
Accelerating Blocked Matrix-Matrix Multiplication
using a Software-Managed Memory Hierarchy with DMA

 Roland E. Wunderlich Markus Püschel James C. Hoe
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213-3890
{rolandw, pueschel, jhoe}@ece.cmu.edu

Abstract
The optimization of matrix-matrix multiplication (MMM)
performance has been well studied on general-purpose
desktop and server processors. Classic solutions exploit
common microarchitectural features including superscalar
execution and the cache and TLB hierarchy to achieve
near-peak performance. Typical digital signal processors
(DSPs) do not have these features, and instead use in-order
execution, configurable memory hierarchies, and pro-
grammable I/O interfaces.

We investigate the methods needed to achieve high per-
formance MMM on the Texas Instruments C6713 floating-
point DSP. This processor has two components that can be
used to accelerate MMM: a software-managed memory
hierarchy, and a direct memory access (DMA) engine that
can perform block copies from main memory to into the
memory hierarchy. Our MMM implementation overlaps
computation with DMA block transfers. For matrices lar-
ger than the data caches, we observed a 46% performance
increase over a blocked MMM implementation, and a
190% increase over the Texas Instruments DSP library.

Introduction
The availability of a high performance MMM implementa-
tion is of critical importance for a large range of numerical
computation problems. MMM is both a common stand-
alone function and a ubiquitous kernel of more complex
computations.

Texas Instruments (TI) provides an optimized single preci-
sion floating point MMM implementation for their C67x
processors, the DSPF_sp_mat_mul() function. This as-
sembly-coded function is optimal for matrices that can fit
within the L1 data cache. Its innermost loop attains 100%
of the peak performance of the C6713 with minimal over-
head for the outer loop control code. Unfortunately, TI’s
triple loop MMM implementation has poor data locality
that leads to frequent cache misses for larger matrices.

MMM temporal data locality is improved by partitioning
the computation so that it operates on cache resident sub-
matrices (called blocks). The computation that is per-
formed on these cache resident blocks is called the mini-
MMM. This blocked MMM algorithm is used by all fast
MMM implementations for general purpose processors
including the Goto BLAS library [4], the Intel Math Ker-
nel Library [1], and ATLAS library generator [5].

While blocked MMM also improves performance on
DSPs, further performance gains car be achieved by using
their software-managed memory hierarchies. Specifically,
the DMA engine can efficiently copy sub-matrices directly
from main memory into a higher level of the memory hier-
archy. This block copying can also be overlapped with
mini-MMM computation. This approach has been applied
before for MMM on the PlayStation 2’s vector units [2].

We develop a faster MMM implementation than the ven-
dor implementation for a typical DSP, the TI C6713, with:
(1) blocked computation, and (2) explicit block copies
from main memory to scratch pad memory via DMA in
parallel with the mini-MMM computation.

DSP microarchitecture features
The TMS320C6713 DSP [3] is the latest implementation
in the C67x family of high-end floating-point (FP) DSP
chips from Texas Instruments and is available at speeds up
to 300 MHz. The C6713 has two single precision FP ad-
ders, two FP comparators, and two FP multipliers that give
it a peak performance of 1800 MFLOPS. The peak theo-
retical performance for MMM is 1200 MFLOPS because
only the adders and multipliers are used.

The C6713 has two levels of cache and a 192 KB scratch
pad SRAM, referred to by TI as “L2 mapped RAM.” Data
in main memory are cached normally by the L1 caches and
the L2 cache. Data explicitly allocated or copied into the
scratch pad are also cached upon usage in the L1 caches.
The 4 KB L1 data cache has a 4 cycle latency, and the
64 KB unified L2 cache has an 8 cycle latency and can
also be used as scratch pad memory.

The C6713 DMA engine allows for background memory
block transfers. The C6713 DMA engine can also perform
memory transfers to and from the scratch pad. This allows
data to be loaded directly into memory hierarchy. Figure 1
illustrates the major components of the C6713 DSP.

8-wide
VLIW core

4 KB L1 instruction cache Memory
interface

Buffered
serial ports

General
purpose I/O

...

64 KB
L2 cache

192 KB
scratch pad

DMA
engine

4 KB L1 data cache

Figure 1: The TI C6713 DSP microarchitecture

Measurement methodology
All performance results are presented as MFLOPS as
measured on the TI Code Composer Studio 3.0 cycle accu-
rate simulator. Before each MMM implementation is
measured, we touch the values of the input matrices to
recreate the cache state as if the matrices had been pro-
duced by a preceding function. The L2 cache was config-
ured at its largest possible size of 64 KB. The TI
TMS320C6x C/C++ Compiler 5.0 was used to compile our
C code implementation. Currently, our MMM implemen-
tations only support matrices that are even multiples of the
block size. Preliminary implementations without this limi-
tation see only minor losses of performance.

