
PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 1

SPIRAL: Code Generation for DSP Transforms
Markus P̈uschel, Jośe M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,

Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Ga�cić, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, Nicholas Rizzolo

(Invited Paper)

Abstract— Fast changing, increasingly complex, and diverse
computing platforms pose central problems in scienti�c com-
puting: How to achieve, with reasonable effort, portable op-
timal performance? We present SPIRAL that considers this
problem for the performance-critical domain of linear digital
signal processing (DSP) transforms. For a speci�ed transform,
SPIRAL automatically generates high performance code that is
tuned to the given platform. SPIRAL formulates the tuning
as an optimization problem, and exploits the domain-speci�c
mathematical structure of transform algorithms to implement
a feedback-driven optimizer. Similar to a human expert, for
a speci�ed transform, SPIRAL “intelligently” generates and
explores algorithmic and implementation choices to �nd the best
match to the computer's microarchitecture. The “intelligence”
is provided by search and learning techniques that exploit
the structure of the algorithm and implementation space to
guide the exploration and optimization. SPIRAL generates high
performance code for a broad set of DSP transforms including
the discrete Fourier transform, other trigonometric transform s,
�lter transforms, and discrete wavelet transforms. Experimental
results show that the code generated by SPIRAL competes with,
and sometimes outperforms, the best available human tuned
transform library code.

Index Terms— library generation, code optimization, adapta-
tion, automatic performance tuning, high performance comput-
ing, linear signal transform, discrete Fourier transform, FFT,
discrete cosine transform, wavelet, �lter, search, learning, genetic
and evolutionary algorithm, Markov decision process

I. I NTRODUCTION

At the heart of the computer revolution is Moore's law,
which has accurately predicted, for more than three decades,
that the number of transistors per chip doubles roughly ev-
ery 18 months. The consequences are dramatic. The current
generation of off-the-shelf single processor workstationcom-
puters has a theoretical peak performance of more than 10
gigaFLOPS1, rivaling the most advanced supercomputers from
only a decade ago. Unfortunately, at the same time, it is
increasingly harder to harness this peak performance, except
for the most simple computational tasks. To understand this
problem one has to realize that modern computers are not just
faster counterparts of their ancestors but vastly more complex
and thus with different characteristics. For example, about
15 years ago, the performance for most numerical kernels
was determined by the number of operations they require;
nowadays, in contrast, a cache miss may be 10–100 times
more expensive than a multiplication. More generally, the
performance of numerical code now depends crucially on the
use of the platform's memory hierarchy, register sets, avail-
able special instruction sets (in particular vector instructions),

11 gigaFLOPS (GFLOPS) =109 �oating point operations per second

and other, often undocumented, microarchitectural features.
The problem is aggravated by the fact that these features
differ from platform to platform, which makes optimal code
platform dependent. As a consequence, the performance gap
between a “reasonable” implementation and the best possible
implementation is increasing. For example, for the discrete
Fourier transform on a Pentium 4, there is a gap in runtime
performance of one order of magnitude between the code of
Numerical Recipes or the GNU scienti�c library and the Intel
vendor library IPP (see Section VII). The latter is most likely
hand-written and hand-tuned assembly code, an approach still
employed if highest performance is required—a reminder of
the days before the invention of the �rst compiler 50 years
ago. However, keeping hand-written code current requires re-
implementation and re-tuning whenever new platforms are
released—a major undertaking that is not economically viable
in the long run.

In concept, compilers are an ideal solution to performance
tuning since the source code does not need to be rewrit-
ten. However, high-performance library routines are carefully
hand-tuned, frequently directly in assembly, because today's
compilers often generate inef�cient code even for simple
problems. For example, the code generated by compilers for
dense matrix-matrix multiplication is several times slower than
the best hand-written code [1] despite the fact that the memory
access pattern of dense matrix-matrix multiplication is regular
and can be accurately analyzed by a compiler. There are two
main reasons for this situation.

The �rst reason is the lack of reliable program optimization
techniques, a problem exacerbated by the increasing com-
plexity of machines. In fact, although compilers can usually
transform code segments in many different ways, there is no
methodology that guarantees successful optimization. Empir-
ical search [2], which measures or estimates the execution
time of several versions of a code segment and selects the
fastest, is a simple and general method that is guaranteed
to succeed. However, although empirical search has proven
extraordinarily successful for library generators, compilers can
make only limited use of it. The best known example of the
actual use of empirical search by commercial compilers is the
decision of how many times loops should be unrolled. This is
accomplished by �rst unrolling the loop and then estimating
the execution time in each case. Although empirical search is
adequate in this case, compilers do not use empirical searchto
guide the overall optimization process because the number of
versions of a program can become astronomically large, even
when only a few transformations are considered.

The second reason why compilers do not perform better is

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 2

that often important performance improvements can only be
attained by transformations that are beyond the capabilityof
today's compilers or that rely on algorithm information that is
dif�cult to extract from a high-level language. Although much
can be accomplished with program transformation techniques
[3]–[8] and with algorithm recognition [9], [10], startingthe
transformation process from a high-level language version
does not always lead to the desired results. This limitation
of compilers can be overcome by library generators that make
use of domain-speci�c, algorithmic information. An important
example of the use of empirical search is ATLAS, a linear
algebra library generator [11], [12]. The idea behind ATLASis
to generate platform-optimized BLAS routines (basic linear al-
gebra subroutines) by searching over different blocking strate-
gies, operation schedules, and degrees of unrolling. ATLAS
relies on the fact that LAPACK [13], a linear algebra library,
is implemented on top of the BLAS routines, which enables
porting by regenerating BLAS kernels. A model-based, and
thus deterministic, version of ATLAS is presented in [14].
The speci�c problem of sparse matrix vector multiplications
is addressed in SPARSITY [12], [15], again by applying
empirical search to determine the best blocking strategy for a
given sparse matrix. References [16], [17] provide a program
generator for parallel programs of tensor contractions, which
arise in electronic structure modeling. The tensor contraction
algorithm is described in a high-level mathematical language,
which is �rst optimized and then compiled into code.

In the signal processing domain, FFTW [18]–[20] uses
a slightly different approach to automatically tune the im-
plementation code for the discrete Fourier transform (DFT).
For small DFT sizes, FFTW uses a library of automatically
generated source code. This code is optimized to perform
well with most current compilers and platforms, but is not
tuned to any particular platform. For large DFT sizes, the
library has a built-in degree of freedom in choosing the
recursive computation, and uses search to tune the code to the
computing platform's memory hierarchy. A similar approach
is taken in the UHFFT library [21] and in [22]. The idea
of platform adaptive loop body interleaving is introduced
in [23] as an extension to FFTW and as an example of a
general adaptation idea for divide and conquer algorithms
[24]. Another variant of computing the DFT studies adaptation
through runtime permutations versus re-addressing [25], [26].
Adaptive libraries for the related Walsh-Hadamard transform
(WHT), based on similar ideas, have been developed in [27].
Reference [28] proposes an object-oriented library standard for
parallel signal processing to facilitate porting of both signal
processing applications and their performance across parallel
platforms.

SPIRAL. In this paper we present SPIRAL, our research
on automatic code generation, code optimization, and platform
adaptation. We consider a restricted, but important, domain
of numerical problems, namely digital signal processing algo-
rithms, or more speci�cally, linear signal transforms. SPIRAL
addresses the general problem:How do we enable machines to
automatically produce high quality code for a given platform?
In other words, how can the processes that human experts use
to produce highly optimized code be automated and possibly

improved through the use of automated tools.
Our solution formulates the problem of automatically gen-

erating optimal code as an optimization problem over the
space of alternative algorithms and implementations of the
same transform. To solve this optimization problem using an
automated system, we exploit the mathematical structure of
the algorithm domain. Speci�cally, SPIRAL uses a formal
framework to ef�ciently generate many alternative algorithms
for a given transform and to translate them into code. Then,
SPIRAL uses search and learning techniques to traverse the
set of these alternative implementations for the same given
transform to �nd the one that is best tuned to the desired
platform while visiting only a small number of alternatives.

We believe that SPIRAL is unique in a variety of respects:
1) SPIRAL is applicable to the entire domain of linear digital
signal processing algorithms, and this domain encompasses
a large class of mathematically complex algorithms; 2) SPI-
RAL encapsulates the mathematical algorithmic knowledge of
this domain in a concise declarative framework suitable for
computer representation, exploration, and optimization—this
algorithmic knowledge is far less bound to become obsolete
as time goes on than coding knowledge such as compiler
optimizations; 3) SPIRAL can be expanded in several direc-
tions to include new transforms, new optimization techniques,
different target performance metrics, and a wide variety of
implementation platforms including embedded processors and
hardware generation; 4) we believe that SPIRAL is �rst in
demonstrating the power of machine learning techniques in
automatic algorithm selection and optimization; and, �nally,
5) SPIRAL shows that, even for mathematically complex
algorithms, machine generated code can be as good as, or
sometimes even better, than any available expert hand-written
code.

Organization of this paper. The paper begins, in Section II,
with an explanation of our approach to code generation and
optimization and an overview of the high-level architecture of
SPIRAL. Section III explains the theoretical core of SPIRAL
that enables optimization in code design for a large class of
DSP transforms: a mathematical framework to structure the
algorithm domain and the language SPL to make possible
ef�cient algorithm representation, generation, and manipula-
tion. The mapping of algorithms into ef�cient code is the
subject of Section IV. Section V describes the evaluation of
the code generated by SPIRAL—by adapting the performance
metric, SPIRAL can solve various code optimization problems.
The search and learning strategies that guide the automatic
feedback-loop optimization in SPIRAL are considered in Sec-
tion VI. We benchmark the quality of SPIRAL's automati-
cally generated code in Section VII, showing a variety of
experimental results. Section VIII discusses current limitations
of SPIRAL and ongoing and future work. Finally, we offer
conclusions in Section IX.

II. SPIRAL: OPTIMIZATION APPROACH TOTUNING

IMPLEMENTATIONS TO PLATFORMS

In this section we provide a high-level overview of the
SPIRAL code generation and optimization system. First, we

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 3

explain the high-level approach taken by SPIRAL, which
restates the problem of �nding fast code as an optimization
problem over the space of possible alternatives. Second, weex-
plain the architecture of SPIRAL, which implements a �exible
solver for this optimization problem and which resembles the
human approach for code creation and optimization. Finally,
we discuss how SPIRAL's architecture is general enough to
solve a large number of different implementation/optimization
problems for the DSP transform domain. More details are
provided in later sections.

A. Optimization: Problem Statement

We restate the problem of automatically generating soft-
ware (SW) implementations for linear digital signal process-
ing (DSP) transforms that are tuned to a target hardware (HW)
platform as the following optimization problem. LetP be a
target platform,T n a DSP transform parameterized at least
by its sizen, I 2 I a SW implementation ofT n , whereI is
the set of SW implementations for the platformP and trans-
form T n , andC (T n ; P ; I) the cost of the implementationI
of the transformT n on the platformP.

The implementationbI of T n that is tuned to the platformP
with respect to the performance costC is

bI = bI (P) = arg min
I 2I (P)

C (T n ; P ; I) : (1)

For example, we can have the following: as target platformP
a particular Intel Pentium 4 workstation; as transformT n the
discrete Fourier transform of sizen = 1024, which we will
refer to asDFT 1024 , or the discrete cosine transform of type 2
and size32, DCT -232; as SW implementationI a C-program
for computingT n ; and as cost measureC the runtime ofI on
P. In this case, the cost depends on the chosen compiler and
�ags, thus this information has to be included inP. Note that
with the proliferation of special vendor instruction sets,such
as vector instructions that exceed the standard C programming
language, the set of all implementations becomes in general
platform dependent, i.e.,I = I (P) with elementsI = I (P).

To carry out the optimization in (1) and to automatically
generate the tuned SW implementationbI poses several chal-
lenges:

� Set of implementations I . How to characterize and
generate the setI of SW implementationsI of T n ?

� Minimization of C. How to automatically minimize the
costC in (1)?

In principle, the set of implementationsI for T n should
be unconstrained, i.e., includeall possible implementations.
Since this is unrealistic, we aim at a broad enough set of
implementations. We solve both challenges of characterizing I
and minimizingC by recognizing and exploiting the speci�c
structure of the domain of linear DSP transforms. This struc-
ture enables us to represent algorithms forT n as formulas
in a concise mathematical language called signal processing
language (SPL), which utilizes only a few constructs. Further,
it is possible to generate these SPL formulas (or algorithms)
recursivelyusing a small set ofrules to obtain a large formula
spaceF . These formulas, in turn, can be translated into code.
The SPIRAL system implements this framework and we de�ne

I as the set of implementations that SPIRAL can generate.
The degrees of freedom in translating fromF to I re�ect
the implementation choices that SPIRAL can consider for the
given algorithms. Finally, the recursive structure ofF , and thus
I , enables the use of various, transform independent, search
and learning techniques that successfully produce very good
solutions for (1), while generating only a small subset ofI .

SPIRAL's architecture, shown in Fig. 1, is a consequence
of these observations and, for the class of DSP transforms
included in SPIRAL, can be viewed as a solver for the opti-
mization problem (1). To benchmark the performance of the
transform implementations generated by SPIRAL, we compare
them against the best available implementationswhenever
possible. For example, for theDFT , we benchmark SPIRAL
against theDFT codes provided by FFTW, [18], [19], and
against vendor libraries like Intel's IPP (Intel Performance
Primitives) and MKL (Math Kernel Library); the latter are
coded by human experts. However, because of SPIRAL's
breadth, there are no readily available high quality implemen-
tations for many of SPIRAL's transforms. In these cases, we
explore different alternatives generated by SPIRAL itself.

In the following paragraphs, we brie�y address the above
two challenges of generating the set of implementationsI
and of minimizingC. The discussion proceeds with reference
to Fig. 1 that shows the architecture of SPIRAL as a block
diagram.

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
ea

rc
h/

Le
ar

ni
ng

controls

controls

performance

algorithm as formula
in SPL language

C/Fortran
implementation

Algorithm
Level

Implementation
Level

(SPL Compiler)

Evaluation
Level

Fig. 1. The architecture of SPIRAL.

B. Set of ImplementationsI

To characterize the set of implementationsI , we �rst
outline the two basic steps that SPIRAL takes to go from
the high-level speci�cation of the transformT n to an actual
implementationI 2 I of T n . The two steps correspond
to the ALGORITHM LEVEL and to the IMPLEMENTATION

LEVEL in Fig. 1. The �rst derives an algorithm for the given

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 4

transformT n , represented as aformulaF 2 F whereF is the
formula or algorithm space forT n . The second translates the
formula F into a programI 2 I in a high-level programming
language such as Fortran or C, which is then compiled by an
existing commercial compiler.

Algorithm level. In SPIRAL, an algorithm for a trans-
form T n is generated recursively usingbreakdown rules
and manipulation rules. Breakdown rules are recursions for
transforms, i.e., they specify how to compute a transform from
other transforms of the same or a different type and of the
same or a smaller size. The FORMULA GENERATION block
in Fig. 1 uses a database of breakdown rules to recursively
expand a transformT n , until no further expansion is possible
to obtain a completely expanded formulaF 2 F . This formula
speci�es one algorithm forT n . The FORMULA OPTIMIZA -
TION block then applies manipulation rules to translate the
formula into a different formula that may better exploit the
computing platform's HW characteristics. These optimizations
at the mathematical level can be used to overcome inherent
shortcomings of compiler optimizations, which are performed
at the code level where much of the structural information is
lost.

SPIRAL expresses rules and formulas in a special
language—thesignal processing language (SPL), which is
introduced and explained in detail in Section III; here, we only
provide a brief glimpse. SPL uses a small set of constructs
including symbols and matrix operators. Symbols are, for
example, certain patterned matrices like the identity matrix Im

of sizem. Operators are matrix operations such as matrix mul-
tiplication or the tensor product
 of matrices. For example,
the following is a breakdown rule for the transformDCT -2n

written in SPL:

DCT -2n ! Ln
m (DCT -2m � DCT -4m)

� (F2
 Im)(I m � Jm); n = 2m: (2)

This rule expands theDCT -2 of sizen = 2m into transforms
DCT -2 and DCT -4 of half the size m, and additional
operations (the part that is not bold-faced).

An example of a manipulation rule expressed in SPL is

In
 Am ! Lmn
n (Am
 In) L mn

m :

We will see later that the left hand sideIn
 Am is a paral-
lelizable construct, while the right hand sideAm
 In is a
vectorizable construct.

Implementation level. The output of the ALGORITHM

LEVEL block is an SPL formulaF 2 F , which is fed into
the second level in Fig. 1, the IMPLEMENTATION LEVEL, also
called the SPL COMPILER.

The SPLCOMPILER is divided into two blocks: the IM-
PLEMENTATION and CODE OPTIMIZATION blocks. The IM-
PLEMENTATION block translates the SPL formula into C or
Fortran code using a particular set of implementation options,
such as the degree of unrolling. Next, the CODE OPTI-
MIZATION block performs various standard and less standard
optimizations at the C (or Fortran) code level, e.g., common
subexpression elimination and code reordering for locality.
These optimizations are necessary as standard compilers are

often not ef�cient when used for automatically generated code,
in particular, for large blocks of straightline code (i.e.,code
without loops and control structures).

Both blocks, ALGORITHM LEVEL and IMPLEMENTATION

LEVEL are used to generate the elements of the implemen-
tation spaceI . We now address the second challenge, the
optimization in (1).

C. Minimization ofC

Solving the minimization (1) requires SPIRAL to evaluate
the costC for a given implementationI and to autonomously
explore the implementation spaceI . Cost evaluation is ac-
complished by the third level in SPIRAL, the EVALUATION

LEVEL block in Fig. 1. The computed valueC(T n ; P ; I) is
then input to the SEARCH/LEARNING block in the feedback
loop in Fig. 1, which performs the optimization.

Evaluation level. The EVALUATION LEVEL is decomposed
into two blocks: the COMPILATION and PERFORMANCE

EVALUATION . The COMPILATION block uses a standard com-
piler to produce an executable and the PERFORMANCEEVAL -
UATION block evaluates the performance of this executable, for
example, the actual runtime of the implementationI on the
given platformP. By keeping the evaluation separated from
implementation and optimization, the cost measureC can eas-
ily be changed to make SPIRAL solve various implementation
optimization problems (see Section II-E).

Search/Learning.We now consider the need for intelligent
navigation in the implementation spaceI to minimize (or
approximate the minimization of)C. Clearly, at both the
ALGORITHM LEVEL and the IMPLEMENTATION LEVEL, there
are choices to be made. At each stage of theFORMULA

GENERATION, there is freedom regarding which rule to ap-
ply. Different choices of rules lead to different formulas (or
algorithms)F 2 F . Similarly, the translation of the formulaF
to an actual programI 2 I implies additional choices, e.g.,
the degree of loop unrolling or code reordering. Since the
number of these choices is �nite, the sets of alternatives
F and I are also �nite. Hence, an exhaustive enumeration
of all implementationsI 2 I would lead to the optimal
implementationbI . However, this is not feasible, even for
small transform sizes, since the number of available algorithms
and implementations usually grows exponentially with the
transform size. For example, the current version of SPIRAL
reports that the size of the set of implementationsI for the
DCT -264 exceeds1:47�1019. This motivates the feedback loop
in Fig. 1, which provides an ef�cient alternative to exhaustive
search and an engine to determine an approximate solution to
the minimization in (1).

The three main blocks on the left in Fig. 1, and their
underlying framework, provide the machinery to enumerate,
for the same transform, different formulas and different imple-
mentations. We solve the optimization problem in (1) through
an empirical exploration of the space of alternatives. This
is the task of the SEARCH/LEARNING block, which, in a
feedback loop, drives the algorithm generation and controls
the choice of algorithmic and coding implementation options.
SPIRAL uses search methods such as dynamic programming

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 5

and evolutionary search (see Section VI-A). An alternate
approach, also available in SPIRAL, uses techniques from
arti�cial intelligence to learn which choice of algorithm is
best. The learning is accomplished by reformulating the opti-
mization problem (1) in terms of a Markov decision process
and reinforcement learning. Once learning is completed, the
degrees of freedom in the implementation are �xed. The
implementation isdesignedwith no need for additional search
(see Section VI-B).

An important question arises: why is there is a need to
explore the formula spaceF at all? Traditionally, the analysis
of algorithmic cost focuses on the number of arithmetic
operations of an algorithm. Algorithms with a similar number
of additions and multiplications are considered to have similar
cost. The rules in SPIRAL lead to “fast” algorithms, i.e., the
formulasF 2 F that SPIRAL explores are essentially equal
in terms of the operation count. By “essentially equal” we
mean that for a transform of sizen, which typically has a
complexity of �(n log(n)) , the costs of the formulas differ
only by O(n) operations and are often even equal. So the
formulas' differences in performance are in general not a result
of different arithmetic costs, but are due to differences in
locality, block sizes, and data access patterns. Since computers
have an hierarchical memory architecture, from registers—
the fastest level—to different types of caches and memory,
different formulas will exhibit very different access times.
These differences cause signi�cant disparities in performance
across the formulas inF . The SEARCH/LEARNING block
searches for or learns those formulas that best match the target
platforms memory architecture and other microarchitectural
features.

D. General Comments

The following main points about SPIRAL's architecture are
worth noting.

� SPIRAL is autonomous, optimizing at both the algo-
rithmic level and the implementation level. SPIRAL
incorporates domain speci�c expertise through both its
mathematical framework for describing and generating
algorithms and implementations and through its effec-
tive algorithm and implementation selection through the
SEARCH/LEARNING block.

� The SPL language is a key element in SPIRAL: SPL
expresses recursions and formulas in a mathematical form
accessible to the transform expert, while retaining all the
structural information that is needed to generate ef�cient
code. Thus, SPL provides the link between the “high”
mathematical level of transform algorithms and the “low”
level of their code implementations.

� SPIRAL's architecture is modular: it clearly separates
algorithmic and implementation issues. In particular, the
code optimization is decomposed as follows. 1)De-
terministic optimizationsare always performed without
the need for runtime information. These optimization
are further divided into algorithm level optimizations
(FORMULA OPTIMIZATION block) such as formula ma-
nipulations for vector code, and into implementation

level optimizations (CODE OPTIMIZATION block) such as
common subexpression elimination. 2)Nondeterministic
optimizationsarise from choices whose effect cannot eas-
ily be statically determined. The generation and selection
of these choices is driven by the SEARCH/LEARNING

block. These optimizations are also divided into algorith-
mic choices and implementation choices.
Because of its modularity, SPIRAL can be extended in
different directions without the need for understanding all
domains involved.

� SPIRAL abstracts into its high-level mathematical frame-
work many common optimizations that are usually per-
formed at the low-level compilation step. For example, as
we will explain in Section IV-E, when platform speci�c
vector instructions are available, they can be matched to
certain patterns in the formulas and, using mathematical
manipulations, a formula's structure can be improved for
mapping into vector code. Rules that favor the occurrence
of these patterns in the produced formula are then natu-
rally selected by the search engine in SPIRAL to produce
better tuned code.

� SPIRAL makes use of run-time information in the opti-
mization process. In a sense, it could be said that SPIRAL
carries out pro�le-driven optimization although compiler
techniques reported in the literature require pro�ling to
be done only once [29], [30]. Compiler writers do not
include pro�ling in a feedback loop to avoid long compi-
lation times, but for the developers of library generators
like SPIRAL the cost of installation is less of a concern
since installation must be done only once for each class
of machines.

� With slight modi�cations, SPIRAL can be used to au-
tomatically solve various implementation or algorithm
optimization problems for the domain of linear DSP
transforms, see Section II-E.

Next, we provide several examples to show the breadth of
SPIRAL.

E. Applications of SPIRAL

SPIRAL's current main application is the generation of very
fast, platform-tuned implementations of linear DSP transforms
for desktop or workstation computers. However, SPIRAL's
approach is quite versatile and the SPIRAL system can be used
for a much larger scope of signal processing implementation
problems and platforms: (1) it goes beyond trigonometric
transforms such as the DFT and the DCT, to other DSP
transforms such as the wavelet transform and DSP kernels
like �lters; (2) it goes beyond desktop computers and beyond
C and Fortran to implementations for multiprocessor machines
and to generating code using vendor speci�c instructions like
SSE for the Pentium family, or AltiVec for the Power PC; (3) it
goes beyond runtime to other performance metrics including
accuracy and operation count. We brie�y expand here on two
important examples to illustrate SPIRAL's �exibility. More
details are provided later in Sections V and VII.

