
Performance/Energy Optimization of DSP Transforms
on the XScale Processor�

Paolo D’Alberto, Markus Püschel, and Franz Franchetti

Carnegie Mellon University
Department of Electric and Computer Engineering

Pittsburgh, PA, USA
{pdalbert,pueschel,franzf}@ece.cmu.edu

Abstract. The XScale processor family provides user-controllable independent
configuration of CPU, bus, and memory frequencies. This feature introduces
another handle for the code optimization with respect to energy consumption
or runtime performance. We quantify the effect of frequency configurations on
both performance and energy for three signal processing transforms: the discrete
Fourier transform (DFT), finite impulse response (FIR) filters, and the Walsh-
Hadamard Transform (WHT).

To do this, we use SPIRAL, a program generation and optimization system for
signal processing transforms. For a given transform to be implemented, SPIRAL
searches over different algorithms to find the best match to the given platform with
respect to the chosen performance metric (usually runtime). In this paper we use
SPIRAL to generate implementations for different frequency configurations and
optimize for runtime and physically measured energy consumption. In doing so
we show that first, each transform achieves best performance/energy consumption
for a different system configuration; second, the best code depends on the cho-
sen configuration, problem size and algorithm; third, the fastest implementation
is not always the most energy efficient; fourth, we introduce dynamic (i.e., dur-
ing execution) reconfiguration in order to further improve performance/energy.
Finally, we benchmark SPIRAL generated code against Intel’s vendor library rou-
tines. We show competitive results as well as 20% performance improvements or
energy reduction for selected transforms and problem sizes.

1 Introduction

The rapidly increasing complexity of computing platforms keeps application develop-
ers under constant pressure to rewrite and re-optimize their software. A typical micro-
architecture may feature one or multiple processors with several levels of memory
hierarchy, special instruction sets, or software-controlled caches. One of the recent ad-
ditions to this list of features is software-controlled scaling of the CPU core frequency.
The idea is to enable the user (or the operating system) to scale up or down the CPU
frequency and the supply voltage to save energy; this is especially important for devices
operating on limited power sources such as batteries. Frequency scaling is available for

� This work was supported by DARPA through the Department of Interior grant NBCH1050009
and by NSF through awards 0234293 and 0325687.

K. De Bosschere et al. (Eds.): HiPEAC 2007, LNCS 4367, pp. 201–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



202 P. D’Alberto, M. Püschel, and F. Franchetti

different processors, such as AMD’s Athlon 64, Intel’s XScale (fixed-point processors
targeted for embedded applications) and Core processor families.

XScale systems provide more reconfigurability options, namely the (to a certain de-
gree) independent selection of CPU, bus, and memory frequency. Reconfigurability
complicates the process of optimizing code because different configurations in essence
correspond to different platforms. However, taking advantage of reconfigurability is
crucial in the high-performance and power-aware signal processing domain.

Contribution of this paper. We consider three linear signal transforms: the discrete
Fourier transform (DFT), finite impulse response (FIR) filters, and the Walsh-Hadamard
transform (WHT). Our test platform is a SITSANG board with an XScale PXA255
fixed-point processor. The platform provides the above mentioned frequency scaling but
no voltage scaling. To perform the experiments, we integrated frequency scaling in the
automatic code generation and optimization framework SPIRAL [1]. Using SPIRAL,
we generated code tuned for different frequency settings or to a dynamic frequency
scaling strategy.

In this work, we show: First, code adaptation to one specific or the best setting can
yield up to 20% higher performance or energy reduction than using an implementation
optimized for a different setting (e.g., the fastest CPU vs. the fastest memory). Second,
there are algorithms and configurations that achieve the same performance but have
a 20% different energy consumption. For example, the fastest configuration can con-
sume 5% more energy than the most energy efficient configuration. Third, we apply
dynamic scaling (i.e., during execution) and are able to reduce energy consumption;
however, this technique does not improve runtime performance. Finally, we show that
SPIRAL generated code compares favorably with the hand-tuned Intel’s vendor library
IPP, which is oblivious to the frequency configuration.

