PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 1

SPIRAL: Code Generation for DSP Transforms

Markus Rischel, Jos M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Acac{&aYevgen Voronenko, Kang Chen,
Robert W. Johnson, Nicholas Rizzolo

(Invited Paper)

Abstract—Fast changing, increasingly complex, and diverse and other, often undocumented, microarchitectural featur
computing platforms pose central problems in scientic com- The problem is aggravated by the fact that these features
puting: How to achieve, with reasonable effort, portable op-giffer from platform to platform, which makes optimal code
timal performance? We presen.t.SPIRAL 'that clonS|der.s.th|s latform dependent. As a consequence. the performance aa
problem for the performance-critical domain of linear digital p p CI a e p -g p
signal processing (DSP) transforms. For a specied transform, between a “reasonable” implementation and the best pessibl
SPIRAL automatically generates high performance code that is implementation is increasing. For example, for the digcret
tuned to the given platform. SPIRAL formulates the tuning Fourier transform on a Pentium 4, there is a gap in runtime
as an opfimization problem, and exploits the domain-specic e rformance of one order of magnitude between the code of

mathematical structure of transform algorithms to implement . . SR
a feedback-driven optimizer. Similar to a human expert, for Numerical Recipes or the GNU scienti c library and the Intel

a specied transform, SPIRAL “intelligently” generates and Vvendor library IPP (see Section VII). The latter is most ljke

explores algorithmic and implementation choices to nd the best hand-written and hand-tuned assembly code, an approdich sti
match to the computer's microarchitecture. The “intelligence” employed if highest performance is required—a reminder of
is provided by search and learning techniques that exploit days before the invention of the rst compiler 50 years

the structure of the algorithm and implementation space to H % ina hand-writt d i ;
guide the exploration and optimization. SPIRAL generates high ago. However, keeping hand-written code current requies r

performance code for a broad set of DSP transforms including implementation and re-tuning whenever new platforms are
the discrete Fourier transform, other trigonometric transforms, released—a major undertaking that is not economically eiabl
Iter transforms, and discrete wavelet transforms. Experimental in the long run.

results show that the code generated by SPIRAL competes with, |, concept, compilers are an ideal solution to performance

and sometimes outperforms, the best available human tunedt . . ,th de d t d to b it

transform library code. uning since the source code does not need to be rewrit-
)) o ten. However, high-performance library routines are adhef

_ Index Terms—library generation, code optimization, adapta- 5 tned, frequently directly in assembly, becauseytsda

tion, automatic performance tuning, high performance comput-

ing, linear signal transform, discrete Fourier transform, FFT, compilers often generate inefcient code even for §|mple
discrete cosine transform, wavelet, lter, search, learning, geetic problems. For example, the code generated by compilers for

and evolutionary algorithm, Markov decision process dense matrix-matrix multiplication is several times slowen
the best hand-written code [1] despite the fact that the nngmo
|. INTRODUCTION access pattern of dense matrix-matrix multiplication gutar

At the heart of the computer revolution is Moore's Iaw?md can be accurately analyzed by a compiler. There are two

which has accurately predicted, for more than three decad'é?in reasons for Fhis situation. . Lo
that the number of transistors per chip doubles roughly ev-ThE? rst reason is the lack of reliable program optlmlzatmn
ery 18 months. The consequences are dramatic. The curf§§'idues. a problem exacerbated by the increasing com-
generation of off-the-shelf single processor workstaiom- PIEXIty of machines. In fact, although compilers can usuall
puters has a theoretical peak performance of more than B sform code segments in many different ways, Fher_e IS no
gigaFLOP$, rivaling the most advanced supercomputers 1nm[riqethodology that guarantees successful optimization.iEmp

only a decade ago. Unfortunately, at the same time, it |f_:$al search [2], which measures or estimates the execution

increasingly harder to harness this peak performance,piaxc{-ﬁme of _severa_l versions of a code segment ar_ld selects the
is a simple and general method that is guaranteed

for the most simple computational tasks. To understand tﬁ?sSteSt’ d ithouah rical h h
problem one has to realize that modern computers are not j ucceed. However, alt ough empirical search has proven
faster counterparts of their ancestors but vastly more mmpextraordlnarlly successful for library generators, cdemgican

and thus with different characteristics. For example, aboﬂ]ake only limited use of it. The best known example of the

15 years ago, the performance for most numerical kerné\gtual use of empirical search by commercial compilersés th

was determined by the number of operations they r(_}(w"%t-?cision_of how many times_ loops should be unrolledr Thi_s is
nowadays, in contrast, a cache miss may be 10-100 tinfomPplished by rst unrolling the loop and then estimating
more expensive than a multiplication. More generally, thtge execution time in each case. Although empirical seach i

performance of numerical code now depends crucially on tﬁggquate in this case, (':om.p|lers do not use empirical s¢arch
use of the platform's memory hierarchy, register sets,lavagu'de the overall optimization process because the nunmber o

able special instruction sets (in particular vector instinns), VErsions of a program can become astronomically large, even
when only a few transformations are considered.

11 gigaFLOPS (GFLOPS) 20° oating point operations per second The second reason why compilers do not perform better is

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 2

that often important performance improvements can only lrmproved through the use of automated tools.
attained by transformations that are beyond the capahifity Our solution formulates the problem of automatically gen-
today's compilers or that rely on algorithm information thig erating optimal code as an optimization problem over the
dif cult to extract from a high-level language. Although iy space of alternative algorithms and implementations of the
can be accomplished with program transformation techsiqusame transform. To solve this optimization problem using an
[3]-[8] and with algorithm recognition [9], [10], startinhe automated system, we exploit the mathematical structure of
transformation process from a high-level language versigme algorithm domain. Speci cally, SPIRAL uses a formal
does not always lead to the desired results. This limitatidramework to ef ciently generate many alternative alglonits
of compilers can be overcome by library generators that make a given transform and to translate them into code. Then,
use of domain-speci c, algorithmic information. An impart SPIRAL uses search and learning techniques to traverse the
example of the use of empirical search is ATLAS, a lineaget of these alternative implementations for the same given
algebra library generator [11], [12]. The idea behind ATLAS transform to nd the one that is best tuned to the desired
to generate platform-optimized BLAS routines (basic lingla platform while visiting only a small number of alternatives
gebra subroutines) by searching over different blockingtet We believe that SPIRAL is unique in a variety of respects:
gies, operation schedules, and degrees of unrolling. ATLAS SPIRAL is applicable to the entire domain of linear dibita
relies on the fact that LAPACK [13], a linear algebra librarysignal processing algorithms, and this domain encompasses
is implemented on top of the BLAS routines, which enables large class of mathematically complex algorithms; 2) SPI-
porting by regenerating BLAS kernels. A model-based, arRIAL encapsulates the mathematical algorithmic knowledge o
thus deterministic, version of ATLAS is presented in [14}this domain in a concise declarative framework suitable for
The speci ¢ problem of sparse matrix vector multiplicaon computer representation, exploration, and optimizatidmis—t
is addressed in SPARSITY [12], [15], again by applyingigorithmic knowledge is far less bound to become obsolete
empirical search to determine the best blocking strategyfoas time goes on than coding knowledge such as compiler
given sparse matrix. References [16], [17] provide a prograoptimizations; 3) SPIRAL can be expanded in several direc-
generator for parallel programs of tensor contractionsclwh tions to include new transforms, new optimization techeiu
arise in electronic structure modeling. The tensor contac different target performance metrics, and a wide variety of
algorithm is described in a high-level mathematical larggya implementation platforms including embedded processods a
which is rst optimized and then compiled into code. hardware generation; 4) we believe that SPIRAL is rst in
In the signal processing domain, FFTW [18]-[20] usedemonstrating the power of machine learning techniques in
a slightly different approach to automatically tune the imautomatic algorithm selection and optimization; and, Ipal
plementation code for the discrete Fourier transform (DFT§) SPIRAL shows that, even for mathematically complex
For small DFT sizes, FFTW uses a library of automaticallgigorithms, machine generated code can be as good as, or
generated source code. This code is optimized to perfogometimes even better, than any available expert hantewrit
well with most current compilers and platforms, but is natode.
tuned to any particular platform. For large DFT sizes, the Organization of this paper. The paper begins, in Section I,
library has a built-in degree of freedom in choosing thgith an explanation of our approach to code generation and
recursive computation, and uses search to tune the code todptimization and an overview of the high-level architeetof
computing platform's memory hierarchy. A similar approaclsPIRAL. Section Ill explains the theoretical core of SPIRAL
is taken in the UHFFT library [21] and in [22]. The ideathat enables optimization in code design for a large class of
of platform adaptive loop body interleaving is introduce®SP transforms: a mathematical framework to structure the
in [23] as an extension to FFTW and as an example ofagorithm domain and the language SPL to make possible
general adaptation idea for divide and conquer algorithregcient algorithm representation, generation, and matip
[24]. Another variant of computing the DFT studies adaptati tion. The mapping of algorithms into ef cient code is the
through runtime permutations versus re-addressing [28]. [subject of Section IV. Section V describes the evaluation of
Adaptive libraries for the related Walsh-Hadamard tramafo the code generated by SPIRAL—by adapting the performance
(WHT), based on similar ideas, have been developed in [2Rjetric, SPIRAL can solve various code optimization prodem
Reference [28] proposes an object-oriented library stahidet The search and learning strategies that guide the automatic
parallel signal processing to facilitate porting of botlrel feedback-loop optimization in SPIRAL are considered in-Sec
processing applications and their performance acrosdlgaraion VI. We benchmark the quality of SPIRAL's automati-
platforms. cally generated code in Section VII, showing a variety of
SPIRAL. In this paper we present SPIRAL, our researcBxperimental results. Section VIII discusses currenttitions
on automatic code generation, code optimization, andgriatf of SPIRAL and ongoing and future work. Finally, we offer
adaptation. We consider a restricted, but important, domajonclusions in Section IX.
of numerical problems, namely digital signal processirgpal
rithms, or more speci cally, linear signal transforms. 8AL
addresses the general probledaw do we enable machines to
automatically produce high quality code for a given platfist
In other words, how can the processes that human experts usie this section we provide a high-level overview of the
to produce highly optimized code be automated and possil8PIRAL code generation and optimization system. First, we

II. SPIRAL: OPTIMIZATION APPROACH TOTUNING
IMPLEMENTATIONS TO PLATFORMS

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 3

explain the high-level approach taken by SPIRAL, which as the set of implementations that SPIRAL can generate.
restates the problem of nding fast code as an optimizatiorhe degrees of freedom in translating frdmto | re ect
problem over the space of possible alternatives. Secondxwe the implementation choices that SPIRAL can consider for the
plain the architecture of SPIRAL, which implements a exbl given algorithms. Finally, the recursive structuré-gfand thus
solver for this optimization problem and which resembles tH , enables the use of various, transform independent, search
human approach for code creation and optimization. Finallgnd learning techniques that successfully produce veryl goo
we discuss how SPIRALSs architecture is general enough solutions for (1), while generating only a small subset of
solve a large number of different implementation/optirtica SPIRAL's architecture, shown in Fig. 1, is a consequence
problems for the DSP transform domain. More details a# these observations and, for the class of DSP transforms

provided in later sections. included in SPIRAL, can be viewed as a solver for the opti-
mization problem (1). To benchmark the performance of the
A. Optimization: Problem Statement transform implementations generated by SPIRAL, we compare

We restate the problem of automatically generating sofflém against the best available implementatiovisenever
ware (SW) implementations for linear digital signal proces®0ssible For example, for th®©FT, we benchmark SPIRAL
ing (DSP) transforms that are tuned to a target hardware (H#gainst theDFT codes provided by FFTW, [18], [19], and
platform as the following optimization problem. L&t be a 2dainst vendor libraries like Intel's IPP (Intel Perforroan

target platform,T, a DSP transform parameterized at leadtrimitives) and MKL (Math Kernel Library); the latter are
by its sizen, | 21 a SW implementation of , wherel is coded by human experts. However, because of SPIRALS

the set of SW implementations for the platfofnand trans- breadth, there are no readily available high quality impam
form T, andC (T,;P;1) the cost of the implementation tations for many of SPIRAL's transforms. In these cases, we

of the transformiT , on the platformP . explore differer_lt alternatives generatgd by SPIRAL itself
The implementatio® of T, that is tuned to the platforr In the following paragraphs, we brie y address the above
i i two challenges of generating the set of implementatibns
with respect to the performance cdstis CTgEs ' ' '
_ and of minimizingC. The discussion proceeds with reference
b= Pb(P)=arg in C(Tn;Psl): (1) to Fig. 1 that shows the architecture of SPIRAL as a block
diagram.
For example, we can have the following: as target platférm
a particular Intel Pentium 4 workstation; as transfofm the DSP transform (user specified)
discrete Fourier transform of size = 1024, which we will
refer to adDFT 1024, Or the discrete cosine transform of type 2
and size32, DCT -23,; as SW implementatioh a C-program
for computingT ,,; and as cost measu€e the runtime ofl on Algorithm Formula Generation controls
P. In this case, the cost depends on the chosen compiler and Level Formula Optimization
ags, thus this information has to be included Note that ot as form
with the proliferation of special vendor instruction setach AL lnguage o
as vector instructions that exceed the standard C progragimi _ £
language, the set of all implementations becomes in generdi“p'eiqeev”etla“on Implementation controls @
platform dependent, i.el, = | (P) with elementd = | (P). (SPL Compiler) Code Optimization s
To carry out the optimization in (1) and to automatically =
Igenerate the tuned SW implementat®mposes several chal- oo &
enges: v
Set of implementations | . How to characterize and ~ Evaluation Compilation performance
generate the sdt of SW implementations of T,,? Level Performance Evaluation
Minimization of C. How to automatically minimize the
costC in (1)?

In principle, the set of implementations for T, should
be unconstrained, i.e., includdl possible implementations.
Since this is unrealistic, we aim at a broad enough set gf ;1 1ne architecture of SPIRAL.

implementations. We solve both challenges of characteyizi

and minimizingC by recognizing and exploiting the specic

structure of the domain of linear DSP transforms. This struc)

ture enables us to represent algorithms Tor as formulas B- Set of Implementatioris

in a concise mathematical language called signal proagssin To characterize the set of implementatiohs we rst
language (SPL), which utilizes only a few constructs. Ferth outline the two basic steps that SPIRAL takes to go from
it is possible to generate these SPL formulas (or algorithntde high-level speci cation of the transforf, to an actual
recursivelyusing a small set afulesto obtain a large formula implementationl 2 | of T,. The two steps correspond
spaceF . These formulas, in turn, can be translated into cod® the ALGORITHM LEVEL and to the MPLEMENTATION
The SPIRAL system implements this framework and we de neeVvEL in Fig. 1. The rst derives an algorithm for the given

optimized/adapted implementation

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 4

transformT ,,, represented asfarmulaF 2 F whereF is the

often not ef cient when used for automatically generatede;o

formula or algorithm space fof ;. The second translates then particular, for large blocks of straightline code (i.eqde
formulaF into a program 2 | in a high-level programming without loops and control structures).
language such as Fortran or C, which is then compiled by anBoth blocks, AGORITHM LEVEL and IMPLEMENTATION

existing commercial compiler.

Algorithm level. In SPIRAL, an algorithm for a trans-

form T, is generated recursively usingreakdown rules

LEVEL are used to generate the elements of the implemen-
tation spacel . We now address the second challenge, the
optimization in (1).

and manipulation rules Breakdown rules are recursions for

transforms, i.e., they specify how to compute a transfoomfr

C. Minimization ofC

other transforms of the same or a different type and of thé

same or a smaller size. TheoORMULA GENERATION block

Solving the minimization (1) requires SPIRAL to evaluate

in Fig. 1 uses a database of breakdown rules to recursivéiig costC for a given implementatioh and to autonomously
expand a transforri ,,, until no further expansion is possibleexplore the implementation spat¢e Cost evaluation is ac-

to obtain a completely expanded form#a2 F . This formula
speci es one algorithm fofT ,. The FORMULA OPTIMIZA-

complished by the third level in SPIRAL, thevELUATION
LEVEL block in Fig. 1. The computed valug(T ,;P;1) is

TION block then applies manipulation rules to translate tH@en input to the BARCH/LEARNING block in the feedback
formula into a different formula that may better exploit théoop in Fig. 1, which performs the optimization.

computing platform's HW characteristics. These optiniaasg

Evaluation level. The BEVALUATION LEVEL is decomposed

at the mathematical level can be used to overcome inheréip two blocks: the ©MPILATION and FERFORMANCE
shortcomings of compiler optimizations, which are perfedn EVALUATION . The GOMPILATION block uses a standard com-
at the code level where much of the structural information Riler to produce an executable and theRRORMANCEEVAL -

lost.

UATION block evaluates the performance of this executable, for

SPIRAL expresses rules and formulas in a specigkample, the actual runtime of the implementatioon the

language—thesignal processing language (SRLyhich is
introduced and explained in detail in Section IlI; here, viséyo

given platformP. By keeping the evaluation separated from
implementation and optimization, the cost meastirean eas-

provide a brief glimpse. SPL uses a small set of construdtg be changed to make SPIRAL solve various implementation
including symbols and matrix operators. Symbols are, f@ptimization problems (see Section II-E).

example, certain patterned matrices like the identity iags

Search/Learning. We now consider the need for intelligent

of sizem. Operators are matrix operations such as matrix mulavigation in the implementation spa¢e to minimize (or

tiplication or the tensor product of matrices. For example,

the following is a breakdown rule for the transfoldCT -2,
written in SPL:

DCT -2, ! L} (DCT -2, DCT -4y)

F2 Tm)Im Im); 2
This rule expands thBCT -2 of sizen = 2m into transforms
DCT -2 and DCT -4 of half the sizem, and additional

operations (the part that is not bold-faced).
An example of a manipulation rule expressed in SPL is

Am! L™ (An Ip)LM":

n=2m:

In

We will see later that the left hand sidg A, is a paral-
lelizable construct, while the right hand side, I, is a
vectorizable construct.

Implementation level. The output of the AGORITHM
LEVEL block is an SPL formuld= 2 F, which is fed into
the second level in Fig. 1, thetPLEMENTATION LEVEL, also
called the SPL OMPILER.

The SPLCOMPILER is divided into two blocks: the M-
PLEMENTATION and QDE OPTIMIZATION blocks. The -

approximate the minimization ofC. Clearly, at both the
ALGORITHM LEVEL and the MPLEMENTATION LEVEL, there
are choices to be made. At each stage of HERMULA
GENERATION, there is freedom regarding which rule to ap-
ply. Different choices of rules lead to different formulas (
algorithms)F 2 F . Similarly, the translation of the formula
to an actual progranh 2 | implies additional choices, e.g.,
the degree of loop unrolling or code reordering. Since the
number of these choices is nite, the sets of alternatives
F and| are also nite. Hence, an exhaustive enumeration
of all implementationsl 2 | would lead to the optimal
implementation. However, this is not feasible, even for
small transform sizes, since the number of available algms
and implementations usually grows exponentially with the
transform size. For example, the current version of SPIRAL
reports that the size of the set of implementatibngor the
DCT -2¢4 exceedd:47 10'°. This motivates the feedback loop
in Fig. 1, which provides an ef cient alternative to exhaust
search and an engine to determine an approximate solution to
the minimization in (1).

The three main blocks on the left in Fig. 1, and their
underlying framework, provide the machinery to enumerate,

PLEMENTATION block translates the SPL formula into C orfor the same transform, different formulas and differenplien
Fortran code using a particular set of implementation oygtio mentations. We solve the optimization problem in (1) thitoug

such as the degree of unrolling. Next, theo@E OPTI-

an empirical exploration of the space of alternatives. This

MIZATION block performs various standard and less standaisd the task of the SARCH/LEARNING block, which, in a
optimizations at the C (or Fortran) code level, e.g., commdaedback loop, drives the algorithm generation and costrol
subexpression elimination and code reordering for logalitthe choice of algorithmic and coding implementation opgion
These optimizations are necessary as standard compikers SPIRAL uses search methods such as dynamic programming

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 5

and evolutionary search (see Section VI-A). An alternate
approach, also available in SPIRAL, uses techniques from
arti cial intelligence to learn which choice of algorithm is
best. The learning is accomplished by reformulating the- opt
mization problem (1) in terms of a Markov decision process
and reinforcement learning. Once learning is completed, th
degrees of freedom in the implementation are xed. The
implementation iglesignedvith no need for additional search
(see Section VI-B).

An important question arises: why is there is a need to
explore the formula spade at all? Traditionally, the analysis
of algorithmic cost focuses on the number of arithmetic
operations of an algorithm. Algorithms with a similar numbe
of additions and multiplications are considered to havelaim
cost. The rules in SPIRAL lead to “fast” algorithms, i.e.eth
formulasF 2 F that SPIRAL explores are essentially equal
in terms of the operation count. By “essentially equal” we
mean that for a transform of size, which typically has a
complexity of (nlog(n)), the costs of the formulas differ
only by O(n) operations and are often even equal. So the
formulas' differences in performance are in general notalte
of different arithmetic costs, but are due to differences in
locality, block sizes, and data access patterns. Since atamg
have an hierarchical memory architecture, from registers—
the fastest level—to different types of caches and memory,
different formulas will exhibit very different access time
These differences cause signi cant disparities in perfomoe
across the formulas ifF. The SEARCH/LEARNING block
searches for or learns those formulas that best match tipet tar
platforms memory architecture and other microarchitedtur
features.

D. General Comments

The following main points about SPIRAL's architecture are
worth noting.

level optimizations (©DE OPTIMIZATION block) such as
common subexpression elimination. [Mpndeterministic
optimizationsarise from choices whose effect cannot eas-
ily be statically determined. The generation and selection
of these choices is driven by theEBRCH/LEARNING
block. These optimizations are also divided into algorith-
mic choices and implementation choices.

Because of its modularity, SPIRAL can be extended in
different directions without the need for understandirig al
domains involved.

SPIRAL abstracts into its high-level mathematical frame-
work many common optimizations that are usually per-
formed at the low-level compilation step. For example, as
we will explain in Section IV-E, when platform speci c
vector instructions are available, they can be matched to
certain patterns in the formulas and, using mathematical
manipulations, a formula's structure can be improved for
mapping into vector code. Rules that favor the occurrence
of these patterns in the produced formula are then natu-
rally selected by the search engine in SPIRAL to produce
better tuned code.

SPIRAL makes use of run-time information in the opti-
mization process. In a sense, it could be said that SPIRAL
carries out pro le-driven optimization although compiler
techniques reported in the literature require pro ling to
be done only once [29], [30]. Compiler writers do not
include pro ling in a feedback loop to avoid long compi-
lation times, but for the developers of library generators
like SPIRAL the cost of installation is less of a concern
since installation must be done only once for each class
of machines.

With slight modi cations, SPIRAL can be used to au-
tomatically solve various implementation or algorithm
optimization problems for the domain of linear DSP
transforms, see Section II-E.