Special instructions and parallel platforms.Most modern
platforms feature special instructions, such as vector instruc-
tions, which offer a large potential speedup. Compilers are

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 6

restricted to code level transformations and cannot take full
advantage of these instructions, except for simple numerical
algorithms. SPIRAL automatically generates code that uses
these special instructions. This is achieved in three steps:
1) by identifying structures in SPL formulas that can be
naturally mapped into code using these special instructions;
2) by identifying SPL manipulation rules whose application
produces these structures; these rules are included into the
FORMULA OPTIMIZATION block in Fig. 1; and 3) by ex-
tending the IMPLEMENTATION block in Fig. 1 to produce
code that uses those special instructions. We provide details
for vector instructions in Section IV-E. We also have results
demonstrating that the same approach can be used to generate
code for SMP platforms (see Section IV-F).

Expanding SPIRAL: new transforms and rules.SPIRAL
is easily expanded with new transforms and/or new rules
by including them in the rule database of the FORMULA

GENERATION block. This is achieved without affecting the
remaining components of SPIRAL, provided that the new rules
can be expressed using the SPL constructs currently available
in SPIRAL. If this is not the case, SPL can be extended
to include new constructs. Once this is accomplished, the
entire functionality of SPIRAL, including the code generation,
the SEARCH/LEARNING block, and the automatic tuning of
implementations becomes immediately available to the new
transform or rule.

Other applications. There are various other implementa-
tion/algorithm optimization problems that can be addressed
by the SPIRAL system. Examples include the generation of
numerically accurate code, multiplierless implementations, or
algorithms with minimal operation counts. We will brie�y
discuss these extensions in Section V.

In summary, the discussion in this overview outlined how
SPIRAL integrates algorithmic knowledge with code mapping
and feedback optimization, and pointed out the capabilities of
the resulting system. The SPIRAL system can be adapted to
new platforms, extended with new linear transforms and their
algorithms, and extended with new performance measures.
Extensions of the system, once completed, apply to the entire
collection of DSP transforms and kernels as well as to the full
set of problems included in its current domain rather than just
a single transform or a single problem type.

Now we begin the detailed description of SPIRAL.

III. SPIRAL' S MATHEMATICAL FRAMEWORK AND

FORMULA GENERATION

This section details SPIRAL's mathematical framework to
represent and generate fast algorithms for linear digital signal
processing (DSP) transforms. The framework is declarativein
nature, i.e., the knowledge about transforms and algorithms
is represented in the form of equations and rules. The frame-
work enables the following: 1) The automatic generation of
transform algorithms; 2) the concise symbolic representation
of transform algorithms asformulasin the language SPL that
we introduce; 3) the structural optimization of algorithmsin
their formula representation; and 4) the automated mapping
into various code types, which is the subject of Section IV.

We divide the framework into the following parts: trans-
forms, the language SPL, breakdown and manipulation rules,
and ruletrees and formulas. Finally, we explain how the
framework is implemented in the FORMULA GENERATION

and FORMULA OPTIMIZATION blocks in Fig. 1.

A. Transforms

SPIRAL generates fast implementations for linear discrete
signal processing (DSP) transforms. Although in the DSP
literature transforms are usually presented in the form of
summations, we express them equivalently as a matrix-vector
multiplication y = Mx . In this equation,x and y are,
respectively, the input and the outputn-dimensional vectors (or
signals) that collect then signal samples, andM is then � n
transform matrix. Usually, the transformM exists for every
input size n. An example is the discrete Fourier transform
(DFT), which is de�ned, for input sizen, by then � n DFT
matrix

DFT n = [! k`
n]0� k;`<n ; ! n = e� 2�i=n ; i =

p
� 1: (3)

In SPIRAL, a transform is a parameterized class of matrices.
It is represented symbolically by a mnemonic name such
as “DFT ” and by a list of parameters, such as the sizen.
By specifying the parameter(s), we obtain an instance of a
transform, which we will also refer to as a transform. An
example isDFT 8. Transforms are written using bold-faced
type. Transform matrices, as well as the input and output
vectors, can be real or complex valued.

At the time of this writing, SPIRAL contains 36 transforms
(some of which are variants of each other).

Trigonometric transforms. We provide some important
examples of DSP transforms for which SPIRAL can generate
tuned code. We �rst consider the class of trigonometric trans-
forms that, besides theDFT in (3), includes the following
transforms: all the 16 types of discrete cosine and sine
transforms (DCTs andDSTs), of which the most commonly
used (e.g., in the JPEG and MPEG multimedia standards)
are theDCT s of types 2, 3, and 4; the inverse modulated
DCT (IMDCT), which is used in MPEG audio compression
standards and is a rectangular transform; the realDFT (RDFT)
that computes theDFT on a real input data set; the Walsh-
Hadamard transform (WHT); and the discrete Hartley trans-
form (DHT). Some of these transforms are de�ned as follows.

DCT -2n =
�

cosk (2 ` +1) �
2n

�
0� k;`<n ; (4)

DCT -3n = DCT -2T
n (transpose); (5)

DCT -4n =
�

cos(2k+1)(2 ` +1) �
4n

�
0� k;`<n ; (6)

IMDCT n =
�

cos(2k+1)(2 ` +1+ n) �
4n

�
0� k< 2n; 0� `<n ; (7)

RDFT n = [r k`]0� k;`<n ; (8)

r k` =

(
cos2�k`

n ; k � b n
2 c

� sin 2�k`
n ; k > bn

2 c
;

WHT n =
�
WHT n= 2 WHT n= 2

WHT n= 2 � WHT n= 2

�
; (9)

WHT 2 = DFT 2;

DHT =
�

cos2k`�
n + sin 2k`�

n

�
0� k;`<n : (10)

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 7

Note that the Walsh-Hadamard transform in (9) is de�ned
recursively.

Besides these trigonometric transforms, SPIRAL includes
other transforms and DSP kernels. In fact, in SPIRAL, any
linear operation on �nite discrete sequences, i.e., matrix-vector
multiplication, quali�es as a transform. In particular, this
includes linear �lters and �lter banks.

Filters. We recall that a �lter in DSP computes the con-
volution of two sequences: one is the signal being �ltered,
the input signal; the other is the sequence that characterizes
the �lter, its impulse response. As important examples, we
consider �nite impulse response (FIR) �lters and the discrete
wavelet transforms (DWTs).

Although we can represent FIR �lters and the DWT as
matrices, it is more convenient, and more common, to de�ne
them iteratively or recursively, as was the case with the
WHT above. We start with the basic building block, the FIR
�lter transform. The �lter's output is the convolution of its
impulse response and an in�nite support input signal. The
�lter impulse response can be viewed as the column vector
h = [hl ; : : : ; h0; : : : ; h� r]T of length l + r + 1 , or as thez-
transform polynomialh[z] (e.g., [31]),

h[z] =
lX

k= � r

hk z� k :

The output of the FIR �lter forn output points is computed
by multiplying the relevant (i.e., contributing to these outputs)
�nite subvector of lengthn + l + r of x by the FIR transform
matrix Filt n (h[z]) given by

Filt n (h[z]) =

2

6
6
4

hl � � � h� r
hl � � � h� r

...
...

hl � � � h� r

3

7
7
5 : (11)

In practice, signals are of �nite durationn. To account
for boundary effects and to enable �ltering, i.e., multiplying
with (11), these signals are thus extended to the left (up) and
to the right (below) to have lengthn + l + r . Linear extensions
can be also interpreted as matrix-vector multiplications with
an(n+ l+ r) � n matrix Ef l ;f r

n;l;r , wheref l andf r specify the left
and the right signal extension type, andl andr are the number
of left and right extension points. Examples of extension types
include: periodic (per), whole-point and half-point symmetric
or antisymmetric (ws/hs/wa/ha), and zero-padding (zero). For
example, in aper extension, the signal is extended byl points
to the left and byr points to the right, by assuming that the
signal is periodically repeated beyond its fundamental period,
which is given by the actual available data. After extending
the signal, we can de�ne theextendedFIR �lter transform as
the composition of both the FIR �lter transform (11) and the
extension transform:

Filt f l ;f r
n (h[z]) = Filt n (h[z]) � Ef l ;f r

n;l;r ; (12)

where the parametersl andr are implicitly given byh[z]. For
example, the matrixEf l ;f r

n;l;r for periodic signal extension, i.e.,

f l = f r = per, is

Eper;per
n;l;r =

2

4
0 I l

In

I r 0

3

5 ;

whereIn denotes then � n identity matrix.

Discrete wavelet transform. Many applications, such as
JPEG2000 [32], make use of a 2-channel DWT, which is usu-
ally de�ned as the recursive bank of �lters and downsamplers
shown in Fig. 2.

The �lters in the �lter bank are linear, and hence is the
DWT. In matrix form, the DWT is given by

DWT f l ;f r
n (h[z]; g[z]) =

2

6
6
6
6
6
6
6
6
6
4

(# n)n Filt f l ;f r
n

� Q n � 1
k=0 h[z2k

]
�

(# n=2)n Filt f l ;f r
n

�
g[z2n � 1

]
Q n � 2

k=0 h[z2k
]
�

...
(# 8)n Filt f l ;f r

n

�
g[z4] h[z2] h[z]

�

(# 4)n Filt f l ;f r
n

�
g[z2] h[z]

�

(# 2)n Filt f l ;f r
n (g[z])

3

7
7
7
7
7
7
7
7
7
5

; (13)

where (# k)n is the n=k � n matrix that selects everykth
element from its input, starting with the �rst. The ma-
trix form (13) is obtained from Fig. 2 by observing that
Filt n=k (h[z]) � (# k)n + kl + kr = (# k)n � Filt n

�
h[zk]

�
. (Note

that when stacking �lters as in (13), the de�ning polynomials
may need to be zero extended to equalize the sizes of the
blocks.)

B. SPL: Signal Processing Language

The signi�cance in digital signal processing (DSP) of the
transforms introduced in Section III-A arises from the exis-
tence of fast algorithmsto compute them. The term “fast”
refers to the number of operations required to compute the
transform: fast algorithms for transforms of sizen typically
reduce the number of operations fromO(n2) (as required
by direct evaluation) toO(n log(n)) . Furthermore, these al-
gorithms are highly structured. To exploit the structure of
the DSP transforms, SPIRAL represents these algorithms
in a specially designed language—SPL (signal processing
language)—which is described in this section. For example,
an important element in SPL is the tensor or Kronecker
product, whose importance for describing and manipulating
DFT algorithms was already demonstrated in [33], [34]. After
introducing SPL, we develop the framework to ef�ciently
generate and manipulate algorithms for DSP transforms in
Sections III-C and III-D.

We start with a motivating example. Consider the discrete
cosine transform (DCT) of type 2 de�ned in (4) and given by
the following4� 4 matrix, which is then factored into a product

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 8

(xk)

-

-

g(z)
��

��
-#2 (yk)n � 1

n= 2

h(z)
��

��
#2

-

- g(z)
��

��
-#2 (yk)n= 2� 1

n= 4

h(z)
��

��
#2 ::::::

-

-

g(z)
��

��
-#2 (y1)

h(z)
��

��
-#2 (y0)

Fig. 2. Filter bank interpretation of the DWT.

of three sparse matrices. We use the notationck = cos k�= 8.

DCT -24 =

2

6
6
4

1 1 1 1
c1 c3 c5 c7

c2 c6 c6 c2

c3 c7 c1 c5

3

7
7
5

=

2

6
6
4

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

7
7
5

2

6
6
4

1 1 0 0
c2 c6 0 0
0 0 c1 c3

0 0 c3 c7

3

7
7
5

2

6
6
4

1 0 0 1
0 1 1 0
1 0 0 � 1
0 1 � 1 0

3

7
7
5 :

(14)
The right hand side of equation (14) decomposes the matrix
DCT -24 into a product of three sparse matrices. This fac-
torization reduces the cost for computing the transform (the
matrix-vector product) from 12 additions and 12 multiplica-
tions to 8 additions and 6 multiplications. To avoid a possible
confusion, we emphasize again that this cost does not refer
to multiplying the three sparse matrices together, but to the
computation of the matrix-vector producty = DCT -24x in
three steps (corresponding to the three sparse matrices), and
it is in this sense that (14) is considered as an algorithm
for DCT -24. Equation (14) shows further that, besides their
sparseness, the matrix factors are highly structured. Identifying
this structure and then making use of it is a key concept in
SPIRAL and provides the motivation for SPL.

SPL is a language suitable to express products of structured
sparse matrices using a small set of constructs and symbols.
However, as we will see, this set is suf�cient to represent a
large class of different transform algorithms. Table I provides
a grammar for SPL in Backus-Naur form (BNF) [35] as the
disjoint union of different choices of rules (separated by a
vertical line “j”) to generate valid SPL expressions. Symbols
marked by h�i are non-terminal, hspli is the initial non-
terminal, and all the other symbols areterminals. We call the
elements of SPLformulas. The meaning of the SPL constructs
is explained next.

Generic matrices. SPL provides constructs to represent
generic matrices, generic permutation matrices, and generic
sparse matrices. Since most matrices occurring within trans-
form algorithms have additional structure, these constructs
are rarely used except diagonal matrices. These are written
as diag(a0; : : : ; an � 1), where the argument list contains the
diagonal entries of the matrix. Scalars, such as the num-

bers ai , can be real or complex and can be represented
in a variety of ways. Examples include rational, �oating
point, special constants, andintrinsic functions, such as
1; 3=2; 1:23; 1:23e-04; � , sqrt(2), andsin(3�= 2).

Symbols.Frequently occurring classes of matrices are rep-
resented by parameterizedsymbols. Examples include then� n
identity matrix In ; the matrix Jn obtained from the identity
matrix by reversing the columns (or rows); then � n zero
matrix 0n ; the twiddle matrix

Tn
k = diag(! 0�0

n ; : : : ; ! (k � 1) �0
n ;

! 0�1
n ; : : : ; ! (k � 1) �1

n ;
: : : : : :
! 0�(n=k � 1)

n ; : : : ; ! (k � 1) �(n=k � 1)
n);

the stride permutationmatrix Ln
k , which reads the input at

stridek and stores it at stride 1, de�ned by its corresponding
permutation:

Ln
k : i (n=k) + j 7! jk + i; 0 � i < k; 0 � j < n=k ;

the 2 � 2 rotation matrix (with angle�)

R� =
�

cos� sin �
� sin � cos�

�
;

and thebutter�y matrix, which is equal to the2 � 2 DFT
matrix, but not considered a transform (i.e., it is terminal)

F2 =
�
1 1
1 � 1

�
:

Transforms. SPL expresses transforms as introduced in
Section III-A. Examples includeDFT n , DCT -2n , and
Filt n (h[z]). In our framework, transforms are fundamentally
different from the symbols introduced above (as emphasized
by bold-facing transforms), which will be explained in Sec-
tions III-C and III-D. In particular, only those formulas that
do not contain transforms can be translated into code. Both,
the set of transforms and the set of symbols available in SPL
are user extensible.

Matrix constructs. SPL constructs can be used to form
structured matrices from a set of given SPL matrices. Exam-
ples include the product of matricesAB (sometimes written
asA �B), the sum of matricesA + B , and the direct sum� and
the tensor or Kronecker product
 of two matricesA andB ,

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 9

TABLE I

DEFINITION OF THE MOST IMPORTANTSPL CONSTRUCTS INBACKUS-NAUR FORM; n; k ARE POSITIVE INTEGERS, �; a i REAL NUMBERS.

hspli ::= hgenerici j hsymboli j htransformi j
hspli � � � � � h spli j (product)
hspli � : : : � h spli j (direct sum)
hspli
 � � � �
h spli j (tensor product)
In
 k hspli j In
 k hspli j (overlapped tensor product)
hspli j (conversion to real)
. . .

hgenerici ::= diag(a0; : : : ; an � 1) j : : :
hsymboli ::= In j Jn j Ln

k j R� j F2 j : : :
htransformi ::= DFT n j WHT n j DCT -2n j Filt n (h[z]) j : : :

de�ned, respectively, by

A � B =
�
A

B

�
; and

A
 B = [ak;` B] ; whereA = [ak;`] :

Two extensions to the tensor product in SPIRAL are therow
and thecolumn overlapped tensor product, de�ned by

In
 k A =

2

6
6
6
6
6
6
4

A

A
���

A

3

7
7
7
7
7
7
5

;

In
 k A =

2

6
6
6
4

A
A

� � � �
A

3

7
7
7
5

:

(15)

Above,
 k overlaps the block matricesA by k columns, while
below,
 k overlaps the block matricesA by k rows. Note
that the left operand in
 k and
 k has to be the identity
matrix. SPIRAL also uses a similarly de�nedrow andcolumn
overlapped direct sum� k and � k , respectively.

Conversion to real data format (�) . Complex trans-
forms are usually implemented using real arithmetic. Various
data formats are possible when converting complex into real
arithmetic, the most popular being probably theinterleaved
complex format, in which a complex vector is represented by
alternating real and imaginary parts of the entries. To express
this conversion in the mathematical framework of SPIRAL, we
�rst observe that the complex multiplication(u + iv)(y + iz)
is equivalent to the real multiplication[u � v

v u] [y
z]. Thus, the

complex matrix-vector multiplicationMx 2 Cn corresponds
to Mx 0 2 R2n , whereM arises fromM by replacing every
entry u + iv by the corresponding2 � 2 matrix above, andx0

is in interleaved complex format. Thus, to translate complex
formulas into real formulas in the interleaved format, SPL
introduces the new operator(�) : M 7! M , whereM is any
SPL formula. Other formats can be handled similarly.

Examples. We now illustrate SPL using several simple
examples. The full relevance of SPL will become clear in the
next section.

DCT, type 2, size 4. We return to theDCT -24 factorization
in (14). In SPL, it takes the concise form

DCT -24 = L 4
2(DCT -22 � DCT -42)

� (F2
 I2)(I 2 � J2): (16)

The stride permutationL4
2 is the left matrix in the sparse

factorization of (14) while the direct sum of the twoDCT s
in (16) is the middle matrix in (14). The last factor in (14) is
split into the last two factors in (16).

Downsampling.The downsampling-by-2 operator used, e.g.,
in the DWT transform (13) is given by

(# 2)n =
�
In= 2 0n= 2

�
Ln

2 :

Transform de�nitions.Using SPL, we can de�ne some of the
previously introduced transforms more concisely. Examples
include the Walsh-Hadamard transform in (9) and the �lter
transform in (11), which become

WHT 2k = F 2
 : : :
 F2; (k-fold), (17)

Filt n (h[z]) = I n
 l + r [hl � � � h0 � � � h� r] : (18)

Multidimensional transforms.If T n is a transform, then its
m-dimensional counterpartm D-T n 1 ����� n m for ann1 � � � � �
nm input array, arranged lexicographically into a vector, is the
m-fold tensor product

m D-T n 1 ����� n m = T n 1
 : : :
 T n m : (19)

For example,2D-DFT n 1 � n 2 = DFT n 1
 DFT n 2 is the
two-dimensionalDFT on an n1 � n2 input array arranged
into a vector in row-major order.

C. Rules

We have indicated before that the language SPL was in-
troduced to represent transform algorithms. In this section we
present the framework to capture and generate these algorithms
using rules. As we mentioned in Section II, SPIRAL has
two types of rules, breakdown rules and manipulation rules,
which have different purposes. Breakdown rules are used by
the FORMULA GENERATION block (see Fig. 1) to generate
algorithms, represented as SPL formulas. Manipulation rules
are used by the FORMULA OPTIMIZATION block to optimize
algorithms. We discuss both types in detail below.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 10

Breakdown rules. A breakdown rule is a decomposition of
a transform into a product of structured sparse matrices that
may contain other, usually smaller, transforms. We showed
earlier an example for theDCT -24 in (16). Formally, a
breakdown rule is an equation of matrices, in which the left
hand side is a transform and the right hand side is an SPL
formula. We use “! ” instead of “= ” to emphasize that it is a
rule. A small subset of the rules for trigonometric transforms,
available in SPIRAL's rule database, are listed here.

Breakdown rules: trigonometric transforms.The rules are
shown in Table II. Rule (20) is the Cooley-Tukey FFT rule.
Rule (21) is the prime-factor FFT from Good-Thomas;Pn ,
Qn are permutations (see [34], [36] for details). Rule (22) is
Rader's FFT algorithm (see [36]) and is used for prime sizes;
Rp is a permutation andDp is the direct sum of a2� 2 matrix
and a diagonal. Rule (23) was recently derived [37]. Note that
transposition of this rule yields a rule forDCT -2n . Finally,
(26) is an iterative rule for theWHT .

Next, we consider rules for the �lter and the discrete wavelet
transforms.

Breakdown rules: �lter transform and DWT.Filter banks
can be represented by matrices of �lters, [38]. For example,
for two FIR �lters given by h[z] and g[z], one stage of a
corresponding �lter bank is given by the transform

Filt n

��
h[z]
g[z]

��
=

�
Filt n (h[z])
Filt n (g[z])

�
: (27)

This will be used in the breakdown rules for �lter trans-
forms and for the discrete wavelet transformDWT shown
in Table III. Rule (28) is the overlap-save convolution rule
[31]. Rule (29) arises from the convolution theorem of the
DFT [31]. Elements of the diagonal matrix are theDFT
coef�cients of ĥ whereĥ[z] = h[z] mod (zn � 1). Rule (30)
represents Mallat's algorithm for computation of the DWT
(e.g., [39]) and could also be used to de�ne the DWT.
Rule (31) is similar to (30) but the downsampling operator
is fused into the �lter matrix to save half of the number of
operations. Rule (32) is the polyphase decomposition for the
DWT [39] and requiresf l ; f r 2 f per; zerog. There are many
other breakdown rules for the DWT included in SPIRAL, most
notably thelifting rule that decomposes polyphase �lter banks
into lifting steps [40].

Terminal breakdown rules.Finally, we also use rules to
terminate base cases, which usually means transforms of size
2. The right hand side of aterminal ruledoes not contain any
transform. Examples include for the trigonometric transforms

DFT 2 ! F2;
DCT -22 ! diag(1; 1=

p
2) F2;

DCT -42 ! J2 R13�= 8;
(33)

and for the DWT

DWT f l ;f r
2 (h[z]; g[z]) !

�
hl � � � h0 � � � h� r

gl � � � g0 � � � g� r

�
Ef l ;f r

2;l;r :

The above breakdown rules, with the exception of (23), are
well known in the literature; but they are usually expressed
using elaborate expressions involving summations and with
complicated index manipulations. In contrast, equations (20)

to (32) are not only compact but also clearly exhibit the
structure of the rules. Although these rules are very different
from each other, they only include the few constructs in SPL,
which makes it possible to translate the algorithms generated
from these rules into code (see Section IV). As a �nal note,
we mention that SPIRAL's database includes over one hundred
breakdown rules.

Manipulation rules. A manipulation rule is a matrix equa-
tion in which both sides are SPL formulas, neither of which
contains any transforms. These rules are used to manipulate
the structure of an SPL formula that has been fully expanded
using breakdown rules. Examples involving the tensor product
include

Am
 Bn ! (Am
 In) (I m
 Bn) (34)

(Bn
 Am) ! Lmn
n (Am
 Bn) L mn

m ! (Am
 Bn)L mn
m (35)

where(Am
 Bn)L mn
m is the notation formatrix conjugation

de�ned in this case by the middle term of equation (35).
Rule (34) is referred to as the multiplicative property of the
tensor product. These are some of the manipulation rules
available for the tensor product see [41].

Manipulation rules for the stride permutation [33] include
the following

(L mn
m) � 1 ! Lmn

n (36)

Lkmn
m Lkmn

n ! Lkmn
n Lkmn

m ! Lkmn
mn (37)

Lkmn
n ! (L kn

n
 Im)(I k
 Lmn
n) (38)

Lkmn
km ! (I k
 Lmn

m)(L kn
k
 Im) (39)

We introduced in Subsection III-B the operator(�) that
we used to translate complex formulas into real formulas in
the complex interleaved format. Manipulation rules for this
construct include

A ! A
 I2; for A real

AB ! A B

A � B ! A � B

Im
 A ! Im
 A

A
 Im ! (I n
 L2m
m)(A
 Im)(I n
 L2m

2)

A different data format for complex transforms leads to a
different operator(�) and to different manipulation rules.

SPIRAL uses currently about 20 manipulation rules; this
number will increase as SPIRAL evolves.

D. Ruletrees and Formulas

Ruletrees.Recursively applying rules to a given transform
to obtain a fully expanded formula leads conceptually to a
tree, which in SPIRAL we call aruletree. Each node of the
tree contains the transform and the rule applied at this node.
As a simple example, consider theDCT -24, expanded �rst
as in (16) and then completely expanded using the base case
rules (33). The corresponding tree (with the rules omitted)is

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 11

TABLE II

SOME RULES FOR TRIGONOMETRIC TRANSFORMS.