Related work. Optimization for frequency and voltage scaling typically targets large-
scale problems and more general codes. Recent work introduces compiler techniques
[2], power modeling [3], and software/hardware monitoring of applications [4] to aid
adaptation of frequency/voltage settings. [5] and [6] present a compile-time algorithm
for the dynamic voltage scaling within an application, inserting switching points chosen
by static analysis.

Different frequency settings yield memory hierarchies with different characteristics.
Thus, a code generation tool that enables the tuning of codes to the architecture’s char-
acteristics is an ideal solution. Examples of such tools include for linear algebra kernels
ATLAS [7] and Sparsity [8], for the DFT and related transforms FFTW [9], and for
general linear signal transform SPIRAL, which is used in this paper.

Organization of the paper. In Section 2, we provide details on our platform and an
overview of the program generator SPIRAL. In Section 3, we introduce the specific
framework used to collect our results. In Section 4, we present experimental results for
the DFT, FIR filters, and the WHT. We conclude in Section 5.

2 Background

In this section, we first describe the XScale architecture including its reconfigurability
features and then the SPIRAL program generation framework.



Performance/Energy Optimization of DSP Transforms on the XScale Processor 203

2.1 Intel XScale PXA255

The Intel XScale architecture targets embedded devices. One crucial feature is the hard-
ware support for energy conservation and high burst performance. Specifically, appli-
cations may control the frequency settings of the platforms’s CPU, bus, and memory.
In this paper, we consider the PXA255, a fixed-point processor in the XScale family
[10] with no voltage scaling. We refer to this platform simply as XScale throughout the
paper.

Frequency configuration. A frequency configuration is given by a memory frequency
m (one of 99 MHz, 132 MHz, or 165 MHz), a bus multiplier α (one of 1, 2, or 4)
and, a CPU multiplier β (one of 1, 1.5, 2, or 3). When we choose a configuration triple
(m, α, β), the memory frequency is set to m, the bus frequency to αm/2 and the CPU
frequency to αβm. Out of 36 possible choices for (m, α, β), not all are recommended
or necessarily stable. In this paper, we consider a representative set of 13 configurations
that are stable for the DSP transforms considered. The configurations are summarized
in Table 1. The frequencies are given in MHz and each setting is assigned a mnemonic
name that specifies the CPU frequency, and the ratio of memory and bus frequency to
the CPU frequency, respectively. For example, 530-1/4-1/2 means that the memory runs
at a quarter, and the bus at half of the 530 MHz CPU speed.

A change of configuration is not instantaneous and is done by writing appropriate
configuration bits to a control register (called CCCR, [10]); we have measured an aver-
age penalty of 530 μs.

For a software developer the problem is at least two-fold. First, different config-
urations correspond in effect to different platforms and thus code optimized for one
configuration may be suboptimal for another. Second, the choice of configuration is
not straightforward. For example, if the highest performance is desired, there are three

Table 1. PXA255 Configurations: The frequencies are in MHz; 398-1/4-1/4 is the startup setting

CPU Memory Bus Name

597 99 99 597-1/6-1/6

530 132 265 530-1/4-1/2

530 132 132 530-1/4-1/4

497 165 165 497-1/3-1/3

398 99 199 398-1/4-1/2

398 99 99 398-1/4-1/4

331 165 165 331-1/2-1/2

298 99 49 298-1/3-1/6

265 132 132 265-1/2-1/2

199 99 99 199-1/2-1/2

165 165 82 165-1-1/2

132 132 66 132-1-1/2

99 99 49 99-1-1/2



204 P. D’Alberto, M. Püschel, and F. Franchetti

candidate settings: 597-1/6-1/6 (fastest CPU), 497-1/3-1/3 (fastest memory), and 530-
1/4-1/2 (fastest bus). Energy constraints may further complicate the selection.

2.2 SPIRAL

SPIRAL is a program generator for linear signal transforms such as the DFT, the WHT,
the discrete cosine and sine transforms, FIR filters, and the discrete wavelet transform.
The input to SPIRAL is a formally specified transform (e.g., DFT of size 245), the out-
put is a highly optimized C program implementing the transform. SPIRAL can generate
fixed-point code for platforms such as XScale.