Next, we provide several examples to show the breadth of

SPIRAL is autonomous, optimizing at both the algoSPIRAL.

rithmic level and the implementation level. SPIRAL

incorporates domain speci ¢ expertise through both its- Applications of SPIRAL

mathematical framework for describing and generating SPIRAL's current main application is the generation of very
algorithms and implementations and through its effedast, platform-tuned implementations of linear DSP transfs
tive algorithm and implementation selection through thiar desktop or workstation computers. However, SPIRAL's

SEARCH/LEARNING block.

approach is quite versatile and the SPIRAL system can be used

The SPL language is a key element in SPIRAL: SPfor a much larger scope of signal processing implementation
expresses recursions and formulas in a mathematical fopnoblems and platforms: (1) it goes beyond trigonometric

accessible to the transform expert, while retaining all theansforms such as the DFT and the DCT, to other DSP
structural information that is needed to generate ef ciettansforms such as the wavelet transform and DSP kernels
code. Thus, SPL provides the link between the “highlike lters; (2) it goes beyond desktop computers and beyond

mathematical level of transform algorithms and the “lowC and Fortran to implementations for multiprocessor maghin

level of their code implementations.

and to generating code using vendor speci ¢ instructioke li

SPIRAL's architecture is modular: it clearly separateSSE for the Pentium family, or AltiVec for the Power PC; (3) it
algorithmic and implementation issues. In particular, thgoes beyond runtime to other performance metrics including

code optimization is decomposed as follows. bg-

accuracy and operation count. We brie y expand here on two

terministic optimizationsare always performed withoutimportant examples to illustrate SPIRAL's exibility. Mer
the need for runtime information. These optimizatiowletails are provided later in Sections V and VII.

are further divided into algorithm level optimizations Special instructions and parallel platforms.Most modern
(FORMULA OPTIMIZATION block) such as formula ma- platforms feature special instructions, such as vectdrunos
nipulations for vector code, and into implementatiotions, which offer a large potential speedup. Compilers are

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 6

restricted to code level transformations and cannot take fu We divide the framework into the following parts: trans-
advantage of these instructions, except for simple numleridorms, the language SPL, breakdown and manipulation rules,
algorithms. SPIRAL automatically generates code that usasd ruletrees and formulas. Finally, we explain how the
these special instructions. This is achieved in three stefimmework is implemented in the dRMULA GENERATION

1) by identifying structures in SPL formulas that can band FORMULA OPTIMIZATION blocks in Fig. 1.

naturally mapped into code using these special instrustion

2) by identifying SPL manipulation rules whose applicatiod. Transforms

produces these structures; these rules are included ieto thgp|RAL generates fast implementations for linear discrete
FORMULA OPTIMIZATION block in Fig. 1; and 3) by ex- gignal processing (DSP) transforms. Although in the DSP
tending the MPLEMENTATION block in Fig. 1 to produce jierature transforms are usually presented in the form of

code that uses those special instructions. We providelsletai;mmations, we express them equivalently as a matrix-vecto
for vector instructions in Section IV-E. We also have re”“’“'tmultiplication y = Mx. In this equation,x andy are

demonstrating that the same approach can be used to gengg{gectively, the input and the outpudimensional vectors (or
code for SMP platforms (see Section IV-F). signals) that collect the signal samples, anlll is then n

~ Expanding SPIRAL: new transforms and rules. SPIRAL transform matrix. Usually, the transfor exists for every
is easily expanded with new transforms and/or new rulggyyt sizen. An example is the discrete Fourier transform

by including them in the rule database of th@HMULA (DET), which is de ned, for input sizen, by then n DFT
GENERATION block. This is achieved without affecting themqatrix

remaining components of SPIRAL, provided that the new rules o vien . P
can be expressed using the SPL constructs currently alailab DFT n =[!nJo kn ; 'n=€ °7" ;i=" 1 (3)

in SPIRAL. If this is not the case, SPL can be extendqﬂ SPIRAL, a transform is a parameterized class of matrices.

to include new constructs. Once this is accomplished, trl}eis represented symbolically by a mnemonic name such
entire functionality of SPIRAL, including the code genérat as ‘DFT” and by a list of parameters, such as the size
the SEARCHLEARNING block, and the automatic tuning ofB ’

. : . . . specifying the parameter(s), we obtain an instance of a
implementations becomes immediately available to the nq}énsform which we will also refer to as a transform. An
transform or rule. ! y

L . . example isDFT g. Transforms are written using bold-faced
Other applications. There are various other |mpIementaType. Transform matrices, as well as the input and output
tion/algorithm optimization problems that can be addrdss@ectors can be real or complex valued.

by the. SPIRAL system. Examp!eg includg the genergtion OfAt the time of this writing, SPIRAL contains 36 transforms
numerically accurate code, multiplierless implementadjoor (some of which are variants of each other).
algorithms with minimal operation counts. We will briey = qijgonometric transforms. We provide some important
discuss these extensions in Section V. . examples of DSP transforms for which SPIRAL can generate
In summary, the discussion in this overview outlined hoyneq code. We rst consider the class of trigonometric gran
SPIRAL integrates algorithmic knowledge with code mappingyms that, besides thBFT in (3), includes the following
and feedback optimization, and pointed out the capalsitie ansforms: all the 16 types of discrete cosine and sine
the resulting system. The SPIRAL system can be adaptedtgnsiorms (DCTs an®STs), of which the most commonly
new platforms, extended with new linear transforms and thgjgeq (e.g., in the JPEG and MPEG multimedia standards)
algorithms, and extended with new performance measurgss theDCTs of types 2, 3, and 4; the inverse modulated
Extensions of the system, once completed, apply to theeentcT (IMDCT), which is used in MPEG audio compression
collection of DSP transforms and kernels as well as to the fuk;nqards and is a rectangular transform; theD&al (RDFT)
set of problems included in its current domain rather that jup, 4 computes th®FT on a real input data set; the Walsh-

a single transform or a single problem type. Hadamard transform\WHT); and the discrete Hartley trans-
Now we begin the detailed description of SPIRAL. form (DHT). Some of these transforms are de ned as follows.
DCT -2, = cosk@ D o 4
IIl. SPIRAL'S MATHEMATICAL FRAMEWORK AND " i” 0 ki'<n “)
FORMULA GENERATION DCT -3, = DCT -2, (transpose) %)
. .)) _ (2k+1)(2 "+1))
This section details SPIRAL's mathematical framework to DCT -4n = cos n 0 ki'<n (6)

represent and generate fast algorithms for linear digitplad IMDCT , = cos o reamo (@
processing (DSP) transforms. The framework is declarative) m;0 “<n
nature, i.e., the knowledge about transforms and algosthm RDFT [relo < (®)
is represented in the form of equations and rules. The frame- _ cos%; k b 3c,

work enables the following: 1) The automatic generation of Me = sin2k . k> b%c'
transform algorithms; 2) the concise symbolic representat WHT nWHT

of transform algorithms aformulasin the language SPL that WHT ,, = WHT n=2 WHT n=2 . 9)
we introduce; 3) the structural optimization of algorithins n=2 n=2

their formula representation; and 4) the automated mapping WHT 2 = DFT 2;

into various code types, which is the subject of Section IV. DHT & +sin & oen - (10)

(2k+1)(2 "+1+ n)
T

Ccos

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 7

Note that the Walsh-Hadamard transform in (9) is de nefi = f, = per, is

recursively. 2 ol
Besides these trigonometric transforms, SPIRAL includes EbPer =4 1, 5
other transforms and DSP kernels. In fact, in SPIRAL, any Ih | O

linear operation on nite discrete sequences, i.e., mategtor

multiplication, qualies as a transform. In particular,igh _ o
includes linear lters and lter banks. Discrete wavelet transform. Many applications, such as

JPEG2000 [32], make use of a 2-channel DWT, which is usu-

Filters. We recall that a lIter in DSP computes the conyly de ned as the recursive bank of Iters and downsamplers
volution of two sequences: one is the signal being lteredown in Fig. 2.

the input signal; the other is the sequence that charaeteriz)) i
the lter, its impulse response. As important examples, we 1he lters in the lter bank are linear, and hence is the
consider nite impulse response (FIR) lters and the digere PWT. In matrix form, the DWT is given by

wavelet transforms (DWTS).

wherel, denotes then n identity matrix.

DWT [(h[z]; glz]) 5
Although we can represent FIR Iters and the DWT as cotf, Qno1pook
; .) (#n), Filt k=0 h[z7']
matrices, it is more convenient, and more common, to de ne n o))
them iteratively or recursively, as was the case with the (#n=2),, Filt L‘ Troglz2" 1 Ezoz h[z?]
WHT above. We start with the basic building block, the FIR

lter transform. The Iter's output is the convolution of s - _ » (19)
impulse response and an in nite support input signal. The (#8), Filt /"' g[z*] h[z?] h[z]

Iter impulse response can be viewed as the column vector (#4), Filt fife gz2] hz]

h=[h;:::;hg;:ii;h (J7 of lengthl + r +1, or as thez- (#2), Filt T (g[z])

transform polynomiahiz] (e.g., [31]). where (#Kk),, is then=k n matrix that selects everith

element from its input, starting with the rst. The ma-
h[z] = he z ¥ trix form (13) is obtained from Fig. 2 by observing that
k= 1 Filt no (NZ]) (#K), 4 s e = (#K), Filt , h[z¥] . (Note
The output of the FIR Iter forn output points is computed that when stacking Iters as in (13), the de ning polynonsal
by multiplying the relevant (i.e., contributing to thesetmuts) may need to be zero extended to equalize the sizes of the
nite subvector of lengtm + | + r of x by the FIR transform blocks.)
matrix Filt ,, (h[z]) given by

2h h,

. hI h r
Filt o (h[z]) = . . SNCEN
h h . B. SPL: Signal Processing Language

3

In practice, signals are of nite duration. To account
for boundary effects and to enable ltering, i.e., multiply ~ The signi cance in digital signal processing (DSP) of the
with (11), these signals are thus extended to the left (up) aansforms introduced in Section Ill-A arises from the exis
to the right (below) to have length+ | + r. Linear extensions tence offast algorithmsto compute them. The term “fast”
can be also interpreted as matrix-vector multiplicatiorighw reéfers to the number of operations required to compute the
an(n+1+r) n matrix EL_I:_frr , wheref, andf, specify the left transform: fast algorithms for transforms of simetypically
and the right signal extension type, anandr are the number reduce the number of operations fro®(n?) (as required
of left and right extension points. Examples of extensiquety PY direct evaluation) taO(n log(n)). Furthermore, these al-
include: periodic ger), whole-point and half-point symmetric 90rithms are highly structured. To exploit the structure of
or antisymmetric s/hs/wa/hl and zero-paddingzérg. For the DSP transforms, SPIRAL represents these algorithms
example, in ger extension, the signal is extended bgoints N & specially designed language—SPL (signal processing
to the left and byr points to the right, by assuming that thdanguage)—which is described in this section. For example,
signal is periodically repeated beyond its fundamentaioper @n important element in SPL is the tensor or Kronecker
which is given by the actual available data. After extendingroduct, whose importance for describing and manipulating
the signal, we can de ne thextendedFIR lter transform as DFT algorithms was already demonstrated in [33], [34]. Afte

the composition of both the FIR Iter transform (11) and thdntroducing SPL, we develop the framework to efciently
extension transform: generate and manipulate algorithms for DSP transforms in
ff ¢ Sections I1I-C and I1I-D.
Filt /" (h[z]) = Filt , (h[z]) E..},"; (12)

n;lir 1

We start with a motivating example. Consider the discrete
where the parametersandr are implicitly given byh[z]. For cosine transform (DCT) of type 2 de ned in (4) and given by
example, the m<';1tri>E‘;';|';frr for periodic signal extension, i.e.,the following4 4 matrix, which is then factored into a product

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 8

— @) = #2 =— ()

=1 h(z) | #2 — il

=1 h(z) | #2 — 9(2) |~ #2 —(y1)

(%) — 9@ b #2—=— (yoni !

— 92 | #2 =— (Vs

Fig. 2. Filter bank interpretation of the DWT.

of three sparse matrices. We use the notatipr cosk =8. bers a, can be real or complex and can be represented
2 101 1 13 in a variety of ways. Examples include rational, oating

6, C G © point, special constants, anhtrinsic functions, such as
DCT -2 = C: CZ o CZé 1;3=2;1:23,1:23e-04; , sqr(2), andsin(3 = 2).
Symbols. Frequently occurring classes of matrices are rep-
C3 C7 C32 Cs . i
2 32 3 resented by parameterizegmbols Examples include the n
1 000 1 1 O 10 0 1 . : o
00 1 c 0 01 1 identity matrix I, ; the matrixJ, obtained from the identity
= g gg 2 G ég é matrix by reversing the columns (or rows); tihhe n zero
0 10 0 0 a 1o 0 1 matrix Oy ; the twiddle matrix
0001 0 0 cec 01 1 0 n
(14) =diag(! 091 VO,
The right hand side of equation (14) decomposes the matrix 101,00y (kK DL,
DCT -2, into a product of three sparse matrices. This fac- L ’
torization reduces the cost for computing the transforne (th 0 (n=k 1) ,,,,, | (k 1) (n=k 1))

matrix-vector product) from 12 additions and 12 multiptica
tions to 8 additions and 6 multiplications. To avoid a poksib the stride permutationmatrix Ly, which reads the input at
confusion, we emphasize again that this cost does not restidek and stores it at stride 1, de ned by its corresponding
to multiplying the three sparse matrices together, but # tipermutation:

computation of the matrix-vector produgt= DCT -24X in N S N - L

three steps (corresponding to the three sparse matrices), a k- i(n=k)+j 7k +i 0 i<k 0 j<n=k;
it is in this sense that (14) is considered as an algoritihe 2 2 rotation matrix (with angle)
for DCT -24. Equation (14) shows further that, besides their

sparseness, the matrix factors are highly structuredtifglizny R = cos sin :

this structure and then making use of it is a key concept in sih cos

SPIRAL and provides the motivation for SPL. and thebutter y matrix, which is equal to the2 2 DFT
SPL is a language suitable to express products of structufgatrix, but not considered a transform (i.e., it is termjinal

sparse matrices using a small set of constructs and symbols. 1 1

However, as we will see, this set is suf cient to represent a Fa= 1 1

large class of different transform algorithms. Table | pdes
a grammar for SPL in Backus-Naur form (BNF) [35] as the Transforms. SPL expresses transforms as introduced in
disjoint union of different choices of rules (separated by Section IlI-A. Examples includeDFT ,, DCT -2,, and
vertical line §”) to generate valid SPL expressions. Symbol6ilt , (h[z]). In our framework, transforms are fundamentally
marked byhi are non-terminaj hspli is the initial non- different from the symbols introduced above (as emphasized
terminal, and all the other symbols ae¥rminals We call the by bold-facing transforms), which will be explained in Sec-
elements of SPormulas The meaning of the SPL constructgions [lI-C and 1lI-D. In particular, only those formulaséth
is explained next. do not contain transforms can be translated into code. Both,
Generic matrices. SPL provides constructs to represenhe set of transforms and the set of symbols available in SPL
generic matrices, generic permutation matrices, and genei'e user extensible.
sparse matrices. Since most matrices occurring withinstran Matrix constructs. SPL constructs can be used to form
form algorithms have additional structure, these consdrusstructured matrices from a set of given SPL matrices. Exam-
are rarely used except diagonal matrices. These are writf@as include the product of matricésB (sometimes written
asdiag(ag;:::;an 1), where the argument list contains theasA B), the sum of matriced + B, and the direct sum and
diagonal entries of the matrix. Scalars, such as the nuthe tensor or Kronecker product of two matricesA andB,

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 9

TABLE |
DEFINITION OF THE MOST IMPORTANTSPL CONSTRUCTS INBACKUS-NAUR FORM; N; K ARE POSITIVE INTEGERS ;& j REAL NUMBERS.

hspli ::= bhgeneri¢ | hsymbol j htransformi |
hepli hspli j (product)
hepli ::: h spiij (direct sum)
hspli h spij (tensor product)
In kheplij In Khspij (overlapped tensor product)
hspli | (conversion to real)
hgeneric = diag(ap;:::;an 1)) it
bsymbol = 1, jJyjLg jR jFaj::
hransform := DFT , j WHT , jDCT -2, j Filt , (h[z]) | :::
de ned, respectively, by DCT, type 2, size.AVe return to thédCT -2, factorization
A in (14). In SPL, it takes the concise form
A B= B ; and

DCT -2, =L 3(DCT -2, DCT -4,)
(F2 12)(02 J2): (16)

The stride permutation.3 is the left matrix in the sparse
factorization of (14) while the direct sum of the twaCT s

A B =[a;B]; whereA =[a]:

Two extensions to the tensor product in SPIRAL are riwe
and thecolumn overlapped tensor produdte ned by

3 in (16) is the middle matrix in (14). The last factor in (14) is
split into the last two factors in (16).

_ _ DownsamplingThe downsampling-by-2 operator used, e.g.,

In KA ' in the DWT transform (13) is given by

(15) (#2)y = ln= Opea L3
2 3
A Transform de nitionsUsing SPL, we can de ne some of the
) A previously introduced transforms more concisely. Example
In *A = : include the Walsh-Hadamard transform in (9) and the lter
transform in (11), which become

Above, | overlaps the block matrice’ by k columns, while WHT 2 = Fa it Fa o (k-fold), (17)
below, ¥ overlaps the block matrice8 by k rows. Note Filt n(h[z]) = In e[k ho h]: (18)
that the left operand in and ¥ has to be the identity
matrix. SPIRAL also uses a similarly de nedw andcolumn
overlapped direct sum , and K, respectively.

Multidimensional transformdf T, is a transform, then its
m-dimensional counterpam D-T ,, n, forann;
ol Ny, input array, arranged lexicographically into a vectorhis t
Conversion to real data format (). Complex trans- m-fold tensor product
forms are usually implemented using real arithmetic. Masio
data formats are possible when converting complex into real MD-Tn, 0y = Toy 220 T (19)

arithmetic, the most popular being probably tinterleaved For example,2D-DFT n, n, = DFT ,, DFT ,, is the

Complex formatin which a CompleX vector is representEd wao-dimensiona|DFT on anng n, input array arranged
alternating real and imaginary parts of the entries. To@s®r into a vector in row-major order.

this conversion in the mathematical framework of SPIRAL, we
rst observe that the complex multiplicatiofu + iv)(y + iz)

is equivalent to the real multiplicatioft’ ,Y1[%]. Thus, the C. Rules
complex matrix-vector multiplicatioéMx 2 C" corresponds
to Mx°2 R?", whereM arises fromM by replacing every

. : . 0
entryu + IIV by the corrlespfondlng ﬁ matrix abO\I/e, anc present the framework to capture and generate these >
is in interleaved complex format. Thus, to translate comple,qing ryles As we mentioned in Section I, SPIRAL has

formulas into real formulas in the interleaved format, SPYy, yyhes of rules, breakdown rules and manipulation rules,
introduces the new operat¢n) : M 7! M, whereM is any \ nich have different purposes. Breakdown rules are used by
SPL formula. Other formats can be handled similarly. the FORMULA GENERATION block (see Fig. 1) to generate

Examples. We now illustrate SPL using several simplalgorithms, represented as SPL formulas. Manipulatioasrul
examples. The full relevance of SPL will become clear in there used by the BRMULA OPTIMIZATION block to optimize
next section. algorithms. We discuss both types in detail below.

m -

We have indicated before that the language SPL was in-
oduced to represent transform algorithms. In this sactie

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 10

Breakdown rules. A breakdown rule is a decomposition ofto (32) are not only compact but also clearly exhibit the
a transform into a product of structured sparse matrices tistructure of the rules. Although these rules are very diffier
may contain other, usually smaller, transforms. We showéwm each other, they only include the few constructs in SPL,
earlier an example for th®CT -2, in (16). Formally, a which makes it possible to translate the algorithms geadrat
breakdown rule is an equation of matrices, in which the leftom these rules into code (see Section IV). As a nal note,
hand side is a transform and the right hand side is an SRie mention that SPIRAL's database includes over one hundred
formula. We use ¥ ” instead of ‘=" to emphasize that it is a breakdown rules.
rule. A small subset of the rules for trigonometric transfsr \anipulation rules. A manipulation rule is a matrix equa-
available in SPIRALS rule database, are listed here. tion in which both sides are SPL formulas, neither of which

Breakdown rules: trigonometric transform$he rules are contains any transforms. These rules are used to manipulate
shown in Table Il. Rule (20) is the Cooley-Tukey FFT rulethe structure of an SPL formula that has been fully expanded

Rule (21) is the prime-factor FFT from Good-Thomd%;, using breakdown rules. Examples involving the tensor produ
Qn are permutations (see [34], [36] for details). Rule (22) igclude

Rader's FFT algorithm (see [36]) and is used for prime sizes;
R, is a permutation anB, is the direct sum of & 2 matrix Am Bol (Am 1n)(Im Bn) (34)
and a diagonal. Rule (23) was recently derived [37]. Noté thé8, Ap)! L™ (An Bn)L™ ! (An Bp)'™ (35)

transposition of this rule yields a rule f&@CT -2,. Finally, L) .))
(26) is an iterative rule for th&VHT . where(A;n, Bp) ™ is the notation formatrix conjugation

de ned in this case by the middle term of equation (35).
Rule (34) is referred to as the multiplicative property oé th

transforms. . ‘
Breakd les: Iter t f d DWTEilter bank tensor product. These are some of the manipulation rules
reakdown rules. lter transiorm an -HIer Danks - available for the tensor product see [41].

can be represented by matrices of lters, [38]. For example, ; .)) .
for two FIR lters given by h[z] and g[z], one stage of a Manipulation rules for the stride permutation [33] include

Next, we consider rules for the Iter and the discrete watel

corresponding lter bank is given by the transform the following
Ei hzl _ Fita(iz) (WD I B Y (36)
" gz T Filt y(glz]) Lkmno kmnooy o kmnog kg knn (37)
This will be used in the breakdown rules for Iter trans- S N (W PO TP (38)
forms and for the discrete wavelet transfoWT shown L™ b (e LpMMLE™ Tm) (39)

in Table Ill. Rule (28) is the overlap-save convolution rule o
[31]. Rule (29) arises from the convolution theorem of the We introduced in Subsection 11I-B the operato) that
DFT [31]. Elements of the diagonal matrix are ti¥FT Wwe used to translate complex formulas into real formulas in
coef cients of i wherefi[z] = h[z] mod (z" 1). Rule (30) the complex interleaved format. Manipulation rules forsthi
represents Mallat's algorithm for computation of the DWTonstruct include

(e.g., [39]) and could also be used to de ne the DWT. ~ .

Rule (31) is similar to (30) but the downsampling operator Al A 1z forAreal

is fused into the Iter matrix to save half of the number of AB! AB
operations. Rule (32) is the polyphase decomposition fer th A B! A B
DWT [39] and required;f, 2 f per;zerog. There are many I Al I, A

other breakdown rules for the DWT included in SPIRAL, most
notably thelifting rule that decomposes polyphase lter banks

into lifting steps [40]. A different data format for complex transforms leads to a
Terminal breakdown rulesFinally, we also use rules to different operator) and to different manipulation rules.

terminate base cases, which usually means transformsef sizgp|RaL uses currently about 20 manipulation rules; this

2. The right hand side of erminal ruledoes not contain any ., mber will increase as SPIRAL evolves.

transform. Examples include for the trigonometric transf®

A Tn! (In LZYA I1n)(, L2

DFT 2 ! Fg;
DCT -2, ! diag(1;1= 2)F,; (33)
DCT -4, ! J2Riz=3g; D. Ruletrees and Formulas
and for the DWT)))
- hy ho h o o Rulet.rees.Recurswer applying rules to a given transform
DWT ;" (h[z]; o[z]) ! 9 % 9. Eo to obtain a fully expanded formula leads conceptually to a

tree, which in SPIRAL we call auletree Each node of the
The above breakdown rules, with the exception of (23), ateee contains the transform and the rule applied at this .node
well known in the literature; but they are usually expressells a simple example, consider ti¥CT -24, expanded rst
using elaborate expressions involving summations and wak in (16) and then completely expanded using the base case
complicated index manipulations. In contrast, equatid® (rules (33). The corresponding tree (with the rules omitised)

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 11

TABLE Il
SOME RULES FOR TRIGONOMETRIC TRANSFORMS

DFT , ! (DFTy In)TN(x DFT n)LE; n=km (20)
DFT , ! Po(DFT x DFT »)Qn; n=km; gedk;m)=1 (21)
DFT , ! R}(l1 DFT, 1)Dp(ls DFT , 1)Ry; pprime (22)
|
DCT -3, ! (Im Jm)LD(DCT -3,(1=4) DCT -3,3=4)(F2 Im) :ia ng L n=2m (23)
5 1 m)
DCT -4, ! S,DCT -2, diagy e 1=(2cos@S) (24)
IMDCT 2m ! @m Im Im JIm) i I'm i lm Jom DCT -4om (25)
Yt
WHT x« ! (|2k1+ k. WHT oki |2ki+1+ +k1); k=ky+ + k¢ (26)
i=1
TABLE Il
SOME RULES FOR FILTERS AND THEDWT.
Filt n (h[z]) ! Is 14+ Filt g (h[Z]); h[z] = hez (28)
r k|
Filt P"Pe(h[z]) | DFT ,Ydiagy <, (&) DFT n; (a0;:::;an 1)T = DFT A (29)
. : g h

DWT ' (hizliglZ) | OWT I (hizhiolz) hnee (#2),FiR G T (30)
DWT [(hizliglz) | DWT [(hizkglz) 1o |72 0 2N PO BoediEnte @)

n n=2 =2 1+r 1[G G g] M 1

fiifr . | fiifr . AT i g hever{z] hodd[Z] n

DWT "' (h[z];0[z]) ! DWT U5 (h[z];g[z]) In=2 Filt Goverlz] GoadlZ L5 (32)

given by in a different form. The information about the intermediate
DCT -2, expansions of the transform is lost in the formula, but the
H formula captures the structure and the data ow of the compu-
H H tation, and hence can be mapped into code. As an example,
DCT -2, DCT -4, the completely expanded formula corresponding to (14)), (16

(40)

and (40) is given by

We always assume that a ruletree is fully expanded. A rdetre p_
clearly shows which rules are used to expand the transformDCT -24 = L 3(diag(1;1= 2)F, J>Ri3-3)
and, thus, uniquely de nes an algorithm to compute the (Fa 15)(2

\]2)1
transform. We will show in Section IlI-B that, by labeling]])
speci ¢ components of the trees witags the ruletree also The formula in (16) cannot be translated into code in SPIRAL

xes degrees of freedom for the resulting implementatiorp.ecause it is not fully expanded: its right hand side cogtﬁie
Ruletrees are a convenient representation of the SPL fagndfansformsDCT -2; andDCT -4,, which arenon-terminals.
they represent: they keep the relevant information fortorga !N contrast, (41) is a fully expanded formula since it expess
the formula, they are storage ef cient, and they can be manifCT -2 exclusively in terms of terminal SPL constructs. A
ulated easily, e.g., by changing the expansion of a subMiée. ully expanded formula can be translated into code.

these issues, particularly the last one, are very impofftant ~ The above rule framework de nes a formal language that is
our search methods (see Section VI-A), since they requée t subset of SPL. The non-terminal symbols are the transforms
ef cient generation of many ruletrees for the same transfor the rules are the breakdown rules available in SPIRAL, and
We also use the ruletree representation for de ning “fezglir the generated language consists of those formulas thaastre f
of a formula to enable learning methods, see Section VI-Blgorithms for the transforms.