DFT n ! (DFT k
 Im) T n
m (I k
 DFT m) L n

k ; n = km (20)

DFT n ! Pn (DFT k
 DFT m)Qn ; n = km; gcd(k; m) = 1 (21)

DFT p ! RT
p (I 1 � DFT p� 1)Dp(I 1 � DFT p� 1)Rp; p prime (22)

DCT -3n ! (I m � Jm) L n
m (DCT -3m (1=4) � DCT -3m (3=4))(F 2
 Im)

�
Im 0 � � Jm � 1

1p
2
(I 1 � 2 Im)

�
; n = 2m (23)

DCT -4n ! Sn DCT -2n diag0� k<n

�
1=(2 cos (2k+1) �

4n)
�

(24)

IMDCT 2m ! (Jm � Im � Im � Jm)
���

1
� 1

�

 Im

�
�

��
� 1
� 1

�

 Im

��
J2m DCT -42m (25)

WHT 2k !
tY

i =1

(I 2k 1 + ��� + k i � 1
 WHT 2k i
 I2k i +1 + ��� + k t); k = k1 + � � � + kt (26)

TABLE III

SOME RULES FOR FILTERS AND THEDWT.

Filt n (h[z]) ! Is
 l + r Filt n=s (h[z]) ; h[z] =
X

� r � k � l

hk z� k (28)

Filt per;per
n (h[z]) ! DFT � 1

n diag0� k<n (ak) DFT n ; (a0; : : : ; an � 1)T = DFT n ĥ (29)

DWT f l ;f r
n (h[z]; g[z]) !

�
DWT f l ;f r

n= 2 (h[z]; g[z]) � In= 2

�
(# 2)n Filt f l ;f r

n

��
h[z]
g[z]

��
(30)

DWT f l ;f r
n (h[z]; g[z]) !

�
DWT f l ;f r

n= 2 (h[z]; g[z]) � In= 2

� �
In= 2
 l + r � 1 [hl � � � h0 � � � h� r]
In= 2
 l + r � 1 [gl � � � g0 � � � g� r]

�
Ef l ;f r

n;l;r � 1 (31)

DWT f l ;f r
n (h[z]; g[z]) !

�
DWT f l ;f r

n= 2 (h[z]; g[z]) � In= 2

�
Filt f l ;f r

n

��
heven[z] hodd[z]
geven[z] godd[z]

��
Ln

2 (32)

given by

DCT -22 DCT -42

DCT -24

� � �
HHH

(40)

We always assume that a ruletree is fully expanded. A ruletree
clearly shows which rules are used to expand the transform
and, thus, uniquely de�nes an algorithm to compute the
transform. We will show in Section III-B that, by labeling
speci�c components of the trees withtags, the ruletree also
�xes degrees of freedom for the resulting implementation.
Ruletrees are a convenient representation of the SPL formulas
they represent: they keep the relevant information for creating
the formula, they are storage ef�cient, and they can be manip-
ulated easily, e.g., by changing the expansion of a subtree.All
these issues, particularly the last one, are very importantfor
our search methods (see Section VI-A), since they require the
ef�cient generation of many ruletrees for the same transform.
We also use the ruletree representation for de�ning “features”
of a formula to enable learning methods, see Section VI-B.
However, when translating a formula into code, it is necessary
to convert the ruletree into an explicit SPL formula.

Formulas. Expanding a ruletree by recursively applying
the speci�ed rules top-down, yields acompletely expanded
(SPL) formula, or simply aformula. Both the ruletree and the
formula specify the same fast algorithm for the transform, but

in a different form. The information about the intermediate
expansions of the transform is lost in the formula, but the
formula captures the structure and the data�ow of the compu-
tation, and hence can be mapped into code. As an example,
the completely expanded formula corresponding to (14), (16),
and (40) is given by

DCT -24 = L 4
2(diag(1; 1=

p
2) F2 � J2 R13�= 8)

� (F2
 I2)(I 2 � J2): (41)

The formula in (16) cannot be translated into code in SPIRAL
because it is not fully expanded: its right hand side contains the
transformsDCT -22 andDCT -42, which arenon-terminals.
In contrast, (41) is a fully expanded formula since it expresses
DCT -24 exclusively in terms of terminal SPL constructs. A
fully expanded formula can be translated into code.

The above rule framework de�nes a formal language that is
a subset of SPL. The non-terminal symbols are the transforms,
the rules are the breakdown rules available in SPIRAL, and
the generated language consists of those formulas that are fast
algorithms for the transforms.

Alternatively, we can regard this framework as a term
rewriting system [42]. The terms are the formulas, the vari-
ables are the transform sizes (or, more general, the transform
parameters), the constants all other SPL constructs, and the
rules the breakdown rules. The transform algorithms are those
formulas in normal form. If we consider only rules that

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 12

decompose a transform into smaller transforms such as (20)
or that terminate transforms such as (33), then it is easy to
prove that formula generation terminates for a given transform.
However, the existence of translation rules such as (24) may
introduce in�nite loops. In practice, we make sure that we only
include translation rules that translate transforms of higher
complexity into transforms of lower complexity to ensure
termination. Obviously, the rewriting system is not con�uent—
and it is not meant to be—since the purpose is to combine the
various rules to generate many different algorithms for each
transform.

Formula spaceF . In general, there are few rules (say less
than 10) per transform, but the choices during the recursive
expansion lead to a large number of different formulas. These
choices arise from the choice of rule in each step, but also,
in some cases, from different instantiations of one rule (e.g.,
rule (20) has a degree of freedom in factoring the transform
size). When a formula is recursively generated, these choices
lead to a combinatorial explosion and, in most cases, to an
exponentially growing number of formulas for a given trans-
form. The different formulas for one transform all have similar
arithmetic cost (number of additions and multiplications)equal
or close to the best known (due to the choice of “good” or
“fast” rules), but differ in data�ow, which in turn leads to a
usually large spread in runtime. Finding the best formula is
the challenge.

The set of alternative formulas that can be generated by
recursive application of applicable rules constitute the set of
formulasF . Even though this set is very large, its recursive
structure allows search methods such as dynamic programming
and evolutionary search, see Section VI-A, to operate quite
ef�ciently.

E. Formula Generation

The framework presented in the previous section provides a
clear road map on how to implement the FORMULA GEN-
ERATION block in SPIRAL (see Fig. 1). The block needs
three databases to generate the formula space: one de�nes
the transforms and the other two de�ne the breakdown and
manipulation rules, respectively. Information about transforms
includes their de�nition (for veri�cation of formulas and
code), type and scope of parameters (at least the size), and
how to formally transpose them. Information provided for
rules includes their applicability (i.e., for which transform
and parameters), children, and the actual rule. Ruletrees and
formulas are both implemented as recursive data types. A more
detailed description can be found in [43], [44].

We used the GAP 3 [45] computer algebra system to
implement the high-level components of SPIRAL including
the FORMULA GENERATION, the FORMULA OPTIMIZATION ,
the SEARCH and the user interface. GAP was chosen for the
following reasons: 1) GAP provides data types and functions
for symbolic computation, including exact arithmetic for ra-
tional numbers, square roots of rational numbers, roots of
unity, and cosine and sines of anglesr� , wherer is a rational
number. These are suf�cient to represent most transforms and
rules, andexact arithmetic can be used to formally verify

rules and formulas (see Section V-B); 2) GAP can be easily
extended; and 3) GAP is easy to interface with other programs
and the GAP kernel can be modi�ed when necessary since the
full source code is available.

IV. FROM SPL FORMULAS TO CODE

In this section, we discuss the second level in SPIRAL, the
IMPLEMENTATION LEVEL (see Fig. 1), which comprises the
two blocks IMPLEMENTATION and CODE OPTIMIZATION . We
also refer to this level as the SPL COMPILER, since its purpose
is to translate SPL formulas into code. By generating code for
a formulaA, we mean generating code for the matrix vector
multiplication y = Ax , wherex and y are input and output
vectors of suitable size.

Up to this point, the motivation to consider the formula
representation of transforms has been purely mathematical:
SPL is a natural representation of algorithms from the algo-
rithms expert's point of view, and SPL enables the generation
of many alternative formulas for the same transform. However,
as we will see in this section, SPL's ruletrees and formulas
also retain the necessary information to translate formulas into
ef�cient code, including vector and parallel code. Furthermore,
SPL facilitates the manipulation of algorithms using rules
(see Section III-C). This manipulation enables SPIRAL to
optimize the data �ow patterns of algorithms at the high,
mathematical level. Current compilers strive to accomplish
such optimizations on the code level but, in the domain
of transforms, very often fail or optimize only to a rather
limited degree. In Section VII, we will show experiments that
demonstrate this problem.

In the following, we �rst slightly extend the language SPL
as introduced in Section III-B through the notion of tags that
�x implementation choices when SPL is translated into code.
Then, we introduce a major concept in SPL—thetemplate
mechanism, which de�nes the code generation. Finally, we
explain standard (scalar) code generation, and, with less detail,
vector code generation and the �rst experiences in SPIRAL
with parallel code generation.

A. SPL and Templates

As introduced in Section III-B, Table I, SPL describes
transform algorithms as formulas in a concise mathematical
notation.

Implementation choices: tags.Besides formula constructs,
SPL supportstags in ruletrees and the corresponding formu-
las. The purpose of these tags is to control implementation
choices, i.e., to instruct the compiler to choose a speci�c
code generation option, thus �xing the degrees of freedom
in the compiler. In the current version of SPIRAL, the most
important implementation choice considered is the degree of
unrolling, which can be controlled eitherglobally or locally.
The global unrolling strategy is determined by an integer
threshold that speci�es the smallest size of (the matrix corre-
sponding to) a subformula to be translated into loop code. This
threshold may be overridden by local tags in the formula that
allow a �ner control. Experiments have shown that a global
setting is suf�cient in most cases [44]. Tags will most likely

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 13

become even more relevant in future versions of SPIRAL when
more implementation strategies with indeterminate outcome
are included.

Templates. The translation of SPL formulas to code is
de�ned throughtemplates. A template consists of a param-
eterized formula constructA, a set of conditions on the
formula parameters, and a C-like code fragment. Table IV
shows templates for several SPL symbols, the stride permuta-
tion Lmn

m , theJn matrix, the butter�y matrixF2, and a generic
diagonal matrixD . Table V shows templates for several matrix
constructs.

Templates serve four main purposes in SPIRAL: 1) they
specify how to translate formulas into code; 2) they are a
tool for experimenting with different ways of mapping a
formula into code; 3) they enable the extension of SPL with
additional constructs that may be needed to express new DSP
algorithms or transforms not yet included in SPIRAL; and
4) they facilitate extending the SPL compiler to generate
special code types such as code with vector instructions (see
Section IV-E).

Each template is written as a separate function imple-
menting a parameterized SPL construct with its own scope
for variables. However, when incorporated into the generated
code, the variables local to different templates are given unique
names to disambiguate them and to incorporate them into one
common name space. The template code is specialized by
substituting all of the template parameters (e.g.,size andstr
in Lsize

str) by their respective values.
Although the template specialization step is similar to

the partial evaluation described in [46], it does not require
complicated binding-time analysis, because the only control
�ow statements in the code generated from formulas are
loops with known bounds. This is because currently, SPIRAL
does not generate code for parameterized transforms, but only
for instantiations. Transform size and other parameters are
already �xed in the formula generation process. This makes the
specialization of the initial code generated from the formula
straightforward.

B. Standard Code Generation

The SPL compiler translates a given SPL program describ-
ing a formula into C (or Fortran) code. This translation is
carried out in several stages shown in Fig. 3.

Intermediate Code Generation. The �rst stage of the
compiler traverses the SPL expression tree top-down, recur-
sively matches subtrees with templates, and generates C-
like intermediate code from the corresponding template by
specializing the template parameters with the values obtained
from the formula.

Next, based on the local unrolling tags and the global
unrolling threshold, the compiler identi�es loops that should
be unrolled and marks them accordingly in the intermediate
representation.

Constructs like “diag” or other generic matrices allow lists
of constant scalar values as arguments. Constants are saved
in constant tables,matN , to enable looping. These tables are
used in the subsequent compiler stages. If the loop is unrolled,

Intermediate Code Generation

SPL formula

Target code

Loop Unrolling/Inlining

Precomputing Intrinsics

Optimization

Target Code Generation

Templates

Fig. 3. The SPL compiler.

the table references are expanded back into constants; if the
loop is not unrolled, the table is part of the generated code.

Loop unrolling. Loops marked for unrolling are fully
unrolled; currently, the SPL compiler does not support partial
unrolling. A reasonably large degree of unrolling is usually
very bene�cial, as it creates many opportunities for optimiza-
tions. As a simple example, consider the rotation matrix

R�= 8 =
�

cos(�= 8) sin(�= 8)
� sin(�= 8) cos(�= 8)

�
:

Since there is no special template for a rotation, the compiler
generates a regular matrix multiplication block with two nested
loops, and a separate data tablemat0 to contain the elements
of the matrix. This code and the resulting unrolled code is
shown below.

loop code:
for (i0 = 0; i0 < 2; i0++) {

y[i0] = 0;
for (i1 = 0; i1 < 2; i1++) {

f0 = mat0[i0 * 2+i1] * x[i1];
y[i0] = y[i0] + f0;

}
}

unrolled code:
y[0] = 0;
f0 = 0.9238795325112867 * x[0];
y[0] = y[0] + f0;
f0 = 0.3826834323650898 * x[1];
y[0] = y[0] + f0;
y[1] = 0;
f0 = (-0.3826834323650898) * x[0];
y[1] = y[1] + f0;
f0 = 0.9238795325112867 * x[1];
y[1] = y[1] + f0;

As this example shows, full unrolling enables constant table
references to be inlined and additional optimizations to be
performed. In this case all additions of zero can be eliminated.

Precomputation of intrinsics. Besides constants, the code
may call prede�ned transcendental functions such assin(�) to
represent scalars. These functions are calledintrinsic, because
the compiler has special support for handling them.

When the compiler encounters an intrinsic function, the
function call is not inserted in the target code. Instead, all
possible arguments to the function are computed by the
compiler. This is possible since all loop bounds are known
at compile time. The compiler will then replace the original

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 14

TABLE IV

EXAMPLES OF TEMPLATES FORSPL CONSTRUCTS: SYMBOLS.

Lstr
size [size � 1 ^ str � 1 ^ size mod str = 0]

blk = size / str
do i0 = 0..str-1

do i1 = 0..blk-1
y[i1 + i0 * blk] = x[i0 * str + i1]

end
end

Jsize [size � 1]

blk = size / str
do i0 = 0..str-1

do i1 = 0..blk-1
y[i1 + i0 * blk] = x[i0 * str + i1]

end
end

F2

y[0] = x[0] + x[1]
y[1] = x[0] - x[1]

diag(D)

do i0 = 0..Length(D)-1
y[i0] = D[i0] * x[i0]

end

TABLE V

EXAMPLES OF TEMPLATES FORSPL CONSTRUCTS: MATRIX CONSTRUCTS.

A � B

deftemp t Rows(B)
call B(t, x)
call A(y, t)

In
 A

do i0 = 0..n-1
call A(subvec(y, i0 * Rows(A),

(i0+1) * Rows(A)-1),
subvec(x, i0 * Cols(A),

(i0+1) * Cols(A)-1));
end

A � B

call A(subvec(y, 0, Rows(A)-1),
subvec(x, 0, Cols(A)-1))

call B(subvec(y, Rows(A),
Rows(A)+Rows(B)-1),

subvec(x, Cols(A),
Cols(A)+Cols(B)-1))

Commonly used key words:

call A(y,x) : inserts code for block A with inputx and outputy
subvec(v, start, end) : returns a subvector ofv
deftemp v N : de�nes a new temporary vectorv of N elements
Rows(A) : returns row dimension of A
Cols(A) : returns column dimension of A

expressions by references to tables of constants whose values
are either computed at compile time or initialized at runtime,
depending on the compiler con�guration. In the case they are
initialized at runtime, the compiler produces an initialization
function.

Optimization. The optimization stage performs dead code
and common subexpression elimination, strength reduction,
copy propagation, and conversion to scalars of temporary
vector references with constant indices. This stage will be
discussed in detail in the next subsection.

Target code generation.In the last stage, the compiler
produces the target code. The target code is customizable with
the following options.

Standard code generation backendsgenerate standard C and
Fortran code including the required function declaration,con-
stant tables, and the initialization function for precomputing
intrinsics. We focus our discussion on C code generation. The
FMA (fused multiply-add) backend performs an instruction
selection to produce C code that utilizes fused-multiply add
instructions available on some platforms. The multiplierless
backend decomposes constant multiplications into additions,
subtractions, and shifts.

Graphical backendsproduce transform data-�ow graphs.

These graphs are useful to visualize, analyze, and compare
different code options.

Statistical backendsoutput statistics of the generated code,
rather than the code itself. Examples include the arithmetic
cost, the FMA arithmetic cost, the size of the intermediate
storage required, or the estimated accuracy. These statistics can
be used as alternatives to runtime for the optimization criteria
used by SPIRAL (see Section V-C). The arithmetic cost
backend, for instance, enables SPIRAL to search for formulas
that implement the transform with the minimal number of
arithmetic operations.

C. Code Optimization

In this section, we provide further detail on the optimization
stage of the SPL compiler, the fourth block in Fig. 3. The
reason why the SPL compiler performs these optimizations
rather than leaving them to the C/Fortran compiler is that
practically all of the commonly used compilers do not optimize
machine generated code well, in particular, large segmentsof
straightline code (see [11], [20], [47], [48]). The performed
optimizations include array scalarization, algebraic simpli�ca-
tion, constant and copy propagation, common subexpression

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 15

elimination (CSE), and dead code elimination. The �rst four
optimizations will be investigated in more detail below. Dead
code elimination will not be discussed, as there are no un-
usual details of our implementation that impact performance.
Finally, we brie�y discuss FMA code generation.

Static single assignment.All of the optimizations consid-
ered are scalar optimizations that operate on code converted
to static single assignment (SSA) form, in which each scalar
variable is assigned only once to simplify the required analysis.

Array scalarization. C compilers are very conservative
when dealing with array references. As can be seen from the
compilation example in the previous section, the loop unrolling
stage can produce many array references with constant indices.
During array scalarization, all such occurrences are replaced
by scalar temporary variables.

Algebraic simpli�cation. This part of the optimizer per-
forms constant folding and canonicalization, which support
the efforts of other optimization passes.

Constants are canonicalized by converting them to be non-
negative and by using unary negation where necessary. Ex-
pressions are canonicalized similarly by pulling unary negation
as far out as possible. For example,� x � y is translated to
� (x + y), and (� x) � y ! � (x � y). Unary operators will
usually combine with additive operators in the surrounding
context and disappear through simpli�cation.

These transformations, in conjunction with copy propa-
gation, help create opportunities, previously unavailable, for
common subexpression elimination (CSE) to further simplify
the code.

Copy propagation. Copy propagation replaces occurrences
of the variable on the left hand side of a given “simple” as-
signment statement with the right hand side of that assignment
statement, if the right hand side is either a constant, a scalar,
or a unary negation of a scalar or a constant.

Recall that unary negation expressions are often created
during algebraic simpli�cation due to canonicalization. Copy
propagation will move them so that they can combine with
additive operators in the new context during further algebraic
simpli�cation.

Common subexpression elimination.Common subexpres-
sion elimination tries to discover multiple occurrences ofthe
same expression; it makes sure that these are computed only
once. Our implementation treats subscripted array references
as expressions and, therefore, as eligible for elimination.

Optimization strategy. The different optimizations de-
scribed above have mutually bene�cial relationships. For in-
stance, algebraic simpli�cation can bolster copy propagation,
and copy propagation can then create new opportunities for
algebraic simpli�cation. Alternating between these two opti-
mization passes, the code will eventually reach a �xed point,
where it is changed no further.

Our implementation strategy is to loop over these different
optimization passes in the manner prescribed, and to terminate
once an entire iteration fails to change the code.

Impact of the optimizations. Merely scalarizing arrays
provides a sizable performance bene�t as seen in Fig. 4.
These graphs depict the execution time (lower is better) of the
programs generated for 45 SPIRAL generated formulas for

0 5 10 15 20 25 30 35 40 45
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-6

Formula # (size = 32 for all of them)

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 a
ve

ra
ge

d
ov

er
 1

00
00

 tr
ia

ls SPARC
Scalarized
Optimized

(a) SPARC

5 10 15 20 25 30 35 40 45
1.5

2

2.5

3

3.5

4
x 10

-6

Formula # (size = 32 for all of them)

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 a
ve

ra
ge

d
ov

er
 1

00
00

 tr
ia

ls

MIPS
Scalarized
Optimized

(b) MIPS

Fig. 4. DFT performance before and after SPL compiler optimizations on
a SPARC and MIPS architecture. SPARC: UltraSparc III, 750 MHz, Forte
Developer 7 compiler, �ags -fast -xO5; MIPS: MIPS R12000, 300MHz,
MIPSPro 7.3.1.1 compiler, �ag -O3.

a DFT 32 on two different platforms. The line marked with
stars and labeled “SPARC” in Fig. 4(a), respectively “MIPS”
in Fig. 4(b), shows the execution times achieved by the native
SPARC (MIPS) compiler alone. The line marked with triangles
and labeled “Scalarized” shows that every formula is improved
by scalarizing the C code before sending it to the native
compiler on both platforms. Note that we performed our MIPS
experiments on an R12000 with the MIPSpro compiler. See
[47] for a case where the same experiments were performed
with the same compiler on an R10000, but with different
results. In that case, the MIPSpro compiler already achieved
good performance without scalarizing or optimizing the code
�rst. The line marked with bullets and labeled “Optimized”
in both graphs of Fig. 4 represents the performance of the
DFT codes after the entire optimization following the strategy
described above. We observe that the additional optimizations
beyond array scalarization signi�cantly improve the code on
SPARC, but not on MIPS.

FMA code generation. Some architectures, including

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 16

Itanium 1/2 and Motorola G4/G5, offer fused multiply
add (FMA) instructions, which perform an instruction of the
form

y � ax � b

as fast as a single addition or multiplication. Most standard
compilers cannot generate the optimal FMA code as it may
require changing the algorithm and/or the order of computa-
tion.

To generate explicit FMA code, we use an algorithm that
traverses the data �ow graph propagating multiplications,and
fusing them with additions where possible [49]. The algorithm
has the property that the number of multiplications left “un-
fused” is at most the number of outputs of the transform. We
implemented the algorithm by extending theiburg instruction
selection framework for expression trees [50]. Unlike standard
compilers, this algorithm can produce code that matches the
best published FMA arithmetic cost for many transforms,
including the DFT [51], [52].

Our FMA generation algorithm can also be performed more
concisely at the formula level (similar to the vector code
generation discussed below) rather than at the code level. This
method is currently being integrated into SPIRAL.

D. Compilation Example.

To demonstrate the most important stages of the compiler,
we discuss the compilation of the SPL formula in (41). The
size of the formula is 4, which is smaller than the default
global unrolling threshold 16. Thus, the generated code will
be completely unrolled. In the unrolled code, all references
to precomputed coef�cient tables and transcendental functions
will be inlined during the unrolling stage, and the intrinsic
precomputation stage will be omitted.

We look at the output of all the stages of the compiler for
this expression.

Intermediate code generation from SPL templates.The
initial stage of the compiler converts the SPL expression tree
for (41) into the looped intermediate code (Table VI, top). The
generated code is annotated with formula fragments to show
the origin of the code.

Loop unrolling. All of the loops generated in the previous
stage are unrolled because of the small transform dimension
n = 4 < 16, where16 is the default setting as mentioned.
After full unrolling, the tablesmatN are no longer needed,
and the compiler directly substitutes the computed values
(Table VI, bottom).

Scalar optimization and target code generation.Loop
unrolling usually creates many opportunities for scalar op-
timizations, and also creates unnecessary temporary arrays
(t0, t1, t2, t3, t4 in Table VI, bottom). Array scalarization
converts redundant temporary arrays into scalars, and thenthe
code is converted into SSA form (i.e., each scalar variable is
assigned only once). As was mentioned earlier, this simpli�es
the analysis required for further optimization.