In the following, we first provide some details on transforms and their algorithms,
then we explain the inner workings of SPIRAL.

Transforms and algorithms. We consider three transforms in this paper: the DFT, FIR
filters, and the WHT. Each transform is a matrix-vector multiplication y = Mx, where
M is the transform matrix. For example, for input size n, the DFT is defined by the
matrix

DFTn = [ωk�
n ]0≤k,�<n, ωn = e−2πi/n. (1)

The output of the DFT is also of size n.
Algorithms for these transforms are sparse structure factorizations of the transform

matrix. For example, the Cooley-Tukey fast Fourier transform (FFT) follows:

DFTkm = (DFTk ⊗Im)D(Ik ⊗ DFTm)P, n = km. (2)

Here, Im is the m×m identity matrix; D is a diagonal matrix, and P is a permuta-
tion matrix, both depending on k and m (see [11] for details). Most importantly, the
Kronecker, or tensor product, is defined as

A ⊗ B = [ak,�B]k,�, for A = [ak,�]k,�. (3)

If one of the tensor factors A, B is the identity matrix, as in (2), then y = (A ⊗ B)x
can be implemented simply as a loop. For example, y = (Ik ⊗ B)x is a loop with
k iterations. In each iteration, B is multiplied to a contiguous chunk of x to yield the
corresponding chunk of y. y = (A ⊗ Im)x is a loop with m iterations, but in this case,
A is multiplied to subvectors of x extracted at stride m.

The WHT is a real transform defined recursively by WHT2 = DFT2, and

WHT2n = (WHT2k ⊗I2m)(I2k ⊗ WHT2m), n = k + m. (4)

It only exists for two-power sizes. (4) also serves as algorithm for the WHT, similar
to (2).

Algorithms for FIR filters can be described similarly; this includes different choices
of blocking, Karatsuba, and frequency domain methods [12,13].

How SPIRAL works. In SPIRAL, a decomposition like (2) is called a rule. For a given
transform, SPIRAL recursively applies these rules to generate one out of many possible



Performance/Energy Optimization of DSP Transforms on the XScale Processor 205

algorithms represented as a formula. This formula is then structurally optimized using a
rewriting system and finally translated into a C program (for computing the transform)
using a special purpose compiler. The C program is further optimized and then a stan-
dard C compiler is used to generate an executable. Its runtime is measured and fed into
a search engine, which decides how to modify the algorithm; that is, the engine changes
the formula, and thus the code, by using a dynamic-programming search. Eventually,
this feedback loop terminates and outputs the fastest program found in the search. The
entire process is visualized in Fig. 1 (see [1,14] for a complete description).

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
e
a
rc

h
/L

e
a
rn

in
g

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

(SPL Compiler)

Evaluation

Level

Fig. 1. The program generator SPIRAL

Note that there is a large degree of freedom in creating a formula, or algorithm, for
a given transform due to the choices of decomposition in each step. For example, for
computing a DFT of size 16 three different factorizations of 16 in (2) can be used: 2×8,
4×4, or 8×2. Similar choices apply recursively to the smaller transforms obtained after
each decomposition.

3 Extension of SPIRAL

In this work, our goal is to automatically generate implementations of transforms for
the XScale platform. These programs are optimized specifically for every frequency
configuration (see Table 1). As optimization metric, we use both runtime performance
and energy consumption. To achieve our goal, we extended SPIRAL in two directions.
First, we included frequency scaling into SPIRAL’s framework. Second, we enabled
SPIRAL to run with physically measured energy consumption as performance measure
in the feedback loop (see Fig. 1).



206 P. D’Alberto, M. Püschel, and F. Franchetti

3.1 Frequency Scaling in SPIRAL

Static frequency scaling. We enable SPIRAL to generate code for different frequency
configurations by a transform-transparent tagging framework that starts at the formula
level. The basic idea is simple. Any formula F generated by SPIRAL can be tagged
with a frequency configuration, for example 497-1/3-1/3, written as

[F ]497−1/3−1/3. (5)

Next, we extended the SPL compiler (see Fig. 1) to understand these tags and translate
them into the appropriate code. In the example (5), the entire formula would be executed
at 497-1/3-1/3 with a potential1 switch at the the beginning and at the end. We call this
static frequency scaling.