However, when translating a formula into code, it is necgssa Alternatively, we can regard this framework as a term
to convert the ruletree into an explicit SPL formula. rewriting system [42]. The terms are the formulas, the vari-
Formulas. Expanding a ruletree by recursively applyingbles are the transform sizes (or, more general, the tnansfo
the specied rules top-down, yields eompletely expanded parameters), the constants all other SPL constructs, and th
(SPL) formula or simply aformula Both the ruletree and the rules the breakdown rules. The transform algorithms arsetho
formula specify the same fast algorithm for the transforat, bformulas in normal form. If we consider only rules that

(41)

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 12

decompose a transform into smaller transforms such as (20)es and formulas (see Section V-B); 2) GAP can be easily
or that terminate transforms such as (33), then it is easydrtended; and 3) GAP is easy to interface with other programs
prove that formula generation terminates for a given trammsf and the GAP kernel can be modi ed when necessary since the
However, the existence of translation rules such as (24) miayl source code is available.

introduce in nite loops. In practice, we make sure that wé/on

include translation rules that translate transforms ofhéig IV. FROM SPL FORMULAS To CODE

complexity into transforms of lower complexity to ensure |, this section, we discuss the second level in SPIRAL, the

termination. Obviously, the rewriting system is not connte- PLEMENTATION LEVEL (see Fig. 1), which comprises the

. . . . M
and it is not meant to be—since the purpose is to combine 4@90 blocks MPLEMENTATION and CODE OPTIMIZATION. We

various rules to generate many different algorithms forheagq, refer to this level as the SPIOBIPILER, since its purpose
transform. is to translate SPL formulas into code. By generating code fo

Formula spaceF . In general, there are few rules (say lesg o y1a A, we mean generating code for the matrix vector
than 10) per transform, but the choices during the recurs'?{ﬁjltiplicationy = Ax, wherex andy are input and output
expansion lead to a large number of different formulas. §he§ectors of suitable size

choices arise from the choice of rule in each step, but also,Up to this point, the motivation to consider the formula

in some cases, from different instantiations of one rulg.(€. o hresentation of transforms has been purely mathematical
rule (20) has a degree of freedom in factoring the ransforgh| g 4 natural representation of algorithms from the algo-
size). When a formula is recursively generated, these c80i¢g, s expert's point of view, and SPL enables the genematio
lead to a combinatorial explosion and, in most cases, 10 gfiyany alternative formulas for the same transform. Howeve
exponentially growing number of formulas for a given ransyq \ye Will see in this section, SPL's ruletrees and formulas

form. The different formulas for one transform all have $imi ;¢ retain the necessary information to translate forsninie

arithmetic cost (humber of additions and muItl.pllcat|oeq)JaI ef cient code, including vector and parallel code. Furthere,

“ofr cIf)seI to thbe bg_sﬁt kqovxén (due to ;hi (_:hOlce ?f good XpL facilitates the manipulation of algorithms using rules
ast” rules), but di erin aFa ow, which in turn leads to 3(see Section IlI-C). This manipulation enables SPIRAL to
usually large spread in runtime. Finding the best formula 5ptimize the data ow patterns of algorithms at the high,

the challenge. mathematical level. Current compilers strive to acconmplis

The set of alternative formulas that can be generated Qyo, ontimizations on the code level but, in the domain
recursive application of applicable rules constitute taeaf ¢ transforms, very often fail or optimize only to a rather

formulasF . Even though this set is very large, its recursivgy,saq degree. In Section VII, we will show experimentsttha
structure allows search methods such as dynamic progra@’nm(ifémonstrate this problem.

and evolutionary search, see Section VI-A, to operate quite|, he following, we rst slightly extend the language SPL

ef ciently. as introduced in Section I1I-B through the notion of tagst tha
X implementation choices when SPL is translated into code.
E. Formula Generation Then, we introduce a major concept in SPL—tigenplate
mechanism, which de nes the code generation. Finally, we
Se%plain standard (scalar) code generation, and, with letss|d

clear road map on how to implement th@®®vULA GEN- : ! .
. . ector code generation and the rst experiences in SPIRAL
ERATION block in SPIRAL (see Fig. 1). The block need%/vith prarallel godergelneration rst exper s

three databases to generate the formula space: one de nes
the transforms and the other two de ne the breakdown and
manipulation rules, respectively. Information about sfanms A. SPL and Templates
includes their de nition (for verication of formulas and As introduced in Section 1lI-B, Table I, SPL describes
code), type and scope of parameters (at least the size), @aghsform algorithms as formulas in a concise mathematical
how to formally transpose them. Information provided fonotation.
rules includes their applicability (i.e., for which trapngf Implementation choices: tagsBesides formula constructs,
and parameters), children, and the actual rule. Ruletreds &PL supportgagsin ruletrees and the corresponding formu-
formulas are both implemented as recursive data types. & mdais. The purpose of these tags is to control implementation
detailed description can be found in [43], [44]. choices, i.e., to instruct the compiler to choose a specic
We used the GAP 3 [45] computer algebra system tmde generation option, thus xing the degrees of freedom
implement the high-level components of SPIRAL includingn the compiler. In the current version of SPIRAL, the most
the FORMULA GENERATION, the FORMULA OPTIMIZATION, important implementation choice considered is the degfee o
the SEARCH and the user interface. GAP was chosen for thenrolling, which can be controlled eithgtobally or locally.
following reasons: 1) GAP provides data types and functiofi$ie global unrolling strategy is determined by an integer
for symbolic computation, including exact arithmetic fa-r threshold that speci es the smallest size of (the matrixeor
tional numbers, square roots of rational numbers, roots gfonding to) a subformula to be translated into loop codes Th
unity, and cosine and sines of angtes wherer is a rational threshold may be overridden by local tags in the formula that
number. These are suf cient to represent most transfornds aallow a ner control. Experiments have shown that a global
rules, andexact arithmetic can be used to formally verifysetting is suf cient in most cases [44]. Tags will most likel

The framework presented in the previous section provide

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 13

become even more relevant in future versions of SPIRAL when SPL formula
more implementation strategies with indeterminate outcom ‘
are included.
Templates. The translation of SPL formulas to code is Intermediate Code Generation ~ —ffmmm Templates
de ned throughtemplates A template consists of a param- Loop Unrolling/Inlining

eterized formula construcA, a set of conditions on the

. Precomputing Intrinsics
formula parameters, and a C-like code fragment. Table IV

shows templates for several SPL symbols, the stride permuta Optimization
tionL"" , theJ, matrix, the butter y matrixF,, and a generic Target Code Generation
diagonal matrixD . Table V shows templates for several matrix ;
constructs.

Templates serve four main purposes in SPIRAL: 1) they Target code

specify how to translate formulas into code; 2) they are a _
tool for experimenting with different ways of mapping d '3 The SPL compiler.
formula into code; 3) they enable the extension of SPL with
Z:jgdc:?itor?rilscgpsttrgrf;otrrr]:; r::s%/ :/):t ?ﬁSI?JZiéoir?ngelsl‘?sArl]_?m;r?t g table references are expanded back into constantse if th
I . . ' i I h lei f th .
4) they facilitate extending the SPL compiler to general eOp 's not unrolled, the table is part of the generated code

ial code t h de with vector instructi Loop unrolling. Loops marked for unrolling are fully
Z%?:(t:i(?n (K)/_Ee) ypes such as code ectorinstructiors (%enrolled; currently, the SPL compiler does not supportiphrt

. . .. unrolling. A reasonably large degree of unrolling is usyall
Each template is written as a separate function impl 9 y arg 9 g ¥

e- . . . L.
. . o very bene cial, as it creates many opportunities for opaaai
menting a parameterized SPL construct with its own sco y y opp P

)) . BGns. As a simple exam le, consider the rotation matrix
for variables. However, when incorporated into the gemerat P P

code, the variables local to different templates are givéque R_.= Cos(=8) sin(=8) .
names to disambiguate them and to incorporate them into one =8 sin(=8) cos(=8) -

common name space. The template code is specialized d}ce there is no special template for a rotation, the canpil
substituting all of the template parameters (esze andstr generates a regular matrix multiplication block with twestea!
in Lg~) by their respective values. loops, and a separate data tablatO to contain the elements

Although the template specialization step is similar tg¢ the matrix. This code and the resulting unrolled code is
the partial evaluation described in [46], it does not reguitsnown below.

complicated binding-time analysis, because the only obntr loop code:

ow statements in the code generated from formulas are ¢, (o = o; io < 2; io++) {

loops with known bounds. This is because currently, SPIRAL ylio] = 0;

does not generate code for parameterized transforms, but on o]%1 = rg;tgl[i; 2*;2[}&;’) { (i
for instantiations. Transform size and other parametees ar yli0] = y[i0] + fO; '
already xed in the formula generation process. This makes t

specialization of the initial code generated from the folanu }

straightforward. unrolled code:
y[0] = 0O;
f0 = 0.9238795325112867 * x[0];
B. Standard Code Generation y[0] = y[0] + fO;
_ _ _ f0 = 0.3826834323650898 * X[1];
The SPL compiler translates a given SPL program describ- y[0] = y[0] + f0;
ing a formula into C (or Fortran) code. This translation is Y] = 0
. . C f0 = (-0.3826834323650898) « x[0];
carried out in several stages shown in Fig. 3. yii] = y[1] + fo;

Intermediate Code Generation. The rst stage of the f0 = 0.9238795325112867 = X[1];
compiler traverses the SPL expression tree top-down, +ecur Y11 = y[il + f0;
sively matches subtrees with templates, and generates CAs this example shows, full unrolling enables constanteabl
like intermediate code from the corresponding template bgferences to be inlined and additional optimizations to be
specializing the template parameters with the values édhi performed. In this case all additions of zero can be elingidat
from the formula. Precomputation of intrinsics. Besides constants, the code

Next, based on the local unrolling tags and the globatay call prede ned transcendental functions suclsiag) to
unrolling threshold, the compiler identi es loops that sht represent scalars. These functions are calfathsic, because
be unrolled and marks them accordingly in the intermediatke compiler has special support for handling them.
representation. When the compiler encounters an intrinsic function, the

Constructs like tliag” or other generic matrices allow listsfunction call is not inserted in the target code. Insteadl, al
of constant scalar values as arguments. Constants are sg@ssible arguments to the function are computed by the
in constant tablegnatN , to enable looping. These tables areompiler. This is possible since all loop bounds are known
used in the subsequent compiler stages. If the loop is wakollat compile time. The compiler will then replace the original

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

TABLE IV

EXAMPLES OF TEMPLATES FORSPLCONSTRUCTS SYMBOLS.

14

LW, [size 17 str 17 size mod str = 0] Jsize [size 1]
blk = size / str blk = size / str
do i0 = O..str-1 do i0 = O..str-1
do i1 = 0..blk-1 do il = 0..blk-1
ylil + i0 =blk] = x[i0 *str + i1] ylil +i0 =+blk] = x[i0 *str + i1]
end end
end end
F2 diag(D)
y[0] = x[0] + x[1] do i0 = 0..Length(D)-1
y[1] = x[0] - x[1] yli0] = D[i0] * X[i0]
end
TABLE V
EXAMPLES OF TEMPLATES FORSPLCONSTRUCTS MATRIX CONSTRUCTS
A B In A
deftemp t Rows(B) do i0 = 0..n-1
call B(t, x) call A(subvec(y, i0 * Rows(A),
call Ay, t) (i0+1) *Rows(A)-1),
subvec(x, i0 *Cols(A),
(i0+1) =*Cols(A)-1));

end

A B Commonly used key words:

call A(subvec(y, 0, Rows(A)-1),
subvec(x, 0, Cols(A)-1))
call B(subvec(y, Rows(A),
Rows(A)+Rows(B)-1),
subvec(x, Cols(A),
Cols(A)+Cols(B)-1))

call A(y,x) : inserts code for block A with input and outputy
subvec(v, start, end) : returns a subvector of

deftemp v N : de nes a new temporary vectar of N elements
Rows(A) : returns row dimension of A

Cols(A) : returns column dimension of A

expressions by references to tables of constants whosesvallihese graphs are useful to visualize, analyze, and compare
are either computed at compile time or initialized at rumtjm different code options.
depending on the compiler con guration. In the case they are Statistical backendsutput statistics of the generated code,
initialized at runtime, the compiler produces an initiaion rather than the code itself. Examples include the arithometi
function. cost, the FMA arithmetic cost, the size of the intermediate
Optimization. The optimization stage performs dead codstorage required, or the estimated accuracy. These &sitisin
and common subexpression elimination, strength reductide used as alternatives to runtime for the optimizatioreweit
copy propagation, and conversion to scalars of temporasged by SPIRAL (see Section V-C). The arithmetic cost
vector references with constant indices. This stage will tmackend, for instance, enables SPIRAL to search for forsnula
discussed in detail in the next subsection. that implement the transform with the minimal number of
Target code generation.In the last stage, the compilerarithmetic operations.
produces the target code. The target code is customizatiie wi
the following options. L
Standard code generation backengsierate standard C andC: C0de Optimization
Fortran code including the required function declaratimom- In this section, we provide further detail on the optimiaati
stant tables, and the initialization function for preconipy stage of the SPL compiler, the fourth block in Fig. 3. The
intrinsics. We focus our discussion on C code generatior. Treason why the SPL compiler performs these optimizations
FMA (fused multiply-add) backend performs an instructionather than leaving them to the C/Fortran compiler is that
selection to produce C code that utilizes fused-multiplg adoractically all of the commonly used compilers do not opgeni
instructions available on some platforms. The multipied machine generated code well, in particular, large segmants
backend decomposes constant multiplications into additio straightline code (see [11], [20], [47], [48]). The perfath
subtractions, and shifts. optimizations include array scalarization, algebraicira-
Graphical backendsproduce transform data- ow graphs.tion, constant and copy propagation, common subexpression

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 15

elimination (CSE), and dead code elimination. The rst four 5X10 ‘ ‘ ‘
optimizations will be investigated in more detail below.dde o Share
code elimination will not be discussed, as there are no un- g *% -8~ Optimized i

usual details of our implementation that impact perforneanc
Finally, we brie y discuss FMA code generation.

Static single assignmentAll of the optimizations consid-
ered are scalar optimizations that operate on code couverte
to static single assignment (SSA) form, in which each scalar
variable is assigned only once to simplify the required wsial

Array scalarization. C compilers are very conservative
when dealing with array references. As can be seen from the
compilation example in the previous section, the loop Uiml
stage can produce many array references with constanemdic
During array scalarization, all such occurrences are oegla 05 ‘ ‘ ‘ ‘ ‘ ‘
by scalar temporary variables. o 5 10 15 20 25 30 35 40 45

Algebraic simpli cation. This part of the optimizer per- Formuia # (size = 32 forall of them)
forms constant folding and canonicalization, which suppor (2) SPARC
the efforts of other optimization passes. 4 w

Constants are canonicalized by converting them to be non-
negative and by using unary negation where necessary. Ex-
pressions are canonicalized similarly by pulling unaryatieg
as far out as possible. For examplex vy is translated to

(x+y),and(x) y! (X y). Unary operators will
usually combine with additive operators in the surrounding
context and disappear through simpli cation.

These transformations, in conjunction with copy propa-
gation, help create opportunities, previously unavadalfbr
common subexpression elimination (CSE) to further sirgplif
the code.

Copy propagation. Copy propagation replaces occurrences
of the variable on the left hand side of a given “simple” as- 15 ‘ ‘

Execution time in seconds averaged over 10000 trials

=k~ MIPS *
4 Scalarized
-@— Optimized

3.5r

-

Lo

Execution time in seconds averaged over 10000 trials

signment statement with the right hand side of that assighme S ek walothemy
statement, if the right hand side is either a constant, ascal (b) MIPS

or a unary negation of a sgalar ora CO_nStam' Fig, 4. DFT performance before and after SPL compiler optimizations on
Recall that unary negation expressions are often creatgdparc and MIPS architecture. SPARC: UltraSparc Ill, 750zMForte

during algebraic simpli cation due to canonicalizationofy Developer 7 compiler, ags -fast -xO5; MIPS: MIPS R12000, 30z,
propagation will move them so that they can combine wit}!PSPro 7.3.1.1 compiler, ag -O3.

additive operators in the new context during further algebr

simpli cation.

Common subexpression eliminationCommon subexpres- @ DFT 3, on two different platforms. The line marked with
sion elimination tries to discover multiple occurrencesttd stars and labeled “SPARC” in Fig. 4(a), respectively “MIPS”
same expression; it makes sure that these are computed dnllyig. 4(b), shows the execution times achieved by the eativ
once. Our implementation treats subscripted array reéesen SPARC (MIPS) compiler alone. The line marked with triangles
as expressions and, therefore, as eligible for elimination ~and labeled “Scalarized” shows that every formula is imptbv

Optimization strategy. The different optimizations de- by scalarizing the C code before sending it to the native
scribed above have mutually bene cial relationships. Fer i compiler on both platforms. Note that we performed our MIPS
stance, algebraic simpli cation can bolster copy propammt €xperiments on an R12000 with the MIPSpro compiler. See
and copy propagation can then create new opportunities f8#] for a case where the same experiments were performed
algebraic simpli cation. Alternating between these twatiop With the same compiler on an R10000, but with different
mization passes, the code will eventually reach a xed poiniesults. In that case, the MIPSpro compiler already achieve
where it is changed no further. good performance without scalarizing or optimizing the &od

Our implementation strategy is to loop over these differerist. The line marked with bullets and labeled “Optimized”
optimization passes in the manner prescribed, and to tatminin both graphs of Fig. 4 represents the performance of the
once an entire iteration fails to change the code. DFT codes after the entire optimization following the sttt

Impact of the optimizations. Merely scalarizing arrays described above. We observe that the additional optinoizati
provides a sizable performance benet as seen in Fig. agyond array scalarization signi cantly improve the code o
These graphs depict the execution time (lower is betteef tSPARC, but not on MIPS.
programs generated for 45 SPIRAL generated formulas forFMA code generation. Some architectures, including

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 16

Itanium 1/2 and Motorola G4/G5, offer fused multiply

add (FMA) instructions, which perform an instruction of the TABLE VI

CODE GENERATION FOR FORMULA(41). ABOVE: INITIAL CODE

form
y ax b GENERATION; AND BELOW: AFTER UNROLLING AND INLINING
CONSTANTS
as fast as a single addition or multiplication. Most staddar
compilers cannot generate the optimal FMA code as it may initial code generation:
require changing the algorithm and/or the order of computa- J,
tion. for (iI0 = 0; i0 < 2; i0++) {
L : t2[i0] = x[i0]; }

To generate explicit FMA code, we use an algorithm that, “io"= 0. "0 < 2: i0+4) {

traverses the data ow graph propagating multiplicaticasd t2[i0+2] = x[-i0+3]; }

fusing them with additions where possible [49]. The aldorit Fa 1y
has the property that the number of multiplications left - unm = 0; i0 < 2; i0++) {
fused” is at most the number of outputs of the transform. We t1[i0+2] = t2[i0] - t2[i0+2];
implemented the algorithm by extending tibeirg instruction tio] = t2[i0] + t2[i0+2]; }
selection framework for expression trees [50]. Unlike damd diag(1; " 2=2)F»
compilers, this algorithm can produce code that matches tH %] = &[8] N ttll[ll]
best published FMA arithmetic cost for many transforms,foE](,0_ = [0] i0 <[2] i0++) {
including the DFT [51], [52]. t0[i0] = matO[i0] * 13[i0]; }
Our FMA generation algorithm can also be performed more. 5, g
concisely at the formula level (similar to the vector codefor (i0 = 0; i0 < 2; i0++) {
generation discussed below) rather than at the code leki. T]Egpogu:_o?o_ 1< 2 e |
method is currently being integrated into SPIRAL. f0 = matlio *2 + i) * ti[i1+2];
t4fi0] = t4[io] + f0; } }
D. Compilation Example. fortO(Ei% +=2] % |t04[-<i0+2'1];|0}+ DA
To demonstrate the most important stages of the compﬂgn,
we discuss the compilation of the SPL formula in (41). Th%r (0 = 0: i0 < 2; i0++) {

size of the formula is 4, which is smaller than the default for (i1 = 0; i1 < 2; il++) {
y[2 *i0+i1] = tO[i0+2 «i1]; } }

global unrolling threshold 16. Thus, the generated codé wil
be completely unrolled. In the unrolled code, all reference
to precomputed coef cient tables and transcendental fanst
will be inlined during the unrolling stage, and the intrinsi after unrolling and inlining constants:
precomputation stage will be omitted.

We look at the output of all the stages of the compiler for g{ﬂ z ﬁm

this expression. t2[2] = x[3];

Intermediate code generation from SPL templatesThe 2[3] = x2];
initial st{:\ge of the compiler conyerts the SPL expressier tr 1] = 12[0] - 22
for (41) into the looped intermediate code (Table VI, todeT ti[o] = t2[0] + t2[2];
generated code is annotated with formula fragments to showzl[3] = g[i] +tt22[33]
the origin of the code. 1] = el 3
Loop unrolling. All of the loops generated in the previous t3[1] = t1[0] - t1[1];
t1[0] + ti[d];

1.0000000000000000 * t3[0];

]
stage are unrolled because of the small transform dimension‘3[0%
] = 0.7071067811865476 * t3[1];

n =4 < 16, wherel6 is the default setting as mentioned. :8{2
After full unrolling, the tablesmatN are no longer needed,

and the compiler directly substitutes the computed values 0 = 0;
f0 = 0.3826834323650898 * t1[2];

(Table VI, bottom). t4[0] = t4[0] + f0:
Scalar optimization and target code generation.Loop f0 = (-0.9238795325112867) * t1[3];
unrolling usually creates many opportunities for scalar op t#[0] = t4[0] + fO;

o - o
timizations, and also creates unnecessary temporary saraysy = g 9338795325112867 + ti[2]]

(tO, t1, t2, t3, t4 in Table VI, bottom). Array scalarization t4[1] = t4[1] + fO;

converts redundant temporary arrays into scalars, andtkigen I?l[ﬂ 0. ?;2[21?834?53650898 * tl[3];

code is converted into SSA form (i.e., each scalar variable i 0[] = t4[];
assigned only once). As was mentioned earlier, this sirepli t0[3] = t4[0];
the analysis required for further optimization. B .

After the code optimization, the compiler outputs the targe 5{% _ ;8%2};
code including the transform function declaration and an in y[2] = to[1];
tialization function. Since our unrolled code does not usg a Y[3] = tO0[3];

tables, the initialization function is empty. The resuiticode

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 17

TABLE VI
FINAL GENERATED C CODE AND FMA CODE FOR THE FORMULA(41).