After the code optimization, the compiler outputs the target
code including the transform function declaration and an ini-
tialization function. Since our unrolled code does not use any
tables, the initialization function is empty. The resulting code

TABLE VI

CODE GENERATION FOR FORMULA(41). ABOVE: INITIAL CODE

GENERATION; AND BELOW: AFTER UNROLLING AND INLINING

CONSTANTS.

initial code generation:
I2 � J2

for (i0 = 0; i0 < 2; i0++) {
t2[i0] = x[i0]; }

for (i0 = 0; i0 < 2; i0++) {
t2[i0+2] = x[-i0+3]; }

F2
 I2
for (i0 = 0; i0 < 2; i0++) {

t1[i0+2] = t2[i0] - t2[i0+2];
t1[i0] = t2[i0] + t2[i0+2]; }

diag(1;
p

2=2) F 2 � : : :
t3[1] = t1[0] - t1[1];
t3[0] = t1[0] + t1[1];
for (i0 = 0; i0 < 2; i0++) {

t0[i0] = mat0[i0] * t3[i0]; }

: : : � J2 R �
for (i0 = 0; i0 < 2; i0++) {

t4[i0] = 0;
for (i1 = 0; i1 < 2; i1++) {

f0 = mat1[i0 * 2 + i1] * t1[i1+2];
t4[i0] = t4[i0] + f0; } }

for (i0 = 0; i0 < 2; i0++) {
t0[i0+2] = t4[-i0+1]; }

L4
2
for (i0 = 0; i0 < 2; i0++) {

for (i1 = 0; i1 < 2; i1++) {
y[2 * i0+i1] = t0[i0+2 * i1]; } }

after unrolling and inlining constants:

t2[0] = x[0];
t2[1] = x[1];
t2[2] = x[3];
t2[3] = x[2];

t1[2] = t2[0] - t2[2];
t1[0] = t2[0] + t2[2];
t1[3] = t2[1] - t2[3];
t1[1] = t2[1] + t2[3];

t3[1] = t1[0] - t1[1];
t3[0] = t1[0] + t1[1];
t0[0] = 1.0000000000000000 * t3[0];
t0[1] = 0.7071067811865476 * t3[1];

t4[0] = 0;
f0 = 0.3826834323650898 * t1[2];
t4[0] = t4[0] + f0;
f0 = (-0.9238795325112867) * t1[3];
t4[0] = t4[0] + f0;
t4[1] = 0;
f0 = 0.9238795325112867 * t1[2];
t4[1] = t4[1] + f0;
f0 = 0.3826834323650898 * t1[3];
t4[1] = t4[1] + f0;
t0[2] = t4[1];
t0[3] = t4[0];

y[0] = t0[0];
y[1] = t0[2];
y[2] = t0[1];
y[3] = t0[3];

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 17

TABLE VII

FINAL GENERATED C CODE AND FMA CODE FOR THE FORMULA(41).

C code:
void sub(double * y, double * x) {

double f0, f1, f2, f3, f4, f7, f8, f10, f11;
f0 = x[0] - x[3];
f1 = x[0] + x[3];
f2 = x[1] - x[2];
f3 = x[1] + x[2];
f4 = f1 - f3;
y[0] = f1 + f3;
y[2] = 0.7071067811865476 * f4;
f7 = 0.9238795325112867 * f0;
f8 = 0.3826834323650898 * f2;
y[1] = f7 + f8;
f10 = 0.3826834323650898 * f0;
f11 = (-0.9238795325112867) * f2;
y[3] = f10 + f11;

}
void init_sub() {
}

FMA code:
void sub(double * y, double * x) {

double f0, f1, f2, f3, f4, f1000, f1001;
f1 = x[0] + x[3];
f3 = x[1] + x[2];
y[0] = f1 + f3;
f4 = f1 - f3;
y[2] = 0.7071067811865476 * f4;
f0 = x[0] - x[3];
f2 = x[1] - x[2];
f1000 = fma(f0, 0.4142135623730951, f2);
y[1] = 0.9238795325112867 * f1000;
f1001 = fma(f0, (-2.4142135623730945), f2);
y[3] = 0.3826834323650898 * f1001;

}
void init_sub() {
}

is shown in Table VII, top. Further optional FMA optimization
saves two instructions (Table VII, bottom).

Fig. 5 shows the two data �ow graphs, produced by the
graphical backend, for the codes in Table VII. Each internal
node in the graph represents either an addition (light gray
circle), a multiplication by a constant (dark gray circle),or an
FMA instruction (dark gray rectangle). For the latter, the input
being multiplied is marked with a bold edge.

E. Vector Code Generation

Most modern processors feature short vector SIMD (single
instruction, multiple data) extensions. This means the architec-
ture provides data types and instructions to perform �oating
point operations on short vectors at the same speed as a single,
scalar operation. The short vector extensions have different
names for different processors, have different vector lengths
� , and operate in single or double precision. An overview is
provided in Table VIII.

Short vector instructions have the potential to speed up a
program considerably, provided the program's data �ow ex-
hibits the �ne-grain parallelism necessary for their application.
Since vector instructions are beyond thestandardC/Fortran
programming model, it is natural to leave the vectorization
to a vectorizing compiler. Unfortunately, to date, compiler
vectorization is very limited; it fails, in particular, forthe

x[0]

f0
 -

f1
 +

x[1]

f2
 -

f3
 +

x[2]x[3]

y[0]y[1]y[2] y[3]

f7
 *

f10
 *

f4
 - + f8

 *
f11
 *

 * + +

y[0] y[1]y[2] y[3]

x[0]

f1
+

f0
-

x[1]

f3
+

f2
-

x[2] x[3]

* * *

f1000
fma

f1001
fma

f5
+

f4
-

Fig. 5. Standard and FMA data �ow graphs generated by SPIRAL for
formula (41). Multiplications are shaded dark gray, FMAs areshown as dark
gray rectangles.

TABLE VIII

SHORT VECTORSIMD EXTENSIONS.

Vendor Name � -way Precision Processor
Pentium III

Intel SSE 4-way single Pentium 4
Intel SSE2 2-way double Pentium 4

4-way single
Intel SSE3 2-way double Pentium 4

Itanium
Intel IPF 2-way single Itanium 2
AMD 3DNow! 2-way single K6

Enhanced K7, Athlon XP
AMD 3DNow! 2-way single Athlon MP

3DNow! Athlon XP
AMD Professional 4-way single Athlon MP

2-way single
AMD AMD64 4-way single Athlon 64

2-way double Opteron

Motorola AltiVec 4-way single MPC 74xx G4
IBM AltiVec 4-way single PowerPC 970 G5
IBM Double FPU 2-way double PowerPC 440 FP2

complicated access patterns usually found in transform formu-
las. In Section VII, for example, we will show that compiler
vectorization, when used in tandem with SPIRAL, can, for the
DFT , achieve moderate speed-ups (about 50%), whereas the
best possible code is at least a factor of 2 faster.

As a consequence, when striving for highest performance,
the common current practice is to hand-code vector instruc-
tions. This can be done at the C level through the use of
“intrinsics” provided by the respective architecture vendors,
but poses major challenges to software developers: 1) each
vector extension provides different functionality and theintrin-
sics interface is not standardized, neither across platforms, nor
across compilers, making the written code non-portable; 2)the
performance of vector instructions is very sensitive to thedata

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 18

access; a straightforward use oftendeterioratesperformance
instead of improving it; and 3) in a library of many transforms,
each transform needs to be hand-coded individually. In the
following, we give an overview of how we overcome these
problems by extending SPIRAL toautomatically generate
optimized vector code. We note that by extending SPIRAL to
handle vectorization, the third dif�culty is immediately taken
care of. For a more detailed description, we refer to [53]–[55]
and to [56] in this special issue.

Our approach to vector code generation for SPL formulas
consists of two high-level steps.

� We identify which basic SPL formulas or structures
within formulas can be mapped naturally into vector
code; then we derive a set ofmanipulation rulesthat
transform a given SPL formula into another formula
that can be better vectorized. These manipulations are
incorporated into the FORMULA OPTIMIZATION block in
Fig. 1 and can overcome compiler limitations since they
operate at the “high” mathematical level. The manipula-
tion rules are parameterized by the vector length� .

� We de�ne a short vector API on top of all current vector
extensions, which is suf�cient to vectorize a large class
of SPL formulas. The API is implemented as a set of
C macros. The SPL compiler is then extended to map
vectorizable formulas into vector code using this API.

Formula manipulation. We start by identifying formulas
that can be naturally mapped into vector code. The list is by
no means exhaustive, but, as it turns out, is suf�cient for a
large class of formulas. We assume that the formula is real
valued, i.e., if the original formula is complex, we �rst convert
it into a real formula using the conversion operator(�) and the
manipulation rules introduced in Section III-C. Further, we
denote the vector length with� ; on current platforms, only
� = 2 ; 4 are available (see Table VIII). We refer to a vector
instruction for vectors of lengths� also as a� -way vector
instruction.

The most basic construct that can be mapped exclusively
into vector code is the tensor product

A
 I � ; (42)

whereA is an arbitrary formula. The corresponding code is
obtained by replacing each scalar operation in the code for
y = A x by the corresponding� -way vector instruction. This
is best understood by visualizing the structure ofA
 I � ; the
exampleF2
 I4 for � = 4 is provided in Table IX.

Further, the following structured matrixS

S =
�
diag(a0; : : : ; a� � 1) diag(b0; : : : ; b� � 1)
diag(c0; : : : ; c� � 1) diag(d0; : : : ; d� � 1)

�

= L 2�
2

�
L

0� i<n

�
ai bi

ci di

��
L2�

�

(43)

can be mapped into 4 vector multiplications and 2 vector
additions. The sparse structure ofS in (43) is equivalent to the
structure of (42), only the actual values of the entries differ.
The matrixS appears often in DSP transforms, for example,
in theDFT when converting the complex twiddle factors into
a real matrix using the(�) operator.

Finally, we need vectorizable permutations. Clearly, permu-
tations of the formP
 I � match (42) and are thus naturally
mappable into vector code. Another important class consists of
permutations that can be vectorized using a small number of
in-register data reorganization instructions. The permutations

P 2 f L � 2

� ; L2�
2 ; L2�

� g (44)

are of that type and play an important role in the vectorization
of DFT algorithms based on the Cooley-Tukey rule (20). The
actual implementations of these instructions differ across short
vector architectures; however, they share the characteristics
that they are done fully in-register, using only a few vector
reorder instructions.

Further, ifP is a vectorizable permutation of the form (42)
or (44), then the same holds forIn
 P . Finally, for � = 4 ,
we also consider permutations of half-vectors, namely of the
form P
 I2. These permutations reorganize complex numbers
into the interleaved complex format and are thus important for
complex transforms. For example, Intel's SSE vector extension
provides memory access instructions for these permutations.

Building on the constructs introduced above, we can com-
pletely vectorize any expression of the form

Y

i

Pi D i (A i
 I �)E i Qi ; (45)

where Pi ; Qi are vectorizable permutations, andD i ; E i are
direct sums of matrices of the form (43). The class of formulas
in (45) is general enough to cover theDFT formulas based
on the Cooley-Tukey breakdown rule (20), theWHT formulas
based on (26), and the higher-dimensional transforms (19).

We brie�y illustrate the vectorization manipulations with
the Cooley-Tukey rule (20). To manipulate a given formula
into the form (45), we use manipulation rules including
equations (35) to (39). Using these manipulations, we can
vectorize every Cooley-Tukey rule based formula, provided
that for n = km in (20), � j k; m, which implies� 2 j n. In
this case the manipulated formula takes the following form,

DFT mn =
�
I mn

�

 L2�

�

� �
DFT m
 I n

�

 I �

�
T

0mn

n

�
�

I m
�

�
L2n

�
 I �
� �

I 2n
�

 L � 2

�

� �
DFT n
 I �

� �

�
�

L
mn

�
m
�

 L2�
2

�
; (46)

where T
0mn

n is a direct sum of matricesS shown in (43).
The operator(�) is as de�ned in Section III-B. Note that (46)
matches (45) and is, hence, completely vectorizable, indepen-
dently of the further expansion of the smaller occurringDFT s.
This is crucial for obtaining a searchable space of formulas
that exhibit different data �ows.

Code mapping.After a formula is vectorized by the means
of formula manipulation, the parts of the formula match-
ing the pattern in (45) are mapped into vector code. The
remaining part of the formula is mapped into scalar code
using the standard SPL compiler. For a formula matching
(45), �rst, vector code is generated forA i
 I � by generating
scalar code forA i and replacing the scalar operations by
the corresponding� -way vector operations (e. g.,t=a+b is

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 19

Matrix Scalar Code fory = F 2 x Matrix Vector Code fory = (F 2
 I4)x

F2 =�
1 1
1 � 1

�
void F2(float * y, float * x) {

y[0] = x[0] + x[1];
y[1] = x[0] - x[1];

}

F2
 I4 =�
I4 I4
I4 � I4

�

void F2xI4 (float * y, float * x) {
LOAD_VECT(x0, x + 0);
LOAD_VECT(x1, x + 4);
ADD_VECT(y0, x0, x1);
STORE_VECT(y + 0, y0);
SUB_VECT(y1, x0, x1);
STORE_VECT(y + 4, y1);

}

TABLE IX

VECTORIZATION OFy = (F 2
 I4) x FOR A 4-WAY VECTOR EXTENSION USING THE PORTABLESIMD API.

replaced byVEC_ADD(t,a,b)), and by replacing array
accesses by explicit vector load and store instructions. Next,
the permutationsPi andQi are implemented by replacing the
vector loads and stores by combined load/store-and-permute
macros provided by our short vector API. In the �nal step,
the arithmetic operations required byD i and E i are inserted
between the code forA
 I � , and the vector memory access
and permutations introduced in the previous step.

As a small example, we show a vector store fused with
L8

4, provided by our API, and implemented in SSE using the
Intel C++ compiler intrinsics. It is one of the cases in (44) for
� = 4 .

#define STORE_L_8_4(v, w, p, q) {
__m128 t1,t2;
s = _mm_unpacklo_ps(v, w);
t = _mm_unpackhi_ps(v, w);
_mm_store_ps(p, s);
_mm_store_ps(q, t); }

In this example,v; w; s; t are vectors of length 4 and
the permutation is performed with the �rst two instructions.
Assuming the vectors are indexed with 0,1,2,3, it iss =
(v0; w0; v1; w1) and t = (v2; w2; v3; w3).

F. Code Generation for Parallel Platforms

In many situations, parallel processing may be needed due
to real-time constraints or when a large amount of data needs
to be processed. Despite tremendous advances, parallelizing
compilers, similar to vectorizing compilers, cannot compete
with the best possible hand-optimized code, even for relatively
simple programs [57], [58]. In this section we show a �rst
step towards generating parallel code using SPIRAL. The
high-level approach is similar to vector code generation (see
Section IV-E): 1) identify constructs that can be mapped
into parallel code; 2) manipulate a given formula into these
parallelizable constructs; and 3) map the manipulated formula
into ef�cient code.

SPIRAL's constructs, in particular the tensor product and
direct sum, have natural interpretations for parallel compu-
tation [33] and many of the traditional optimizations used
to achieve better granularity, locality, and load balance can
be achieved through formula manipulation. Using formula
manipulation, SPIRAL can explore alternate formulas that may
exhibit explicitly parallelizable subcomponents. Parallel imple-
mentations are obtained using parallel directives/functions in
the templates for these constructs. A search can be used to �nd
the best combination of parallel and sequential code, and thus

to minimize parallel overhead and to achieve good processor
utilization.

Relatively simple extensions to the code generator can
be utilized to produce parallel code for both symmetric
multi-processors (SMP), where multiple processors share a
common memory with uniform access time, and distributed-
memory parallel computers, where remote memory is accessed
over an interconnect with non-uniform memory access. For
distributed-memory computers, code can be produced by using
a shared-memory programming model where remote memory
is accessed implicitly, or by using a distributed-memory pro-
gramming model, where explicit message passing is required.
In either approach, alternate formulas for the same transform
may access memory in different patterns leading to more or
less remote memory accesses.

We realized these ideas in preliminary experiments with
the WHT on both shared-memory multiprocessors [59] and
distributed-memory computers [60]. The parallel code was
generated using OpenMP [61] for shared-memory paral-
lelism and MPI [62] for distributed-memory parallelism. We
performed additional experiments using a special-purpose
distributed-memory parallel computer designed for the com-
putation of theDFT and WHT [63]. In this case, a search
over a family of related formulas was used to minimize the
number of remote memory accesses.

Rule (26) decomposes theWHT into a sequence of factors
of the form(I m
 WHT 2k i
 In) containingmn independent
computations ofWHT 2k i at striden, which can be computed
in parallel. A barrier synchronization must be inserted between
the factors. The strided access patterns may prevent prefetch-
ing associated with cache lines and may introduce false sharing
where different processors share a common cache line even
though they do not access common data elements [59]. Thus,
rule (26) only serves as a starting point to optimize the WHT
structure for parallel target platforms.

Formula manipulation. Using the manipulation rules from
Section IV-E, (26) can be modi�ed to obtain the different
structure

WHT 2k =
tY

i =1

P � 1
i (I 2k � k i
 WHT 2k i)Pi ; (47)

where Pi is a sequence of permutations. One possibility is
to choosePi = L 2k

2k i
. There are also other choices, since the

sequence of permutationsPi is not unique. Whent = 2 and the
permutations are computed at runtime, the algorithm of [26]is
obtained. This variant can lead to better performance on SMPs

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 20

due to reduced cache misses and bus traf�c. In a distributed
memory environment, different sequences of permutations lead
to different locality and the SPIRAL search engine can be used
to determine the sequence with the minimal number of remote
memory accesses.

Further manipulation can be used to combine adjacent
permutations to obtain

WHT 2k =
� tY

i =1

Qi (I 2k � k i
 WHT 2k i)
�
Pt ; (48)

whereQi = Pi � 1P � 1
i (where we assumeP0 = I 2k). This has

the bene�t of reducing the amount of message passing in a
distributed-memory environment. Further factorization of the
permutationsQi can be used to obtain formulas that group the
data into larger blocks, which can both reduce communication
cost and improve cache utilization.

Code generation.Parallel code for SMPs can be generated
for SPL programs through the use of parallel directives in the
templates for parallel constructs such as the tensor product.
It is straightforward to insert parallel loops wheneverIn
 A
occurs in a formula; however, in order to obtain good par-
allel ef�ciency, we should only introduce parallelism when
it improves performance; further, it is important to avoid
creating and deleting threads multiple times. It is best to
create a parallel region and introduce explicit schedulingand
synchronization as needed for the different constructs. Table X
(top) shows the parallel code for an SMP implementation of
the iterative rule of theWHT in equation (26); the notation
xn

b;s indicates a subvector ofx of sizen equal to(x(b); x(b+
s); : : : ; x(b+(n� 1)� s)) . While the code was created by using
formula manipulation and the techniques of Section IV-A, the
code involves features not currently supported by SPIRAL,
such as variable loop bounds and in-place computation. We
made experiments with this and other parallel code with a
special package for computing the WHT [27], [59], [60].

Code generation for distributed memory machines is more
involved. Data must be distributed amongst the processors,
locality maximized, and communication minimized. If a dis-
tributed shared-memory programming model is used, explicit
communication is not required; however, data access patterns
must be organized to minimize remote memory access. Since
SPIRAL can make modi�cations at the formula level, alternate
data access patterns can be explored and optimized automat-
ically. In a distributed memory programming model, explicit
send/receive operations must be inserted, taking into account
the data distribution. For theWHT , where the data size is a
power of two, data can be distributed using the high-order bits
of the data address as a processor identi�er and the low-order
bits as an offset into the processors local memory. In this case,
communication arises from permutations in the formula, and
these permutations can be automatically converted to message-
passing code (see Table X, bottom, for an example). Additional
details are available in [60].

V. EVALUATION

After formula generation and code generation, the third
conceptual key block in SPIRAL is the EVALUATION LEVEL

TABLE X

PSEUDO-CODE FOR ANSMP IMPLEMENTATION OF THE WHT OF SIZE

n = 2 k AND DISTRIBUTED-MEMORY PSEUDO-CODE FOR THE STRIDE

PERMUTATION.

SMP code for WHT:
#begin parallel region

r = n; s = 1; id = getthreadid();

num = gettotal thread();

for i = 1, . . . , t

r = r / ni ;

for id = id, . . . , r * s - 1, step = num

j = id / s;

k = id mod s;

xn i
jn i s+ k;s = WHTn i � xn i

jn i s+ k;s ;

s = s * ni ;

#parallel barrier

#end parallel region

distributed memory code for the stride permutation:

/* Step 1: Construction of MPI data type */

Arguments: localN, totalRank, stride

block = stride / totalRank

localS = localN / stride

MPI Type vector(block, localS, localS*totalRank,

DOUBLE, &NEW TYPE)

MPI Type commit(&NEW TYPE)

for (round = 0; round< totalRank; ++ round)

/* Step 2: Local data rearrangement */

id = handshake[round]

k = 0

offset s = id * block

for (i = offset s; i < (block + offsets); ++ i)

for (j = i; j < localSize; j += stride)

buffer[k++] = x[j]

/* Step 3: Global communication */

offset r = id * localS

MPI Sendrecv(buffer, localN/totalRank, DOUBLE,

id, 0, y+offsetr, 1, NEW TYPE, id, 0,

MPI COMM WORLD, &status)

block, which is responsible for measuring the performance
of the generated code and for feeding the result into the
SEARCH/LEARNING block.

The EVALUATION LEVEL block ful�lls three main func-
tions: 1) compilation of the source code into machine code;
2) optional veri�cation of the generated code; and 3) mea-
surement of the performance of the generated code. The
performance metric can be the runtime of the compiled code,
or it can be some other statistics about the code such as the
number of arithmetic operations, the instruction count, the
number of cache misses, or the number of FMA instructions.
Other performance measures such as numerical accuracy or

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 21

code size can also be used. The performance evaluation block
makes it easy to switch between performance measures or to
add new ones.

A. Compilation

To obtain a performance measure, such as the runtime,
the code generated by SPIRAL is compiled, linked with the
performance measuring driver, and executed. At installation
time, SPIRAL detects the machine con�guration and the
available compilers, defaulting to vendor supplied compilers
if available.

Interfacing external programs, like C compilers, portable
across platforms and operating systems, and integrating differ-
ent performance measures is a non-trivial problem. In SPIRAL
we have implemented a library we call “sysconf” to provide
a portable and �exible solution. For example, the sysconf
library stores the information about compilers available on
the machine in a set of con�gurationpro�les. Each pro�le
includes the path to the compiler and to the linker, the
target language (C or Fortran) and object �le extensions, the
compiler invocation syntax, the compiler and linker �ags,
the required libraries, and the test driver execution syntax.
Pro�les can be nested in order to create groups; for example,
if the “c.gcc” pro�le includes all the information necessary
to use gcc, “c.gcc.opt1” and “c.gcc.opt2” may be created to
differentiate between option sets with different optimization
levels. Con�guration pro�les are very useful for benchmarking
different compilers, and for evaluating the effects of different
compiler options. Further, pro�les can be con�gured for cross-
compilation and remote-execution on a different platform.For
example, this capability is used to produce the IPAQ results
shown in Section VII. Also, additional C-to-C optimization
passes are easily incorporated into a pro�le to accommodate
various research tools. Finally, pro�les allow the execution
of other programs to compute various performance measures,
e.g., obtained by statically analyzing the C or compiled code.

B. Veri�cation

SPIRAL provides several modes of (optional) veri�cation
for its automatically generated code: 1) rule veri�cation;
2) formula veri�cation; 3) code veri�cation; and 4) recursive
code veri�cation. We brie�y discuss these modes.

Rule veri�cation. SPIRAL requires all transforms to have
a de�nition, which is a function that constructs the transform
matrix given its parameters. Since rules decompose transforms
into other transforms, each rule can be veri�ed for �xed
parameter choices. Namely, the rule is applied to the transform
once, and the resulting formula, in the formula generator,
is converted into a matrix and compared to the original
transform. This type of veri�cation is usuallyexact, since most
transforms and their formulas have exact representations due
to the symbolic computation environment provided by GAP
(see Section III-E).

Formula veri�cation. A fully expanded formula is veri�ed
similarly to a rule by converting it into the represented
matrix and comparing it to the original transform. Again, this
veri�cation is usually exact.

Both, rule veri�cation and formula veri�cation are per-
formed exclusively at the formula level, i.e., no code is
generated. Their purpose is to verify transform algorithmsand
to debug the formula generator. Code veri�cation is discussed
next.

Code veri�cation. For the veri�cation of the generated
code, SPIRAL provides a variety of tests.