Blocked MMM
The first optimization we perform is to implement a
blocked MMM to address the main shortcoming of the TI
MMM for matrices larger than the data caches.

We use two approaches to determine the best block size
for our blocked MMM, a model-driven optimization by
Yotov et al. [6], and a search similar to ATLAS [5]. The
model-driven approach predicts that a block size of 28×28
is best for the 4 KB L1 data cache of the C6713. The re-
sults of the empirical search match the model’s prediction,
as plotted in Figure 2.

Our blocked MMM function uses the TI MMM function
for the mini-MMM computation, and a block size of
28×28. The performance of this implementation is plotted
in Figure 3 for matrices up to 336×336. The performance
of the TI MMM degrades as the input matrices no longer
fit in the data caches, while the blocked MMM suffers far
less due to its superior data locality. The blocked MMM is
slower than the TI MMM for small matrices because it
performs memory block copies.

Blocked MMM with scratch pad and DMA
The block copy operations that are required by a blocked
MMM implementation can be performed faster by using
the DMA engine of the C6713 instead of explicitly reading
and then writing floating point values. The DMA engine
can load matrix data faster than the CPU because it issues
cache-line sized requests whereas the CPU must transfer
data one word at a time.

Allocating MMM blocks in the scratch pad is a second part
of effectively using the architecture of the C6713. Fig-
ure 3 plots the performance of our implementation that
replaces conventional block copy operations with DMA
transfers to blocks allocated in the scratch pad. The over-

head for the setup of DMA transfers results in worse per-
formance than the non-DMA blocked MMM for the
smallest of matrices. However for large matrices, the
DMA transfers improve performance by 37% on average
over the non-DMA blocked MMM.

Blocked MMM with background DMA
Because the DMA operations take place with little interac-
tion with the CPU, it is possible to perform at least some of
the DMA transfers in the background with the mini-MMM
computation. We modify our blocked MMM to overlap
DMA block transfers with each mini-MMM computation.

Our final MMM implementation with background DMA
achieves a 7% performance gain over the serial DMA ver-
sion. Figure 3 plots the performance of the background
DMA implementation. For large matrices, our MMM im-
plementation comes within 4% of the peak performance of
the TI MMM for cache resident matrices. This means that
the block operations and loop overhead are only 4% of the
runtime of our blocked MMM implementation.

Conclusions
The blocked MMM is an effective algorithm for high per-
formance on general purpose processors. On DSP chips
such as the C6713, the scratch pad and DMA enable fur-
ther performance gains. By performing DMA transfers in
the background with the mini-MMM, we achieve perform-
ance limited only by the mini-MMM.

References
[1] Intel Math Kernel Library web site [Online]. Available:

http://www.intel.com/software/products/mkl/
[2] Scientific Computation on PlayStation 2: Using the Vector

Units [Online]. Available:
http://arrakis.ncsa.uiuc.edu/ps2/using_vector_units.php

[3] Texas Instruments DSP products web site [Online].
Available: http://dspvillage.ti.com/

[4] K. Goto and R. van de Geijn. “On reducing TLB misses in
matrix multiplication.” Dept. Comput. Sci., Univ. Texas,
Austin, Tech. Rep. TR-2002-55, 2002.

[5] R. C. Whaley, A. Petitet, and J. J. Dongarra. “Automated
empirical optimization of software and the ATLAS project.”
Parallel Comput., vol. 27, no. 1-2, pp. 3-35, 2001.

[6] K. Yotov, X. Li, G. Ren, M. J. Garzarán, D. Padua, K.
Pingali, and P. Stodghill. “Is search really necessary to
generate high-performance BLAS?” Proc. IEEE, vol. 93,
no. 2, pp. 358-386, 2005.

500

600

700

800

16 20 24 28 32 36 40 44 48 52
Matrices edge dimensions (N)

M
FL

O
PS

764 MFLOPS

Figure 2: Search for optimal block size with TI MMM 0

200

400

600

800

28 84 140 196 252 308
Matrices edge dimensions (N)

M
FL

O
PS

TI MMM
Blocked MMM
Blocked + DMA
Blocked + background DMA

Figure 3: Performance of our MMM implementations