C code:
void sub(double +xy, double *x) {

double f0, f1, f2, 3, f4, f7, 8, 10, f11;
fo = x[0] - x[3];

fl = x[0] + x[3];

f2 = x[1] - x[2];

f3 = x[1] + x[2];

f4 = f1 - 13;

f1 + fa: \ |

N
—
1

y 0.7071067811865476 * f4,
f7 = 0.9238795325112867 * f0;

f8 0.3826834323650898 * f2; ‘ (3] ‘
y[1] = f7 + 18;

f10 = 0.3826834323650898 * f0;

f11 = (-0.9238795325112867) * f2;

y[3] = f10 + f11;

}
void init_sub() {
}

FMA code:
void sub(double *y, double *x) { ‘ viol ‘ ‘ Vil ‘ ‘ Vi1l ‘ ‘ yi3l ‘
double fo, f1, f2, 3, f4, 1000, f1001;
f1 = x[0] + Xx[3];
3 = x[1] + x[2]; Fig. 5. Standard and FMA data ow graphs generated by SPIRAL f
y[0] = f1 + f3; formula (41). Multiplications are shaded dark gray, FMAs sinewn as dark
f4 = f1 - f3; gray rectangles.
y[2] = 0.7071067811865476 « f4;
f0 = x[0] - x[3]; TABLE VIII
f2 = x[1] - x[2];
1000 = fma(fo, 0.4142135623730951, f2): SHORT VECTORSIMD EXTENSIONS
y[1] = 0.9238795325112867 = £1000; _
f1001 = fma(fo, (-2.4142135623730945), f2); [Vendor [Name [-way [Precision] Processor |
y[3] = 0.3826834323650898 « £1001;] . Pentium 1l
} Intel SSE 4-way single Pentium 4
void init_sub() { Intel SSE2 2-way | double Pentium 4
} 4-way | single .
Intel SSE3 2way | double Pentium 4
) .) o Intel IPF 2-way single ItI;?lri]Llllrj’an
is shown in Table VII, top. Further optional FMA optimizatio :
. . AMD 3DNow! 2-way single K6
saves two instructions (Table VII, bottom). VD Enhanced | [_ - K7, Athlon XP
Fig. 5 shows the two data ow graphs, produced by the 3DNow! Y 9 Athlon MP
graphical backend, for the codes in Table VII. Each internal amp SDNOW! | way | single Athion XB
. . L. . Professional Athlon MP
node in the graph represents either an addition (light gray Tway | Single
circle), a multiplication by a constant (dark gray circle),an AMD AMD64 4-way | single Act)hg?e”rf:
FMA instruction (dark gray rectangle). For the latter, thptit I o i'Way d‘?Ubl'e L
. T . . otorola vec -way single XX
being multiplied is marked with a bold edge. IBM AliVeo Zway | single | PowerPC 970 G5
IBM Double FPU | 2-way double | PowerPC 440 FP2

E. Vector Code Generation

Most modern processors feature short vector SIMD (single
instruction, multiple data) extensions. This means theisgc- complicated access patterns usually found in transformdier
ture provides data types and instructions to perform agtinlas. In Section VII, for example, we will show that compiler
point operations on short vectors at the same speed as a,singgctorization, when used in tandem with SPIRAL, can, for the
scalar operation. The short vector extensions have differdéFT , achieve moderate speed-ups (about 50%), whereas the
names for different processors, have different vector tlesig best possible code is at least a factor of 2 faster.

, and operate in single or double precision. An overview is As a consequence, when striving for highest performance,
provided in Table VIII. the common current practice is to hand-code vector instruc-

Short vector instructions have the potential to speed uptians. This can be done at the C level through the use of
program considerably, provided the program's data ow eXintrinsics” provided by the respective architecture very]
hibits the ne-grain parallelism necessary for their apation. but poses major challenges to software developers: 1) each
Since vector instructions are beyond thtandard C/Fortran vector extension provides different functionality and izin-
programming model, it is natural to leave the vectorizatiosics interface is not standardized, neither across pragfpnor
to a vectorizing compiler. Unfortunately, to date, compileracross compilers, making the written code non-portabl¢he)
vectorization is very limited; it fails, in particular, fothe performance of vector instructions is very sensitive todhta

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 18

access; a straightforward use oftdaterioratesperformance Finally, we need vectorizable permutations. Clearly, perm
instead of improving it; and 3) in a library of many transfam tations of the formP | match (42) and are thus naturally
each transform needs to be hand-coded individually. In theappable into vector code. Another important class coneist
following, we give an overview of how we overcome thespermutations that can be vectorized using a small number of
problems by extending SPIRAL tautomatically generate in-register data reorganization instructions. The peations
optimized vector code. We note that by extending SPIRAL to 2 5 o

handle vectorization, the third dif culty is immediatelaken P2fL ;L2 L% g (44)

care of. For a more detailed description, we refer to [S3}S5 are of that type and play an important role in the vectorizati

and to [56] in this special issue. of DFT algorithms based on the Cooley-Tukey rule (20). The
Our approach to vector code generation for SPL formulagtual implementations of these instructions differ agsisort
consists of two high-level steps. vector architectures; however, they share the charatbsris

We identify which basic SPL formulas or structuredhat they are dpne fully in-register, using only a few vector

within formulas can be mapped naturally into vectof€order instructions.

code; then we derive a set ehanipulation rulesthat Further, ifP is a vectorizable permutation of the form (42)

transform a given SPL formula into another formula@r (44), then the same holds foés P. Finally, for =4,

that can be better vectorized. These manipulations awe also consider permutations of half-vectors, namely ef th

incorporated into the GRMULA OPTIMIZATION block in form P 1,. These permutations reorganize complex numbers

Fig. 1 and can overcome compiler limitations since thepto the interleaved complex format and are thus important f

operate at the “high” mathematical level. The manipulgomplex transforms. For example, Intel's SSE vector extens

tion rules are parameterized by the vector length provides memory access instructions for these permutation

We de ne a short vector API on top of all current vector Building on the constructs introduced above, we can com-

extensions, which is suf cient to vectorize a large clasgletely vectorize any expression of the form

of SPL formulas. The API is implemented as a set of Y

C macros. The SPL compiler is then extended to map PiDi(Ai 1)EiQi; (45)

vectorizable formulas into vector code using this API. i

where P;; Q; are vectorizable permutations, afy;E; are

irect sums of matrices of the form (43). The class of formaula
(45) is general enough to cover ti-T formulas based

Formula manipulation. We start by identifying formulas
that can be naturally mapped into vector code. The list is

no means exhaustive, but, as it turns out, is suf cient for !

large class of formulas. We assume that the formula is regeﬂ the Cooley-Tukey breqkdown _rule (2.0)’ WHT formulas
valued, i.e., if the original formula is complex, we rst ogart ased on (26), and the higher-dimensional transforms (19).
it into a real formula using the conversion opergtyrand the ~ We briey illustrate the vectorization manipulations with
manipulation rules introduced in Section IlI-C. Furthere wthe Cooley-Tukey rule (20). To manipulate a given formula
denote the vector length with; on current platforms, only into the form (45), we use manipulation rules including
= 2;4 are available (see Table VIII). We refer to a vectopguations (35) to (39). Using these manipulations, we can
instruction for vectors of lengths also as a -way vector Vectorize every Cooley-Tukey rule based formula, provided
instruction. that forn = km in (20), j k;m, which implies 2 j n. In

The most basic construct that can be mapped exclusivéws case the manipulated formula takes the following form,

into vector code is the tensor product — D — —omn
DFTmn = Im L DFTm I I T,
A | ; 42 ____
’ (42) lw L2 | lw L DFT, |
whereA is anarbitrary formula. The corresponding code is m)
obtained by replacing each scalar operation in the code for La Ly ; (46)

y = Ax by the corresponding-way vector instruction. This

—_onn | . . .
is best understood by visualizing the structuredof | ; the WhereT , is a direct sum of matrice$ shown in (43).
exampleF, 14 for =4 is provided in Table IX. The operato() is as de ned in Section IlI-B. Note that (46)

matches (45) and is, hence, completely vectorizable, imaep

Further, the following structured matri® ,
dently of the further expansion of the smaller occuridigr s.

g - diag(ao;::ia 1) diag(bo;:iiiib) This is crucial for obtaining a searchable space of formulas
dlagECoi rrje 1) diag(do;:iiid q) (43) that exhibit different data ows.
= L3 o i<n Zi 3 L? Code mapping.After a formula is vectorized by the means
i di

of formula manipulation, the parts of the formula match-
can be mapped into 4 vector multiplications and 2 vectamg the pattern in (45) are mapped into vector code. The
additions. The sparse structure®fn (43) is equivalent to the remaining part of the formula is mapped into scalar code
structure of (42), only the actual values of the entriesediff using the standard SPL compiler. For a formula matching
The matrixS appears often in DSP transforms, for exampl€45), rst, vector code is generated féy; | by generating

in the DFT when converting the complex twiddle factors intscalar code forA; and replacing the scalar operations by
a real matrix using th¢) operator. the corresponding -way vector operations (e.gtza+b is

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 19

Matrix Scalar Code foy = F 2 x Matrix Vector Code fory = (F 2 l4)X
void F2x14 (float +y, float *X) {
LOAD_VECT(x0, x + 0);
F, = void F2(float xy, float *x) { Fo lu= LOAD_VECT(x1, x + 4);
11 y[0] = x[0] + X[1]; s s ADD_VECT(y0, x0, x1);
101 y[1] = x[0] - X[1]; s s STORE_VECT(y + 0, y0);
} SUB_VECT(y1, x0, x1);
STORE_VECT(y + 4, yl);
}
TABLE IX

VECTORIZATION OFy = (F 2 14) X FOR A4-WAY VECTOR EXTENSION USING THE PORTABLESIMD API.

replaced byVEC_ADD(t,a,b)), and by replacing array to minimize parallel overhead and to achieve good processor
accesses by explicit vector load and store instructiongt,Neutilization.
the permutation®; andQ; are implemented by replacing the Relatively simple extensions to the code generator can
vector loads and stores by combined load/store-and-permbe utilized to produce parallel code for both symmetric
macros provided by our short vector API. In the nal stepmulti-processors (SMP), where multiple processors share a
the arithmetic operations required By andE; are inserted common memory with uniform access time, and distributed-
between the code foA | , and the vector memory accessnemory parallel computers, where remote memory is accessed
and permutations introduced in the previous step. over an interconnect with non-uniform memory access. For
As a small example, we show a vector store fused witlistributed-memory computers, code can be produced bgusin
L8, provided by our API, and implemented in SSE using the shared-memory programming model where remote memory
Intel C++ compiler intrinsics. It is one of the cases in (4d) f is accessed implicitly, or by using a distributed-memorg-pr

=4, gramming model, where explicit message passing is required
#define STORE L 8_4(v, w, p, q) { In either approach, alternate formulas for the same tramsfo
__ml28 t1,t2; may access memory in different patterns leading to more or
§ = _mm_unpacklo_ps(v, w); less remote memory accesses.
t;m—gt?@“';g?;’khs'fps("' w; We realized these ideas in preliminary experiments with
“mm_store_ps(q, t); } the WHT on both shared-memory multiprocessors [59] and

distributed-memory computers [60]. The parallel code was
generated using OpenMP [61] for shared-memory paral-
lelism and MPI [62] for distributed-memory parallelism. We
performed additional experiments using a special-purpose
distributed-memory parallel computer designed for the com
putation of theDFT and WHT [63]. In this case, a search

F. Code Generation for Parallel Platforms over a family of related formulas was used to minimize the

In many situations, parallel processing may be needed di¢mber of remote memory accesses.
to real-time constraints or when a large amount of data needdtule (26) decomposes thWHT into a sequence of factors
to be processed. Despite tremendous advances, paratieliAf the form(lm WHT ,; I,) containingmn independent
compilers, similar to vectorizing compilers, cannot cotepecomputations ofVHT 5 at striden, which can be computed
with the best possible hand-optimized code, even for xelbti in parallel. A barrier synchronization must be inserteduaen
simple programs [57], [58]. In this section we show a rsthe factors. The strided access patterns may prevent ghnefet
step towards generating parallel code using SPIRAL. THeo associated with cache lines and may introduce falsérghar
high-level approach is similar to vector code generati(ma(sWhere different processors share a common cache line even
Section IV-E): 1) identify constructs that can be mappet@ough they do not access common data elements [59]. Thus,
into parallel code; 2) manipulate a given formula into theddle (26) only serves as a starting point to optimize the WHT
parallelizable constructs; and 3) map the manipulated ditam Structure for parallel target platforms.
into ef cient code. Formula manipulation. Using the manipulation rules from

SPIRAL's constructs, in particular the tensor product angéction IV-E, (26) can be modied to obtain the different
direct sum, have natural interpretations for parallel compStructure
tation [33] and many of the traditional optimizations used
to achieve better granularity, locality, and load balanee c WHT 2= P Yl WHT)P (47)
be achieved through formula manipulation. Using formula i=1
manipulation, SPIRAL can explore alternate formulas thaymwhere P; is a sequence of permutations. One possibility is
exhibit explicitly parallelizable subcomponents. Pagtlinple- to chooseP; = Lgti . There are also other choices, since the
mentations are obtained using parallel directives/famstiin sequence of permutatioRs is not unique. Wheh = 2 and the
the templates for these constructs. A search can be usedlto permutations are computed at runtime, the algorithm of [26]
the best combination of parallel and sequential code, amsl trobtained. This variant can lead to better performance onsSMP

In this example,v;w;s;t are vectors of length 4 and
the permutation is performed with the rst two instructions
Assuming the vectors are indexed with 0,1,2,3, itsis=
(Vo; Wo; v1;w1) andt = (Vz; Wa; V3; Ws).

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 20

. L TABLE X
due to reduced cache misses and bus trafc. In a dls'[rlbute(ij,SEUDOCODE FOR ANSMP IMPLEMENTATION OF THE WHT OF SIZE

memory environment, different sequences of permutatiead |
to different locality and the SPIRAL search engine can b&use
to determine the sequence with the minimal number of remote
memory accesses. .
. . . . SMP code for WHT:
Further manipulation can be used to combine adjacentyyqqin paraliel region
permutations to obtain r=n;s =1 id = getthreadid():

n =2k anD DISTRIBUTED-MEMORY PSEUDGCODE FOR THE STRIDE
PERMUTATION.

A\ num = gettotal thread();
WHT x = Qi(|2k «, WHT 2ki) Py; (48) fori=1,...,t

i=1 r=r/n;

whereQ; = P; 1P, ! (where we assumBy = | ,). This has forid =id, ..., r*s -1, step = num
the benet of reducing the amount of message passing ina !~ 'f”s;
distributed-memory environment. Further factorizatidrtiee k =id mod s;

nj

permutations); can be used to obtain formulas that group the ~ Xin js+ks = WHTni X' o o
data into larger blocks, which can both reduce communipatio S=5*N:
cost and improve cache utilization. #parallel barrier

Code generation.Parallel code for SMPs can be generated #€nd parallel region
for SPL programs through the use of parallel directives & th
templates for parallel constructs such as the tensor ptoduc
It is straightforward to insert parallel loops whenevgr A
occurs in a formula; however, in order to obtain good par- _
allel ef ciency, we should only introduce parallelism when /"~ StéP 1: Construction of MPI data type */
it improves performance; further, it is important to avoid/~"9uments: localN, totaiRank, stride
creating and deleting threads multiple times. It is best td'°ck = stride /totalRank
create a parallel region and introduce explicit scheduting ~ '°Ca!S = localN / stride
synchronization as needed for the different constructsleT# MPI-Type.vector(block, local$, localSttotalRank,
(top) shows the parallel code for an SMP implementation of DOUE_BLE' ENEW.TYPE)
the iterative rule of thaVHT in equation (26): the notation MP'-TyPe-cOMMIENEW.TYPE)
Xp.s indicates a subvector of of sizen equal to(x(b); x(b+

distributed memory code for the stride permutation:

for (round = 0; rounck totalRank; ++ round)
/* Step 2: Local data rearrangement */

formula manipulation and the techniques of Section IV-Ag th
id = handshake[round]

code involves features not currently supported by SPIRAL,
such as variable loop bounds and in-place computation. We k=)
made experiments with this and other parallel code with a °fets = id " block _
special package for computing the WHT [27], [59], [60]. for (i = offsets; i < (block + offsets); ++ 1)
Code generation for distributed memory machines is more O 0 =1] < localSize; j += stride)
involved. Data must be distributed amongst the processors, bufferfk++] =]l
locality maximized, and communication minimized. If a dis-
tributed shared-memory programming model is used, explici
communication is not required; however, data access patter
must be organized to minimize remote memory access. Since
SPIRAL can make modi cations at the formula level, altemat
data access patterns can be explored and optimized automat-
ically. In a distributed memory programming model, expglici
send/receive operations must be inserted, taking intowdco
the data distribution. For th&/HT , where the data size is plock, which is responsible for measuring the performance

power of two, data can be distributed using the high-ordes bi,¢ yhe generated code and for feeding the result into the
of the data address as a processor identi er and the Iovvpord\@EARCH/LEARNING block.

bits as an offset into the processors local memory. In thsg ca The EVALUATION LEVEL block fullls three main func-

communication. arises from permut_ations in the formula, aq%ns: 1) compilation of the source code into machine code;
these permutations can be automatically converted to rgess% optional veri cation of the generated code: and 3) mea-

passing code (see Table X, bottom, for an eXample)'A(]Idiﬁor’éurement of the performance of the generated code. The

details are available in [60]. performance metric can be the runtime of the compiled code,
or it can be some other statistics about the code such as the
V. EVALUATION number of arithmetic operations, the instruction coung th
After formula generation and code generation, the thimumber of cache misses, or the number of FMA instructions.
conceptual key block in SPIRAL is theVELUATION LEVEL Other performance measures such as numerical accuracy or

/* Step 3: Global communication */

offsetr = id * localS

MPI_Sendrecv(buffer, localN/totalRank, DOUBLE,
id, 0, y+offsetr, 1, NEW.TYPE, id, O,
MPI_COMM_WORLD, &status)

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 21

code size can also be used. The performance evaluation blocBoth, rule verication and formula veri cation are per-
makes it easy to switch between performance measures ofdoned exclusively at the formula level, i.e., no code is

add new ones. generated. Their purpose is to verify transform algoritfamd
to debug the formula generator. Code veri cation is disedss
A. Compilation next.

. . Code verication. For the verication of the generated
To obtain a performance measure, such as the runtime : .
code, SPIRAL provides a variety of tests.

the code generated by SPIRAL is compiled, linked with thé The most important test applies the generated code to an

performance measuring driver, and executed. At ins:tahatiin
. . . ut vectorx and compares the output vectpto the correct
time, SPIRAL detects the machine con guration and th b P b ¥

labl i defaulting t d lied i Pesulty obtained by computing the transform by de nition (the
;V:\L;Iazlgompl ers, defaulting to vendor supplied CoRRIL ., qq for computing a transform by de nition is also genedate

. . . by SPIRAL). The norm of the errgjy ¢jj (different norms
Interfacing external programs, like C compilers, portablgre available) is returned, and has to be below a threshaiol. T
across platforms and operating systems, and integratffey-di ' i

. - odes are available. The rst mode performs this comparison
ent performance measures is a non-trivial problem. In SRIR

e have implemented a librarv we call “svsconf” to provid n the entire set of (standard) base vectors. The correct
w ve Imp lorary w Y provi ?}utputs need not be computed in this case, since they are the

?bportatlle an<tjh e>_<|tf)le sotl_utlon.b Fotr examlple, the.lsﬁgor&olumns of the transform matrix. For a transform of gizehe
loraly stores the information about compliers avallable o, ims are typicallyo(n? log(n)); thus, this veri cation
the machine in a set of con guratiopro les. Each pro le

algorith . .
includes the path to the compiler and to the linker, thg Od" 109(M). The second mode performs this comparison

. . ither on one or on several random vectarsHere the cost
target language (C or Fortran) and object le extensions, th

ler | i tax. th | d link is O(n?) for computing the correct outputs by de nition.
compiier invocation syntax, the compiier and Inker ags, ¢ 4 yariant of the above tests, two generated programs can
the required libraries, and the test driver execution synt

. e compared against each other on the standard basis or on a
Pro les can be nested in order to create groups; for examp

) ’ N .) ! it of random vectors.
if the “c.gcc” prole includes all the information necesgar The veri cation on the basis described above can be ex-
to use gcc, “c.gcc.optl” and “c.gcc.opt2”

may be created f8nded further to obtain an actual proof of correctness. &gm

|d|ffe|rengate ben;yeen op|>t|on sets with (fjn‘lf?regt oprt]lnn!rza the code generated by SPIRAL contains only additions and
evels. Con guration pro les are very useful for benchmang multiplications by constants as arithmetic operationsusth

different compilers, and for evaluating the effects of efiént the entire program has to encode a linear function provided

comp!:er_optlor:js. Further, pro IE.}S can bedt_:f(r)n gureclzl f?r;(:e all the arrays are accessed within their allowed index range
compilation and remote-execution on a different platioRor o can pe tested). If two linear functions coincide on a

example, this capability is used to produce the IPAQ resu %sis, they must coincide for each input vector, which psove

shown in Section VII. Also, additional C-to-C optimization, ... ness (up to a numerical error margin).

passes are easily incorpor ated into a pro le to accomquateomer veri cation methods we have experimented with

various research tools. Finally, pro les allow the exeonti include tests for transform specic properties, such as the
of other programs to compute various performance measurgsnyolution property of the DFT [64], [65]

e.g., obtained by statically analyzing the C or compiledecod |, practice, because of the speed, we use the veri cation

on one random vector, which usually proves to be suf cient.
B. Veri cation By including this veri cation in a loop that generates rantdo
SPIRAL provides several modes of (optional) veri catiorfransforms, random formulas, and random implementation
for its automatically generated code: 1) rule veri cationoptions, bugs in SPIRAL can be found ef ciently. To facitiéa
2) formula veri cation; 3) code veri cation; and 4) recuvsi debugging, once a bug in the generated code is found, another
code veri cation. We brie y discuss these modes. routine recursively nds the smallest subformula that proes
Rule veri cation. SPIRAL requires all transforms to haveerroneous code.
a de nition, which is a function that constructs the transfio
matrix given its parameters. Since rules decompose tramsfo C. Performance/Cost Measures
into other transforms, each rule can be veried for xed By default, SPIRAL uses the runtime of the generated
parameter choices. Namely, the rule is applied to the toamsf code as a performance measure, but other measures can be
once, and the resulting formula, in the formula generatahosen. This property makes SPIRAL a versatile tool that
is converted into a matrix and compared to the origingan be quickly adapted or extended to solve different code
transform. This type of veri cation is usualkyxact since most optimization problems in the transform domain. Examples of
transforms and their formulas have exact representatiors d¢onsidered performance measures, besides runtime, éclud
to the symbolic computation environment provided by GARBccuracy, operation count, and instruction count. We also
(see Section llI-E). started preliminary work on performance models that can
Formula veri cation. A fully expanded formula is veried be applied at the algorithmic level without compiling and
similarly to a rule by converting it into the represente@xecuting the generated code.
matrix and comparing it to the original transform. Againisth Runtime. There are various ways of measuring the runtime;
veri cation is usually exact. obtaining accurate and reproducible results is a noratrivi

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 22

problem. A portable way of measuring runtime uses thgoint only processorsiultiplierlessimplementations of small
C clock() and computes the runtime as an average over a langssform kernels become viable candidates. “Multiptiss’
number of iterations. This implies that, for small trangfior means multiplications by constants are rst represented in
sizes, the runtimes do not re ect any compulsory cache miss&ed point format and then replaced by additions and shifts.
arising from loading the input into cache. Where possiblé; SHFor example, a constant multiplication = 5x is replaced
RAL uses the processor's built-in cycle counters, whichadre by y = (X 2) + x. Since DSP transforms are linear,
higher resolution and thus allow for much faster measurémeérm, consist exclusively of additions and multiplicatioby
as only a few iterations need to be timed. Depending on thenstants, this procedure produces a program consisting of
precision needed (for instance, timing in the search reguiradditions and shifts only. The problem of nding the least
less precision than timing the nal result), SPIRAL mayaddition implementation for one given constant is NP-hard
need to run such measurements multiple times and take ffi@]. We have reimplemented and extended the best known
minimum. Taking the minimum over multiple measurementsiethod [71] and included it as a backend into SPIRAL to
and keeping the number of repetitions per measurement I@enerate multiplierless code for a given formula and for-use
reduces the inuence of other running processes, unknowpeci ed constant precisions. Clearly, if these precisiame
cache states, and other nondeterministic effects. reduced, also the arithmetic cost (measured in additiohs) o
Operations count. For theoretical investigations (and soméhe resulting implementation can be reduced. This leadseto t
applications as well) it is desirable to know the formul&ollowing optimization problem: for a given transforin, nd
requiring the fewest number of operations. Most formula ththe formula A with the least number of additions that still
SPIRAL generates, have, by construction, minimal known (8gtis es a given accuracy threshaddwith respect to a given
close to minimal) operation count, however, there are a fed¢curacy measurd, i.e.,, N(A) q.
exceptions. We solve this problem automatically by using SPIRAL with
The rst example is the class of Winograd algorithms [66{€ following high-level steps (see [72], [73] for more dista
for small convolutions and small DFT sizes, which exhibit a ~ Generate a numerically accurate formuafor T as
large spread in operation counts. We have used SPIRAL to described in Section V-C.
search this space for close to optimal solutions [67]. Find the b_est assignment of bit-widths to the occurring
The second example arises when generating formulas using CONStants inA such that the threshold holds. We have
fused multiply-add (FMA) instructions (Section 1V-B), s solved this problem using a greedy or an evolutionary
known FMA algorithms for transforms are usually hand- ~ S€&rch. The code was assumed to be completely unrolied
derived and are only available for a few transforms, e.g),[5 SO that the bit-widths could be chosen independently for
[52], [68]. Using SPIRAL we obtain FMA code automatically; ~ €ach constant. _
in doing this, wefound most of the published algorithms In this optimization problem, we have considered several

automatically and generated many new ones for the transforfgrget accuracy measur() including numerical error mea-
contained in SPIRAL. sures such as (49), and also application driven measures. An

xample of the latter is the optimization of tHdDCT and
e DCT of type 2 in an MP3 audio decoder, [74]. Here, we
ose the compliance test de ned by the MP3 standard as the
curacy threshold. The evaluation was done by insertiag th
generated code into an actual MP3 implementation.
Performance modeling.SPIRAL generally uses empirical
runtimes and searches to nd ef cient implementations.slt i
bene cial, both in terms of understanding and in reducing
search times, to utilize performance models and analfical
solve the optimization problems for which SPIRAL nds
Ni(A) = jiA At (49) approximate solutions. Unfortunately, determining medeéat
o . _accurately predict performance is very dif cult becausedmo
wherejj jj is a matrix norm. There are several norms possiblgiy processors have many interdependent features that affe
good choices are the matrix norjjsjj , that aresubordinate performance. Nonetheless, it is possible to obtain aralyti
to the vector norm§ jj , (see [69] for more details on norms).regyits for restricted classes of formulas using simpli ed
GivenNg (A), input dependent error bounds can be derived lﬁérformance models, see [63], [75]-[77] for results agple
assuming an input and settingy = Ax (the exact result) and {5 the WHT and the DET. While these results do not

Accuracy. For many applications, and in particular for thos
using xed point code, numerical accuracy may be of greaté
importance than fast runtime. SPIRAL can be easily extend
to search for accurate code, simply by adding a new ¢
function for accuracy.