Dynamic frequency scaling. The same technique is used to perform dynamic fre-
quency scaling; that is, to perform different parts of the formula at different configu-
rations. This is explained next, starting with a motivation. Consider the decomposition
rule for the WHT in (4). First, the input vector x is multiplied by (I2k ⊗WHT2m). As
explained after (3), this corresponds to a loop with 2k iterations. The loop body calls
WHT2m on contiguous subvectors of x of length 2m. This access pattern yields good
cache utilization and, thus, high performance. It is compute-bound.

The second part, (WHT2k ⊗I2m) is also a loop, but with 2m iterations. Further, in
the loop body WHT2k accesses a 2k-element long subvector of x, but at stride 2m. If
2m is sufficiently large, this is effectively equivalent to reducing the cache size (unless
the cache is fully associative), since the elements of x are mapped to the same cache
set. The consequence is cache thrashing. The computation becomes memory-bound.

The basic idea is now to run both parts at different settings. Using tags and an exam-
ple, this can be expressed as

[(WHT2k ⊗I2m)]497−1/3−1/3 · [(I2k ⊗ WHT2m)]530−1/4−1/2. (6)

The tag on the right has a higher CPU and bus speed and the tag on the left has a higher
memory speed. SPIRAL will generate the corresponding code for easy evaluation. The
question is how to distribute the tags in the formula. This is explained next.

Algorithm. We included an algorithm (see Table 2) for tagging a given formula into
SPIRAL. The algorithm in principle applies to WHTs and DFTs but is shown only for
WHT for simpler presentation. FIR filters are structured differently; they are compute-
bound for all input sizes. The input to the tagging algorithm is the cache size N , two
frequency configurations c and m to be assigned to memory and compute-bound for-
mula parts respectively, and a formula F . The algorithm recursively descends the for-
mula expression tree and assigns tags. The c tag is assigned once a subformula has an
input that fits into the cache.

In the experiments, this algorithm is combined with search over the different formu-
las of the transform.

1 We never perform unnecessary switches as it is very cheap to check whether the processor
already runs at the desired configuration.



Performance/Energy Optimization of DSP Transforms on the XScale Processor 207

Table 2. Algorithm for assigning tags to a formula (example WHT). Input: Cache size N ;
tags c, m for compute-bound and memory-bound sub-formulas, respectively; a formula F for
a WHT2k+� of the form (WHT2k ⊗I2�)(I2k ⊗ WHT2� ) where WHT2k ,WHT2� are
further expanded. Output: F tagged.

TagIt(F, N, c, m)

1: if 2k+� ≤ N then
2: return Fc

3: end if
4: if 2� ≤ N then
5: return [(WHT2k ⊗I2�)]m[(I2k ⊗ WHT2� )]c
6: else
7: return [(WHT2k ⊗I2�)]m(I2k ⊗ TagIt(WHT2� ))
8: end if

3.2 Performance Measurement

We installed SPIRAL on a desktop computer (host machine) and connected the XS-
cale board through the local network. On the host, SPIRAL generates tagged formulas,
translates them into fixed-point code, cross-compiles for the XScale, and builds a load-
able kernel module (LKM). We measure runtime or energy as explained next.

Runtime. We upload the LKM into the board. We first execute the code once (hence,
we “warm up” the caches), and then measure a sufficient number of iterations. Finally,
we return the runtime to the host and to SPIRAL’s search engine to close the feedback
loop.

Energy. The XScale board has a 3.5V battery as its power source. To measure energy,
we unplug all external sources and we measure, sample, and collect the out-coming
battery current through a digital multi meter (DMM).2 The energy is measured using
the following procedure: First, we measure the transform execution time t as explained
above and determine the number of iterations sufficient to let the board run the transform
for about 10 seconds. Second, we turn off all peripherals power supplies (e.g., LCD) and
we take 512 samples 2 ms apart (a sampling period of about one second) of the battery
current, then we compute the average current I . Third, we determine the energy by the
formula E = UIt, where U = 3.5V . Notice that we assume that the battery voltage
is anchored to its nominal value. This energy value is sent back to the host system and
SPIRAL to close the feedback loop.