The most important test applies the generated code to an
input vectorx and compares the output vectory to the correct
resultŷ obtained by computing the transform by de�nition (the
code for computing a transform by de�nition is also generated
by SPIRAL). The norm of the errorjjy � ŷjj (different norms
are available) is returned, and has to be below a threshold. Two
modes are available. The �rst mode performs this comparison
on the entire set of (standard) base vectors. The correct
outputs need not be computed in this case, since they are the
columns of the transform matrix. For a transform of sizen, the
algorithms are typicallyO(n2 log(n)) ; thus, this veri�cation
is O(n2 log(n)) . The second mode performs this comparison
either on one or on several random vectorsx. Here the cost
is O(n2) for computing the correct outputs by de�nition.

As a variant of the above tests, two generated programs can
be compared against each other on the standard basis or on a
set of random vectors.

The veri�cation on the basis described above can be ex-
tended further to obtain an actual proof of correctness. Namely,
the code generated by SPIRAL contains only additions and
multiplications by constants as arithmetic operations. Thus,
the entire program has to encode a linear function provided
all the arrays are accessed within their allowed index range
(which can be tested). If two linear functions coincide on a
basis, they must coincide for each input vector, which proves
correctness (up to a numerical error margin).

Other veri�cation methods we have experimented with
include tests for transform speci�c properties, such as the
convolution property of the DFT [64], [65].

In practice, because of the speed, we use the veri�cation
on one random vector, which usually proves to be suf�cient.
By including this veri�cation in a loop that generates random
transforms, random formulas, and random implementation
options, bugs in SPIRAL can be found ef�ciently. To facilitate
debugging, once a bug in the generated code is found, another
routine recursively �nds the smallest subformula that produces
erroneous code.

C. Performance/Cost Measures

By default, SPIRAL uses the runtime of the generated
code as a performance measure, but other measures can be
chosen. This property makes SPIRAL a versatile tool that
can be quickly adapted or extended to solve different code
optimization problems in the transform domain. Examples of
considered performance measures, besides runtime, include
accuracy, operation count, and instruction count. We also
started preliminary work on performance models that can
be applied at the algorithmic level without compiling and
executing the generated code.

Runtime. There are various ways of measuring the runtime;
obtaining accurate and reproducible results is a non-trivial

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 22

problem. A portable way of measuring runtime uses the
C clock() and computes the runtime as an average over a large
number of iterations. This implies that, for small transform
sizes, the runtimes do not re�ect any compulsory cache misses
arising from loading the input into cache. Where possible, SPI-
RAL uses the processor's built-in cycle counters, which areof
higher resolution and thus allow for much faster measurement
as only a few iterations need to be timed. Depending on the
precision needed (for instance, timing in the search requires
less precision than timing the �nal result), SPIRAL may
need to run such measurements multiple times and take the
minimum. Taking the minimum over multiple measurements
and keeping the number of repetitions per measurement low,
reduces the in�uence of other running processes, unknown
cache states, and other nondeterministic effects.

Operations count.For theoretical investigations (and some
applications as well) it is desirable to know the formula
requiring the fewest number of operations. Most formulas that
SPIRAL generates, have, by construction, minimal known (or
close to minimal) operation count, however, there are a few
exceptions.

The �rst example is the class of Winograd algorithms [66]
for small convolutions and small DFT sizes, which exhibit a
large spread in operation counts. We have used SPIRAL to
search this space for close to optimal solutions [67].

The second example arises when generating formulas using
fused multiply-add (FMA) instructions (Section IV-B), since
known FMA algorithms for transforms are usually hand-
derived and are only available for a few transforms, e.g., [51],
[52], [68]. Using SPIRAL we obtain FMA code automatically;
in doing this, wefound most of the published algorithms
automatically and generated many new ones for the transforms
contained in SPIRAL.

Accuracy. For many applications, and in particular for those
using �xed point code, numerical accuracy may be of greater
importance than fast runtime. SPIRAL can be easily extended
to search for accurate code, simply by adding a new cost
function for accuracy.

Let A be a formula for the exact transformT = A.
When implemented ink-bit �xed point arithmetic, this formula
represents an approximation of the matrixT, i.e., Ak -bit � T .
Thus, as a measure of accuracy of the formulaA, we use

Nk (A) = jjA � Ak -bitjj ; (49)

wherejj� jj is a matrix norm. There are several norms possible;
good choices are the matrix normsjj � jj p that aresubordinate
to the vector normsjj� jj p (see [69] for more details on norms).
GivenNk (A), input dependent error bounds can be derived by
assuming an inputx and settingy = Ax (the exact result) and
~y = Ak -bitx (the approximate result) to get

jjy � ~yjj1 � jj A � Ak -bitjj1 jj xjj1 = Nk (A)jjxjj1 :

For fast evaluation, we choose the matrix normjjM jj1 =
maxi

� P
j jM i;j j

	
.

Cost functions for multiplierless implementations. On
platforms where multiplications are signi�cantly more ex-
pensive than additions (e.g., ASICs, but possibly also �xed

point only processors),multiplierlessimplementations of small
transform kernels become viable candidates. “Multiplierless”
means multiplications by constants are �rst represented ina
�xed point format and then replaced by additions and shifts.
For example, a constant multiplicationy = 5x is replaced
by y = (x � 2) + x. Since DSP transforms are linear,
i.e, consist exclusively of additions and multiplicationsby
constants, this procedure produces a program consisting of
additions and shifts only. The problem of �nding the least
addition implementation for one given constant is NP-hard
[70]. We have reimplemented and extended the best known
method [71] and included it as a backend into SPIRAL to
generate multiplierless code for a given formula and for user-
speci�ed constant precisions. Clearly, if these precisions are
reduced, also the arithmetic cost (measured in additions) of
the resulting implementation can be reduced. This leads to the
following optimization problem: for a given transformT, �nd
the formulaA with the least number of additions that still
satis�es a given accuracy thresholdq with respect to a given
accuracy measureN , i.e., N (A) � q.

We solve this problem automatically by using SPIRAL with
the following high-level steps (see [72], [73] for more details):

� Generate a numerically accurate formulaA for T as
described in Section V-C.

� Find the best assignment of bit-widths to the occurring
constants inA such that the thresholdq holds. We have
solved this problem using a greedy or an evolutionary
search. The code was assumed to be completely unrolled
so that the bit-widths could be chosen independently for
each constant.

In this optimization problem, we have considered several
target accuracy measuresN (�) including numerical error mea-
sures such as (49), and also application driven measures. An
example of the latter is the optimization of theIMDCT and
the DCT of type 2 in an MP3 audio decoder, [74]. Here, we
chose the compliance test de�ned by the MP3 standard as the
accuracy threshold. The evaluation was done by inserting the
generated code into an actual MP3 implementation.

Performance modeling.SPIRAL generally uses empirical
runtimes and searches to �nd ef�cient implementations. It is
bene�cial, both in terms of understanding and in reducing
search times, to utilize performance models and analytically
solve the optimization problems for which SPIRAL �nds
approximate solutions. Unfortunately, determining models that
accurately predict performance is very dif�cult because mod-
ern processors have many interdependent features that affect
performance. Nonetheless, it is possible to obtain analytical
results for restricted classes of formulas using simpli�ed
performance models, see [63], [75]–[77] for results applicable
to the WHT and the DFT . While these results do not
accurately predict performance, they give insight into the
search space and provide heuristics that may reduce the search
time. Moreover, they can be used to explore performance on
processors that are currently not available.

To illustrate the results obtained and their limitations, con-
sider the factorization of theWHT in equation (26). The
formula can be implemented with a triply nested loop, where
the outer loop iterates over the product and the inner two loops

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 23

implement the tensor product. The recursive expansions of
WHT 2k i are computed in a similar fashion. Even though
the current version of the SPIRAL system cannot produce
code with recursive calls, it is still possible to implement
this formula with a recursive function (see [27]), where the
recursive expansions ofWHT 2k i are computed with recursive
calls to the function, and, in the base case, are computed
with straight-line code generated by SPIRAL. In this imple-
mentation, different instantiations of the rule, corresponding
to different decompositionsk = k1 + � � � kt , will lead to
different degrees of recursion and iteration, which implies that
the code may have different numbers of machine instructions
even though all algorithms have the exact same arithmetic
cost. LetW2k be one suchWHT formula and letA(n) the
number of times the recursiveWHT procedure is called,
A l (k) the number of times a base case of size2l (here it is
assumed thatl < 8) is executed, andL 1(k), L 2(k), andL 3(k)
the number of times the outer, middle, and inner loops are
executed throughout all recursive calls. Then the total number
of instructions required to executeW2k is equal to

�A (k) +
8X

l =1

� l A l (k) +
3X

i =1

� i L i (k); (50)

where � is the number of instructions for the code in the
compiledWHT procedure executed outside the loops,� l , is
the number of instructions in the compiled straight-line code
implementations of the base case of sizel , and� i , i = 1 ; 2; 3 is
the number of instructions executed in the outer-most, middle,
and inner-most loops in the compiledWHT procedure. These
constants can be determined by examining the generated
assembly code. Supposek = k1 + � � � + kt is the composition
of k corresponding to the factorization in equation (26); then
the functionsA(k), A l (k), L i (k) satisfy recurrence relations
of the form F (k) =

P t
i =0 f 2k � k i F (ki) + f (i)g, wheref (i)

depends on the function and is equal to1=t, 0, 1, 2k � k i ,
2k1 + ��� + k i � 1 , respectively. While it is not possible to obtain a
closed-form solution to all of the recurrences, it is possible
to determine the formula with minimal instruction count,
compute the expected value and variance for the number of
instructions, and calculate the limiting distribution [78], [79].

The problem with these results is that the instruction count
does not accurately predict performance on modern heavily
pipelined superscalar processors with deep memory hierar-
chies, and that it is not clear how to extend the results to more
general classes of formulas. While additional results have been
obtained for cache misses, a general analytic solution has only
been obtained for direct-mapped caches. Additional challenges
must be overcome to obtain more general analytic results and
to incorporate these insights into the SPIRAL system.

VI. FEEDBACK OPTIMIZATION : SEARCH AND LEARNING

One of the key features of the SPIRAL architecture (see
Fig. 1) is the automated feedback loop, which enables SPI-
RAL to autonomously explore algorithm and implementation
alternatives. Intuitively, this feedback loop provides SPIRAL
with the “intelligence” that produces very fast code. Since
the algorithm and implementation space is too large for an

exhaustive enumeration and testing, this feedback loop needs
to be controlled by empirical strategies that can �nd close to
optimal solutions while visiting only a fraction of the possible
alternatives. These strategies have to take advantage of the
particular structure of the algorithms.

We consider two fundamentally different strategies, as indi-
cated already by the name of the SEARCH/LEARNING block
in Fig. 1:

� Searchmethods control the enumeration of algorithms
and implementations at code generation time and guide
this process towards �nding a fast solution. Search is the
method implemented in the current SPIRAL system.

� Learning methods operate differently. Before the actual
code generation (of�ine), a set of random formulas in-
cluding their runtimes are generated. This set constitutes
the data from which theLEARNING block learns, i.e.,
extracts the knowledge of how a fast formula and im-
plementation are constructed. At code generation time,
this knowledge is used to generate the desired solution
deterministically. We have implemented a prototype of
this approach for a speci�c class of transforms including
the DFT.

In the following, we explain the SEARCH/LEARNING in
greater detail.

A. Search

The goal of theSEARCH block in SPIRAL (see Fig. 1) is
to control the generation of the formulas and the selection of
implementation options, which, in the current version, is the
degree of unrolling. The search 1) has to be able to modify
previously generated formulas; and 2) should be transform
independent in the sense that adding a new transform and/or
new rules requires no modi�cation of the search. To achieve
both goals, the search interfaces with the ruletree representa-
tion of formulas and not with the formula representation (see
Section III).

The current SPIRAL system features �ve search methods.

� Exhaustive searchenumerates all formulas in the formula
spaceF and picks the best. Due to the large formula
spaceF , this is only feasible for very small transform
sizes.

� Random searchenumerates a �xed number of random
formulas and picks the best. Since fast formulas are
usually rare, this method is not very successful.

� Dynamic programminglends itself as a search method
due to the recursive structure of the problem. For most
problems it is our method of choice.

� Evolutionary searchuses an evolutionary algorithm to
�nd the best implementation. This method is particularly
useful in cases where dynamic programming fails.

� Hill climbing is a compromise between random search
and evolutionary search and has proven to be inferior to
the latter. See [44] for an explanation of this technique
in the context of SPIRAL.

We explain dynamic programming and the evolutionary
search in greater detail.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 24

Dynamic programming. The idea of dynamic program-
ming (DP) is to recursively construct solutions of large prob-
lems from previously constructed solutions of smaller prob-
lems. DP requires a recursive problem structure and, hence,is
perfectly suited for the domain of transform algorithms.

We have implemented the DP search in a straightforward
way as follows. Given a transformT, we expandT one
step using all applicable rules and rule instantiations (for
parameterized rules). The result is a setf RTk jk = 1 ; : : : ; mg
of m ruletrees of depth 1 (as (40)) or 0 (if the rule is a terminal
rule). For each of these ruletreesRTk the set of children
f Ci ji = 1 ; : : : ; j k g (the Ci are again transforms) is extracted,
and for each of these childrenCi , DP is called recursively to
return a ruletreeRCi , which is fully expanded. Inserting the
ruletreesRCi into RTk (that means replacingCi by RCi in
RTk), for i = 1 ; : : : ; j k , yields a fully expanded ruletreeRT 0

k
for T. Finally the best (minimal cost) ruletree among theRT 0

k
is returned as the result forT.

To see how DP reduces the search space consider aDFT
of size 2n and only the Cooley-Tukey rule (20). Using
recurrences, one can show that the number of formulas is
O(4n =n3=2) (the number of binary trees by using Stirling's
formula, [80, pp. 388–389]), whereas DP visits onlyO(n2).

The inherent assumption of DP is that the best code for
a transform is independent of the context in which it is
called. This assumption holds for the arithmetic cost (which
implies that DP produces the optimal solution), but not for the
runtime of transform algorithms. For example, the left smaller
transform (child) in the DFT rule (20) is applied at a stride,
which may cause cache thrashing and may impact the choice
of the optimal formula. However, in practice, DP has proven
to generate good code in reasonably short time [44] and thus
is the default search method in the current version of SPIRAL.

Finally, we note that the vector extension of SPIRAL
requires a special version of DP, which is motivated by
the manipulated formula (46). As explained above, the �rst
expansion (shown in (46)) is vectorized, whereas the smaller
occurringDFT s can be expanded arbitrarily since their context
is
 I � , which ensures they are vectorizable (matching (42)).
To account for the conceptual difference between the �rst and
the remaining expansions we need a variant of DP, which we
introduced in [54].

Evolutionary search. It is valuable to have another search
method available to evaluate DP and overcome its possible
shortcomings, particularly in view of the growing number of
applications of SPIRAL (e.g., Sections III and V-C). Evolu-
tionary search operates in a mode that is entirely different
from the DP mode; it attempts to mimic the mechanics of
evolution, which operates (and optimizes in a sense) through
cross-breeding, mutation, and selection [81].

For a given transform, the evolutionary search generates
an initial population P1 of a �xed size n of randomly
selected ruletrees. Then, the population is increased using
cross-breedingand mutation. Cross-breeding is implemented
by swapping subtrees with the same root (transform) of two
selected ruletrees inP1 (see Fig. 6, left). Three different types
of mutations are used: 1)regrowexpands a selected node using
a different subruletree; 2)copycopies a selected subruletree to

(a) cross-breeding

(b) regrow (c) copy (d) swap

Fig. 6. Ruletree manipulation for the evolutionary search: (a) cross-breeding;
(b)–(d) three types of mutations: regrow, copy, and swap.

a different node representing the same transform; and 3)swap
exchanges two subruletrees belonging to the same transform.
See Fig. 6 for an illustration. The trees that undergo cross-
breeding and mutation are randomly selected, and the number
of those trees is a parameter. Finally, the increased population
is shrunk to a size smaller thann by removing the slowest
trees. Then the population is increased to the original sizen by
adding random trees to yield the populationP2. This process
is repeated for a given number of iterations or until the best
member of the population does not improve the minimization
any further. For a more detailed discussion and evaluation of
the evolutionary search, we refer to [44], [82].

The problem with evolutionary search (in general) is that it
may converge to solutions that are only locally optimal.

B. Learning

Search becomes more dif�cult as the number of possible
ruletrees increases. However, it is easy to collect a set of
runtimes for random implementations of a given transform.
This data could be used to learn how to construct a fast
ruletree for that transform. Further, we have found that this
knowledge can be applied to generate fast implementations of
different sizes of a given transform, even when the knowledge
was gathered from only a single transform size.

Our approach consists of two stages.
� Modeling Performance of Individual Nodes.The �rst step

begins by collecting timing information for each individ-
ual node in a set of random ruletrees. From this data,
we then learn how to construct a model that accurately
predicts the runtimes for nodes in ruletrees. This effort
requires a well-chosen set of features that describe a node
and its context within the larger ruletree.

� Generating Fast Implementations.The second step uses
the model developed in the �rst step to then generate
ruletrees that have fast running times.

Our discussion will focus on theWHT and theDFT . For
the WHT we consider only ruletrees based on rule (26) with
the restrictiont = 2 (2 children); for theDFT we consider
only ruletrees based on the Cooley-Tukey rule (20). Both rules
have similar structure, in particular, for a DFT or a WHT of
size n, andn = km, the left childT k in both cases appears
in a tensor product of the formT k
 Im , which meansT k is
computedm times at stridem. In the following, we callm
the stride of the ruletree nodeT k . As a transform is expanded

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 25

recursively, the strides accumulate, e.g., forn = km, m =
k0m0, two applications of the rule lead to a left child with
stride m + m0. The focus in this section are large transform
sizes. Thus, to further restrict the algorithm space, we used
SPIRAL to pregenerate straightline code implementations of
WHTs and DFTs of sizes21; : : : ; 27. These are used as leaves
in the ruletrees. This means, if the ruletree is generated, in each
step either a rule is applied or, if the node is small enough, a
leaf can be chosen to terminate.

Modeling Performance.It is possible to carefully time each
individual node of a ruletree as it runs. The runtime for an
internal node is calculated by subtracting off the runtimesof
the subtrees under the node from the total runtime for the
tree rooted at the given internal node. To allow our methods
to learn across different transform sizes, we divide the actual
runtimes by the size of the overall transform and learn on these
values.

In order to learn to model the runtimes for different nodes,
we must de�ne a set of features that describe nodes in
ruletrees. To allow the modeling to generalize to previously
unseen ruletrees, the features should not completely describe
the ruletree in which the node is located. However, a single
simple feature such as the node's size may not provide
enough context to allow for an accurate model to be learned.
Intuitively, our features are chosen to provide our method with
the domain knowledge about the transform algorithms.

Clearly the size of the transform at the given node is an
important feature as the size indicates the amount of data that
the node must process. The node's position in the ruletree is
also an important factor in determining the node's runtime.
This position often determines the stride at which the node
accesses its input and output as well as the state of the cache
when the node's computation begins. However, it is not as easy
to capture a node's position in a ruletree as it is to capture its
size.

A node's stride can be computed easily and provides infor-
mation about the node's position in a ruletree and also about
how the transform at this node accesses its input and output.

To provide more context, the size and stride of the parent
of the given node can also be used as features. These features
provide some information about how much data will be shared
with siblings and how that data is laid out in memory. Further,
for internal nodes the sizes and strides of the node's children
and grandchildren may also be used. These features describe
how the given node is initially split. If a node does not have
a given parent, child, or grandchild, then the corresponding
features are set to� 1.

Knowing which leaf in the ruletree was computed prior to
a given node may provide information about what data is
in memory and its organization. Let the common parent be
the �rst common node in the parent chains of both a given
node and the last leaf computed prior to this node. The size
and stride of this common parent actually provides the best
information about memory prior to the given node beginning
execution. The common parent's size indicates how much data
has been recently accessed by the previous leaf and at what
stride the data has been accessed.

Thus, we use the following features:

� Size and stride of the given node.
� Size and stride of the given node's parent.
� Size and stride of each of the given node's children and

grandchildren.
� Size and stride of the given node's common parent.

For theWHT , all of the work is performed in the leaves
with no work being done in the internal nodes, so the features
for the children and grandchildren were excluded for theWHT
since the leaves were the only interesting nodes to consider.
However, internal nodes in anDFT ruletree do perform work
and thus the full set of features was used for theDFT .

Given these features for ruletree nodes, we can now use
standard machine learning techniques to learn to predict run-
times for nodes. Our algorithm for a given transform is as
follows:

1) Run a subset of ruletrees for the given transform, collect-
ing runtimes for every node in the ruletree.

2) Divide each of these runtimes by the size of the overall
transform.

3) Describe each of the nodes with the features outlined
earlier.

4) Train a function approximation algorithm to predict for
nodes the ratio of their runtime to the overall transform
size.

We have used the regression tree learner RT4.0, [83], for
a function approximation algorithm in the results presented
here. Regression trees are similar to decision trees exceptthat
they can predict real valued outputs instead of just categories.
However, any good function approximation method could have
been used.

We trained two regression trees on data collected from
running a random set of size216 WHT implementations, one
from data for a Pentium III and one from data for a Sun
UltraSparc IIi (later often referred to simply as Pentium and
Sun). We also trained another regression tree on data collected
from running a random set of size216 DFT implementations
on Pentium. Speci�cally, we chose a random 10% of the nodes
of all possible binary ruletrees with no leaves of size21 to train
our regression trees (we had previously found that the subset
of binary ruletrees with no leaves of size21 usually contains
the fastest implementations).

To test the performance of our regression trees, we evaluated
their predictions for ruletrees of sizes212 to 220. Unfortu-
nately, we could not evaluate them against all possible ruletrees
since collecting that many runtimes would take prohibitively
long. Instead we timed subsets of ruletrees that previous expe-
rience has shown to contain the fastest ruletrees. Speci�cally,
for the WHT , for sizes 216 and smaller we used binary
ruletrees with no leaves of size21 and for larger sizes we
used binary rightmost ruletrees (trees where every left child is
a leaf) with no leaves of size21. For theDFT , we were not
certain that rightmost ruletrees were best; so, we only evaluate
up to size218 over all binary ruletrees with no leaves of size
21.

For each ruletree in our test set, we used the regression trees
to predict the runtimes for each of the nodes in the ruletree,
summing the results to produce a total predicted runtime

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 26

TABLE XIII

ERROR RATES FOR PREDICTING RUNTIMES FOR ENTIREDFT RULETREES

ON PENTIUM .

Size 212 213 214 215 216 217 218

Errors 19.3% 9.3% 10.7% 7.3% 5.0% 7.3% 7.9%

for the ruletree. We evaluate the performance of ourWHT
regression trees both at predicting runtimes for individual
nodes and for predicting runtimes for entire ruletrees. We
report average percentage error over all nodes/ruletrees in our
given test set, calculated as:

1
jTestSetj

X

i 2 TestSet

jai � pi j
ai

;

where ai and pi are the actual and predicted runtimes for
node/ruletreei .

Table XI presents the error rates for predicting runtimes for
individual WHT leaves. In all cases, the error rate is never
greater than 20%. This is good considering that the regression
trees were trained only on data collected from running size
216 WHT transforms.

Table XII presents the error rates for predicting runtimes for
entireWHT ruletrees. Not surprisingly, the results here are not
as good as for individual leaves, but still good consideringthat
different ruletrees can have runtimes that vary by a factor of
2 to 10.

Fortunately, the runtime predictor only needs to be able to
order the runtimes of ruletrees correctly to aid in optimization.
The exact runtime of a ruletree is not necessary; just a correct
ordering of ruletrees is necessary to generate fast ruletrees.
To evaluate this, we plotted the actual runtimes of ruletrees
against their predicted runtimes. Fig. 7 shows plots for size
219 WHT transforms (the plots for the other sizes look
similar). Each dot in the scatter plots corresponds to one
ruletree. The dot is placed vertically according to its actual
runtime and horizontally according to the predicted runtime
from the regression tree. The liney = x is also plotted
for reference. The plots show that as the actual runtimes
decrease for ruletrees, so do their predicted runtimes. Further,
the ruletrees that are predicted to be the fastest can be seento
also be the ruletrees with the fastest actual runtimes. Thus, the
runtime predictors perform well at ordering ruletrees according
to their actual runtimes.

Table XIII shows the error rates for predicting runtimes for
entireDFT ruletrees running on Pentium. Except for size212,
the error rates here are quite excellent, especially considering
that the learned regression tree was only trained on data of
size216. The scatter plots forDFT s look very similar to those
for the WHT already displayed. They clearly show that the
learned regression tree is ordering formulas correctly andthat
particularly the ruletrees with the fastest predicted runtimes
actually have the fastest runtimes.