Let A be a formula for the exact transforfi = A.
When implemented ik-bit xed point arithmetic, this formula
represents an approximation of the matffixi.e., Axpit T.
Thus, as a measure of accuracy of the formijave use

¥ = Ak-pirx (the approximate result) to get accurately predict performance, they give insight into the
iy Vit i A Awwidizjixiin = Ne(Ajixjiz s_earch space and provide heuristics that may reduce thehsear
_ _ o time. Moreover, they can be used to explore performance on
For fag e_valua_ltlon, we choose the matrix nojidl jj1 = processors that are currently not available.
maxi jMij] . To illustrate the results obtained and their limitationsnc

Cost functions for multiplierless implementations. On sider the factorization of th&/HT in equation (26). The
platforms where multiplications are signi cantly more exformula can be implemented with a triply nested loop, where
pensive than additions (e.g., ASICs, but possibly also xetthe outer loop iterates over the product and the inner twpdoo

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 23

implement the tensor product. The recursive expansions exfhaustive enumeration and testing, this feedback loodsee

WHT

are computed in a similar fashion. Even thougto be controlled by empirical strategies that can nd close t

the current version of the SPIRAL system cannot produaptimal solutions while visiting only a fraction of the pdse
code with recursive calls, it is still possible to implemenalternatives. These strategies have to take advantageeof th
this formula with a recursive function (see [27]), where thparticular structure of the algorithms.

recursive expansions ¥YHT .« are computed with recursive We consider two fundamentally different strategies, as ind
calls to the function, and, in the base case, are computested already by the name of th& &RCH/LEARNING block
with straight-line code generated by SPIRAL. In this implein Fig. 1:

mentation, different instantiations of the rule, corrasgiag

to different decompositionk = k; + ki, will lead to
different degrees of recursion and iteration, which imgptieat

the code may have different numbers of machine instructions
even though all algorithms have the exact same arithmetic
cost. LetWoyx be one suchVHT formula and letA(n) the
number of times the recursiveVHT procedure is called,

A (k) the number of times a base case of seghere it is
assumed thdt< 8) is executed, and ;(k), L2(k), andL 3(k)

the number of times the outer, middle, and inner loops are
executed throughout all recursive calls. Then the totalbem

of instructions required to execut,« is equal to

A (k) +
1=1

1A(K) +

i=1

iLi(k); (50)
where
compiledWHT procedure executed outside the loops, is
the number of instructions in the compiled straight-lineleo
implementations of the base case of dizand ;,i =1;2;3is

Searchmethods control the enumeration of algorithms
and implementations at code generation time and guide
this process towards nding a fast solution. Search is the
method implemented in the current SPIRAL system.
Learning methods operate differently. Before the actual
code generation (of ine), a set of random formulas in-
cluding their runtimes are generated. This set constitutes
the data from which the EARNING block learns i.e.,
extracts the knowledge of how a fast formula and im-
plementation are constructed. At code generation time,
this knowledge is used to generate the desired solution
deterministically. We have implemented a prototype of
this approach for a speci ¢ class of transforms including
the DFT.

In the following, we explain the SARCH/LEARNING in
is the number of instructions for the code in thereater detail.

A. Search

the number of instructions executed in the outer-most, fajdd The goal of thesEARCH block in SPIRAL (see Fig. 1) is
and inner-most loops in the compil®IHT procedure. These to control the generation of the formulas and the selection o
constants can be determined by examining the generategblementation options, which, in the current version,he t

assembly code. Suppoke= k; +

+ Kk is the composition degree of unrolling. The search 1) has to be able to modify

of k corresponding to the factorization in equation (26); thepreviously generated formulas; and 2) should be transform
the functionsA(k), Ap(k) Li (k) satisfy recurrence relationsindependent in the sense that adding a new transform and/or
of the formF (k) = 0f2" KiF (ki) + f(i)g, wheref (i) new rules requires no modi cation of the search. To achieve
depends on the function and is equal Iet, 0, 1, 2¢ ki, both goals, the search interfaces with the ruletree reptase
2t +ki 1 respectively. While it is not possible to obtain aion of formulas and not with the formula representatiore(se
closed-form solution to all of the recurrences, it is polesibSection III).

to determine the formula with minimal instruction count, The current SPIRAL system features ve search methods.

compute the expected value and variance for the number of
instructions, and calculate the limiting distribution [7879].

The problem with these results is that the instruction count
does not accurately predict performance on modern heavily
pipelined superscalar processors with deep memory hierar-
chies, and that it is not clear how to extend the results teemor
general classes of formulas. While additional results haenb
obtained for cache misses, a general analytic solution higs o
been obtained for direct-mapped caches. Additional chaée
must be overcome to obtain more general analytic results and
to incorporate these insights into the SPIRAL system.

VI.

One of the key features of the SPIRAL architecture (see
Fig. 1) is the automated feedback loop, which enables SPI-
RAL to autonomously explore algorithm and implementation
alternatives. Intuitively, this feedback loop providesISRL

FEEDBACK OPTIMIZATION: SEARCH AND LEARNING

Exhaustive searcenumerates all formulas in the formula
spaceF and picks the best. Due to the large formula
spaceF, this is only feasible for very small transform
sizes.

Random searclenumerates a xed number of random
formulas and picks the best. Since fast formulas are
usually rare, this method is not very successful.
Dynamic programmingdends itself as a search method
due to the recursive structure of the problem. For most
problems it is our method of choice.

Evolutionary searchuses an evolutionary algorithm to
nd the best implementation. This method is particularly
useful in cases where dynamic programming fails.

Hill climbing is a compromise between random search
and evolutionary search and has proven to be inferior to
the latter. See [44] for an explanation of this technique
in the context of SPIRAL.

with the “intelligence” that produces very fast code. Since We explain dynamic programming and the evolutionary
the algorithm and implementation space is too large for aearch in greater detail.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 24

Dynamic programming. The idea of dynamic program-
ming (DP) is to recursively construct solutions of largelpro
lems from previously constructed solutions of smaller prob
lems. DP requires a recursive problem structure and, hénce,
perfectly suited for the domain of transform algorithms.

We have implemented the DP search in a straightforward
way as follows. Given a transfornt, we expandT one
step using all applicable rules and rule instantiations (for

(b) regrow (c) copy

of m ruletrees of depth 1 (as (40)) or O (if the rule is a termin N . _ .
. ig. 6. Ruletree manipulation for the evolutionary searehcfoss-breeding;
rule). For each of these ruletred®Ty the set of children () (q4) three types of mutations: regrow, copy, and swap.

and for each of these childredy, DP is called recursively to
return a ruletredRC;, which is fully expanded. Inserting thea different node representing the same transform; arsivap
ruletreesRC; into RTy (that means replacin@; by RC; in exchanges two subruletrees belonging to the same transform

RTk), fori =1;:::;]jk, yields a fully expanded ruletreRT? See Fig. 6 for an illustration. The trees that undergo cross-
for T. Finally the best (minimal cost) ruletree among RE? breeding and mutation are randomly selected, and the number
is returned as the result fdr. of those trees is a parameter. Finally, the increased ptpula

To see how DP reduces the search space consifid#fTa is shrunk to a size smaller tham by removing the slowest
of size 2" and only the Cooley-Tukey rule (20). Usingtrees. Then the population is increased to the originalrsiag
recurrences, one can show that the number of formulasaidding random trees to yield the populatiBg. This process
O(4"=n*%2?) (the number of binary trees by using Stirling'sis repeated for a given number of iterations or until the best
formula, [80, pp. 388-389]), whereas DP visits o@yn?). member of the population does not improve the minimization

The inherent assumption of DP is that the best code fany further. For a more detailed discussion and evaluatfon o
a transform is independent of the context in which it ithe evolutionary search, we refer to [44], [82].
called. This assumption holds for the arithmetic cost (Wwhic The problem with evolutionary search (in general) is that it
implies that DP produces the optimal solution), but not fe t may converge to solutions that are only locally optimal.
runtime of transform algorithms. For example, the left deval
transform (child) in the DFT rule (20) is applied at a strideB. Learning
which may cause cache thrashing and may impact the choice . .
of the optimal formula. However, in practice, DP has proven S€arch becomes more dif cult as the number of possible
to generate good code in reasonably short time [44] and tHHéetrees increases. However, it is easy to collect a set of

is the default search method in the current version of SPIRAfUNtiMes for random implementations of a given transform.
AThIS data could be used to learn how to construct a fast

Finally, we note that the vector extension of SPIRAL)
requires a special version of DP, which is motivated b letree for that transfqrm. Further, we haye found tha_es thi
owledge can be applied to generate fast implementatibns o

the manipulated formula (46). As explained above, the rst. X b
expansion (shown in (46)) is vectorized, whereas the Sma|g§fferent sizes of a given transform, even when the knowdedg

occurringDFT s can be expanded arbitrarily since their contelyas gathered from only a single transform size.
is | , which ensures they are vectorizable (matching (42)). OUr approach consists of two stages.
To account for the conceptual difference between the rst an ~ Modeling Performance of Individual NodeEhe rst step
the remaining expansions we need a variant of DP, which we begins by collecting timing information for each individ-
introduced in [54]. ual node in a set of random ruletrees. From this data,
Evolutionary search. It is valuable to have another search ~ We then learn how to construct a model that accurately
method available to evaluate DP and overcome its possible Predicts the runtimes for nodes in ruletrees. This effort
Shortcomingsy particu|ar|y in view of the growing number of requires a well-chosen set of features that describe a node
applications of SPIRAL (e.g., Sections Ill and V-C). Evolu- and its context within the larger ruletree.
tionary search operates in a mode that is entirely different Generating Fast Implementation$he second step uses
from the DP mode; it attempts to mimic the mechanics of the model developed in the rst step to then generate
evolution, which operates (and optimizes in a sense) throug ruletrees that have fast running times.
cross-breeding, mutation, and selection [81]. Our discussion will focus on th&/HT and theDFT . For
For a given transform, the evolutionary search generatibe WHT we consider only ruletrees based on rule (26) with
an initial populationP; of a xed size n of randomly the restrictiont = 2 (2 children); for theDFT we consider
selected ruletrees. Then, the population is increasedgusaonly ruletrees based on the Cooley-Tukey rule (20). Botasul
cross-breedingand mutation Cross-breeding is implementedhave similar structure, in particular, for a DFT or a WHT of
by swapping subtrees with the same root (transform) of tvgize n, andn = km, the left childT ¢ in both cases appears
selected ruletrees iR, (see Fig. 6, left). Three different typesin a tensor product of the forfiy |, which meansT is
of mutations are used: 1¢growexpands a selected node usingomputedm times at stridem. In the following, we callm
a different subruletree; Zopycopies a selected subruletree tahe stride of the ruletree nodey. As a transform is expanded

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 25

recursively, the strides accumulate, e.g., fo= km, m = Size and stride of the given node.

k%m®, two applications of the rule lead to a left child with Size and stride of the given node's parent.

stridem + m® The focus in this section are large transform Size and stride of each of the given node's children and
sizes. Thus, to further restrict the algorithm space, waluse grandchildren.

SPIRAL to pregenerate straightline code implementations o Size and stride of the given node's common parent.
WHTSs and DFTs of sizeg';:::;2". These are used as leaves For the WHT . all of the work is performed in the leaves

in the ruletrees. This means, if the ruletree is generateech yith no work being done in the internal nodes, so the features

step either a rule is applied or, if the node is small enoughg the children and grandchildren were excluded fontieT

leaf can be chosen to terminate. _ since the leaves were the only interesting nodes to consider
Modeling Performance.It is possible to carefully time each yowever, internal nodes in dDFT ruletree do perform work

individual node of a ruletree as it runs. The runtime for agnq thus the full set of features was used for EY&T .

internal node is calculated by subtracting off the runtinnés Giyen these features for ruletree nodes. we can now use

the subtrees under the node from the total runtime for g, qard machine learning techniques to learn to predict ru

tree rooted at the given internal node. To allow our methog$,es for nodes. Our algorithm for a given transform is as
to learn across different transform sizes, we divide thealct follows:

runtimes by the size of the overall transform and learn osehe .
values. 1) Run a subset of ruletrees for the given transform, cellect

In order to learn to model the runtimes for different nodes, |n'g'runt|mes for every node in the “"etfee'
we must dene a set of features that describe nodes ir?) Divide each of these runtimes by the size of the overall

. : . transform.
ruletrees. To allow the modeling to generalize to previpusl X . .
unseen ruletrees, the features should not completely idescr 3) eD:rT}erlbe each of the nodes with the features outlined

the ruletree in which the node is located. However, a single4 Trai functi imati lqorithm t dict f
simple feature such as the node's size may not provide) rain a tunction approximation aigorithm to predict for
nodes the ratio of their runtime to the overall transform

enough context to allow for an accurate model to be learned. "
Intuitively, our features are chosen to provide our methdt w SIze.
the domain knowledge about the transform algorithms. We have used the regression tree learner RT4.0, [83], for
Clearly the size of the transform at the given node is ah function approximation algorithm in the results presente
important feature as the size indicates the amount of data there. Regression trees are similar to decision trees exaipt
the node must process. The node's position in the ruletreeth@y can predict real valued outputs instead of just categor
also an important factor in determining the node's runtimélowever, any good function approximation method could have
This position often determines the stride at which the nodkgen used.
accesses its input and output as well as the state of the caché/e trained two regression trees on data collected from
when the node’s computation begins. However, it is not ag easinning a random set of siz#® WHT implementations, one
to capture a node's position in a ruletree as it is to captisre from data for a Pentium Il and one from data for a Sun
size. UltraSparc lli (later often referred to simply as Pentiundan
A node's stride can be computed easily and provides infosun). We also trained another regression tree on data tellec
mation about the node’s position in a ruletree and also abdtam running a random set of siZ&°® DFT implementations
how the transform at this node accesses its input and outp@n Pentium. Speci cally, we chose a random 10% of the nodes
To provide more context, the size and stride of the pareditall possible binary ruletrees with no leaves of S2do train
of the given node can also be used as features. These featQr#sregression trees (we had previously found that the $ubse
provide some information about how much data will be shared binary ruletrees with no leaves of si2& usually contains
with siblings and how that data is laid out in memory. Furthethe fastest implementations).
for internal nodes the sizes and strides of the node's amildr To test the performance of our regression trees, we evaluate
and grandchildren may also be used. These features desctitgér predictions for ruletrees of sized? to 22°. Unfortu-
how the given node is initially split. If a node does not haveately, we could not evaluate them against all possiblerede
a given parent, child, or grandchild, then the correspandisince collecting that many runtimes would take prohiblgive
features are set to 1. long. Instead we timed subsets of ruletrees that previops-ex
Knowing which leaf in the ruletree was computed prior teience has shown to contain the fastest ruletrees. Spélyj ca
a given node may provide information about what data fer the WHT, for sizes 26 and smaller we used binary
in memory and its organization. Let the common parent lseletrees with no leaves of siZ2* and for larger sizes we
the rst common node in the parent chains of both a givemsed binary rightmost ruletrees (trees where every left éhi
node and the last leaf computed prior to this node. The siadeaf) with no leaves of siz&!. For theDFT, we were not
and stride of this common parent actually provides the bestrtain that rightmost ruletrees were best; so, we onlyuetal
information about memory prior to the given node beginningp to size2!® over all binary ruletrees with no leaves of size
execution. The common parent's size indicates how much d&fa
has been recently accessed by the previous leaf and at whator each ruletree in our test set, we used the regressian tree
stride the data has been accessed. to predict the runtimes for each of the nodes in the ruletree,
Thus, we use the following features: summing the results to produce a total predicted runtime

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 26

TABLE XIlI 180408
ERROR RATES FOR PREDICTING RUNTIMES FOR ENTIRBFT RULETREES ' .
ON PENTIUM. g 1.6e+08 - .
Size | 212 213 14 ol5 l6 17 ol8 > 14e+08 o T I
o T et A
Errors |19.3% 9.3% 10.7% 7.3% 5.0% 7.3% 7.9% £ ST e Sl £
\q'; 1.2e+08 S +++*L{+ e +
P o
Z le+08 R
£ i !
g . £
for the ruletree. We evaluate the performance of WHT e Hy S
. L . o 2 ge+07 52 ait
regression trees both at predicting runtimes for individua e
nodes and for predicting runtimes for entire ruletrees. We 66407
report average percentage error over all nodes/ruletreesri 6e+07 8e+07 1le+08 1.2e+08 1.4e+08 1.6e+08
given test set, calculated as: Predicted Runtime (in CPU cycles)
. . a) Pentium Il
T T @; 1.4e+08
JTestSex i 2 TestSet & i
. . ‘? 1.2e+08 s
where @ and p; are the actual and predicted runtimes for el R LR P
node/ruletred. o _ S Leros e ff};f;}i et
Table XI presents the error rates for predicting runtimes fo & L S NSNS
individual WHT leaves. In all cases, the error rate is never < go.07 R T 0 5 ‘%ﬁtg{ T
. ++¢¢*&¢+++ P ++
greater than 20%. This is good considering that the regnessi £ RS £
trees were trained only on data collected from running size 3 ee+07 e~ .
216 WHT transforms. f e
Table XII presents the error rates for predicting runtinms f =~ & 4e+07 |- e 2
entireWHT ruletrees. Not surprisingly, the results here are not
. ; ; 2e+07
as good as for individual leaves, put still good considetivag 26407 46407 66407 86407 16408
different ruletrees can have runtimes that vary by a factor o Predicted Runtime (in CPU cycles)
210 10. (b) Sun UltraSparc lli

Fortunately, the runtime predictor only needs to be able It—% 7. Actual runtime vs. predicted runtime for all binary higost
order the runtimes of ruletrees correctly to aid in optirti@a WHT ,10 ruletrees with no leaves of siz2! on Pentium and Sun. The
The exact runtime of a ruletree is not necessary; just a ciorréisplayed liney = x in both plots represents perfect prediction.
ordering of ruletrees is necessary to generate fast reketre
To evaluate this, we plotted the actual runtimes of ruletree
against their predicted runtimes. Fig. 7 shows plots foe sigonstructing fast ruletrees. At larger sizes, there areyman
219 WHT transforms (the plots for the other sizes lookossible ruletrees and it can be dif cult to even enumerate

similar). Each dot in the scatter plots corresponds to o@é the ruletrees, let alone obtain a prediction for each. one
ruletree. The dot is placed vertically according to its attu\We now describe a method for generating ruletrees that have

runtime and horizontally according to the predicted rustimfast runtimes.
from the regression tree. The ling = x is also plotted Generation of ruletrees begins with a given transform and
for reference. The plots show that as the actual runtimeie for which a fast implementation is desired. We then need
decrease for ruletrees, so do their predicted runtimeshé&wr to choose a factorization of this transform, producingdrieih
the ruletrees that are predicted to be the fastest can betseeior the root node. Recursively, we again choose children for
also be the ruletrees with the fastest actual runtimes. thas each of the root node’s children, and so on until we decide to
runtime predictors perform well at ordering ruletrees adowy leave a particular node as a leaf.
to their actual runtimes. Our approach is to de ne a set of states encountered during
Table XlII shows the error rates for predicting runtimes fothe construction of fast ruletrees. We de ne a value functio
entireDFT ruletrees running on Pentium. Except for si#é, over these states and show how that value function can
the error rates here are quite excellent, especially cerisigl be quickly computed. We then show how to construct fast
that the learned regression tree was only trained on datareletrees given the computed value function.
size28. The scatter plots foDFT s look very similar to those In the previous modeling work, we designed a set of features
for the WHT already displayed. They clearly show that théhat allowed for accurate prediction of runtimes of ruletre
learned regression tree is ordering formulas correctlytaatl nodes. Thus, these features seemed ideal for describing our
particularly the ruletrees with the fastest predicted immas state space. During the construction of ruletrees, we ibescr
actually have the fastest runtimes. nodes by their features and consider this to be the node's
Generating Fast Implementations. While the previous state. So, it is possible for two nodes in different ruletree
work presents a way to accurately predict runtimesVitiT to be considered the same state and for two nodes of the same
and DFT ruletrees, it still does not solve the problem ofransform and size to be considered different states.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 27

TABLE XI
ERROR RATES FOR PREDICTING RUNTIMES FOWHT LEAVES.