4 Experimental Results

We consider the following transforms: DFT, WHT, and 8-tap and 16-tap FIR filters. For
each transform, we use SPIRAL in separate searches for each configuration to gener-
ate the programs optimized for runtime or energy. Runtime and energy measurements
are performed as explained in Section 3.2. We use gcc 3.4.2 to compile all generated

2 We use an Agilent 34401A.



208 P. D’Alberto, M. Püschel, and F. Franchetti

programs and and we used crosstool to build the cross compiler. In the following figures,
we show performance for seven out of the thirteen configurations in Table 1.

The performance is reported in pseudo Mop/s (million operations per second). We
exclude from the operations count the index computations and, for input size n, we
assume 5n log2(n) for the DFT, n log2(n) for the WHT, and n(2d−1) for a d-tap filter.
The energy performance is reported in pseudo Mop/J (million operations per Joule).
Both metrics (runtime performance and energy efficiency) preserve the runtime and
energy relation, respectively.

We use the Intel vendor library IPP 4.1 as benchmark except for the WHT (not pro-
vided in IPP) and for DFTs of sizes larger than 212 (outside the suggested range for
IPP). IPP provides one implementation, which is oblivious of the configuration; in con-
trast, SPIRAL generates specific codes programs for each configuration.

4.1 Runtime Performance Results

General behavior. We achieve the best performance for the DFT (Fig. 2(a)) and WHT
(Fig. 2(b)) for problems fitting in the cache. For larger sizes, ther performance drops.
This is a property of these transforms as the structure of their algorithms produces
strided memory access and hence cache thrashing (see also the discussion in Sec-
tion 3.1).

For FIR filters (Figs. 2(c) and (d)), in contrast, the performance remains roughly
constant across sizes due to the consecutive access of the input.

Best configuration. For the DFT and FIR filters, there is only one best configuration
independently of the problem size, namely 530-1/4-1/2 (highest bus speed) for the DFT
and 597-1/6-1/6 (highest CPU speed) for FIR filters. This again shows that FIR filters
are compute-bound, whereas DFT and WHT are memory-bound. Note that the config-
uration 597-1/6-1/6 performs poorly with both DFT and WHT.

For the WHT, the best configuration depends on the problem size, namely, whether or
not the problem fits into cache. For in-cache sizes, 530-1/4-1/2 is best, for out-of-cache
sizes 497-1/3-1/3 is best. The difference, however, is less than 10%.

SPIRAL vs. IPP. In Fig. 4(a), we show the performance of IPP’s DFT for different
configurations. The relative speed of SPIRAL generated DFT over IPP is shown in
Fig. 4(b). Here, IPP is the base line constant to zero and the performance improvement
(in percent) of SPIRAL over IPP is shown. For problem sizes n = 64, 128, and 4096,
SPIRAL generated code is faster; in contrast, it is slower for sizes n = 256, . . . , 2048.

Further, the relative speed of SPIRAL over IPP may vary by more than 10% points
for different configurations. For example, for n = 128, SPIRAL generated code is as
fast as the IPP code in configuration 398-1/4-1/4, but almost 25% faster in configuration
497-1/3-1/3.

SPIRAL generated code for 8-tap FIR filters (Fig. 2(c)) outperforms the respective
IPP routines (Fig. 3(a)) by a factor of two. In the case of 16-tap FIR filters, SPIRAL
(Fig. 2(d)) and IPP (Fig. 3(b)) have roughly equal performance.

IPP does not provide a WHT library function.



