 
the block operations and loop overhead are only 4% of the 
runtime of our blocked MMM implementation. 

Conclusions 
The blocked MMM is an effective algorithm for high per-
formance on general purpose processors.  On DSP chips 
such as the C6713, the scratch pad and DMA enable fur-
ther performance gains.  By performing DMA transfers in 
the background with the mini-MMM, we achieve perform-
ance limited only by the mini-MMM. 
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Figure 2: Search for optimal block size with TI MMM 0
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Figure 3: Performance of our MMM implementations 