Pentium Il Sun UltraSparc lli
Binary No-2!-Leaf Binary No2'-Leaf
Binary No-2'-Leaf Rightmost Binary N@'-Leaf Rightmost
Size | Errors Size | Errors Size | Errors Size | Errors
28 1 13.0% 27 1 11.4% 25 8.7% 27 1 16.5%
2% | 13.8% 218 | 12.9% 2t 8.7% 218 | 16.9%
2% | 15.8% 21 | 12.6% 2% 1 10.9% 21° | 18.9%
216 | 14.6% 220 1 12.7% 216 7.3% 220 | 20.0%
TABLE XII

ERROR RATES FOR PREDICTING RUNTIMES FOR ENTIR&/HT RULETREES

Pentium Il Sun UltraSparc lli
Binary No2!-Leaf Binary No2!-Leaf
Binary No-2'-Leaf Rightmost Binary N&'-Leaf Rightmost
Size | Errors Size | Errors Size | Errors Size | Errors
2131 20.1% 2171 14.4% 213 1 23.5% 2171 13.3%
2% | 22.6% 28 | 14.1% 2% | 17.6% 218 | 15.2%
215 | 25.0% 219 | 12.5% 215 | 25.8% 219 | 19.8%
216 | 18.1% 220 1 10.1% 216 | 36.5% 220 | 21.2%

TABLE XIV

We now de ne the optimal value function over this state
ALGORITHM FOR COMPUTING VALUES OF STATES

space. For a given state, we consider all possible subtnaés t
could be grown under that node along with the possibility afomputevalues(State)

leaving the node as a leaf. We then de ne the value of thigstat if V(State) already memorized
. . . return V(State)
to be the minimum sum of the predicted runtimes for each i, = 1

of the nodes in a subtree, taken over all possible subtreesf State can be a leaf
These predicted runtimes are determined by the regression Min = PredictedPerformance(State)
P y 9 for SetOfChildren in PossibleSetsOfChildren(State)

trees trained in the previous section. Mathematically, sum = 0
. X . for Child in SetofChildren
V (state) = min PredictedPerformancefiodg Sum += ComputeValues(Child)
Sumreesnodezsubtree Sum += PredictedPerformance(State)

.. . . if Sum < Min
Note that the state of a node indicates its children and Min = Sum

grandchildren for thdDFT while we excluded these features V(State) = Min
for the WHT . So for theDFT the minimum is really only ~ "etm Min
taken over valid subtrees given the state.

We can rewrite this value function recursively. For a given .])
state, we consider all possible one-level splittings of tH&'NY dynamic programming to ef ciently compute the value

current node along with the possibility of leaving the nodi/nction. Table XIV displays the dynamic programming al-
as a leaf. The value of this state is then the minimum of torithm for computing values of states. Again the algorithm
predicted performance of the current node plus the sum ¥f€ds to be slightly modied for th®FT where the state

the values of any immediate children of the node for the begscription includes its children. The outer *for” loop ie-a
splitting. That is, tually computed over the possible great-grandchildrereacs

of just the children. It should also be noted that this dyrami

V(state) = min PredictedPerformancefiodd programming is different from that presented earlier in the

splittings section on search (Section VI-A) in that this algorithm is
X) considering states described by many features besides just
+ V (child) node's transform and size and that values are obtained from
childz splitting the learned regression trees. Due to the memorization oésal

For the DFT, the state already describes the immedia®f States, this algorithm is signi cantly sub-exhaustivace
children. However, the full state description of the childis during an exhaustive search the same state would appear in
not known, since it includes the grandchildren, i.e., theagy many different ruletrees.
grandchildren of the original node. Thus, for tBdT, the Now with a computed value function on all states, it is
minimum is actually taken over possible great-grandchitdr possible to generate fast ruletrees. Table XV presents our
of the given node. algorithm for generating fast ruletrees, restricting toaoy

This recursive formulation of the value function suggestsiletrees for simplicity of presentation. For each posssalt of

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 28

TABLE XVIII

children for a given node, the algorithm looks up their value
EVALUATION OF GENERATION METHOD USINGDFT RUNTIME

These values are added to the predicted performance of the
current node and compared against the value function of the
current state. If equal, we then generate the subtrees timeler

PREDICTORS FORPENTIUM.

children recursively. Again for th®FT , the algorithm needs Genebrate;j(. rulbetreie Flr;to/gelneratetcrj] rulebtree
to be modi ed to loop over the possible great-grandchildren _. nhumber IS Dbest) 1S A “o slower than bes
instead of the children Size | known ruletree known ruletree
instea =M. 212 16 14.3%
Since our regression tree models are not perfect, we may213 1 0.00/
wish to generate more than just the single ruletree with the 14 5 13.60/0
fastest predicted runtime. If a small set of ruletrees were 15 1 0'00/0
generated, we could then time all the generated ruletregs an 16 1 0'00/0
choose the one with the fastest runtime. We have implemented217 82 3.60/0
an extended version of the FastTrees algorithm that allows f 18 11 6' 0/0
a tolerance and generates all ruletrees that have within th 5%

tolerance of the predicted optimal runtime.

Tables XVI and XVII show the results of generating fast
WHT ruletrees for Pentium and for Sun respectively. To e start with an overview of the presented experiments:
evaluate our methods, we again exhaust over sub-spaces of
ruletrees known to contain fast implementations since it is
impossible to obtain runtimes for all possible ruletreesain
reasonable amount of time. In both tables, the rst column
indicates the transform size. The second column shows how
many ruletrees need to be generated before the fasteserilet
is generated. The third column indicates how much slower
the rst ruletree generated is compared to the fastestradet
Let G be the set of the rst 100 ruletrees generated by our
methods and leB be the set of the best 100 ruletrees found by
exhaustive search. The fourth column displays the number of
items in the intersection d& andB. Finally, the last column
shows the rank of the rst element iB not contained irG.

In all cases, the fastest ruletree for a giveT transform
size was generated in the rst 50 formulas produced. This is
excellent considering the huge space of possible ruletrds
the fact that this process only used runtime informatiomeggi
by timing ruletrees of siz@%®. Except for a few cases on the
Sun, the very rst ruletree generated by our method had a
runtime within 6% of the fastest runtime. Further, in all but
one case, at least 40 of the 100 fastest ruletrees known to u
were generated as one of the rst 100 ruletrees. On occasion,
the fourth fastest ruletree was not generated in the rst 100 SFIRAL to generate code.
ruletrees. The platforms we used for our experiments are shown in

Table XVII shows the results for generating faBFT Table XIX. For each platform, we provide the following: a
ruletrees on Pentium. The results are excellent with thiesas descriptive mnemonic name, the most important microarchi-
ruletree being generating usually within the rst 20 andeaft tectural information, and the compiler and compiler ageds
as the very rst ruletree. Further, the rst ruletree to baVe used DP (dynamic programming) for all searches. For
generated had a runtime always within 15% of the runtimector code we used the vector version of DP (see Section VI-
of the fastest formula. A).

In this section, we have described a method that automati-Performance spread.The rst experiment investigates the
cally generates fas/HT andDFT ruletrees. To do this, we spread in runtime as well as the spread with respect to
also presented a method that accurately predicts runtiores éther performance measures of different formulas gengrate
ruletrees. More details and results can be found in [84]-[8tby SPIRAL for the same transform on p4-3.0-lin.

In the rst example, we consider a small transform, namely
VII. EXPERIMENTAL RESULTS aDCT -2,s, for which SPIRAL reports 1,639,236,012 differ-

In this section we present a selected set of experiments amd formulas. We select a random subset of 10,000 formulas
performance benchmarks with SPIRAL's generated code. \@ad generate scalar code. By “random formula” we mean
remind the reader that in the SPIRAL lingo the expressidhat a rule is chosen randomly at each step in the formula
“completely expanded formula,” or simply “formula,” meangyeneration (note that this method is fast but selects mdstr
a transform algorithm. non-uniformly). Fig. 8(a) shows a histogram of the obtained

Performance spreadWe show the performance spread,
with respect to runtime and other measures, within the
formula space for a given transform.

Benchmarking: DFTWe benchmark the runtime of SPI-
RAL generated DFT code (including xed-point code)
against the best available libraries.

Benchmarking: other transform#/e benchmark SPIRAL
generated code for other transforms: the DCT and the
WHT.

Runtime studies of FIR lters and the DWilNe compare
different algorithmic choices for Iters and the DWT.
Platform tuning.We demonstrate the importance of plat-
form tuning, i.e., the dependency of the best algorithm
and code on the platform and the data type.

Compiler ags.We show the impact of choosing compiler
ags.

Parallel platforms.We present prototypical results with
adapting the WHT to an SMP platform.

Multiplierless codeWe show runtime experiments with
s generated multiplierless xed-point DFT code.

Runtime of code generatiome discuss the time it takes

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 29

TABLE XV
ALGORITHM FOR GENERATING FAST RULETREES

FastTrees(State)
Trees = fg
if State can be a leaf
if V(State) == PredictedPerformance(State)
Trees = f Leaf(State) g
for RightChild in PossibleRightChildren(State)
LeftChild = MatchingChild(State, RightChild)
if V(LeftChild) + V(RightChild)
+ PredictedPerformance(State) == V(State)
for RightSubtree in FastTrees(RightChild)
for LeftSubtree in FastTrees(LeftChild)
Trees = Trees [f Node(LeftSubtree, RightSubtree) g
return Trees

TABLE XVI
EVALUATION OF GENERATION METHOD USING AWHT RUNTIME PREDICTOR FOR APENTIUM.

Number of top 100

Generated ruletree First generated ruletreg best known ruletrees in First best known rule-

number X is best| is X % slower than best top 100 generated rule- tree not in top 100 gent
Size | known ruletree known ruletree trees erated ruletrees
213 5 3.4% 69 19
214 4 3.0% 63 19
215 3 2.1% 68 16
216 4 1.7% 63 18
27 5 0.1% 54 36
218 4 2.0% 60 24
219 1 0.0% 44 36
220 4 1.7% 64 24

TABLE XVII
EVALUATION OF GENERATION METHOD USING AWHT RUNTIME PREDICTOR FOR ASUN.
Number of top 100

Generated ruletree First generated ruletreg best known ruletrees in First best known rule

number X is best| is X % slower than best top 100 generated rule- tree not in top 100 gent
Size | known ruletree known ruletree trees erated ruletrees
283 14 77.7% 20 6
214 20 12.8% 70 24
215 1 0.0% 68 38
216 2 4.3% 70 20
217 7 18.0% 47 10
218 38 5.9% 46 7
219 17 3.3% 46 4
220 47 1.4% 52 4

runtimes, and Fig. 8(b) shows a histogram of the number gfpread to about 25%. This means that different formulas are
assembly instructions in the compiled C code. The spreaddifferently well suited for FMA architectures. In Fig. 8(eke
runtimes is approximately a factor of 2, and the spread pfot runtime versus arithmetic cost. Surprisingly, theriatas

the number of instructions is about 1.5, whereas the spreaith lowest arithmetic cost yield both slowest and fastest
in arithmetic cost is less than 10% as shown in Fig. 8(auntimes, which implies that arithmetic cost is not a preatic
The large spread in runtime and assembly instruction casgntof runtime in this case. Finally, Fig. 8(f) shows the accyrac
surprising given that each implementation is high qualdge spread when the constants are cut to 8 bits; it is about arfacto
that underwent SPL and C compiler optimizations. Also, fasf 10 with most formulas clustered within a factor of 2.
transforms of this size and on this platform no cache problem |, the second example, we show a runtime histogram

arise. Conversion into FMA code (explained in Section IV-Ghr 20,000 random SPIRAL generated formulas for a large
reduces the operations count (see Fig. 8(d)), but incredsesransform, namelyDFT 5, using only the Cooley-Tukey

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 30

TABLE XIX
PLATFORMS USED FOR EXPERIMENTS“HT” MEANS HYPER THREADING L1 CACHE REFERS TO THE DATA CACHE THE COMPILERS ARE ICC (INTEL
C++ COMPILER); GCC (GNU C COMPILER); CCR (IBM XL C COMPILER, SMPMODE).

[name [CPU [GHz] 0SS] caches | compiler | compiler ags]
p4-3.0-win Pentium 4 (HT) | 3.0 WinXP 8KB L1, 512KB L2 icc 8.0 IQxKW /G7 /O3
p4-3.0-lin Pentium 4 (HT) | 3.0 Linux 8KB L1, 512KB L2 | gcc 3.2.1 —06 —fomit-frame-pointer

—malign-double —fstrict-aliasing
—mcpu=pentiumpro

p4-2.53-win Pentium 4 2.53 | Win 2000 | 8KB L1, 512KB L2 icc 6.0 /IQxW /G7 /03
p3-1.0-win Pentium I11 1.0 | Win 2000 | 16KB L1, 256 KB L2 | icc 6.0 /QXW /G6 /O3
xeon-1.7-lin Xeon 1.7 Linux 8KB L1, 256 KB L2 | gcc 3.2.1 —0O6 —fomit-frame-pointer

—malign-double —fstrict-aliasing
—mcpu=pentiumpro

xp-1.73-win AthlonXP 2100+| 1.73 | Win 2000 | 64KB L1, 256 KB L2 | icc 6.0 /QxXW /G6 /03
ibms80-0.45-aix| PowerPC RS64C 0.45 AIX 128KB L1, 8MB L2 | ccr 5.0.5 -gsmp=omp -O5 -q64
(12 processors)
ipag-0.4-lin XScale PXA250| 0.4 Linux 32+2KB L1 gcc 3.3.2 -O1 -fomit-frame-pointer
(IPAQ HP 3950) -fstrict-aliasing

-march=armv5te -mtune=xscale

1000 1000 . . . 5000
» 800 800f » 4000F
£ 3 £
£ o £
£ £ £
S 600 5600 §,3000
© 5 ©
G 5 G
5 400 S400f %5 2000F
o E o
€ = €
> p=}
< 200 200 = 1000} |
0 . L1 | |
0 1 2 3 4 5 6 %50 300 350 400 450 %50 290 300 310 320
runtime [s] vin’ number of assembly instructions in compiled C code arithmetic cost [# ops]
(a) runtime (b) assembly instructions (c) arithmetic cost
-7
3000 : : : : 6210 : ‘ ‘ 3500
2500 . 3000
2 il : 2
2500
£ 2000f 7 T £
5 24 il ’ ; 52000
S 1500 = Pt ; ! ®
2 24 i iy 1500
81000 | e iy k-
i
5 N E 1000
c oL c
500 500
I||| 1 III|I||I.|I|| I I | I X ; ; ; 0 1 X I_
%0 230 240 250 260 380 290 300 310 320 0 002 004 006 008 01 012
arithmetic cost including fma [#ops] arithmetic cost accuracy when cut to 8 bits
(d) FMA cost (e) runtime versus arithmetic cost (f) accuracy

Fig. 8. Histograms of various data for 10,000 random fast féeséor aDCT -23». From left to right: a) runtime; b) number of assembly instroiesi in
the compiled C code; c) arithmetic cost; d) FMA optimized arittimeost; e) runtime versus arithmetic cost. f) accuracy wha&ndown to 8-bit xed point;
Platform: p4-3.0-lin.

rule (20) on p4-3.0-win. The formulas are implemented idifferently well suited to vectorization, the performarafeall
scalar code (see Fig. 9(a)) and in vector code (see Fig..9(@sted20; 000 formulas, including the slowest, is improved by
The spread of runtimes in both cases is about a factor of B, wPIRAL's vectorization.

most formulas within a factor of 3. The best 30% formulas

are scarce. The plots show that, even after the extensive codConclusion: performance spreadilthough different for-
optimizations performed by SPIRAL, the runtime performand”nmas for one transform have a similar operation count (see
of the implementation is still critically dependent on th&lg. 8(c)), their scalar or vector code implementations in
chosen formula. Further, histogram Fig. 9(b) looks very mucSPIRAL have a signi cant spread in runtime (Figs. 8(a) and
like a translation to the left (shorter runtime) of the higtam 9)- This makes a strong case for the need of tuning imple-
Fig. 9(a). This demonstrates that the vectorization amproamentations to platforms, including proper algorithm stdet

in SPIRAL is quite general: although different formulas ar@S discussed in Section Il. The same conclusion applies to
other performance costs as illustrated by the signi canéag

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 31

300 ‘ ‘ ‘ ‘ ‘ ‘ performance. Solid lines correspond to SPIRAL generated
code, dotted lines to the Intel libraries, and dashed lines
to FFTW and other libraries. We focus the discussion on
Fig. 10(a), starting from the bottom up. The lowest line is
the GNU library, which is a reimplementation of FFTPACK,
a library that was frequently used a decade ago. The library
is a reasonable C implementation but without any adaptation
mechanism or use of vector instructions. The next two limes a
FFTW 3.0.1 and SPIRAL generated scalar C code, which are
about equal in performance. Considerably higher perfooman
is achievable only by using vector instructions. The nex¢ li
shows the speed-up obtained through compiler vectorizatio
as enabled by a ag, used in tandem with SPIRAL. This is a

2501

N

o

o
T

number of algorithms
= [
o a1
o o
:

oo ooz 003 il . Sos 006 fajr evaluation of compiler vectorizc_ation as teeARCH block
runtime [s] will nd those formulas the compiler can handle best. The
(a) scalar code (double precision) speed-up is about 50%, obtained with no additional effort.
350 ‘ ‘ ‘ We note that FFTW cannot be compiler vectorized due to its

complex infrastructure. This 50% speed-up is, howevery onl

a fraction of the speed-up achieved by the best possiblewect

code, which is about a factor of 2 faster, or a factor of 3 over
the best scalar code. This performance is achieved by MKL,
IPP, FFTW, and SPIRAL (the top four lines). We speculate on
the reason for their relative performance:

For small sizes, within L1 cache, SPIRAL code is best by
a margin, most likely due to the combination of algorithm
search, code level optimizations, and the simplest code
structure.

Outside L1 but inside L2 cache the Intel libraries are
fastest, most likely since the code is inplace and possi-
bly due to optimizations that require microarchitectural

number of algorithms

0 0.005 0.01 0.015 0.02

runtime [s] information not freely available.
(b) SSE vector code (single precision) For larger sizes, FFTW seems to hold up the best, due
Fig. 9. Histogram of 20,000 random SPIRAL generated scafar 3SE to a number of optimization speci cally introduced for
vector implementations for BFT of size 216. Platform: p4-3.0-win. large sizes in FFTW 3.0 [18].

Similar observations can be made for double precision code,
see Fig. 10(b).

in Fig. 8(d) for the FMA optimized arithmetic cost and in Regarding cache effects, we mention that for single pre-
Fig. 8(f) for the accuracy performance cost. cision, approximately 32 bytes per complex vector entry are

Benchmarking: DFT. We rst consider benchmarks of needed (input vector, output vector, constants and spktep
the code generated by SPIRAL for tidT on p4-3.0-win while for double precision 64 bytes are needed. Taking into
against the best available DFT libraries including MKL 6ritla account the Pentium 4's 8 KB of L1 data cache, this implies
IPP 4.0 (both Intel's vendor libraries), and FFTW 3.0.1. Fdhat FFTs of size 256 (single precision) and 128 (double
most other transforms in SPIRAL, there are no such readiyecision) can be computed completely within L1 data cache.
available high quality implementations. Similarly, the 512 KB L2 cache translates into size@4f (for

Fig. 10 shows the results for th®FT ,.—-DFT ,s. Single precision) an@!® (for double precision), respectively.
The performance is given in pseudo MFLOPS computed Finally, we also consider implementations of t&T on
as 5n log,(n)/runtime, which is somewhat larger than reaipag-0.4-lin, which provides only xed point arithmetic. &V
MFLOPS, but preserves the runtime relations. This is ineompare the performance of SPIRAL's generated code with
portant for comparison since different implementationsymahe IPP vendor library code for this platform. For most sjzes
have slightly different arithmetic cost. (Note that for ather IPP fares considerably worse, see Fig. 11, which shows the
transforms we use real MFLOPS.) The peak performanteseudo) MFLOPS achieved across a rang®eT sizes:2*
of p4-3.0-win is, for scalar code, 3 GFLOPS (single anth 2*2.
double precision), and for vector code 12 GFLOPS (single Conclusion: DFT benchmarking-or the DFT, SPIRAL
precision) and 6 GFLOPS (double precision). TRET is scalar code is as competitive as the best code available. On
computed out of place with the exception of the IPP cod®l-3.0-win, SPIRAL automatically generated vector code is
and the Numerical Recipes code [87], which are computéabster by a factor oR to 3 compared to the scalar code, on
inplace. In these gures, higher numbers correspond tceebetpar with IPP and MKL, Intel's hand-tuned vendor libraries.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

Fig. 10.

8000

7000

6000

5000

4000

performance (pseudo MFLOPS)

3000} !
‘I

‘‘‘‘‘

botifoes

IPP 4.0 (inplace)

Intel MKL 6.1

FFTW 3.0.1 SSE
SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL

FFTW 3.0.1

GNU sci. lib. (inplace)

1000 _A__‘—-""-_‘--A--‘--*--"--A‘—A___‘F__
O | | | | |
4 6 8 10 12 14 16
size (Iogzn)
(a) single precision
4500 T

performance (pseudo MFLOPS)

Thegifoes

IPP 4.0 (inplace)
Intel MKL 6.1

+ FFTW 3.0.1 SSE

SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL

+ FFTW 3.0.1

GNU sci. lib. (inplace)
Num. Rec. (inplace)

1000
A AR AEE P NI —
500 ' ks SOl S
-‘\
~
0 | | | | |
4 6 8 10 12 14 16

size (Iogzn)

(b) double precision

FFT performance comparison (in pseudo MFLOPS) of &t available libraries. Platform: p4-3.0-win.

32

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 33

140

blocking rule are enabled (triangles and bullets, respelgi.

We consider now Fig. 14(b), which compares the effect of
different rules on th©WT runtime performance. We choose
the variant known as Daubechies 9-7 wavelet, enforce three
different rules for the top-level expansion, with Mallatisle
being the baseline (horizontal line &), and compare the
generated codes in each case. The polyphase rule (squares) i
. consistently inferior, whereas the lifting steps ruleafigles)

"'»} improves over Mallat's rule for input sizes betwegh and

A 2'2_ Beyond this size, Mallat's rule is clearly best as top-leve

S] rule.

& ‘ ‘ ‘ ‘ Platform tuning. We now investigate the impact of per-

10 12 formance tuning (see the table and the plot in Fig. 15). The

table shows the (upper part of the) best ruletrees found for a

Fig. 11. Performance of SPIRAL generated xed-pdDfT code for sizes DFT of SI_Ze 21_0 using only the COOI.eY'TUKey rule (_20)’ .fOI’

21212 on IPAQ vs. Intel IPP 3.0. Platform: ipag-0.4-lin. p4-2.53-win (single and double precision), p3-1.0-wimge
precision), and xp-1.73-win (single precision). Each naue
the trees is labeled with the exponent of tBET size at

On ipag-0.4-lin, SPIRAL generated code can be as much tags node; for example, the root node in all trees is labeled

4 times faster than IPP's code. by 10, the exponent of the size of the transfo2d?. Most of

Benchmarking: other transforms. We compare IPP to the 12 ruletrees in this table are different from each other,
SPIRAL on p4-3.0-win for the DCT, type 2, in Fig. 12(a). Bottmeaning that SPIRAL nds different trees when searching
for single and double precisions, the SPIRAL code is aboutf@r the best tuned formula for a given machine. Particularly
factor of 2 faster than the vendor library code, achieving uporth noting is the difference between the balanced rudstre
to 1500 MFLOPS (scalar code). found by SPIRAL for p3-1.0-win and xp-1.73-win, and the

Figs. 12(b) and 12(c) study the performance of the counbalanced ruletrees found for p4-2.53-win.
responding 2D-DCT, which has the tensor product structureThe plot on the right of Fig. 15 further explores the
(19) that enables SPIRAL vectorization. Again we compagdfect of tuning the implementation @FT 5 : how does an
generated scalar code, compiler vectorized code, and SlPIRimpIementatiorP(P 1) tuned to a given platforn; perform
vectorized code. Compiler vectorization fails for singteg- on another target platforr®,? In particular, isP(P;) still
sion, i.e., SSE (Fig. 12(b)), but yields a speed-up for deubiuned to the target platforn®,? The answer is no as we
precision, i.e., SSE2 (Fig. 12(c)). SPIRAL generated vectexplain next.