Performance/Energy Optimization of DSP Transforms on the XScale Processor 209

(a) SPIRAL DFT (b) SPIRAL WHT

0

20

40

60

80

100

120

140

160

32 64 128 256 512 1024 2048 4096 8192 16384 32768
vector length N

pe
rf

or
m

an
ce

  [
M

op
/s

] 597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

0

20

40

60

80

100

120

140

64 256 1024 4096 16384 65536 262144 1048576
vector length N

pe
rf

or
m

an
ce

 [M
op

/s
] 597-1/6-1/6

530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

(c) SPIRAL 8-tap FIR filter (d) SPIRAL 16-tap FIR filter

0

50

100

150

200

250

300

16 32 64 128 256 512 1024 2048 4096
vector length N

pe
rf

or
m

an
ce

  [
M

op
/s

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2 0

50

100

150

200

16 32 64 128 256 512 1024 2048 4096
vector length N

p
er

fo
rm

an
ce

  [
M

o
p

/s
]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

Fig. 2. Performance (in pseudo Mop/s) of SPIRAL generated code: (a) DFT, (b) WHT, (c) 8-tap
FIR filter, and (d) 16-tap FIR filter

(a) IPP 8-tap FIR filter (b) IPP 16-tap FIR filter

0

20

40

60

80

100

120

16 32 64 128 256 512 1024 2048 4096
vector length N

pe
rf

or
m

an
ce

  [
M

op
/s

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

0

50

100

150

200

250

16 32 64 128 256 512 1024 2048 4096
vector length N

pe
rf

or
m

an
ce

  [
M

op
/s

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

Fig. 3. Performance (in pseudo Mop/s) of IPP FIR filters: (a) 8-tap FIR filter, and (b) 16-tap FIR
filter

4.2 Energy Results

General behavior. The energy efficiency of FIR filters (for both SPIRAL and IPP)
does not depend on the problem size (see Figs. 5(c) and (d) and Fig. 6). In contrast, the



210 P. D’Alberto, M. Püschel, and F. Franchetti

(a) IPP DFT Performance (b) SPIRAL vs. IPP

0

20

40

60

80

100

120

140

160

4 8 16 32 64 128 256 512 1024 2048 4096
vector length N

pe
rf

or
m

an
ce

  [
M

op
/s

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

-35

-25

-15

-5

5

15

25

35

64 128 256 512 1024 2048 4096
vector length N

%
 p

er
fo

rm
an

ce
  [

M
op

/s
]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

Fig. 4. (a) DFT performance of Intel’s IPP (in pseudo Mop/s); (b) Relative performance of SPI-
RAL generated DFT over IPP’s DFT. The percentage is the performance improvement of SPI-
RAL over IPP.

energy efficiency of the DFT (Fig. 5(a) and Fig. 7(b)) and of the WHT (Fig. 5(b)) is
high for in-cache problem sizes and significantly lower for large problem sizes.

Best configuration. For SPIRAL generated DFT code, the configuration with the high-
est energy efficiency (Fig. 5(a)) depends on the problem size and it is a compromise
among the speed of CPU, bus and memory. For example, 398-1/4-1/2 is clearly best for
sizes 8, 16, and 32. For the SPIRAL generated WHT code (Fig. 5(b)) the best configura-
tion in-cache is 530-1/4-1/4 and out-of-cache 398-1/4-1/2. Note that these configuration
are different from the ones optimal for performance (see Section 4.1).

SPIRAL vs. IPP. In Fig. 7(a) we show the energy efficiency of IPP’s DFT code for
different configurations. The relative efficiency of SPIRAL generated code over IPP
code is shown in Fig. 7(b). Qualitatively, the plot is similar to Fig. 4(b).

SPIRAL generated 8-tap FIR filter code Fig. 5(c) gains threefold over IPP (Fig. 6(a))
in energy efficiency. For 16-tap FIR filters, SPIRAL still gains about 20% (Fig. 5(d)
versus Fig. 6(b)) even though the performance is roughly equal (Section 4.1).

4.3 Dynamic Frequency Scaling

Finally, we investigate the potential of dynamic frequency scaling; that is, the dynamic
switching among configurations during the computation (see Section 3.1). For this tech-
nique to make sense, the best configuration for in-cache and out-of-cache sizes has to
differ. This is the case only for the WHT. Both performance (Fig. 2(b)) and energy
efficiency (Fig. 5(b)) are candidates for dynamic frequency scaling.