Generating Fast Implementations. While the previous
work presents a way to accurately predict runtimes forWHT
and DFT ruletrees, it still does not solve the problem of

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

(a) Pentium III

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

2e+07 4e+07 6e+07 8e+07 1e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

(b) Sun UltraSparc IIi

Fig. 7. Actual runtime vs. predicted runtime for all binary rightmost
WHT 219 ruletrees with no leaves of size21 on Pentium and Sun. The
displayed liney = x in both plots represents perfect prediction.

constructing fast ruletrees. At larger sizes, there are many
possible ruletrees and it can be dif�cult to even enumerate
all the ruletrees, let alone obtain a prediction for each one.
We now describe a method for generating ruletrees that have
fast runtimes.

Generation of ruletrees begins with a given transform and
size for which a fast implementation is desired. We then need
to choose a factorization of this transform, producing children
for the root node. Recursively, we again choose children for
each of the root node's children, and so on until we decide to
leave a particular node as a leaf.

Our approach is to de�ne a set of states encountered during
the construction of fast ruletrees. We de�ne a value function
over these states and show how that value function can
be quickly computed. We then show how to construct fast
ruletrees given the computed value function.

In the previous modeling work, we designed a set of features
that allowed for accurate prediction of runtimes of ruletree
nodes. Thus, these features seemed ideal for describing our
state space. During the construction of ruletrees, we describe
nodes by their features and consider this to be the node's
state. So, it is possible for two nodes in different ruletrees
to be considered the same state and for two nodes of the same
transform and size to be considered different states.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 27

TABLE XI

ERROR RATES FOR PREDICTING RUNTIMES FORWHT LEAVES.

Pentium III Sun UltraSparc IIi
Binary No-21-Leaf Binary No-21-Leaf

Binary No-21-Leaf Rightmost Binary No-21-Leaf Rightmost
Size Errors
213 13.0%
214 13.8%
215 15.8%
216 14.6%

Size Errors
217 11.4%
218 12.9%
219 12.6%
220 12.7%

Size Errors
213 8.7%
214 8.7%
215 10.9%
216 7.3%

Size Errors
217 16.5%
218 16.9%
219 18.9%
220 20.0%

TABLE XII

ERROR RATES FOR PREDICTING RUNTIMES FOR ENTIREWHT RULETREES.

Pentium III Sun UltraSparc IIi
Binary No-21-Leaf Binary No-21-Leaf

Binary No-21-Leaf Rightmost Binary No-21-Leaf Rightmost
Size Errors
213 20.1%
214 22.6%
215 25.0%
216 18.1%

Size Errors
217 14.4%
218 14.1%
219 12.5%
220 10.1%

Size Errors
213 23.5%
214 17.6%
215 25.8%
216 36.5%

Size Errors
217 13.3%
218 15.2%
219 19.8%
220 21.2%

We now de�ne the optimal value function over this state
space. For a given state, we consider all possible subtrees that
could be grown under that node along with the possibility of
leaving the node as a leaf. We then de�ne the value of this state
to be the minimum sum of the predicted runtimes for each
of the nodes in a subtree, taken over all possible subtrees.
These predicted runtimes are determined by the regression
trees trained in the previous section. Mathematically,

V (state) = min
subtrees

X

node2 subtree

PredictedPerformance(node)

Note that the state of a node indicates its children and
grandchildren for theDFT while we excluded these features
for the WHT . So for theDFT the minimum is really only
taken over valid subtrees given the state.

We can rewrite this value function recursively. For a given
state, we consider all possible one-level splittings of the
current node along with the possibility of leaving the node
as a leaf. The value of this state is then the minimum of the
predicted performance of the current node plus the sum of
the values of any immediate children of the node for the best
splitting. That is,

V (state) = min
splittings

�
PredictedPerformance(node)

+
X

child2 splitting

V(child)
�

For the DFT , the state already describes the immediate
children. However, the full state description of the children is
not known, since it includes the grandchildren, i.e., the great-
grandchildren of the original node. Thus, for theDFT , the
minimum is actually taken over possible great-grandchildren
of the given node.

This recursive formulation of the value function suggests

TABLE XIV

ALGORITHM FOR COMPUTING VALUES OF STATES.

ComputeValues(State)
if V(State) already memorized

return V(State)
Min = 1
if State can be a leaf

Min = PredictedPerformance(State)
for SetOfChildren in PossibleSetsOfChildren(State)

Sum = 0
for Child in SetOfChildren

Sum += ComputeValues(Child)
Sum += PredictedPerformance(State)
if Sum < Min

Min = Sum
V(State) = Min
return Min

using dynamic programming to ef�ciently compute the value
function. Table XIV displays the dynamic programming al-
gorithm for computing values of states. Again the algorithm
needs to be slightly modi�ed for theDFT where the state
description includes its children. The outer “for” loop is ac-
tually computed over the possible great-grandchildren instead
of just the children. It should also be noted that this dynamic
programming is different from that presented earlier in the
section on search (Section VI-A) in that this algorithm is
considering states described by many features besides justa
node's transform and size and that values are obtained from
the learned regression trees. Due to the memorization of values
of states, this algorithm is signi�cantly sub-exhaustive since
during an exhaustive search the same state would appear in
many different ruletrees.

Now with a computed value function on all states, it is
possible to generate fast ruletrees. Table XV presents our
algorithm for generating fast ruletrees, restricting to binary
ruletrees for simplicity of presentation. For each possible set of

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 28

children for a given node, the algorithm looks up their values.
These values are added to the predicted performance of the
current node and compared against the value function of the
current state. If equal, we then generate the subtrees underthe
children recursively. Again for theDFT , the algorithm needs
to be modi�ed to loop over the possible great-grandchildren
instead of the children.

Since our regression tree models are not perfect, we may
wish to generate more than just the single ruletree with the
fastest predicted runtime. If a small set of ruletrees were
generated, we could then time all the generated ruletrees and
choose the one with the fastest runtime. We have implemented
an extended version of the FastTrees algorithm that allows for
a tolerance and generates all ruletrees that have within that
tolerance of the predicted optimal runtime.

Tables XVI and XVII show the results of generating fast
WHT ruletrees for Pentium and for Sun respectively. To
evaluate our methods, we again exhaust over sub-spaces of
ruletrees known to contain fast implementations since it is
impossible to obtain runtimes for all possible ruletrees ina
reasonable amount of time. In both tables, the �rst column
indicates the transform size. The second column shows how
many ruletrees need to be generated before the fastest ruletree
is generated. The third column indicates how much slower
the �rst ruletree generated is compared to the fastest ruletree.
Let G be the set of the �rst 100 ruletrees generated by our
methods and letB be the set of the best 100 ruletrees found by
exhaustive search. The fourth column displays the number of
items in the intersection ofG andB . Finally, the last column
shows the rank of the �rst element inB not contained inG.

In all cases, the fastest ruletree for a givenWHT transform
size was generated in the �rst 50 formulas produced. This is
excellent considering the huge space of possible ruletreesand
the fact that this process only used runtime information gained
by timing ruletrees of size216. Except for a few cases on the
Sun, the very �rst ruletree generated by our method had a
runtime within 6% of the fastest runtime. Further, in all but
one case, at least 40 of the 100 fastest ruletrees known to us
were generated as one of the �rst 100 ruletrees. On occasion,
the fourth fastest ruletree was not generated in the �rst 100
ruletrees.

Table XVIII shows the results for generating fastDFT
ruletrees on Pentium. The results are excellent with the fastest
ruletree being generating usually within the �rst 20 and often
as the very �rst ruletree. Further, the �rst ruletree to be
generated had a runtime always within 15% of the runtime
of the fastest formula.

In this section, we have described a method that automati-
cally generates fastWHT andDFT ruletrees. To do this, we
also presented a method that accurately predicts runtimes for
ruletrees. More details and results can be found in [84]–[86].

VII. E XPERIMENTAL RESULTS

In this section we present a selected set of experiments and
performance benchmarks with SPIRAL's generated code. We
remind the reader that in the SPIRAL lingo the expression
“completely expanded formula,” or simply “formula,” means
a transform algorithm.

TABLE XVIII

EVALUATION OF GENERATION METHOD USINGDFT RUNTIME

PREDICTORS FORPENTIUM .

Size

Generated ruletree
number X is best
known ruletree

First generated ruletree
is X % slower than best
known ruletree

212 16 14.3%
213 1 0.0%
214 2 13.6%
215 1 0.0%
216 1 0.0%
217 82 3.6%
218 11 6.5%

We start with an overview of the presented experiments:

� Performance spread.We show the performance spread,
with respect to runtime and other measures, within the
formula space for a given transform.

� Benchmarking: DFT.We benchmark the runtime of SPI-
RAL generated DFT code (including �xed-point code)
against the best available libraries.

� Benchmarking: other transforms.We benchmark SPIRAL
generated code for other transforms: the DCT and the
WHT.

� Runtime studies of FIR �lters and the DWT.We compare
different algorithmic choices for �lters and the DWT.

� Platform tuning.We demonstrate the importance of plat-
form tuning, i.e., the dependency of the best algorithm
and code on the platform and the data type.

� Compiler �ags.We show the impact of choosing compiler
�ags.

� Parallel platforms.We present prototypical results with
adapting the WHT to an SMP platform.

� Multiplierless code.We show runtime experiments with
generated multiplierless �xed-point DFT code.

� Runtime of code generation.We discuss the time it takes
SPIRAL to generate code.

The platforms we used for our experiments are shown in
Table XIX. For each platform, we provide the following: a
descriptive mnemonic name, the most important microarchi-
tectural information, and the compiler and compiler �ags used.
We used DP (dynamic programming) for all searches. For
vector code we used the vector version of DP (see Section VI-
A).

Performance spread.The �rst experiment investigates the
spread in runtime as well as the spread with respect to
other performance measures of different formulas generated
by SPIRAL for the same transform on p4-3.0-lin.

In the �rst example, we consider a small transform, namely
a DCT -225 , for which SPIRAL reports 1,639,236,012 differ-
ent formulas. We select a random subset of 10,000 formulas
and generate scalar code. By “random formula” we mean
that a rule is chosen randomly at each step in the formula
generation (note that this method is fast but selects ruletrees
non-uniformly). Fig. 8(a) shows a histogram of the obtained

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 29

TABLE XV

ALGORITHM FOR GENERATING FAST RULETREES.

FastTrees(State)
Trees = fg
if State can be a leaf

if V(State) == PredictedPerformance(State)
Trees = f Leaf(State) g

for RightChild in PossibleRightChildren(State)
LeftChild = MatchingChild(State, RightChild)
if V(LeftChild) + V(RightChild)

+ PredictedPerformance(State) == V(State)
for RightSubtree in FastTrees(RightChild)

for LeftSubtree in FastTrees(LeftChild)
Trees = Trees [f Node(LeftSubtree, RightSubtree) g

return Trees

TABLE XVI

EVALUATION OF GENERATION METHOD USING A WHT RUNTIME PREDICTOR FOR APENTIUM .

Size

Generated ruletree
number X is best
known ruletree

First generated ruletree
is X % slower than best
known ruletree

Number of top 100
best known ruletrees in
top 100 generated rule-
trees

First best known rule-
tree not in top 100 gen-
erated ruletrees

213 5 3.4% 69 19
214 4 3.0% 63 19
215 3 2.1% 68 16
216 4 1.7% 63 18
217 5 0.1% 54 36
218 4 2.0% 60 24
219 1 0.0% 44 36
220 4 1.7% 64 24

TABLE XVII

EVALUATION OF GENERATION METHOD USING A WHT RUNTIME PREDICTOR FOR ASUN.

Size

Generated ruletree
number X is best
known ruletree

First generated ruletree
is X % slower than best
known ruletree

Number of top 100
best known ruletrees in
top 100 generated rule-
trees

First best known rule-
tree not in top 100 gen-
erated ruletrees

213 14 77.7% 20 6
214 20 12.8% 70 24
215 1 0.0% 68 38
216 2 4.3% 70 20
217 7 18.0% 47 10
218 38 5.9% 46 7
219 17 3.3% 46 4
220 47 1.4% 52 4

runtimes, and Fig. 8(b) shows a histogram of the number of
assembly instructions in the compiled C code. The spread of
runtimes is approximately a factor of 2, and the spread of
the number of instructions is about 1.5, whereas the spread
in arithmetic cost is less than 10% as shown in Fig. 8(c).
The large spread in runtime and assembly instruction countsis
surprising given that each implementation is high quality code
that underwent SPL and C compiler optimizations. Also, for
transforms of this size and on this platform no cache problems
arise. Conversion into FMA code (explained in Section IV-C)
reduces the operations count (see Fig. 8(d)), but increasesthe

spread to about 25%. This means that different formulas are
differently well suited for FMA architectures. In Fig. 8(e)we
plot runtime versus arithmetic cost. Surprisingly, the formulas
with lowest arithmetic cost yield both slowest and fastest
runtimes, which implies that arithmetic cost is not a predictor
of runtime in this case. Finally, Fig. 8(f) shows the accuracy
spread when the constants are cut to 8 bits; it is about a factor
of 10 with most formulas clustered within a factor of 2.

In the second example, we show a runtime histogram
for 20,000 random SPIRAL generated formulas for a large
transform, namelyDFT 216 , using only the Cooley-Tukey

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 30

TABLE XIX

PLATFORMS USED FOR EXPERIMENTS. “HT” MEANS HYPER THREADING; L1 CACHE REFERS TO THE DATA CACHE. THE COMPILERS ARE: ICC (INTEL

C++ COMPILER); GCC (GNU C COMPILER); CC R (IBM XL C COMPILER, SMPMODE).

name CPU GHz OS caches compiler compiler �ags
p4-3.0-win Pentium 4 (HT) 3.0 WinXP 8 KB L1, 512 KB L2 icc 8.0 /QxKW /G7 /O3
p4-3.0-lin Pentium 4 (HT) 3.0 Linux 8 KB L1, 512 KB L2 gcc 3.2.1 –O6 –fomit-frame-pointer

–malign-double –fstrict-aliasing
–mcpu=pentiumpro

p4-2.53-win Pentium 4 2.53 Win 2000 8 KB L1, 512 KB L2 icc 6.0 /QxW /G7 /O3
p3-1.0-win Pentium III 1.0 Win 2000 16 KB L1, 256 KB L2 icc 6.0 /QxW /G6 /O3
xeon-1.7-lin Xeon 1.7 Linux 8 KB L1, 256 KB L2 gcc 3.2.1 –O6 –fomit-frame-pointer

–malign-double –fstrict-aliasing
–mcpu=pentiumpro

xp-1.73-win AthlonXP 2100+ 1.73 Win 2000 64 KB L1, 256 KB L2 icc 6.0 /QxW /G6 /O3
ibms80-0.45-aix PowerPC RS64C 0.45 AIX 128 KB L1, 8 MB L2 cc r 5.0.5 -qsmp=omp -O5 -q64

(12 processors)
ipaq-0.4-lin XScale PXA250 0.4 Linux 32+2 KB L1 gcc 3.3.2 -O1 -fomit-frame-pointer

(IPAQ HP 3950) -fstrict-aliasing
-march=armv5te -mtune=xscale

0 1 2 3 4 5 6

x 10
-7

0

200

400

600

800

1000

runtime [s]

nu
m

be
r

of
 a

lg
or

ith
m

s

(a) runtime

250 300 350 400 450
0

200

400

600

800

1000

number of assembly instructions in compiled C code

nu
m

be
r

of
 r

ul
et

re
es

(b) assembly instructions

280 290 300 310 320
0

1000

2000

3000

4000

5000

arithmetic cost [# ops]
nu

m
be

r
of

 a
lg

or
ith

m
s

(c) arithmetic cost

220 230 240 250 260
0

500

1000

1500

2000

2500

3000

arithmetic cost including fma [#ops]

nu
m

be
r

of
 a

lg
or

ith
m

s

(d) FMA cost

280 290 300 310 320
1

2

3

4

5

6
x 10

-7

arithmetic cost

ru
nt

im
e

[s
]

(e) runtime versus arithmetic cost

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r

of
 a

lg
or

ith
m

s

accuracy when cut to 8 bits

(f) accuracy

Fig. 8. Histograms of various data for 10,000 random fast formulas for aDCT -232 . From left to right: a) runtime; b) number of assembly instructions in
the compiled C code; c) arithmetic cost; d) FMA optimized arithmetic cost; e) runtime versus arithmetic cost. f) accuracy when cut down to 8-bit �xed point;
Platform: p4-3.0-lin.

rule (20) on p4-3.0-win. The formulas are implemented in
scalar code (see Fig. 9(a)) and in vector code (see Fig. 9(b)).
The spread of runtimes in both cases is about a factor of 5, with
most formulas within a factor of 3. The best 30% formulas
are scarce. The plots show that, even after the extensive code
optimizations performed by SPIRAL, the runtime performance
of the implementation is still critically dependent on the
chosen formula. Further, histogram Fig. 9(b) looks very much
like a translation to the left (shorter runtime) of the histogram
Fig. 9(a). This demonstrates that the vectorization approach
in SPIRAL is quite general: although different formulas are

differently well suited to vectorization, the performanceof all
tested20; 000 formulas, including the slowest, is improved by
SPIRAL's vectorization.

Conclusion: performance spread.Although different for-
mulas for one transform have a similar operation count (see
Fig. 8(c)), their scalar or vector code implementations in
SPIRAL have a signi�cant spread in runtime (Figs. 8(a) and
9). This makes a strong case for the need of tuning imple-
mentations to platforms, including proper algorithm selection,
as discussed in Section II. The same conclusion applies to
other performance costs as illustrated by the signi�cant spread

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 31

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

300

runtime [s]

nu
m

be
r

of
 a

lg
or

ith
m

s

(a) scalar code (double precision)

0 0.005 0.01 0.015 0.02
0

50

100

150

200

250

300

350

runtime [s]

nu
m

be
r

of
 a

lg
or

ith
m

s

(b) SSE vector code (single precision)

Fig. 9. Histogram of 20,000 random SPIRAL generated scalar and SSE
vector implementations for aDFT of size216 . Platform: p4-3.0-win.

in Fig. 8(d) for the FMA optimized arithmetic cost and in
Fig. 8(f) for the accuracy performance cost.

Benchmarking: DFT. We �rst consider benchmarks of
the code generated by SPIRAL for theDFT on p4-3.0-win
against the best available DFT libraries including MKL 6.1 and
IPP 4.0 (both Intel's vendor libraries), and FFTW 3.0.1. For
most other transforms in SPIRAL, there are no such readily
available high quality implementations.

Fig. 10 shows the results for theDFT 24 –DFT 216 .
The performance is given in pseudo MFLOPS computed
as 5n log2(n)/runtime, which is somewhat larger than real
MFLOPS, but preserves the runtime relations. This is im-
portant for comparison since different implementations may
have slightly different arithmetic cost. (Note that for allother
transforms we use real MFLOPS.) The peak performance
of p4-3.0-win is, for scalar code, 3 GFLOPS (single and
double precision), and for vector code 12 GFLOPS (single
precision) and 6 GFLOPS (double precision). TheDFT is
computed out of place with the exception of the IPP code
and the Numerical Recipes code [87], which are computed
inplace. In these �gures, higher numbers correspond to better

performance. Solid lines correspond to SPIRAL generated
code, dotted lines to the Intel libraries, and dashed lines
to FFTW and other libraries. We focus the discussion on
Fig. 10(a), starting from the bottom up. The lowest line is
the GNU library, which is a reimplementation of FFTPACK,
a library that was frequently used a decade ago. The library
is a reasonable C implementation but without any adaptation
mechanism or use of vector instructions. The next two lines are
FFTW 3.0.1 and SPIRAL generated scalar C code, which are
about equal in performance. Considerably higher performance
is achievable only by using vector instructions. The next line
shows the speed-up obtained through compiler vectorization,
as enabled by a �ag, used in tandem with SPIRAL. This is a
fair evaluation of compiler vectorization as theSEARCH block
will �nd those formulas the compiler can handle best. The
speed-up is about 50%, obtained with no additional effort.
We note that FFTW cannot be compiler vectorized due to its
complex infrastructure. This 50% speed-up is, however, only
a fraction of the speed-up achieved by the best possible vector
code, which is about a factor of 2 faster, or a factor of 3 over
the best scalar code. This performance is achieved by MKL,
IPP, FFTW, and SPIRAL (the top four lines). We speculate on
the reason for their relative performance:

� For small sizes, within L1 cache, SPIRAL code is best by
a margin, most likely due to the combination of algorithm
search, code level optimizations, and the simplest code
structure.

� Outside L1 but inside L2 cache the Intel libraries are
fastest, most likely since the code is inplace and possi-
bly due to optimizations that require microarchitectural
information not freely available.

� For larger sizes, FFTW seems to hold up the best, due
to a number of optimization speci�cally introduced for
large sizes in FFTW 3.0 [18].

Similar observations can be made for double precision code,
see Fig. 10(b).

Regarding cache effects, we mention that for single pre-
cision, approximately 32 bytes per complex vector entry are
needed (input vector, output vector, constants and spill space)
while for double precision 64 bytes are needed. Taking into
account the Pentium 4's 8 KB of L1 data cache, this implies
that FFTs of size 256 (single precision) and 128 (double
precision) can be computed completely within L1 data cache.
Similarly, the 512 KB L2 cache translates into sizes of214 (for
single precision) and213 (for double precision), respectively.

Finally, we also consider implementations of theDFT on
ipaq-0.4-lin, which provides only �xed point arithmetic. We
compare the performance of SPIRAL's generated code with
the IPP vendor library code for this platform. For most sizes,
IPP fares considerably worse, see Fig. 11, which shows the
(pseudo) MFLOPS achieved across a range ofDFT sizes:21

to 212.
Conclusion: DFT benchmarking.For the DFT , SPIRAL

scalar code is as competitive as the best code available. On
p4-3.0-win, SPIRAL automatically generated vector code is
faster by a factor of2 to 3 compared to the scalar code, on
par with IPP and MKL, Intel's hand-tuned vendor libraries.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 32

4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

size (log
2
n)

pe
rf

or
m

an
ce

 (
ps

eu
do

 M
F

LO
P

S
)

IPP 4.0 (inplace)
Intel MKL 6.1
FFTW 3.0.1 SSE
SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL
FFTW 3.0.1
GNU sci. lib. (inplace)

(a) single precision

4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500

size (log
2
n)

pe
rf

or
m

an
ce

 (
ps

eu
do

 M
F

LO
P

S
)

IPP 4.0 (inplace)
Intel MKL 6.1
FFTW 3.0.1 SSE
SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL
FFTW 3.0.1
GNU sci. lib. (inplace)
Num. Rec. (inplace)

(b) double precision

Fig. 10. FFT performance comparison (in pseudo MFLOPS) of the best available libraries. Platform: p4-3.0-win.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 33

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

log
2
(size)

ps
eu

do
 M

F
LO

P
S

Intel IPP
SPIRAL

Fig. 11. Performance of SPIRAL generated �xed-pointDFT code for sizes
21–212 , on IPAQ vs. Intel IPP 3.0. Platform: ipaq-0.4-lin.

On ipaq-0.4-lin, SPIRAL generated code can be as much as
4 times faster than IPP's code.

Benchmarking: other transforms. We compare IPP to
SPIRAL on p4-3.0-win for the DCT, type 2, in Fig. 12(a). Both
for single and double precisions, the SPIRAL code is about a
factor of 2 faster than the vendor library code, achieving up
to 1500 MFLOPS (scalar code).

Figs. 12(b) and 12(c) study the performance of the cor-
responding 2D-DCT, which has the tensor product structure
(19) that enables SPIRAL vectorization. Again we compare
generated scalar code, compiler vectorized code, and SPIRAL
vectorized code. Compiler vectorization fails for single preci-
sion, i.e., SSE (Fig. 12(b)), but yields a speed-up for double
precision, i.e., SSE2 (Fig. 12(c)). SPIRAL generated vector
code is clearly best in both cases and across all considered
sizes. For SSE, up to 4500 MFLOPS and up to a factor of 3
speed-up over scalar code are achieved.

We consider now theWHT , whose formulas have the sim-
plest structure among all trigonometric transforms. Fig. 13(a)
considers single precision and Fig. 13(b) double precision
implementations, respectively. These �gures show that, again,
vectorization by SPIRAL produces ef�cient code, up to a
factor of 2.5 and 1.5 faster than scalar code for single and
double precision, respectively. Interestingly, vectorization of
the SPIRAL code by the compiler is in this case also success-
ful, with gains that are comparable to the gains achieved by
SPIRAL vectorization.