T T
A Intel IPP
—8— SPIRAL

1201

1001

801

601

pseudo MFLOPS

40+

6
Iogz(size)

sizes. For SSE, up to 4500 MFLOPS and up to a factor oft@st code for ve different combinations of platforms andada
speed-up over scalar code are achieved. types: p4-2.53-win SSE, p4-2.53-win SSE2, xp-1.73-win SSE
We consider now th&HT , whose formulas have the sim-p3-1.0-win SSE, and p4-2.53-win oat. Then, we generate SSE
plest structure among all trigonometric transforms. Fig(a) code for each of the obtained formulas and run it on p4-2.53-
considers single precision and Fig. 13(b) double precisigvin. The slowdown factor compared to the code tuned to p4-
implementations, respectively. These gures show thaajrag 2.53-win SSE is shown in the plot in Fig. 15 (i.e., higher is
vectorization by SPIRAL produces efcient code, up to avorse in this plot).
factor of 2.5 and 1.5 faster than scalar code for single andFirst, we observe that, as expected, the best code is the one
double precision, respectively. Interestingly, vectatian of tuned for p4-2.53-win SSE (bottom line equal to 1). Beyond
the SPIRAL code by the compiler is in this case also succe$Bat, we focus on two special cases:
ful, with gains that are comparable to the gains achieved by Same platform, different data typ&he best algorithm

SPIRAL vectorization. generated for p4-2.53-win SSE2, when implemented in

Runtime studies of FIR Iters and the DWT. Fig. 14(a) SSE, performs up to 320% slower than the tuned im-
compares different SPIRAL generated scalar implemenmtstio plementation for p4-2.53-win SSE. The reason for this
of an FIR lter with 16 taps and input sizes varying in large gap is the different vector length of SSE2 and

the range2'—2%° on xeon-1.7-lin. The plot shows runtimes SSE (2 versus 4), which requires very different algorithm
normalized by the runtime of a base method. The base method structures.

is a straightforward implementation of the Iter transform Same data type, different platforr@ode generated for
using overlap-add with block size 1; its performance is give p3-1.0-win SSE and run on the binary compatible p4-
by the top horizontal line at 1 and not shown. In this gure, 2.53-win SSE performs up to 50% slower than the SSE
lower is better (meaning faster than the base method). The code tuned for p4-2.53-win. This is a very good example
dashed line (squares) shows the relative runtime if only the of the loss in performance when porting code to newer
overlap-add rule with arbitrary block sizes is enabled—agai generation platforms. SPIRAL regenerates the code and
of about 85% over the base method. Further gains of 10— overcomes this problem.

20% are achieved if in addition the overlap-save rule and theCompiler ags. In all prior experiments we have always

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 34

1500 2600

4500

= SPIRAL
~¥- SPIRAL vect. comp.
-8 SPIRAL SSE2

4000f 2400r

3500} 22001

10001 20001

30001

[
4 14 Q. 1800F
S S 2500t = SPIRAL S}
[o -¥- SPIRAL vect. comp. [y L
= = —o— SPIRAL SSE S 1600
2000F
500 1400F
e —A- SPIRAL (double) 15000 Y
1 = IPP 4.0 (double) 1200
3 -¥- SPIRAL (float) X
I B ‘@ IPP 4.0 (float) 1000 10001
A
% 25 35 4 45 5.5 6 500, 25 35 4 45 55 6 8% 2.5 35 4 45 5 5.5 6
k= Iogz(gze) k=|ogz(5|ze) k:|0g2(5|ze)
(@) IDDCT vs. IPP (b) 2DDCT oat (c) 2D DCT double

Fig. 12. (a) Comparing the performance (in MFLOPS) of SPIRAhagated code and IPP for@CT -2 of size2X, 2 k 6 for single and double
precision. (b) and (c) 2IDCT oat and double precision: scalar SPIRAL code, scalar SRIRAde compiler vectorized, and SPIRAL vector code. Platform:
p4-3.0-win.

4000
35001
3000+
2500+
0
& 2000f
= Tk
T 2
15004 .- R
e . i
10004 =TTy * -% - SPIRAL g
A SPIRAL (comp. vect.) 400 | A SPIRAL (comp. vect.) (-
500/ | —e— SPIRAL SSE 7 200l L= SPIRAL SSEZ]
0 L L L L L 0 L L L L L
4 6 8 10 12 14 4 6 8 10 12 14
Id(size) Id(size)
(a) single precision (b) double precision

Fig. 13. WHT performance (in MFLOPS) of SPIRAL generated scalar code, dempectorized code, and vector code for (a) single and ()bie
precision. Platform: p4-3.0-win.

s 0.3 T T . -83.5
2 -m- QOverlap-Add Rule g —e— Mallat Rule
T A" + Overlap-Save Rule £ = Polyphase Rule 4
€ 025t ; . 3t oy , X]
e —e— + Blocking Rule § -v- Lifting Rule AN
’ -

8 < y o5 v
() < L n ‘. B
£ 02f : . .| *52.5 ll L X RERr
8 E .
2] L L T S | g !
2 0.15 A A A o 2r w 1
2 1S
pud Y =
£ E
2 B
o 01r . 81.
£ E
€ €
> >
= 0.05F i = — o oo
2 2
8 8
[[
= 0 I | I 1 1 L ; L =05 | | | | | | | | |

2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 20

Iogz(input size) Iogz(input size)
(a) FIR lter (b) DWT

Fig. 14. (a) Runtime comparison of generated lter code (16s)afound with increasing sets of rules enabled, normalizedthey straightforward
implementation. (b) Runtime comparison of the best found DWT impletation for three different choices of the uppermost rutemalized by Mallat's
rule. Platform: xeon-1.7-lin.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 35

45 : : : : : : ‘
P4 P4 Pl Athlon XP -v- Eent?um 21 ggEz
. . . L —=— Pentium I
(sll?gle) (diuble) (single) (single) 4 “w Athlon XP SSE
10 10 -4 Pentium Ill SSE
scalar code 2/\5 z/\s 4/\6 4/\6 5 35 —e— Pentium 4 float ||
/\ /\ /N /N /N /N e
2 6 2 6 2 22 4 2 23 = < 3t
10 10 10 10 =
scalar code PN /\ N N S5
il t. 4 6 2 8 6 4 4 6 =~
compriervect- - A A A AN ANNAN ¥
2 2 4 2 2 6 2 4 2 2 2 2 4 2 2+
10 10 A R o * >,
10 10 . e e = A
vector code Ay N N N 15 o AT S N
single = SSE /\ /N 5 5 5 5 (R T A
double = SSE2 107 107 /\ /\ /\ /_ l" - x N o N o -
/\ /N\ 2oz 2oz 5 6 7 8 9 10 11 12 13
2 5 2 5 Iog2(5|ze)
Fig. 15. Left: The best foun®FT formulas forn = 219, represented as breakdown trees; right: crosstiming of DESt ruletree, size®®;:::; 213,

generated for various platforms, implemented and measured miufe4 using SSE. Platforms: p4-2.53-win, p3-1.0-win, Xp3twin.

used a prede ned and xed combination of C compiler ags-O1 -march=pentium4,” and produce a runtime histogram
to compile the SPIRAL generated code (see Table XIXjor the DCT -23, implementation generated in the previous
Assessing the effects on performance of compiler optionsdgperiment. The spread in runtimes of more than a factor of 3
dif cult, because: 1) there are many different options (thdemonstrates the big impact of the choice of compiler ags.
extreme case is gcc 3.3 with a total of more than 500 differefihe best compiler options in this histogram produce a rumtim
documented ags, more than 60 of which are related i@n sec.) of aboutl:8 10 7, whereas the best ags found by
optimization); 2) different options can interact and/onéct ACOVEA in the previous experiment produdes7 10 .

with each other in non-trivial ways; 3) the best options ligua Parallel platforms. Section IV-F showed how SPIRAL
depend on the program being compiled. In SPIRAL, we haesuld be used to generate parallel code and showed a family
not yet addressed this problem; in fact, for gcc, SPIRAL use$ shared-memory and distributed-memory parallel albori

the same optimization options as FFTW by default. for the WHT. Figure 17 considers the WHT siz&’s:::; 2%

In the absence of clear guidelines, choosing the right setarfid shows the speedup obtained with the generated routines.
compiler ags from the large set of possibilities poses aeot Speedup is computed for each number of threads as the ratio of
optimization problem that can be solved by a heuristic seard¢he best sequential algorithm/implementation found caoegba
ACOVEA (Analysis of Compiler Options via Evolutionaryto the best parallel algorithm/implementation found. Wedus
Algorithm) [88] is an open-source project that uses an evdynamic programming in each case to automatically optimize
lutionary algorithm to nd the best compiler options for agranularity, load balance, cache utilization, and the céigle
given C program. of appropriately optimized sequential code. The platfosna i

We apply ACOVEA to SPIRAL generated code for thel2 processor shared-memory multiprocessor platform iBms8

generate the best (scalar) implementations using the ltlefau Figure 17 shows that, for up to 10 threads, nearly linear
con guration (denoted by “gcc -O3” in the plot; the com-speed-up is obtained for large transform size and parzdleli
plete set of ags is in Table XIX). Second, we retime thdion is found to be bene cial for transforms as small 2i8.
obtained implementations with a lower level of optimizatio The performance reported here is better than that repanted i
(denoted by “gcc -O1,” in reality “-O1 -fomit-frame-pointe [59], due to searching through additional schedules anugusi
-malign-double -march=pentium4”), and also with the Intdbop interleaving [23] to reduce cache misses and falserghar
Compiler 8.0 (denoted by “icc /O3,” the options were “/OA straightforward parallelization method leads to far iide
Itpp7”). Finally, we run the ACOVEA evolutionary search foperformance. For example, for 10 threads, only a factor of
gcc compiler ags for each implementation. The results ambout 3 is achieved this way; a parallelizing compiler fares
shown in Fig. 16(a), which displays the speed-up compareden worse than that. These results are not shown, please ref
to “gcc -O1” (higher is better) for each of the 6 DCT codedo [59] for more details. In summary, even for as simple a
All sets of ags found by ACOVEA include at least “-O1 - transform as the WHT, search through a relevant algorithm
march=pentium4.” This justi es our choice of “gcc -O1” agth space is crucial to obtain the optimal performance.
baseline. Note that “gcc -O3” is always slower than “gcc *O1, Multiplierless code. SPIRAL can generate multiplierless
which means that some of the more advanced optimizationsde (see Section V). This is important for platforms that
can make the code slower. In summary, ACOVEA gives dBature a xed point processor such as the IPAQ and showcases
additional speedup ranging from 8% to 15% for the relevaat unique advantage of SPIRAL, as we are not aware of
larger DCT sizes (8) in this experiment. other multiplierless high performance libraries. In a rault
The plot in Fig. 16(b) was also produced with the helplierless implementation, a lower accuracy approximatbn
of ACOVEA. Instead of performing an evolutionary searctthe constants leads to fewer additions and, thus, potbntial
we create an initial random population of 2000 compilefaster runtime. This effect is shown in Fig. 18 fBFT s of
ag combinations, each of them again including at leastarious sizes3 n 64, implemented in each case using

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 36

80 % ‘
—e— gcc-O1
o gcc-O3
60 % —*— gcc/acovea ||
-v - icc /03
a 40%
Q
8
o 20 Yoy
9]
>
° 0,
=2 0
=l
(9]
[}
& -20% |-

-40% |

-60% 1 1 1 1
1 2 3 4 5

Iogz(size)

(a) improvement from compiler options search BET -2 of sizes

2L

number of compiler option combinations

runtime [s] x 10

7

(b) histogram of 2000 random compiler ags combinations for

the best found implementation f@CT -235.

Fig. 16. Analysis of the impact of the choice of compiler agsings

ACOVEA.

Jany
o

sequential WHT
+ —— 2threads
—=— 4 threads
r —=— 6 threads
—— 8 threads
[—— 10 threads

speedup

P N Wb OO N 0O ©
T

=

WHT size log(N)

Fig. 17. Speed-up for parallel code generatediHT .k, 1
for up to 10 threads. Platform: ibms80-0.45-aix with 12 preoes.

2 4 6 8 10 12 14 16 18 20 22 24

k

24,

-5
x 10
25—
Il 8 bit
[14 bit
Bl mults

15¢

runtime [s]

0.5r

O????Ug"dﬂﬂnﬂﬂﬂﬂd

9 10 11 12 13 14 15 16 18 20 30 32 36 64
size

Fig. 18. Runtime performance (lower is better) of vari@isT s of sizes
between 3 and 64. For each size, the rightmost, middle, amddsftbar shows
(xed point) code using multiplications and 14-bit and 8-hitultiplierless
code, respectively. Platform: ipag-0.4-lin.

either multiplications or additions and shifts with the stants
approximated to 14 or 8 hits, respectively. Note that theecod
has to be unrolled to allow for this technique. The gure seow
an improvement of up to 10% and 20%, respectively, for the
14-bit and 8-bit constant multiplierless code.

Runtime of code generation. SPIRAL requires only
compile-time adaptation; thus, at runtime, no time is spent
in further optimizing the code. Depending on the optimizati
strategy, the problem size, and the timer used, the optiioiza
may take from the order of seconds to the order of hours.
For instance, the generation of a scalar DFT library for two-
powers up t02?° is done in 20-30 minutes on a Pentium 4,
while the corresponding vector code generation takes on the
order of hours. Problem sizes around 64 are optimized within
a few minutes. Note that SPIRAL generates code entirely from
scratch, i.e., no code or code fragments for any transfoam ar
already pregenerated or handcoded in SPIRAL. In this réspec
SPIRAL is similar to ATLAS with roughly similar code
generation times. Compared to FFTW, SPIRAL needs longer
to produce optimized code. However, in FFTW, real code
generation (i.e., from scratch) is done only for small tfarma
sizes and for unrolled code. These codelets (in FFTW lingo)
are pregenerated and distributed with the package. Further
the codelet generation is deterministic, i.e., producesstme
result independently of the machine. The optimization for
larger FFT sizes in FFTW is done at runtime by determining,
through dynamic programming, the best recursion strategy
among those supported by FFTW. The available recursions
are built into the rather complex infra-structure of FFTW.
For example, for a one-dimensional DFT of composite size
and in SPIRAL lingo, these recursion strategies are all the
right-most ruletrees based on the Cooley-Tukey breakdown
rule (20), where the left leaf is a codelet. Restricting tHeTD
computation to this restricted class of algorithms is a sleni
based on the experience of the FFTW developers. In SPIRAL,
the candidate algorithms are deliberately as little cairstd
as possible, leaving the selection entirely to the system.

Conclusions.We draw the following main conclusions from

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 37

our experiments: ongoing research. Once this is achieved, our goal is to

For any given transform, even for a small size, there
is a large number of alternative formulas with a large
spread in code quality, even after applying various code
optimizations (Figs. 8 and 9).

The difference in runtime between a “reasonable” im-
plementation and the best possible can be an order of
magnitude (e.g., a factor of 10 in Fig. 10(a) between the
GNU library and the IPP/FFTW/SPIRAL code).
Compiler vectorization is limited to code of very simple
structure (e.g., Fig. 13), but fails to produce competitive
code for more complex data ows, e.g., Figs. 10, 12(b),
and 12(c). SPIRAL overcomes this problem through
manipulations at the mathematical formula level; all other
vector libraries involve hand coding.

The performance of SPIRAL generated code is compa-
rable with the performance of the best available library
code.

generate entire packages, similar to FFTW for the DFT,
on demand from scratch.

The current vectorization framework can handle a large
class of transforms, but only those whose algorithms are
built from tensor products to a large extent. In this case,
as we have shown, a small set of manipulation rules is
suf cient to produce good code. We are currently working
on extending the class of vectorizable transforms, e.g., to
include large DCTs and wavelets. To achieve this, we
will identify the necessary formula manipulation rules
and include them into SPIRAL. With a large manipulation
rule database ensuring convergence and uniqueness of the
result (con uence) also becomes a problem. To ensure
these properties, we will need a more rigorous approach
based on the theory of rewriting systems [42].

Similarly, and with an analogous strategy, we are in the
process of extending SPIRAL's code generation capabili-

ties for parallel platforms. These extensions are curyentl

still in the prototype stage.

Besides vector code, current platforms provide other
potentially performance enhancing features, such as hy-
perthreading (Pentium 4) or prefetch instructions. Hy-

perthreading can be exploited by generating code with
explicit threads, which was the previous goal; we aim

to explicitly generate prefetch instructions through a

combination of formula manipulation and loop analysis

VIII. L IMITATIONS OF SPIRAL, ONGOING AND FUTURE
WORK

SPIRAL is an ongoing project and continues to increase in
scope with respect to the transforms included, the types of
code generated, and the optimization strategies includéd.
give a brief overview of the limitations of the current SPIRA
system and the ongoing and planned future work to resolve
them.

As we explained before, SPIRAL is currently restricted
to discrete linear signal transforms. As a longer term
effort we just started to research the applicability of
SPIRAL-like approaches to other classes of mathematical
algorithms from signal processing, communication, and
cryptography. Clearly, the current system makes heavy
use of the particular structure of transform algorithms
in all of its components. However, most mathemati-
cal algorithms do possess structure, which, at least in
principle, could be exploited to develop a SPIRAL like
code generator following the approach in Section II-A.
Questions that need to be answered for a given algorithm
domain then include:

— How to develop a declarative structural representation
of the relevant algorithms?

— How to generate alternative algorithms and how to
translate these algorithms into code?

— How to formalize algorithm level optimizations as
rewriting rules?

— How to search the algorithm space with reasonable
effort?

Currently, SPIRAL can only generate code for one spe-
cic instance of a transform, e.g., for a transform of
xed size. This is desirable in applications where only
a few sizes are needed which can be generated and
bundled into a lightweight library. For applications with
frequently changing input size, a package is preferable,
which implements a transform for all, or a large number
of sizes. To achieve this, recursive code needs to be
generated that represents the breakdown rules, which is

on the code level [90].

For some applications it is desirable to compute a
transform inplace, i.e., with the input and output vector
residing in the same memory location. SPIRAL currently
only generates out-of-place code. We aim to generate
inplace code directly after a formula level only analysis.
SPIRAL can generate xed point code, but the decision
for the chosen range and precision, i.e., the xed-point
format, has to be provided by the user. Clearly, the
necessary range depends on the range of the input values.
We are currently developing a backend [91] that chooses
the optimal xed point format once the input range is
speci ed. The format can be chosen globally, or locally
for each temporary variable to enhance precision.

To date the learning in SPIRAL is restricted to the
selection of WHT ruletrees and DFT ruletrees based on
the Cooley-Tukey rule. An important direction in our
research is to extend the learning framework to learn and
control a broader scope of transforms and to encompass
more degrees of freedoms in the code generation.

For many transforms, in particular the DFT, there are
many different variants that differ only by the chosen
scaling or assumptions on input properties such as sym-
metries. Most packages provide only a small number of
these variants due to the considerable hand-coding effort.
In SPIRAL many of these variants can be handled by just
including the speci cation and one or several rules. We
are in the process of extending SPIRAL in this direction.
We are just in the process of nishing an improved
redesign of the SPIRAL system with considerably in-
creased modularity to enable all the above extensions with

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

38

reasonable effort. The possibility of extending SPIRALDennis Healy, Doug Cochran, and more recently with Fred-
e.g., by inserting a backend code optimization module, erika Darema, during the development of SPIRAL.

by connecting it to an architecture simulator, has led to The acronym SPIRAL means Signal Processing Implemen-
its occasional use in class projects in algorithm, compilgation Research for Adaptable Libraries. As a tribute to-Aus
and architecture courses. The vertical integration of diinder, the SPIRAL team decided early on that SPIRAL should

stages of software development in SPIRAL allows thiékewise stand for (in reverse) Louis Auslander's Remat&ab
students to study the complex interaction of algorithmisleas for Processing Signals.

mathematics, compiler technology, and microarchitecture
at hand of an important class of applications.
Finally, as a longer term research effort and leaving the
scope of this paper and this special issue, we have startEd
to develop a SPIRAL-like generator for hardware designs
of transforms for FPGAs or ASICs.
[2]
IX. CONCLUSIONS
We presented SPIRAL, a code generation system for DSE)
transforms. Like a human expert in both DSP mathematics
and code tuning, SPIRAL autonomously explores algorithm
. ; . . - 4]
and implementation choices, optimizes at the algorithmit¢ a
at the code level, and exploits platform-specic features t

create the best implementation for a given computer. Fyrth 5]

REFERENCES

K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzan,
D. Padua, K. Pingali, P. Stodghill, and P. Wu, “A comparisorewipiri-
cal and model-driven optimization,” iRroc. ACM SIGPLAN conference
on Programming Language Design and Implementation (PLi@l). 38,
no. 5. ACM Press, 2003.

T. Kisuki, P. Knijnenburg, and M. O'Boyle, “Combined set@®n of tile
sizes and unroll factors using iterative compilation,”Rnoc. Parallel
Architectures and Compilation Techniques (PACAQ00, pp. 237-246.
W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, “Automatic pmagn trans-
formations for virtual memory computers,” Proc. National Computer
Conference1979, pp. 969-974.

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wplfe
“Dependence graphs and compiler optimizations,”Proc. 8th ACM
SIGPLAN-SIGACT Symp. Principles of Programming LanguagesM
Press, 1981, pp. 207-218.

F. Allen and J. Cocke, “A catalogue of optimizing transfations,” in

SPIRAL can be extended and adapted to generate code for NneW pesign and Optimization of CompilerR. Rustin, Ed. Prentice-Hall,

transforms, to exploit platform-speci ¢ special instriacts,

and to optimize for various performance metrics. We havé]
shown that SPIRAL generated code can compete with, and
sometimes even outperform the best available hand-writtdi]
code. SPIRAL's approach provides performance portability
across platforms and facilitates porting the entire tramsf g
domain across time.

The main ideas behind SPIRAL are to formulate thd®!
problem of code generation and tuning of transforms as fag
optimization problem over a relevant set of implementation
The implementation set is structured using a domain-speci[11]
language that allows the computer representation, geoeyat
and optimization of algorithms and corresponding code. The
platform-speci ¢ optimization is solved through an empai
feedback-driven exploration of the algorithm and impletaen |15,
tion space. The exploration is guided by search and learning
methods that exploit the structure of the domain.

While the current version of SPIRAL is restricted tq;3
transforms, we believe that its framework is more generally
applicable and may provide ideas how to create the next
generation of more “intelligent” software tools that pusie t |14
limits of automation far beyond of what is currently possibl
and that may, at some point in the future, free humans from
programming numerical kernels altogether. [15]

X. ACKNOWLEDGMENTS [16]

This work was supported by DARPA through research grant
DABT63-98-1-0004 administered by the Army Directorate
of Contracting and by NSF through award numbers ACR-
0234293, ITR/NGS-0325687, and SYS-310941.

Moura, Johnson, Veloso, and Johnson recognize their eggl
discussions with Louis Auslander on the automatic imple-
mentation of the DFT and other transforms. They and Padua
acknowledge Anna Tsao for teaming them up. Further, the
authors acknowledge the many interactions with Anna Tsao,

1972, pp. 1-30.

M. E. Wolf and M. S. Lam, “A data locality optimizing algohin,” in
Proc. ACM SIGPLAN conference on Programming Language Desig
and Implementation (PLDI) ACM Press, 1991, pp. 30—44.

I. Kodukula, N. Ahmed, and K. Pingali, “Data-centric meiivel block-
ing,” in Proc. ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI) ACM Press, 1997, pp. 346-357.
K. Kennedy and R. AllenOptimizing Compilers for Modern Architec-
tures: A Dependence-based ApproactMorgan Kaufmann, 2001.

R. Metzger and Z. WerAutomatic Algorithm Recognition and Replace-
ment: A New Approach to Program OptimizationMIT Press, 2000.

D. Barthou, P. Feautrier, and X. Redon, “On the equivade of two
systems of af ne recurrence equations,”Bmoc. Euro-Par ser. LNCS,
vol. 2400. Springer, 2002, pp. 309-313.

R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated ieog
optimization of software and the ATLAS projec®arallel Computing
vol. 27, no. 1-2, pp. 3-35, 2001, also available as Universit
Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000 fww
netlib.org/lapack/lawns/lawn147.ps).

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petie Vuduc,
C. Whaley, and K. Yelick, “Self adapting linear algebra altfons and
software,” Proceedings of the IEEEvol. 93, no. 2, 2005, special issue
on "Program Generation, Optimization, and Adaptation”.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,Dbn-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensenl APACK Users' Guide3rd ed. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1999.

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingadind
P. Stodghill, “A comparison of empirical and model-driven apta-
tion,” Proceedings of the IEEBvol. 93, no. 2, 2005, special issue on
"Program Generation, Optimization, and Adaptation”.

E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimizatidramework
for sparse matrix kernelsiht'l Journal of High Performance Computing
Applications vol. 18, no. 1, 2004.

G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, Ghoppella,
D. Cociorva, X. Gao, R. J. Harrison, S. Hirata, S. Krishanrttoor
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Ranjam,

P. Sadayappan, and A. Sibiryakov, “Synthesis of high-perémce
parallel programs for a class of ab initio quantum chemistry etsytl
Proceedings of the IEEEvol. 93, no. 2, 2005, special issue on "Program
Generation, Optimization, and Adaptation”.