For both metrics we first choose two configurations. Then, for all problem sizes
that do not fit into cache (N ≥ 216) we apply the tagging algorithm given in Table 2
to the fastest formulae. This way, SPIRAL finds a WHT implementation that switches
between the chosen configurations and automatically trades the switching overhead and



Performance/Energy Optimization of DSP Transforms on the XScale Processor 211

(a) SPIRAL DFT (b) SPIRAL WHT

0

20

40

60

80

100

120

2 8 32 128 512 2048 8192 32768
vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/J

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

0

10

20

30

40

50

2 8 32 128 512 2048 8192 32768 131072 524288
vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/J

] 590-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

(c) SPIRAL 8-tap FIR filter (d) SPIRAL 16-tap FIR filter

0

20

40

60

80

100

120

140

160

16 32 64 128 256 512 1024 2048 4096
vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/s

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

0

20

40

60

80

100

120

16 32 64 128 256 512 1024 2048 4096
vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/J

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

Fig. 5. Energy efficiency (in pseudo Mop/J) of SPIRAL generated code: (a) DFT, (b) WHT, (c)
8-tap FIR filter, and (d) 16-tap FIR filter

(a) IPP 8-tap FIR filter (b) IPP 16-tap FIR filter

0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096

vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/J

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

0

20

40

60

80

16 32 64 128 256 512 1024 2048 4096
vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/J

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

Fig. 6. Energy efficiency (in pseudo Mop/J) of IPP FIR filters: (a) 8-tap FIR filter, and (b) 16-tap
FIR filter

the performance or energy efficiency gains obtained by switching, overall optimizing
for the given metric.

Runtime performance. Based on Fig. 2(b) we find two configuration candidates to
switch between: 1) 530-1/4-1/2 is the fastest configuration for small problem sizes and



212 P. D’Alberto, M. Püschel, and F. Franchetti

(a) IPP DFT Energy Efficiency (b) SPIRAL vs. IPP

0

10

20

30

40

50

60

2 8 32 128 512 2048 8192 32768 131072
vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/J

]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

-60

-40

-20

0

20

40

60

80

64 128 256 512 1024 2048 4096
vector length N

%
 e

ne
rg

y 
ef

fic
ie

nc
y 

[M
op

/J
]

597-1/6-1/6
530-1/4-1/2
530-1/4-1/4
497-1/3-1/3
398-1/4-1/2
398-1/4-1/4
99-1-1/2

Fig. 7. (a) IPP’s DFT energy efficiency (in pseudo Mop/J). (b) Energy efficiency gain or loss of
SPIRAL generated DFT over IPP’s DFT in percent. Higher means SPIRAL is more efficient.

thus the candidate for CPU bound parts, and 2) 497-1/3-1/3 for memory bound parts of
the computation. However, due to the large switching overhead (530μs) SPIRAL finds
that not switching at all leads to the highest performance.

Energy efficiency.Optimizing for energy efficiency leaves more room for the successful
application of dynamic frequency scaling, as energy depends both on runtime and power,
which in turn both depend nonlinearly on the CPU, bus, and memory frequencies.

Our experiments indicate that switching between 398-1/4-1/2 and 497-1/3-1/3 yields
the most energy efficient implementations. Thus, we investigate switching between
these configurations further detailing two approaches.

Starting from the statically most efficient configuration 398-1/4-1/2 (line “398-1/4-
1/2 static” in Fig. 8) we can gain efficiency by switching to the faster configuration
497-1/3-1/3 for all sub-formulae of shape WHT23 ⊗I2n (line “dynamic 1” in Fig. 8).
The efficiency gain is due to higher bandwidth requirements for WHT23 ⊗I2n as this
formula trashes the mini cache and at the same time is able to fully utilize the CPU’s 8
registers and thus the higher CPU frequency.