Runtime studies of FIR �lters and the DWT. Fig. 14(a)
compares different SPIRAL generated scalar implementations
of an FIR �lter with 16 taps and input sizes varying in
the range21–220 on xeon-1.7-lin. The plot shows runtimes
normalized by the runtime of a base method. The base method
is a straightforward implementation of the �lter transform
using overlap-add with block size 1; its performance is given
by the top horizontal line at 1 and not shown. In this �gure,
lower is better (meaning faster than the base method). The
dashed line (squares) shows the relative runtime if only the
overlap-add rule with arbitrary block sizes is enabled—a gain
of about 85% over the base method. Further gains of 10–
20% are achieved if in addition the overlap-save rule and the

blocking rule are enabled (triangles and bullets, respectively).
We consider now Fig. 14(b), which compares the effect of

different rules on theDWT runtime performance. We choose
the variant known as Daubechies 9-7 wavelet, enforce three
different rules for the top-level expansion, with Mallat'srule
being the baseline (horizontal line at1), and compare the
generated codes in each case. The polyphase rule (squares) is
consistently inferior, whereas the lifting steps rule (triangles)
improves over Mallat's rule for input sizes between26 and
212. Beyond this size, Mallat's rule is clearly best as top-level
rule.

Platform tuning. We now investigate the impact of per-
formance tuning (see the table and the plot in Fig. 15). The
table shows the (upper part of the) best ruletrees found for a
DFT of size 210 using only the Cooley-Tukey rule (20), for
p4-2.53-win (single and double precision), p3-1.0-win (single
precision), and xp-1.73-win (single precision). Each nodein
the trees is labeled with the exponent of theDFT size at
this node; for example, the root node in all trees is labeled
by 10, the exponent of the size of the transform210. Most of
the 12 ruletrees in this table are different from each other,
meaning that SPIRAL �nds different trees when searching
for the best tuned formula for a given machine. Particularly
worth noting is the difference between the balanced ruletrees
found by SPIRAL for p3-1.0-win and xp-1.73-win, and the
unbalanced ruletrees found for p4-2.53-win.

The plot on the right of Fig. 15 further explores the
effect of tuning the implementation ofDFT 210 : how does an
implementationbI (P 1) tuned to a given platformP 1 perform
on another target platformP 2? In particular, isbI (P 1) still
tuned to the target platformP 2? The answer is no as we
explain next.

For DFT sizes25; : : : ; 213 we use SPIRAL to generate the
best code for �ve different combinations of platforms and data
types: p4-2.53-win SSE, p4-2.53-win SSE2, xp-1.73-win SSE,
p3-1.0-win SSE, and p4-2.53-win �oat. Then, we generate SSE
code for each of the obtained formulas and run it on p4-2.53-
win. The slowdown factor compared to the code tuned to p4-
2.53-win SSE is shown in the plot in Fig. 15 (i.e., higher is
worse in this plot).

First, we observe that, as expected, the best code is the one
tuned for p4-2.53-win SSE (bottom line equal to 1). Beyond
that, we focus on two special cases:

� Same platform, different data type.The best algorithm
generated for p4-2.53-win SSE2, when implemented in
SSE, performs up to 320% slower than the tuned im-
plementation for p4-2.53-win SSE. The reason for this
large gap is the different vector length of SSE2 and
SSE (2 versus 4), which requires very different algorithm
structures.

� Same data type, different platform.Code generated for
p3-1.0-win SSE and run on the binary compatible p4-
2.53-win SSE performs up to 50% slower than the SSE
code tuned for p4-2.53-win. This is a very good example
of the loss in performance when porting code to newer
generation platforms. SPIRAL regenerates the code and
overcomes this problem.

Compiler �ags. In all prior experiments we have always

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 34

2 2.5 3 3.5 4 4.5 5 5.5 6
0

500

1000

1500

k= log
2
(size)

M
F

LO
P

S

SPIRAL (double)
IPP 4.0 (double)
SPIRAL (float)
IPP 4.0 (float)

(a) 1D DCT vs. IPP

2 2.5 3 3.5 4 4.5 5 5.5 6
500

1000

1500

2000

2500

3000

3500

4000

4500

k=log
2
(size)

M
F

LO
P

S

SPIRAL
SPIRAL vect. comp.
SPIRAL SSE

(b) 2D DCT �oat

2 2.5 3 3.5 4 4.5 5 5.5 6
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

k=log
2
(size)

M
F

LO
P

S

SPIRAL
SPIRAL vect. comp.
SPIRAL SSE2

(c) 2D DCT double

Fig. 12. (a) Comparing the performance (in MFLOPS) of SPIRAL generated code and IPP for aDCT -2 of size2k , 2 � k � 6 for single and double
precision. (b) and (c) 2D-DCT �oat and double precision: scalar SPIRAL code, scalar SPIRAL code compiler vectorized, and SPIRAL vector code. Platform:
p4-3.0-win.

4 6 8 10 12 14
0

500

1000

1500

2000

2500

3000

3500

4000

ld(size)

M
flo

p/
s

SPIRAL
SPIRAL (comp. vect.)
SPIRAL SSE

(a) single precision

4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

ld(size)

M
flo

p/
s

SPIRAL
SPIRAL (comp. vect.)
SPIRAL SSE2

(b) double precision

Fig. 13. WHT performance (in MFLOPS) of SPIRAL generated scalar code, compiler vectorized code, and vector code for (a) single and (b) double
precision. Platform: p4-3.0-win.

2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

log
2
(input size)

re
la

tiv
e

ru
nt

im
e

w
ith

 r
es

pe
ct

 to
 th

e
ba

se
 m

et
ho

d

Overlap-Add Rule
+ Overlap-Save Rule
+ Blocking Rule

(a) FIR �lter

2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

log
2
(input size)

re
la

tiv
e

ru
nt

im
es

 w
ith

 r
es

pe
ct

 to
 th

e
ba

se
 m

et
ho

d

Mallat Rule
Polyphase Rule
Lifting Rule

(b) DWT

Fig. 14. (a) Runtime comparison of generated �lter code (16 taps) found with increasing sets of rules enabled, normalized bythe straightforward
implementation. (b) Runtime comparison of the best found DWT implementation for three different choices of the uppermost rule, normalized by Mallat's
rule. Platform: xeon-1.7-lin.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 35

P4
(single)

P4
(double)

PIII
(single)

Athlon XP
(single)

scalar code 2

10

2 6

8 2

10

2

8

6 2 2

10

4 6

2 4

10

4 6

3 32 2

scalar code
compiler vect.

10

4 6

4 22 2

2

10

2 6

8

10

6 4

2 22 4

10

4 6

4 22 2

vector code
single = SSE

double = SSE2

8

10

2

1 7

2 5

9

10

1

1 7

2 5

10

5 5

2 32 3

10

5 5

2 32 3
5 6 7 8 9 10 11 12 13

1

1.5

2

2.5

3

3.5

4

4.5

log
2
(size)

sl
ow

do
w

n
fa

ct
or

Pentium 4 SSE
Pentium 4 SSE2
Athlon XP SSE
Pentium III SSE
Pentium 4 float

Fig. 15. Left: The best foundDFT formulas forn = 2 10 , represented as breakdown trees; right: crosstiming of bestDFT ruletree, sizes25 ; : : : ; 213 ,
generated for various platforms, implemented and measured on Pentium 4 using SSE. Platforms: p4-2.53-win, p3-1.0-win, xp-1.73-win.

used a prede�ned and �xed combination of C compiler �ags
to compile the SPIRAL generated code (see Table XIX).
Assessing the effects on performance of compiler options is
dif�cult, because: 1) there are many different options (the
extreme case is gcc 3.3 with a total of more than 500 different
documented �ags, more than 60 of which are related to
optimization); 2) different options can interact and/or con�ict
with each other in non-trivial ways; 3) the best options usually
depend on the program being compiled. In SPIRAL, we have
not yet addressed this problem; in fact, for gcc, SPIRAL uses
the same optimization options as FFTW by default.

In the absence of clear guidelines, choosing the right set of
compiler �ags from the large set of possibilities poses another
optimization problem that can be solved by a heuristic search.
ACOVEA (Analysis of Compiler Options via Evolutionary
Algorithm) [88] is an open-source project that uses an evo-
lutionary algorithm to �nd the best compiler options for a
given C program.

We apply ACOVEA to SPIRAL generated code for the
DCT, type 2, of sizes21; : : : ; 26 on p4-3.0-lin. First, we
generate the best (scalar) implementations using the default
con�guration (denoted by “gcc -O3” in the plot; the com-
plete set of �ags is in Table XIX). Second, we retime the
obtained implementations with a lower level of optimization
(denoted by “gcc -O1,” in reality “-O1 -fomit-frame-pointer
-malign-double -march=pentium4”), and also with the Intel
Compiler 8.0 (denoted by “icc /O3,” the options were “/O3
/tpp7”). Finally, we run the ACOVEA evolutionary search for
gcc compiler �ags for each implementation. The results are
shown in Fig. 16(a), which displays the speed-up compared
to “gcc -O1” (higher is better) for each of the 6 DCT codes.
All sets of �ags found by ACOVEA include at least “-O1 -
march=pentium4.” This justi�es our choice of “gcc -O1” as the
baseline. Note that “gcc -O3” is always slower than “gcc -O1,”
which means that some of the more advanced optimizations
can make the code slower. In summary, ACOVEA gives an
additional speedup ranging from 8% to 15% for the relevant
larger DCT sizes (� 8) in this experiment.

The plot in Fig. 16(b) was also produced with the help
of ACOVEA. Instead of performing an evolutionary search,
we create an initial random population of 2000 compiler
�ag combinations, each of them again including at least

“-O1 -march=pentium4,” and produce a runtime histogram
for the DCT -232 implementation generated in the previous
experiment. The spread in runtimes of more than a factor of 3
demonstrates the big impact of the choice of compiler �ags.
The best compiler options in this histogram produce a runtime
(in sec.) of about1:8 � 10� 7, whereas the best �ags found by
ACOVEA in the previous experiment produce1:67� 10� 7.

Parallel platforms. Section IV-F showed how SPIRAL
could be used to generate parallel code and showed a family
of shared-memory and distributed-memory parallel algorithms
for the WHT. Figure 17 considers the WHT sizes21; : : : ; 224

and shows the speedup obtained with the generated routines.
Speedup is computed for each number of threads as the ratio of
the best sequential algorithm/implementation found compared
to the best parallel algorithm/implementation found. We used
dynamic programming in each case to automatically optimize
granularity, load balance, cache utilization, and the selection
of appropriately optimized sequential code. The platform is a
12 processor shared-memory multiprocessor platform ibms80-
0.45-aix [89].

Figure 17 shows that, for up to 10 threads, nearly linear
speed-up is obtained for large transform size and paralleliza-
tion is found to be bene�cial for transforms as small as210.
The performance reported here is better than that reported in
[59], due to searching through additional schedules and using
loop interleaving [23] to reduce cache misses and false sharing.
A straightforward parallelization method leads to far inferior
performance. For example, for 10 threads, only a factor of
about 3 is achieved this way; a parallelizing compiler fares
even worse than that. These results are not shown, please refer
to [59] for more details. In summary, even for as simple a
transform as the WHT, search through a relevant algorithm
space is crucial to obtain the optimal performance.

Multiplierless code. SPIRAL can generate multiplierless
code (see Section V). This is important for platforms that
feature a �xed point processor such as the IPAQ and showcases
a unique advantage of SPIRAL, as we are not aware of
other multiplierless high performance libraries. In a multi-
plierless implementation, a lower accuracy approximationof
the constants leads to fewer additions and, thus, potentially
faster runtime. This effect is shown in Fig. 18 forDFT s of
various sizes,3 � n � 64, implemented in each case using

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 36

1 2 3 4 5 6
-60%

-40%

-20%

0 %

20 %

40 %

60 %

80 %

log
2
(size)

sp
ee

du
p

ov
er

 g
cc

 -
O

1

gcc -O1
gcc -O3
gcc/acovea
icc /O3

(a) improvement from compiler options search forDCT -2 of sizes
21 ; : : : ; 26 .

1 2 3 4 5 6 7

x 10
-7

0

10

20

30

40

50

60

70

runtime [s]

nu
m

be
r

of
 c

om
pi

le
r

op
tio

n
co

m
bi

na
tio

ns

(b) histogram of 2000 random compiler �ags combinations for
the best found implementation forDCT -232 .

Fig. 16. Analysis of the impact of the choice of compiler �ags using
ACOVEA.

1

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12 14 16 18 20 22 24

sp
ee

du
p

WHT size log(N)

sequential WHT
2 threads
4 threads
6 threads
8 threads
10 threads

Fig. 17. Speed-up for parallel code generated forWHT 2k , 1 � k � 24,
for up to 10 threads. Platform: ibms80-0.45-aix with 12 processors.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 30 32 36 64
0

0.5

1

1.5

2

2.5
x 10

-5

size

ru
nt

im
e

[s
]

8 bit
14 bit
mults

Fig. 18. Runtime performance (lower is better) of variousDFT s of sizes
between 3 and 64. For each size, the rightmost, middle, and leftmost bar shows
(�xed point) code using multiplications and 14-bit and 8-bitmultiplierless
code, respectively. Platform: ipaq-0.4-lin.

either multiplications or additions and shifts with the constants
approximated to 14 or 8 bits, respectively. Note that the code
has to be unrolled to allow for this technique. The �gure shows
an improvement of up to 10% and 20%, respectively, for the
14-bit and 8-bit constant multiplierless code.

Runtime of code generation. SPIRAL requires only
compile-time adaptation; thus, at runtime, no time is spent
in further optimizing the code. Depending on the optimization
strategy, the problem size, and the timer used, the optimization
may take from the order of seconds to the order of hours.
For instance, the generation of a scalar DFT library for two-
powers up to220 is done in 20–30 minutes on a Pentium 4,
while the corresponding vector code generation takes on the
order of hours. Problem sizes around 64 are optimized within
a few minutes. Note that SPIRAL generates code entirely from
scratch, i.e., no code or code fragments for any transform are
already pregenerated or handcoded in SPIRAL. In this respect,
SPIRAL is similar to ATLAS with roughly similar code
generation times. Compared to FFTW, SPIRAL needs longer
to produce optimized code. However, in FFTW, real code
generation (i.e., from scratch) is done only for small transform
sizes and for unrolled code. These codelets (in FFTW lingo)
are pregenerated and distributed with the package. Further,
the codelet generation is deterministic, i.e., produces the same
result independently of the machine. The optimization for
larger FFT sizes in FFTW is done at runtime by determining,
through dynamic programming, the best recursion strategy
among those supported by FFTW. The available recursions
are built into the rather complex infra-structure of FFTW.
For example, for a one-dimensional DFT of composite size
and in SPIRAL lingo, these recursion strategies are all the
right-most ruletrees based on the Cooley-Tukey breakdown
rule (20), where the left leaf is a codelet. Restricting the DFT
computation to this restricted class of algorithms is a decision
based on the experience of the FFTW developers. In SPIRAL,
the candidate algorithms are deliberately as little constrained
as possible, leaving the selection entirely to the system.

Conclusions.We draw the following main conclusions from

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 37

our experiments:
� For any given transform, even for a small size, there

is a large number of alternative formulas with a large
spread in code quality, even after applying various code
optimizations (Figs. 8 and 9).

� The difference in runtime between a “reasonable” im-
plementation and the best possible can be an order of
magnitude (e.g., a factor of 10 in Fig. 10(a) between the
GNU library and the IPP/FFTW/SPIRAL code).

� Compiler vectorization is limited to code of very simple
structure (e.g., Fig. 13), but fails to produce competitive
code for more complex data �ows, e.g., Figs. 10, 12(b),
and 12(c). SPIRAL overcomes this problem through
manipulations at the mathematical formula level; all other
vector libraries involve hand coding.

� The performance of SPIRAL generated code is compa-
rable with the performance of the best available library
code.

VIII. L IMITATIONS OF SPIRAL, ONGOING AND FUTURE

WORK

SPIRAL is an ongoing project and continues to increase in
scope with respect to the transforms included, the types of
code generated, and the optimization strategies included.We
give a brief overview of the limitations of the current SPIRAL
system and the ongoing and planned future work to resolve
them.

� As we explained before, SPIRAL is currently restricted
to discrete linear signal transforms. As a longer term
effort we just started to research the applicability of
SPIRAL-like approaches to other classes of mathematical
algorithms from signal processing, communication, and
cryptography. Clearly, the current system makes heavy
use of the particular structure of transform algorithms
in all of its components. However, most mathemati-
cal algorithms do possess structure, which, at least in
principle, could be exploited to develop a SPIRAL like
code generator following the approach in Section II-A.
Questions that need to be answered for a given algorithm
domain then include:
– How to develop a declarative structural representation

of the relevant algorithms?
– How to generate alternative algorithms and how to

translate these algorithms into code?
– How to formalize algorithm level optimizations as

rewriting rules?
– How to search the algorithm space with reasonable

effort?
� Currently, SPIRAL can only generate code for one spe-

ci�c instance of a transform, e.g., for a transform of
�xed size. This is desirable in applications where only
a few sizes are needed which can be generated and
bundled into a lightweight library. For applications with
frequently changing input size, a package is preferable,
which implements a transform for all, or a large number
of sizes. To achieve this, recursive code needs to be
generated that represents the breakdown rules, which is

ongoing research. Once this is achieved, our goal is to
generate entire packages, similar to FFTW for the DFT,
on demand from scratch.

� The current vectorization framework can handle a large
class of transforms, but only those whose algorithms are
built from tensor products to a large extent. In this case,
as we have shown, a small set of manipulation rules is
suf�cient to produce good code. We are currently working
on extending the class of vectorizable transforms, e.g., to
include large DCTs and wavelets. To achieve this, we
will identify the necessary formula manipulation rules
and include them into SPIRAL. With a large manipulation
rule database ensuring convergence and uniqueness of the
result (con�uence) also becomes a problem. To ensure
these properties, we will need a more rigorous approach
based on the theory of rewriting systems [42].

� Similarly, and with an analogous strategy, we are in the
process of extending SPIRAL's code generation capabili-
ties for parallel platforms. These extensions are currently
still in the prototype stage.

� Besides vector code, current platforms provide other
potentially performance enhancing features, such as hy-
perthreading (Pentium 4) or prefetch instructions. Hy-
perthreading can be exploited by generating code with
explicit threads, which was the previous goal; we aim
to explicitly generate prefetch instructions through a
combination of formula manipulation and loop analysis
on the code level [90].

� For some applications it is desirable to compute a
transform inplace, i.e., with the input and output vector
residing in the same memory location. SPIRAL currently
only generates out-of-place code. We aim to generate
inplace code directly after a formula level only analysis.

� SPIRAL can generate �xed point code, but the decision
for the chosen range and precision, i.e., the �xed-point
format, has to be provided by the user. Clearly, the
necessary range depends on the range of the input values.
We are currently developing a backend [91] that chooses
the optimal �xed point format once the input range is
speci�ed. The format can be chosen globally, or locally
for each temporary variable to enhance precision.

� To date the learning in SPIRAL is restricted to the
selection of WHT ruletrees and DFT ruletrees based on
the Cooley-Tukey rule. An important direction in our
research is to extend the learning framework to learn and
control a broader scope of transforms and to encompass
more degrees of freedoms in the code generation.

� For many transforms, in particular the DFT, there are
many different variants that differ only by the chosen
scaling or assumptions on input properties such as sym-
metries. Most packages provide only a small number of
these variants due to the considerable hand-coding effort.
In SPIRAL many of these variants can be handled by just
including the speci�cation and one or several rules. We
are in the process of extending SPIRAL in this direction.

� We are just in the process of �nishing an improved
redesign of the SPIRAL system with considerably in-
creased modularity to enable all the above extensions with

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 38

reasonable effort. The possibility of extending SPIRAL,
e.g., by inserting a backend code optimization module, or
by connecting it to an architecture simulator, has led to
its occasional use in class projects in algorithm, compiler,
and architecture courses. The vertical integration of all
stages of software development in SPIRAL allows the
students to study the complex interaction of algorithms
mathematics, compiler technology, and microarchitecture
at hand of an important class of applications.

� Finally, as a longer term research effort and leaving the
scope of this paper and this special issue, we have started
to develop a SPIRAL-like generator for hardware designs
of transforms for FPGAs or ASICs.

IX. CONCLUSIONS

We presented SPIRAL, a code generation system for DSP
transforms. Like a human expert in both DSP mathematics
and code tuning, SPIRAL autonomously explores algorithm
and implementation choices, optimizes at the algorithmic and
at the code level, and exploits platform-speci�c features to
create the best implementation for a given computer. Further,
SPIRAL can be extended and adapted to generate code for new
transforms, to exploit platform-speci�c special instructions,
and to optimize for various performance metrics. We have
shown that SPIRAL generated code can compete with, and
sometimes even outperform the best available hand-written
code. SPIRAL's approach provides performance portability
across platforms and facilitates porting the entire transform
domain across time.

The main ideas behind SPIRAL are to formulate the
problem of code generation and tuning of transforms as an
optimization problem over a relevant set of implementations.
The implementation set is structured using a domain-speci�c
language that allows the computer representation, generation,
and optimization of algorithms and corresponding code. The
platform-speci�c optimization is solved through an empirical
feedback-driven exploration of the algorithm and implementa-
tion space. The exploration is guided by search and learning
methods that exploit the structure of the domain.

While the current version of SPIRAL is restricted to
transforms, we believe that its framework is more generally
applicable and may provide ideas how to create the next
generation of more “intelligent” software tools that push the
limits of automation far beyond of what is currently possible
and that may, at some point in the future, free humans from
programming numerical kernels altogether.

X. ACKNOWLEDGMENTS

This work was supported by DARPA through research grant
DABT63-98-1-0004 administered by the Army Directorate
of Contracting and by NSF through award numbers ACR-
0234293, ITR/NGS-0325687, and SYS-310941.

Moura, Johnson, Veloso, and Johnson recognize their early
discussions with Louis Auslander on the automatic imple-
mentation of the DFT and other transforms. They and Padua
acknowledge Anna Tsao for teaming them up. Further, the
authors acknowledge the many interactions with Anna Tsao,

Dennis Healy, Doug Cochran, and more recently with Fred-
erika Darema, during the development of SPIRAL.

The acronym SPIRAL means Signal Processing Implemen-
tation Research for Adaptable Libraries. As a tribute to Aus-
lander, the SPIRAL team decided early on that SPIRAL should
likewise stand for (in reverse) Louis Auslander's Remarkable
Ideas for Processing Signals.

REFERENCES

[1] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran,
D. Padua, K. Pingali, P. Stodghill, and P. Wu, “A comparison ofempiri-
cal and model-driven optimization,” inProc. ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI), vol. 38,
no. 5. ACM Press, 2003.

[2] T. Kisuki, P. Knijnenburg, and M. O'Boyle, “Combined selection of tile
sizes and unroll factors using iterative compilation,” inProc. Parallel
Architectures and Compilation Techniques (PACT), 2000, pp. 237–246.

[3] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, “Automatic program trans-
formations for virtual memory computers,” inProc. National Computer
Conference, 1979, pp. 969–974.

[4] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe,
“Dependence graphs and compiler optimizations,” inProc. 8th ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages. ACM
Press, 1981, pp. 207–218.

[5] F. Allen and J. Cocke, “A catalogue of optimizing transformations,” in
Design and Optimization of Compilers, R. Rustin, Ed. Prentice-Hall,
1972, pp. 1–30.

[6] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
Proc. ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI). ACM Press, 1991, pp. 30–44.

[7] I. Kodukula, N. Ahmed, and K. Pingali, “Data-centric multi-level block-
ing,” in Proc. ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI). ACM Press, 1997, pp. 346–357.

[8] K. Kennedy and R. Allen,Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann, 2001.

[9] R. Metzger and Z. Wen,Automatic Algorithm Recognition and Replace-
ment: A New Approach to Program Optimization. MIT Press, 2000.

[10] D. Barthou, P. Feautrier, and X. Redon, “On the equivalence of two
systems of af�ne recurrence equations,” inProc. Euro-Par, ser. LNCS,
vol. 2400. Springer, 2002, pp. 309–313.

[11] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimization of software and the ATLAS project,”Parallel Computing,
vol. 27, no. 1–2, pp. 3–35, 2001, also available as University of
Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000 (www.
netlib.org/lapack/lawns/lawn147.ps).

[12] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
C. Whaley, and K. Yelick, “Self adapting linear algebra algorithms and
software,”Proceedings of the IEEE, vol. 93, no. 2, 2005, special issue
on ”Program Generation, Optimization, and Adaptation”.