ﬁ G. Baumgartner, D. Bernholdt, D. Cociovora, R. Harrisdh Nooi-

jen, J. Ramanujan, and P. Sadayappan, “A performance optiarizat
framework for compilation of tensor contraction expressiiois parallel
programs,” inProc. Int'l Workshop on High-Level Parallel Programming
Models and Supportive Environments (held in conjunctioth WEEE
Int'l Parallel and Distributed Processing Symposium (IPSP), 2002.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]
[35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]

[43]

[44]

M. Frigo and S. G. Johnson, “The design and implementatén [45]
FFTW3,” Proceedings of the IEEE/ol. 93, no. 2, 2005, special issue

on "Program Generation, Optimization, and Adaptation”. [46]
——, “FFTW: An adaptive software architecture for the FFTh
Proc. IEEE Intl Conf. Acoustics, Speech, and Signal Pretes [47]

(ICASSP) vol. 3, 1998, pp. 1381-1384, www.fftw.org.

M. Frigo, “A fast Fourier transform compiler,” iRroc. ACM SIGPLAN
conference on Programming Language Design and Implemientat
(PLDI), 1999, pp. 169-180. [48]
D. Mirkovit and S. L. Johnsson, “Automatic performance tuning in the
UHFFT library,” in Proc. Int'l Conf. Computational Science (ICGSEr.
LNCS, vol. 2073. Springer, 2001, pp. 71-80.

S. Egner, “Zur algorithmischen Zerlegungstheorie direz Transfor-
mationen mit Symmetrie (On the algorithmic decomposition theory
of linear transforms with symmetry),” Ph.D. dissertation, tibag fir
Informatik, Univ. Karlsruhe, Germany, 1997.

K. S. Gatlin and L. Carter, “Faster FFTs via architeetangnizance,” in
Proc. Parallel Architactures and Compilation Techniqu@aCT) 2000.
“Architecture-cognizant divide and conquer algioms,” in
Proc. Supercomputingl999.

D. H. Bailey, “Unfavorable strides in cache memory systgrSsienti ¢
Programming 1995.

N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna, fiBsic data
layouts for cache-conscious factorization of DFT,’Rnoc. IEEE Int'l
Parallel and Distributed Processing Symposium (IPDR2Z8P0, pp. 693— [53]
701.

J. Johnson and M.{Bchel, “In search for the optimal Walsh-Hadamard
transform,” in Proceedings IEEE Intl Conf. Acoustics, Speech, ang54]
Signal Processing (ICASSPjol. 1V, 2000, pp. 3347-3350.

J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge, “Ralr®SIPL++:
An open standard software library for high-performance Ipelraignal
processing,’Proceedings of the IEEEvol. 93, no. 2, 2005, special issue
on "Program Generation, Optimization, and Adaptation”.

M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A congiae
study of static and pro le-based heuristics for inliningg’ Proc. ACM
SIGPLAN workshop on Dynamic and Adaptive Compilation anti-Op [56]
mization ACM Press, 2000, pp. 52—-64.

P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu, “Rro
guided automatic inline expansion for ¢ progran8dftware - Practice [57]
and Experiencevol. 22, no. 5, pp. 349-369, 1992.

A. V. Oppenheim and R. W. Schafddjscrete-Time Signal Processing
2nd ed. Prentice-Hall, 1999.

ISO/IEC 15444-1:2000, Information technology - JPEG 206tage
coding system - Part 1: Core coding systemt| Organization for
Standardization and Int'l Electrotechnical Commission.

J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Talimi&
methodology for designing, modifying, and implementing Fauttians-
form algorithms on various architecturesEEE Trans. Circuits, Sys-
tems, and Signal Processingol. 9, no. 4, pp. 449-500, 1990.

C. Van Loan,Computational Framework of the Fast Fourier Transform
SIAM, 1992.

(49]

(50]

(51]

(52]

(58]

(58]

(59]

(60]

G. E. Revész,Introduction to Formal Languages McGraw-Hill, 1983. [61]
R. Tolimieri, M. An, and C. Lu,Algorithms for discrete Fourier
transforms and convolutiornd ed. Springer, 1997. [62]

M. Puschel, “Cooley-tukey FFT like algorithms for the DCT,” in
Proc. IEEE Intl Conf. Acoustics, Speech, and Signal Pretes

(ICASSP) vol. 2, 2003, pp. 501-504. [63]
P. P. VaidyanatharMultirate systems and lter banks Prentice-Hall,
1993.

G. Strang and T. Nguyenavelets and Filter Banks Wesley, 1998. [64]
|. Daubechies and W. Sweldens, “Factoring wavelet sfams into
lifting steps,”Journal of Fourier Analysis and Applicationgol. 4, no. 3,

pp. 247-269, 1998. [65]

A. Graham,Kronecker products and matrix calculus with applications
New York: John Wiley & Sons, Halstead Press, Ellis Horwoodie3e
Mathematics and Its Applications, 1981.

N. Dershowitz and D. A. Plaisted, “Rewriting,” iHlandbook of Auto-
mated Reasonin@A. Robinson and A. Voronkov, Eds. Elsevier, 2001,
vol. 1, ch. 9, pp. 535-610. [67]
M. Puschel, B. Singer, M. Veloso, and J. M. F. Moura, “Fast autiznat
generation of DSP algorithms,” ifProc. Intl Conf. Computational
Science (ICCS)ser. LNCS, vol. 2073. Springer, 2001, pp. 97-106. [68]
M. Pischel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, DuRad
M. Veloso, and R. W. Johnson, “SPIRAL: A generator for platie
adapted libraries of signal processing algorithnhst'! Journal of High
Performance Computing Applicationgol. 18, no. 1, pp. 21-45, 2004.

(66]

(69]

39

GAP—Groups, Algorithms, and Programmijrithe GAP Team, Univer-
sity of St. Andrews, Scotland, 1997, www-gap.dcs.st-andld gap/.
N. D. Jones, C. K. Gomard, and P. Sestdfgrtial Evaluation and
Automatic Program GenerationPrentice Hall International, June 1993.
J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPLnguage and
compiler for DSP algorithms,” ifProc. ACM SIGPLAN conference on
Programming Language Design and Implementation (PL.R001, pp.
298-308.

N. Rizzolo and D. Padua, “Hilo: High level optimizatiori BFTS,” in
Proc. Workshop on Languages and Compilers for Parallel Cating
(LCPC), 2004, to appear.

Y. Voronenko and M. Bschel, “Automatic generation of implemen-
tations for DSP transforms on fused multiply-add architezg(ir in
Proc. IEEE Intl Conf. Acoustics, Speech, and Signal Preoes
(ICASSP) 2004.

C. W. Fraser, D. R. Hanson, and T. A. Proebsting, “Engiimg a simple,
ef cient code-generator generatol®CM LOPLAS vol. 1, no. 3, pp.
213-226, 1992.

E. Linzer and E. Feig, “Implementation of ef cient FFT algthms on
fused multiply-add architectures,” itEEE Trans. Signal Processing
vol. 41, 1993, p. 93.

C. Lu, “Implementation of multiply-add FFT algorithms fosmplex and
real data sequences,” Rroc. Int'l Symp. Circuits and Systems (ISCAS)
vol. 1, 1991, pp. 480-483.

F. Franchetti and M. #&schel, “A SIMD vectorizing compiler for
digital signal processing algorithms,” iAroc. IEEE Int'l Parallel and
Distributed Processing Symposium (IPDP3)02, pp. 20-26.

——, “Short vector code generation for the discrete kautransform,”
in Proc. |IEEE Int'l Parallel and Distributed Processing Syngiam
(IPDPS) 2003, pp. 58-67.

F. Franchetti, “Performance portable short vector ¢farms,” Ph.D.
Thesis, Institute of Applied Mathematics and Numerical Asay
Vienna University of Technology, 2003, also available asRQRA
Tech. Report TR2003-01, www.math.tuwien.ac.at/ascot omwepc.
univie.ac.at/aurora.

F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhubefciént utilization

of SIMD extensions,"Proceedings of the IEEEvol. 93, no. 2, 2005,
special issue on "Program Generation, Optimization, andpfetan”.

R. E. J. Hoe inger, Z. Li, and D. Padua, “Experience irethutomatic
parallelization of four perfect benchmark programs,’Proc. Workshop
on Languages and Compilers for Parallel Computing (LCP&#r.
LNCS, vol. 589. Springer, 1992.

R. E. J. Hoe inger and D. Padua, “On the automatic paliali¢ion of
the perfect benchmarksEEE Trans. Parallel and Distributed Systems
vol. 9, no. 1, pp. 5-23, 1998.

K. Chen and J. R. Johnson, “A prototypical self-optimgipackage for
parallel implementation of fast signal transforms,”Rmoc. IEEE Int'l
Parallel and Distributed Processing Symposium (IPDPZ)02.

——, “A self-adapting distributed memory package for fasgnal
transforms,” inProc. IEEE Int'l Parallel and Distributed Processing
Symposium (IPDPSP004.

OpenMP,OpenMP C and C++ Application Pragram Interface, Version
1.0, 1998, www.openmp.org.

W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. I,
W. Saphir, and M. SnirMPI: The Complete Referenc2nd ed. MIT
Press, 1998.

P. Kumhom, “Design, optimization, and implementation of aversal
FFT processor,” Ph.D. dissertation, Department of Elesitrgsd Com-
puter Engineering, Drexel University, 2001.

F. Erdin, “Testing multivariate linear functions: Overcoming theng
erator bottleneck.” irProc. ACM Symp. Theory of Computing (STQC)
vol. 2, 1995, pp. 407-416.

J. Johnson, M. #schel, and Y. Voronenko, “Verication of linear
programs,” poster at Int'l Symp. Symbolic and Algebraic Compata
(ISSAC), 2001.

S. Winograd Arithmetic Complexity of Computationser. CBMS-NSF
Regional Conf. Ser. Appl. Math. Philadelphia, PA: Societlylhdustrial
and Applied Mathematics, 1980.

J. R. Johnson and A. F. Breitzman, “Automatic derivatiod anplemen-
tation of fast convolution algorithmsJournal of Symbolic Computation
vol. 37, no. 2, pp. 261-293, 2004.

E. Linzer and E. Feig, “New scaled DCT algorithms for fdsmulti-
ply/add architectures,” ifroc. IEEE Int'l Conf. Acoustics, Speech, and
Signal Processing (ICASSPjol. 3, 1991, pp. 2201-2204.

N. Higham, Accuracy and Stability of Numerical Algorithm2nd ed.
SIAM, 2002.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

[70] P.R. Cappello and K. Steiglitz, “Some complexity issuedigital signal
processing,IEEE Trans. Acoustics, Speech, and Signal Processiolg
ASSP-32, no. 5, pp. 1037-1041, October 1984.

0. Gustafsson, A. Dempster, and L. Wanhammar, “Extendedlteefor
minimum-adder constant integer multipliers,” iIBEE Int'l Symp. Cir-
cuits and Systemsol. 1, 2002, pp. |-73-1-76.

A. C. Zelinski, M. Rischel, S. Misra, and J. C. Hoe, “Automatic
cost minimization for multiplierless implementations of digersignal

[71]

[72]

transforms,” inProc. IEEE Int'l Conf. Acoustics, Speech, and Signal

Processing (ICASSPR004.

M. Puschel, A. Zelinski, and J. C. Hoe, “Custom-optimized mulépli
less implementations of DSP algorithms,”Rmnoc. Int'l Conf. Computer
Aided Design (ICCAD)2004, to appear.

Information Technology—Coding of moving pictures and eisged
audio for digital storage media at up to about 1.5 MbitsISO/IEC,
1995.

H.-J. Huang, “Performance analysis of an adaptive dlgor for the
Walsh-Hadamard transform,” Master's thesis, Department gh@der
Science, Drexel University, 2002.

M. Furis, “Cache miss analysis of Walsh-Hadamard tramsfal-
gorithms,” Master's thesis, Department of Computer Sciencex&l
University, 2003.

A. Parekh and J. R. Johnson, “Data ow analysis of the FEept. of
Computer Science, Drexel University, Philadelphia, PA HTdéep. DU-
CS-2004-01, 2004.

J. Johnson, P. Hitczenko, and H.-J. Huang, “Distritnutof a class of
didive and conquer recurrences arising from the computadiihe
Walsh-Hadamard transform,” iRroc. 3rd Colloquium on Mathematics
and Computer Science: Algorithms, Trees, Combinatoriad Broba-
bilities, 2004.

P. Hitczenko, H.-J. Huang, and J. R. Johnson, “Distitbuof a class
of divide and conquer recurrences arising from the compmrtaof
the Walsh-Hadamard transfornilheoretical Computer Scienc2003,
submitted for publication.

(73]

[74]

[75]

[76]

(77

(78]

[79]

(80]
rithms 3rd ed. Addison-Wesley, 1997, vol. 1.

(81]

Machine Learning Reading, MA: Addison-Wesley, 1989.

B. Singer and M. \eloso, “Stochastic search for signabcpssing

algorithm optimization,” inProc. Supercomputing?001.

L. Torgo, “Inductive learning of tree-based regressimodels,” Ph.D.

dissertation, Department of Computer Science, Faculty otrgeis,

University of Porto, 1999.

B. Singer and M. Veloso, “Learning to construct fastreifjprocessing

implementations,"Journal of Machine Learning Researctol. 3, pp.

887-919, 2002.

——, “Learning to generate fast signal processing impletatons,”

in Proc. International Conference on Machine Learning Morgan

Kaufmann, 2001, pp. 529-536.

B. Singer and M. M. Veloso, “Automating the modeling andioyization

of the performance of signal transformHEZEE Trans. Signal Processing

vol. 50, no. 8, pp. 2003-2014, 2002.

W. H. Press, B. P. Flannery, T. S. A., and V. W. Mumerical Recipes

in C: The Art of Scienti c Computing2nd ed. Cambridge University

Press, 1992.

S. R. Ladd, “ACOVEA: Analysis of compiler options via dutionary

algorithm,” 2004, www.coyotegulch.com/acovea/.

IBM, “The RS/6000 enterprise server model S80, techgyland archi-

tecture,” http://www.rs6000.ibm.com/resource/technglegOtecharch.

html.

T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluatio

of a compiler algorithm for prefetching,” ifProc. Intl Conference

on Architectural Support for Programming Languages and 1@peg

Systems1992, pp. 62—73.

L. J. Chang, I. Hong, Y. Voronenko, and Musthel, “Adaptive mapping

of linear dsp algorithms to xed-point arithmetic,” ifProc. High

Performance Embedded Computing (HPE2)04.

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

40

Markus Puschel received his Diploma (M.Sc.) in
Mathematics and his Doctorate (Ph.D.) in Computer
Science, in 1995 and 1998, respectively, both from
the University of Karlsruhe, Germany. From 1998-
1999 he was a Postdoctoral Researcher at the Dept.
of Mathematics and Computer Science, Drexel Uni-
versity. Since 2000 he has held a Research Faculty
position at the Dept. of Electrical and Computer En-
gineering, Carnegie Mellon University. DriiBchel

is on the editorial board of the IEEE Signal Process-
ing Letters and was a guest editor of the Journal of

Symbolic Computation and of the Proceedings of the IEEE. Hiearch
interests include scientic computing, compilers, appliedtimeanatics and

algebra, and signal processing theory/software/hardvidoee details can be
found on http://www.ece.cmu.edupueschel.

D. E. Knuth, The Art of Computer Programming: Fundamental Algo-

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Jos M. F. Moura (S'71-M'75-SM'90-F'94) re-
ceived the engenheiro electeenico degree from
Instituto Superior €cnico (IST), Lisbon, Portugal,
and the M.Sc., E.E., and the D.Sc. in Electrical
Engineering and Computer Science from the Mas-
sachusetts Institute of Technology (M.I.T.), Cam-
bridge, Massachusetts.

He is a Professor of Electrical and Computer
Engineering at Carnegie Mellon University since
1986. In the year 99-00 he was a Visiting Professor
of Electrical Engineering at M.I.T. He was on the
faculty of IST (1975-84), Genrad Associate Professor ottieal Engineer-
ing and Computer Science (Visiting) at M.L.T. (1984-1986)d a Visiting
Research Scholar at the University of Southern Califoriap@artment of
Aerospace Engineering, Summers 1978-1981). His researtests include
statistical and algebraic signal and image processing agithdcommunica-
tions. His research is often at the interface of signal gsicg and other elds.
He has published over 270 technical Journal and Confereapers, is the
co-editor of two books, holds ve patents on image and videmcpssing, and
digital communications with the US Patent Of ce, and has giveimerous
invited seminars at US and European Universities and Lataeatand several
plenary and invited talks at international Workshops andf€ences.

Dr. Moura served a¥ice-President for Publicationfor the IEEE Signal
Processing Societ{fSPS) and was a member of tBeard of Governor®f the
same Society (2000-2002). He was aléce-President for Publicationfer the
IEEE Sensors Counc{R000-2002). He is on thEditorial Board of the IEEE
Proceedings the IEEE Signal Processing Magazine, and the ACM Sensor
Networks Journal. He chaired the IEEE TAB Transactions Cotemi2002-
2003) that joins the about 80 Editors in Chief of the IEEE Bamtions. He
was theEditor in Chief for thelEEE Transactions in Signal Processi(it75-
1999) and interimEditor in Chief for the IEEE Signal Processing Letters
(December 2001-May 2002). He has been a member of several €athni
Committees of the SPS and has been on the program Technical Gemuofit
numerous IEEE Conferences. He was on HBEE Press Board1991-95).

Dr. Moura is aFellow of the IEEE and corresponding member of the
Academy of Sciences of Portug@ection of Sciences). He was awarded
the 2003 IEEE Signal Processing Society meritorious seraiward and
in 2000 the IEEE Millenium medal. He is afliated with severdtEE
societies, Sigma Xi, AMS, AAAS, IMS, and SIAM. Further degaibn
http://www.ece.cmu.edu/moura.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 41

Jeremy R. Johnsonis Professor and Department
Head of Computer Science at Drexel University
with a joint appointment in Electrical and Computer
Engineering. He received a B.A. in Mathematics
from the University of Wisconsin-Madison in 1985,
a M.S. in Computer Science from the University
of Delaware in 1988, and a Ph.D. in Computer
Science from The Ohio State University in 1991.
Dr. Johnson is on the editorial board of the journal of
Applicable Algebra in Engineering, Communication
and Computing and has served as a guest editor for

Jianxin Xiong received his Ph.D. in Computer Sci-
ence in 2001 from University of lllinois at Urbana-
Champaign. He got his M.E and B.E in Com-
puter Science, in 1996 and 1992, respectively, both
from Tsinghua University, China. Presently he is
a Postdoctoral Research Associate at the Dept. of
Computer Science, University of lllinois at Urbana-
Champaign. From 2001 to 2002 he worked as a
Compiler Architect at StarCore Technology Center
(Agere Systems) in Atlanta. From 1996 to 1998, he
was a Lecturer at Tsinghua University. His research

the Journal of Symbolic Computation. His research interesiside algebraic interests include parallel/distributed computing, progmang languages, com-
algorithms, computer algebra systems, problem solving emviemts, pro- piler techniques and software development tools.

gramming languages and compilers, high performance computargware
generation, and automated performance tuning. More detilshe found at
http://www.cs.drexel.edu/jjohnson.

David Padua is a professor of computer science
at the University of lllinois at Urbana- Champaign,
where he has been a faculty member since 1985. At
lllinois, he has been Associate Director of the Center
for Supercomputing Research and Development, a
member of Science Steering Committee of the Cen-
ter for Simulation of Advanced Rockets, Vice-Chair
of the College of Engineering Executive Committee,
and a member of the Campus Research Board.
He has served as a program committee member,
program chair, or general chair for more than 40
conferences and workshops. He served on the editorial bofatde IEEE
Transactions of Parallel and Distributed Systems and aeraditchief of the
International Journal of Parallel Programming (IJPP). Heuisantly Steering
Committee Chair of ACM SIGPLAN's Principles and Practice ofrdfiel
Programming and a member of the editorial boards of the Jourr@aillel
and Distributed Computing and IJPP. His areas of interestidieccompilers,
machine organization, and parallel computing. He has pudighore than
130 papers in those areas. He is a fellow of the IEEE.

Franz Franchetti received the Dipl.-Ing. (M.Sc.)
degree and the Ph.D. degree in Technical Mathe-
matics from the Vienna University of Technology
in 2000 and 2003, respectively. He is a recipient of
the Schroedinger fellowship awarded by the Austrian
Science Fund. Dr. Franchetti is currently a post-
doctoral associate with the Dept. of Electrical and
Computer Engineering at Carnegie Mellon Univer-
sity. His research focuses on the development of high
performance DSP algorithms.

Aca Geacict received his Dipl.-Ing. degree in Elec-
trical Engineering from the University of Novi Sad,
Serbia in 1997 and his M.Sc. degree also in Elec-
trical Engineering from the University of Pittsburgh,
Pennsylvania in 2000. He is currently pursuing his
Ph.D. degree in Electrical and Computer Engineer-
ing at Carnegie Mellon University working on au-
tomatic generation and implementation of digital
signal processing algorithms.

His research interests include representation and
implementation of algorithms for signal and image

) _ processing, automatic performance tuning for DSP kernefsosenetworks,
Manuela M. Velosois Professor of Computer Sci- multi-agent control systems, and applications of game thddryGecic is a
ence at Carnegie Mellon University. She earned hettudent member of the IEEE.

Ph.D. in Computer Science from Carnegie Mellon
in 1992. She also received a B.S. in Electrical
Engineering in 1980 and an M.Sc. in Electrical and
Computer Engineering in 1984 from the Instituto
Superior Ecnico in Lisbon.

Professor Veloso researches in the area of arti
cial intelligence with focus on planning, control
learning, and execution for single and multirobot
teams. Her algorithms address uncertain, dynamic

and adversarial environments. Prof. Veloso has developaahsteof robot
soccer agents, which have been RoboCup world championsatdiraes.
She investigates learning approaches to a variety of dopmablems, in
particular the performance optimization of algorithm impleta¢éions, and
plan recognition in complex data sets. Professor Veloso i€lbow of the
American Association of Articial Intelligence. She is Viceresident of
the RoboCup International Federation. She was awarded dn Ci&eer
Award in 1995 and the Allen Newell Medal for Excellence in Bash in
1997. Professor Veloso is Program Co-Chair of 2005 Nati@uaiference on
Arti cial Intelligence and the Program Chair of the 2007 émational Joint
Conference on Arti cial Intelligence.

Bryan W. Singer was born in Indiana in 1974. He studied compute
engineering as an undergraduate at Purdue University. 01,20e earned
a Ph.D. in computer science from Carnegie Mellon Universiig research
interests include machine learning and automatic performantdag.

Yevgen Voronenkoreceived a B.S. degree in Com-
puter Science from Drexel University in 2003. He
is currently a Ph.D. student of Electrical and Com-
puter Engineering at Carnegie Mellon University.
His research interests include software engineering,
programming languages, and compiler design.

Kang Chen received his M.S. in Computer Science
from Drexel University. While in school he worked
on the SPIRAL project and did an M.S. thesis on
“A Prototypical Self-Optimizing Package for Parallel
Implementation of Fast Signal Transforms.” He is
currently employed as a Software Design Engineer
by STMicroelectronics and is working on embedded
systems for video processing.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

Robert W. Johnsonis Professor Emeritus of Com-
puter Science at St. Cloud State University and is
founder and President of Qwarry Inc. a company
devoted to providing hardware/software solutions
in math-intensive DSP applications. He is also a
co-founder and former chief scientic of cer of
MathStar, Inc. a fabless semiconductor manufacturer
of DSP devices. Dr. Johnson received his A.B. from
Columbia College in 1962, his M.S. from The City
College of New York in 1965, and his Ph.D. in
mathematics from The City University of New York
in 1969. His recent research has centered on the applicat@ostract algebra
to the design and implementation of DSP algorithms. Dr. Johissnbeen
the principal or co-principal investigator for numerous DARresearch and
development grants over the last two decades.

Nicholas Rizzoloreceived his Bachelors of Science
and Masters of Science degrees in Computer Science
from the University of Illinois at Urbana-Champaign
(UIUC) in 2002 and 2004 respectively. He is cur-
rently a Ph.D. student at UIUC where his research
interests include machine learning, programming
languages, and compilers.

42