15

16

17

18

19

20

21

22

23

65536 131072 262144 524288 1048576
vector length N

en
er

gy
 e

ff
ic

ie
nc

y 
[M

op
/J

]

398-1/4-1/2 static
497-1/3-1/3 static
dynamic 1
dynamic 2

Fig. 8. Dynamic frequency scaling of SPIRAL generated WHT, switching between 497-1/3-1/3
and 398-1/4-1/4



Performance/Energy Optimization of DSP Transforms on the XScale Processor 213

Starting from the statically second most efficient configuration 497-1/3-1/3 (line
“497-1/3-1/3 static” in Fig. 8) we can gain efficiency by switching to the slower config-
uration 398-1/4-1/2 for all sub-formulae of shape WHT22 ⊗I2n (line “dynamic 2” in
Fig. 8). In the case of WHT22 ⊗I2n the CPU is not fully utilized and the mini cache
is not trashed. Thus, we can slow down the CPU frequency without hurting runtime
and can even slow down the memory and bus and still gain energy efficiency. However,
this approach (line “dynamic 2” in Fig. 8) cannot compete with the first approach (line
“dynamic 1” in Fig. 8).

Overall, dynamic frequency scaling between 398-1/4-1/2 and 497-1/3-1/3 yields a
slight gain in energy efficiency with respect to both baseline configurations, however,
due to different reasons.

5 Conclusions

We show how a program generation framework as SPIRAL can be used to produce ef-
ficient DSP kernels such as the DFT, the WHT, and FIR filters on the XScale embedded
platform. We support frequency scaling and thus automatically generate and optimize
programs tuned for different configurations. Our experiments show that the best con-
figuration depends on the DSP kernel, the metric and sometimes even on the problem
size.

References

1. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W., Xiong, J.,
Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proc. of the IEEE 93(2) (2005) 232–275 Special issue
on Program Generation, Optimization, and Adaptation.

2. Halambi, A., Shrivastava, A., Dutt, N., Nicolau, A.: A customizable compiler framework for
embedded systems. In: Proc. Workshop on Software and Compilers for Embedded Systems.
(2001)

3. Contreras, G., Martonosi, M.: Power prediction for Intel XScale processors using perfor-
mance monitoring unit events. In: Proc. International Symposium on Low Power Electronics
and Design (ISLPED). (2005) 221–226

4. Singleton, L., Poellabauer, C., Schwan, K.: Monitoring of cache miss rates for accurate
dynamic voltage and frequency scaling. In: Proc. Multimedia Computing and Networking
Conference. (2005)

5. Hsu, C., Kremer, U.: The design, implementation, and evaluation of a compiler algorithm
for CPU energy reduction. In: Proc. Conference on Programming Language Design and
Implementation (PLDI). (2003) 38–48

6. Xie, F., Martonosi, M., Malik, S.: Compile-time dynamic voltage scaling settings: Opportuni-
ties and limits. In: Proc. Conference on Programming Language Design and Implementation
(PLDI). (2003) 49–62

7. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and
the ATLAS project. Parallel Computing 27(1–2) (2001) 3–35

8. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix kernels.
Int’l J. High Performance Computing Applications 18(1) (2004)



214 P. D’Alberto, M. Püschel, and F. Franchetti

9. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. of the IEEE
93(2) (2005) 216–231 Special issue on Program Generation, Optimization, and Adaptation.

10. Intel: Intel XScale Microarchitecture. (2001)
11. Van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM (1992)
12. Gačić, A., Püschel, M., Moura, J.M.F.: Fast automatic implementations of FIR filters. In:

Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Vol-
ume 2. (2003) 541–544

13. Gačić, A.: Automatic Implementation and Platform Adaptation of Discrete Filtering and
Wavelet Algorithms. PhD thesis, Electrical and Computer Engineering, Carnegie Mellon
University (2004)

14. Franchetti, F., Voronenko, Y., Püschel, M.: Loop merging for signal transforms. In: Proc.
Programming Language Design and Implementation (PLDI). (2005) 315–326


	Introduction
	Background
	Intel XScale PXA255
	SPIRAL

	Extension of SPIRAL
	Frequency Scaling in SPIRAL
	Performance Measurement

	Experimental Results
	Runtime Performance Results
	Energy Results
	Dynamic Frequency Scaling

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