[13] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen,LAPACK Users' Guide, 3rd ed. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1999.

[14] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and
P. Stodghill, “A comparison of empirical and model-driven optimiza-
tion,” Proceedings of the IEEE, vol. 93, no. 2, 2005, special issue on
”Program Generation, Optimization, and Adaptation”.

[15] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,”Int'l Journal of High Performance Computing
Applications, vol. 18, no. 1, 2004.

[16] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, X. Gao, R. J. Harrison, S. Hirata, S. Krishanmoorthy,
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Ramanujam,
P. Sadayappan, and A. Sibiryakov, “Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry models,”
Proceedings of the IEEE, vol. 93, no. 2, 2005, special issue on ”Program
Generation, Optimization, and Adaptation”.

[17] G. Baumgartner, D. Bernholdt, D. Cociovora, R. Harrison, M. Nooi-
jen, J. Ramanujan, and P. Sadayappan, “A performance optimization
framework for compilation of tensor contraction expressionsinto parallel
programs,” inProc. Int'l Workshop on High-Level Parallel Programming
Models and Supportive Environments (held in conjunction with IEEE
Int'l Parallel and Distributed Processing Symposium (IPDPS)), 2002.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 39

[18] M. Frigo and S. G. Johnson, “The design and implementationof
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, 2005, special issue
on ”Program Generation, Optimization, and Adaptation”.

[19] ——, “FFTW: An adaptive software architecture for the FFT,” in
Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing
(ICASSP), vol. 3, 1998, pp. 1381–1384, www.fftw.org.

[20] M. Frigo, “A fast Fourier transform compiler,” inProc. ACM SIGPLAN
conference on Programming Language Design and Implementation
(PLDI), 1999, pp. 169–180.

[21] D. Mirković and S. L. Johnsson, “Automatic performance tuning in the
UHFFT library,” in Proc. Int'l Conf. Computational Science (ICCS), ser.
LNCS, vol. 2073. Springer, 2001, pp. 71–80.

[22] S. Egner, “Zur algorithmischen Zerlegungstheorie linearer Transfor-
mationen mit Symmetrie (On the algorithmic decomposition theory
of linear transforms with symmetry),” Ph.D. dissertation, Institut für
Informatik, Univ. Karlsruhe, Germany, 1997.

[23] K. S. Gatlin and L. Carter, “Faster FFTs via architecture cognizance,” in
Proc. Parallel Architactures and Compilation Techniques (PACT), 2000.

[24] ——, “Architecture-cognizant divide and conquer algorithms,” in
Proc. Supercomputing, 1999.

[25] D. H. Bailey, “Unfavorable strides in cache memory systems,” Scienti�c
Programming, 1995.

[26] N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna, “Dynamic data
layouts for cache-conscious factorization of DFT,” inProc. IEEE Int'l
Parallel and Distributed Processing Symposium (IPDPS), 2000, pp. 693–
701.

[27] J. Johnson and M. P̈uschel, “In search for the optimal Walsh-Hadamard
transform,” in Proceedings IEEE Int'l Conf. Acoustics, Speech, and
Signal Processing (ICASSP), vol. IV, 2000, pp. 3347–3350.

[28] J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge, “Parallel VSIPL++:
An open standard software library for high-performance parallel signal
processing,”Proceedings of the IEEE, vol. 93, no. 2, 2005, special issue
on ”Program Generation, Optimization, and Adaptation”.

[29] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A comparative
study of static and pro�le-based heuristics for inlining,”in Proc. ACM
SIGPLAN workshop on Dynamic and Adaptive Compilation and Opti-
mization. ACM Press, 2000, pp. 52–64.

[30] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu, “Pro�le-
guided automatic inline expansion for c programs,”Software - Practice
and Experience, vol. 22, no. 5, pp. 349–369, 1992.

[31] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Processing,
2nd ed. Prentice-Hall, 1999.

[32] ISO/IEC 15444-1:2000, Information technology - JPEG 2000 image
coding system - Part 1: Core coding system, Int'l Organization for
Standardization and Int'l Electrotechnical Commission.

[33] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A
methodology for designing, modifying, and implementing Fourier trans-
form algorithms on various architectures,”IEEE Trans. Circuits, Sys-
tems, and Signal Processing, vol. 9, no. 4, pp. 449–500, 1990.

[34] C. Van Loan,Computational Framework of the Fast Fourier Transform.
SIAM, 1992.

[35] G. E. Ŕevész,Introduction to Formal Languages. McGraw-Hill, 1983.
[36] R. Tolimieri, M. An, and C. Lu, Algorithms for discrete Fourier

transforms and convolution, 2nd ed. Springer, 1997.
[37] M. Püschel, “Cooley-tukey FFT like algorithms for the DCT,” in

Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing
(ICASSP), vol. 2, 2003, pp. 501–504.

[38] P. P. Vaidyanathan,Multirate systems and �lter banks. Prentice-Hall,
1993.

[39] G. Strang and T. Nguyen,Wavelets and Filter Banks. Wesley, 1998.
[40] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into

lifting steps,”Journal of Fourier Analysis and Applications, vol. 4, no. 3,
pp. 247–269, 1998.

[41] A. Graham,Kronecker products and matrix calculus with applications.
New York: John Wiley & Sons, Halstead Press, Ellis Horwood Series
Mathematics and Its Applications, 1981.

[42] N. Dershowitz and D. A. Plaisted, “Rewriting,” inHandbook of Auto-
mated Reasoning, A. Robinson and A. Voronkov, Eds. Elsevier, 2001,
vol. 1, ch. 9, pp. 535–610.

[43] M. Püschel, B. Singer, M. Veloso, and J. M. F. Moura, “Fast automatic
generation of DSP algorithms,” inProc. Int'l Conf. Computational
Science (ICCS), ser. LNCS, vol. 2073. Springer, 2001, pp. 97–106.

[44] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “SPIRAL: A generator for platform-
adapted libraries of signal processing algorithms,”Int'l Journal of High
Performance Computing Applications, vol. 18, no. 1, pp. 21–45, 2004.

[45] GAP—Groups, Algorithms, and Programming, The GAP Team, Univer-
sity of St. Andrews, Scotland, 1997, www-gap.dcs.st-and.ac.uk/� gap/.

[46] N. D. Jones, C. K. Gomard, and P. Sestoft,Partial Evaluation and
Automatic Program Generation. Prentice Hall International, June 1993.

[47] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language and
compiler for DSP algorithms,” inProc. ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), 2001, pp.
298–308.

[48] N. Rizzolo and D. Padua, “Hilo: High level optimization of FFTs,” in
Proc. Workshop on Languages and Compilers for Parallel Computing
(LCPC), 2004, to appear.

[49] Y. Voronenko and M. P̈uschel, “Automatic generation of implemen-
tations for DSP transforms on fused multiply-add architectures,” in
Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing
(ICASSP), 2004.

[50] C. W. Fraser, D. R. Hanson, and T. A. Proebsting, “Engineering a simple,
ef�cient code-generator generator,”ACM LOPLAS, vol. 1, no. 3, pp.
213–226, 1992.

[51] E. Linzer and E. Feig, “Implementation of ef�cient FFT algorithms on
fused multiply-add architectures,” inIEEE Trans. Signal Processing,
vol. 41, 1993, p. 93.

[52] C. Lu, “Implementation of multiply-add FFT algorithms for complex and
real data sequences,” inProc. Int'l Symp. Circuits and Systems (ISCAS),
vol. 1, 1991, pp. 480–483.

[53] F. Franchetti and M. P̈uschel, “A SIMD vectorizing compiler for
digital signal processing algorithms,” inProc. IEEE Int'l Parallel and
Distributed Processing Symposium (IPDPS), 2002, pp. 20–26.

[54] ——, “Short vector code generation for the discrete Fourier transform,”
in Proc. IEEE Int'l Parallel and Distributed Processing Symposium
(IPDPS), 2003, pp. 58–67.

[55] F. Franchetti, “Performance portable short vector transforms,” Ph. D.
Thesis, Institute of Applied Mathematics and Numerical Analysis,
Vienna University of Technology, 2003, also available as AURORA
Tech. Report TR2003-01, www.math.tuwien.ac.at/ascot or www.vcpc.
univie.ac.at/aurora.

[56] F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhuber, “Ef�cient utilization
of SIMD extensions,”Proceedings of the IEEE, vol. 93, no. 2, 2005,
special issue on ”Program Generation, Optimization, and Adaptation”.

[57] R. E. J. Hoe�inger, Z. Li, and D. Padua, “Experience in the automatic
parallelization of four perfect benchmark programs,” inProc. Workshop
on Languages and Compilers for Parallel Computing (LCPC), ser.
LNCS, vol. 589. Springer, 1992.

[58] R. E. J. Hoe�inger and D. Padua, “On the automatic parallelization of
the perfect benchmarks,”IEEE Trans. Parallel and Distributed Systems,
vol. 9, no. 1, pp. 5–23, 1998.

[59] K. Chen and J. R. Johnson, “A prototypical self-optimizing package for
parallel implementation of fast signal transforms,” inProc. IEEE Int'l
Parallel and Distributed Processing Symposium (IPDPS), 2002.

[60] ——, “A self-adapting distributed memory package for fastsignal
transforms,” inProc. IEEE Int'l Parallel and Distributed Processing
Symposium (IPDPS), 2004.

[61] OpenMP,OpenMP C and C++ Application Pragram Interface, Version
1.0, 1998, www.openmp.org.

[62] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir, and M. Snir,MPI: The Complete Reference, 2nd ed. MIT
Press, 1998.

[63] P. Kumhom, “Design, optimization, and implementation of a universal
FFT processor,” Ph.D. dissertation, Department of Electrical and Com-
puter Engineering, Drexel University, 2001.

[64] F. Erg̈un, “Testing multivariate linear functions: Overcoming the gen-
erator bottleneck.” inProc. ACM Symp. Theory of Computing (STOC),
vol. 2, 1995, pp. 407–416.

[65] J. Johnson, M. P̈uschel, and Y. Voronenko, “Veri�cation of linear
programs,” poster at Int'l Symp. Symbolic and Algebraic Computation
(ISSAC), 2001.

[66] S. Winograd,Arithmetic Complexity of Computations, ser. CBMS-NSF
Regional Conf. Ser. Appl. Math. Philadelphia, PA: Society for Industrial
and Applied Mathematics, 1980.

[67] J. R. Johnson and A. F. Breitzman, “Automatic derivation and implemen-
tation of fast convolution algorithms,”Journal of Symbolic Computation,
vol. 37, no. 2, pp. 261–293, 2004.

[68] E. Linzer and E. Feig, “New scaled DCT algorithms for fused multi-
ply/add architectures,” inProc. IEEE Int'l Conf. Acoustics, Speech, and
Signal Processing (ICASSP), vol. 3, 1991, pp. 2201–2204.

[69] N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
SIAM, 2002.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 40

[70] P. R. Cappello and K. Steiglitz, “Some complexity issues in digital signal
processing,”IEEE Trans. Acoustics, Speech, and Signal Processing, vol.
ASSP-32, no. 5, pp. 1037–1041, October 1984.

[71] O. Gustafsson, A. Dempster, and L. Wanhammar, “Extended results for
minimum-adder constant integer multipliers,” inIEEE Int'l Symp. Cir-
cuits and Systems, vol. 1, 2002, pp. I–73–I–76.

[72] A. C. Zelinski, M. P̈uschel, S. Misra, and J. C. Hoe, “Automatic
cost minimization for multiplierless implementations of discrete signal
transforms,” inProc. IEEE Int'l Conf. Acoustics, Speech, and Signal
Processing (ICASSP), 2004.

[73] M. Püschel, A. Zelinski, and J. C. Hoe, “Custom-optimized multiplier-
less implementations of DSP algorithms,” inProc. Int'l Conf. Computer
Aided Design (ICCAD), 2004, to appear.

[74] Information Technology–Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbits/s, ISO/IEC,
1995.

[75] H.-J. Huang, “Performance analysis of an adaptive algorithm for the
Walsh-Hadamard transform,” Master's thesis, Department of Computer
Science, Drexel University, 2002.

[76] M. Furis, “Cache miss analysis of Walsh-Hadamard transform al-
gorithms,” Master's thesis, Department of Computer Science, Drexel
University, 2003.

[77] A. Parekh and J. R. Johnson, “Data�ow analysis of the FFT,” Dept. of
Computer Science, Drexel University, Philadelphia, PA, Tech. Rep. DU-
CS-2004-01, 2004.

[78] J. Johnson, P. Hitczenko, and H.-J. Huang, “Distribution of a class of
didive and conquer recurrences arising from the computationof the
Walsh-Hadamard transform,” inProc. 3rd Colloquium on Mathematics
and Computer Science: Algorithms, Trees, Combinatorics and Proba-
bilities, 2004.

[79] P. Hitczenko, H.-J. Huang, and J. R. Johnson, “Distribution of a class
of divide and conquer recurrences arising from the computation of
the Walsh-Hadamard transform,”Theoretical Computer Science, 2003,
submitted for publication.

[80] D. E. Knuth, The Art of Computer Programming: Fundamental Algo-
rithms, 3rd ed. Addison-Wesley, 1997, vol. 1.

[81] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[82] B. Singer and M. Veloso, “Stochastic search for signal processing
algorithm optimization,” inProc. Supercomputing, 2001.

[83] L. Torgo, “Inductive learning of tree-based regression models,” Ph.D.
dissertation, Department of Computer Science, Faculty of Sciences,
University of Porto, 1999.

[84] B. Singer and M. Veloso, “Learning to construct fast signal processing
implementations,”Journal of Machine Learning Research, vol. 3, pp.
887–919, 2002.

[85] ——, “Learning to generate fast signal processing implementations,”
in Proc. International Conference on Machine Learning. Morgan
Kaufmann, 2001, pp. 529–536.

[86] B. Singer and M. M. Veloso, “Automating the modeling and optimization
of the performance of signal transforms,”IEEE Trans. Signal Processing,
vol. 50, no. 8, pp. 2003–2014, 2002.

[87] W. H. Press, B. P. Flannery, T. S. A., and V. W. T.,Numerical Recipes
in C: The Art of Scienti�c Computing, 2nd ed. Cambridge University
Press, 1992.

[88] S. R. Ladd, “ACOVEA: Analysis of compiler options via evolutionary
algorithm,” 2004, www.coyotegulch.com/acovea/.

[89] IBM, “The RS/6000 enterprise server model S80, technology and archi-
tecture,” http://www.rs6000.ibm.com/resource/technology/s80techarch.
html.

[90] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation
of a compiler algorithm for prefetching,” inProc. Int'l Conference
on Architectural Support for Programming Languages and Operating
Systems, 1992, pp. 62–73.

[91] L. J. Chang, I. Hong, Y. Voronenko, and M. Püschel, “Adaptive mapping
of linear dsp algorithms to �xed-point arithmetic,” inProc. High
Performance Embedded Computing (HPEC), 2004.

Markus Püschel received his Diploma (M.Sc.) in
Mathematics and his Doctorate (Ph.D.) in Computer
Science, in 1995 and 1998, respectively, both from
the University of Karlsruhe, Germany. From 1998-
1999 he was a Postdoctoral Researcher at the Dept.
of Mathematics and Computer Science, Drexel Uni-
versity. Since 2000 he has held a Research Faculty
position at the Dept. of Electrical and Computer En-
gineering, Carnegie Mellon University. Dr. Püschel
is on the editorial board of the IEEE Signal Process-
ing Letters and was a guest editor of the Journal of

Symbolic Computation and of the Proceedings of the IEEE. His research
interests include scienti�c computing, compilers, applied mathematics and
algebra, and signal processing theory/software/hardware. More details can be
found on http://www.ece.cmu.edu/� pueschel.

Jośe M. F. Moura (S'71–M'75–SM'90–F'94) re-
ceived the engenheiro electrotécnico degree from
Instituto Superior T́ecnico (IST), Lisbon, Portugal,
and the M.Sc., E.E., and the D.Sc. in Electrical
Engineering and Computer Science from the Mas-
sachusetts Institute of Technology (M.I.T.), Cam-
bridge, Massachusetts.

He is a Professor of Electrical and Computer
Engineering at Carnegie Mellon University since
1986. In the year 99-00 he was a Visiting Professor
of Electrical Engineering at M.I.T. He was on the

faculty of IST (1975-84), Genrad Associate Professor of Electrical Engineer-
ing and Computer Science (Visiting) at M.I.T. (1984–1986), and a Visiting
Research Scholar at the University of Southern California (Department of
Aerospace Engineering, Summers 1978–1981). His research interests include
statistical and algebraic signal and image processing and digital communica-
tions. His research is often at the interface of signal processing and other �elds.
He has published over 270 technical Journal and Conference papers, is the
co-editor of two books, holds �ve patents on image and video processing, and
digital communications with the US Patent Of�ce, and has givennumerous
invited seminars at US and European Universities and Laboratories and several
plenary and invited talks at international Workshops and Conferences.

Dr. Moura served asVice-President for Publicationsfor the IEEE Signal
Processing Society(SPS) and was a member of theBoard of Governorsof the
same Society (2000-2002). He was alsoVice-President for Publicationsfor the
IEEE Sensors Council(2000-2002). He is on theEditorial Board of the IEEE
Proceedings, the IEEE Signal Processing Magazine, and the ACM Sensor
Networks Journal. He chaired the IEEE TAB Transactions Committee (2002-
2003) that joins the about 80 Editors in Chief of the IEEE Transactions. He
was theEditor in Chief for theIEEE Transactions in Signal Processing(1975-
1999) and interimEditor in Chief for the IEEE Signal Processing Letters
(December 2001-May 2002). He has been a member of several Technical
Committees of the SPS and has been on the program Technical Committee of
numerous IEEE Conferences. He was on theIEEE Press Board(1991-95).

Dr. Moura is a Fellow of the IEEE and corresponding member of the
Academy of Sciences of Portugal(Section of Sciences). He was awarded
the 2003 IEEE Signal Processing Society meritorious serviceaward and
in 2000 the IEEE Millenium medal. He is af�liated with severalIEEE
societies, Sigma Xi, AMS, AAAS, IMS, and SIAM. Further details on
http://www.ece.cmu.edu/� moura.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 41

Jeremy R. Johnson is Professor and Department
Head of Computer Science at Drexel University
with a joint appointment in Electrical and Computer
Engineering. He received a B.A. in Mathematics
from the University of Wisconsin-Madison in 1985,
a M.S. in Computer Science from the University
of Delaware in 1988, and a Ph.D. in Computer
Science from The Ohio State University in 1991.
Dr. Johnson is on the editorial board of the journal of
Applicable Algebra in Engineering, Communication
and Computing and has served as a guest editor for

the Journal of Symbolic Computation. His research interests include algebraic
algorithms, computer algebra systems, problem solving environments, pro-
gramming languages and compilers, high performance computing, hardware
generation, and automated performance tuning. More details can be found at
http://www.cs.drexel.edu/� jjohnson.

David Padua is a professor of computer science
at the University of Illinois at Urbana- Champaign,
where he has been a faculty member since 1985. At
Illinois, he has been Associate Director of the Center
for Supercomputing Research and Development, a
member of Science Steering Committee of the Cen-
ter for Simulation of Advanced Rockets, Vice-Chair
of the College of Engineering Executive Committee,
and a member of the Campus Research Board.
He has served as a program committee member,
program chair, or general chair for more than 40

conferences and workshops. He served on the editorial boardof the IEEE
Transactions of Parallel and Distributed Systems and as editor-in-chief of the
International Journal of Parallel Programming (IJPP). He is currently Steering
Committee Chair of ACM SIGPLAN's Principles and Practice of Parallel
Programming and a member of the editorial boards of the Journal ofParallel
and Distributed Computing and IJPP. His areas of interest include compilers,
machine organization, and parallel computing. He has published more than
130 papers in those areas. He is a fellow of the IEEE.

Manuela M. Veloso is Professor of Computer Sci-
ence at Carnegie Mellon University. She earned her
Ph.D. in Computer Science from Carnegie Mellon
in 1992. She also received a B.S. in Electrical
Engineering in 1980 and an M.Sc. in Electrical and
Computer Engineering in 1984 from the Instituto
Superior T́ecnico in Lisbon.

Professor Veloso researches in the area of arti-
�cial intelligence with focus on planning, control
learning, and execution for single and multirobot
teams. Her algorithms address uncertain, dynamic,

and adversarial environments. Prof. Veloso has developed teams of robot
soccer agents, which have been RoboCup world champions several times.
She investigates learning approaches to a variety of control problems, in
particular the performance optimization of algorithm implementations, and
plan recognition in complex data sets. Professor Veloso is a Fellow of the
American Association of Arti�cial Intelligence. She is VicePresident of
the RoboCup International Federation. She was awarded an NSF Career
Award in 1995 and the Allen Newell Medal for Excellence in Research in
1997. Professor Veloso is Program Co-Chair of 2005 NationalConference on
Arti�cial Intelligence and the Program Chair of the 2007 International Joint
Conference on Arti�cial Intelligence.

Bryan W. Singer was born in Indiana in 1974. He studied computer
engineering as an undergraduate at Purdue University. In 2001, he earned
a Ph.D. in computer science from Carnegie Mellon University.His research
interests include machine learning and automatic performancetuning.

Jianxin Xiong received his Ph.D. in Computer Sci-
ence in 2001 from University of Illinois at Urbana-
Champaign. He got his M.E and B.E in Com-
puter Science, in 1996 and 1992, respectively, both
from Tsinghua University, China. Presently he is
a Postdoctoral Research Associate at the Dept. of
Computer Science, University of Illinois at Urbana-
Champaign. From 2001 to 2002 he worked as a
Compiler Architect at StarCore Technology Center
(Agere Systems) in Atlanta. From 1996 to 1998, he
was a Lecturer at Tsinghua University. His research

interests include parallel/distributed computing, programming languages, com-
piler techniques and software development tools.

Franz Franchetti received the Dipl.-Ing. (M.Sc.)
degree and the Ph.D. degree in Technical Mathe-
matics from the Vienna University of Technology
in 2000 and 2003, respectively. He is a recipient of
the Schroedinger fellowship awarded by the Austrian
Science Fund. Dr. Franchetti is currently a post-
doctoral associate with the Dept. of Electrical and
Computer Engineering at Carnegie Mellon Univer-
sity. His research focuses on the development of high
performance DSP algorithms.

Aca Ga�cić received his Dipl.-Ing. degree in Elec-
trical Engineering from the University of Novi Sad,
Serbia in 1997 and his M.Sc. degree also in Elec-
trical Engineering from the University of Pittsburgh,
Pennsylvania in 2000. He is currently pursuing his
Ph.D. degree in Electrical and Computer Engineer-
ing at Carnegie Mellon University working on au-
tomatic generation and implementation of digital
signal processing algorithms.

His research interests include representation and
implementation of algorithms for signal and image

processing, automatic performance tuning for DSP kernels, sensor networks,
multi-agent control systems, and applications of game theory.Mr. Ga�cić is a
student member of the IEEE.

Yevgen Voronenkoreceived a B.S. degree in Com-
puter Science from Drexel University in 2003. He
is currently a Ph.D. student of Electrical and Com-
puter Engineering at Carnegie Mellon University.
His research interests include software engineering,
programming languages, and compiler design.

Kang Chen received his M.S. in Computer Science
from Drexel University. While in school he worked
on the SPIRAL project and did an M.S. thesis on
“A Prototypical Self-Optimizing Package for Parallel
Implementation of Fast Signal Transforms.” He is
currently employed as a Software Design Engineer
by STMicroelectronics and is working on embedded
systems for video processing.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 42

Robert W. Johnson is Professor Emeritus of Com-
puter Science at St. Cloud State University and is
founder and President of Qwarry Inc. a company
devoted to providing hardware/software solutions
in math-intensive DSP applications. He is also a
co-founder and former chief scienti�c of�cer of
MathStar, Inc. a fabless semiconductor manufacturer
of DSP devices. Dr. Johnson received his A.B. from
Columbia College in 1962, his M.S. from The City
College of New York in 1965, and his Ph.D. in
mathematics from The City University of New York

in 1969. His recent research has centered on the applicationof abstract algebra
to the design and implementation of DSP algorithms. Dr. Johnsonhas been
the principal or co-principal investigator for numerous DARPA research and
development grants over the last two decades.

Nicholas Rizzoloreceived his Bachelors of Science
and Masters of Science degrees in Computer Science
from the University of Illinois at Urbana-Champaign
(UIUC) in 2002 and 2004 respectively. He is cur-
rently a Ph.D. student at UIUC where his research
interests include machine learning, programming
languages, and compilers.

