PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 1

SPIRAL: Code Generation for DSP Transforms

Markus Rischel, Jos M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Acat{&aYevgen Voronenko, Kang Chen,
Robert W. Johnson, Nicholas Rizzolo

(Invited

Abstract— Fast changing, increasingly complex, and diverse
computing platforms pose central problems in scientific com-
puting: How to achieve, with reasonable effort, portable op-
timal performance? We present SPIRAL that considers this
problem for the performance-critical domain of linear digital
signal processing (DSP) transforms. For a specified transform,
SPIRAL automatically generates high performance code that is
tuned to the given platform. SPIRAL formulates the tuning
as an optimization problem, and exploits the domain-specific
mathematical structure of transform algorithms to implement
a feedback-driven optimizer. Similar to a human expert, for
a specified transform, SPIRAL “intelligently” generates and
explores algorithmic and implementation choices to find the best
match to the computer’s microarchitecture. The “intelligence”
is provided by search and learning techniques that exploit
the structure of the algorithm and implementation space to
guide the exploration and optimization. SPIRAL generates high
performance code for a broad set of DSP transforms including
the discrete Fourier transform, other trigonometric transforms,
filter transforms, and discrete wavelet transforms. Experimenal
results show that the code generated by SPIRAL competes with,
and sometimes outperforms, the best available human tuned
transform library code.

Index Terms— library generation, code optimization, adapta-
tion, automatic performance tuning, high performance comput-
ing, linear signal transform, discrete Fourier transform, FFT,
discrete cosine transform, wavelet, filter, search, learning, gesiic
and evolutionary algorithm, Markov decision process

I. INTRODUCTION
At the heart of the computer revolution is Moore’s |

Paper)

and other, often undocumented, microarchitectural featur
The problem is aggravated by the fact that these features
differ from platform to platform, which makes optimal code
platform dependent. As a consequence, the performance gap
between a “reasonable” implementation and the best passibl
implementation is increasing. For example, for the digcret
Fourier transform on a Pentium 4, there is a gap in runtime
performance of one order of magnitude between the code of
Numerical Recipes or the GNU scientific library and the Intel
vendor library IPP (see Section VII). The latter is most lke
hand-written and hand-tuned assembly code, an approdich sti
employed if highest performance is required—a reminder of
the days before the invention of the first compiler 50 years
ago. However, keeping hand-written code current requiges r
implementation and re-tuning whenever new platforms are
released—a major undertaking that is not economically giabl
in the long run.

In concept, compilers are an ideal solution to performance
tuning since the source code does not need to be rewrit-
ten. However, high-performance library routines are adhef
hand-tuned, frequently directly in assembly, becauseytsda
compilers often generate inefficient code even for simple
problems. For example, the code generated by compilers for
dense matrix-matrix multiplication is several times slow&n
the best hand-written code [1] despite the fact that the nngmo
access pattern of dense matrix-matrix multiplication gutar

aWand can be accurately analyzed by a compiler. There are two

which has accurately predicted, for more than three de(;ad@é'jlin reasons for this situation.

that the number of transistors per chip doubles roughly ev-

The first reason is the lack of reliable program optimization

ery 18 months. The consequences are dramatic. The curf&§'Maues, a problem exacerbated by the increasing com-

generation of off-the-shelf single processor workstatom-
puters has a theoretical peak performance of more than

gigaFLOPS, rivaling the most advanced supercomputers fro

only a decade ago. Unfortunately, at the same time, it

increasingly harder to harness this peak performance péxc
for the most simple computational tasks. To understand tﬁiagtest,
problem one has to realize that modern computers are not j
faster counterparts of their ancestors but vastly more @@mp

and thus with different characteristics. For example, abol! o)) .
& tual use of empirical search by commercial compilerses th

plexity of machines. In fact, although compilers can usuall
e sform code segments in many different ways, there is no

methodology that guarantees successful optimization.iEmp

ical search [2], which measures or estimates the execution

gme of several versions of a code segment and selects the

is a simple and general method that is guaranteed
ucceed. However, although empirical search has proven

extraordinarily successful for library generators, cdemgican

ake only limited use of it. The best known example of the

15 years ago, the performance for most numerical kern&§U& _ D
was determined by the number of operations they requ"%gusmn of how many times loops should be unrolled. This is

nowadays, in contrast, a cache miss may be 10-100 ti
more expensive than a multiplication. More generally,

performance of numerical code now depends crucially on t

use of the platform’s memory hierarchy, register sets, lava§"'™ X
versions of a program can become astronomically large, even

when only a few transformations are considered.

able special instruction sets (in particular vector indions),

11 gigaFLOPS (GFLOPS) %0 floating point operations per second

n%;scomplished by first unrolling the loop and then estimating
thtge execution time in each case. Although empirical seach i
ﬁgequate in this case, compilers do not use empirical séarch

uide the overall optimization process because the number o

The second reason why compilers do not perform better is

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 2

that often important performance improvements can only lrmproved through the use of automated tools.
attained by transformations that are beyond the capaldfity Our solution formulates the problem of automatically gen-
today’s compilers or that rely on algorithm informationti® erating optimal code as an optimization problem over the
difficult to extract from a high-level language. Although ou space of alternative algorithms and implementations of the
can be accomplished with program transformation techsiqusame transform. To solve this optimization problem using an
[3]-[8] and with algorithm recognition [9], [10], startinhe automated system, we exploit the mathematical structure of
transformation process from a high-level language versiome algorithm domain. Specifically, SPIRAL uses a formal
does not always lead to the desired results. This limitatidramework to efficiently generate many alternative alduonis
of compilers can be overcome by library generators that make a given transform and to translate them into code. Then,
use of domain-specific, algorithmic information. An im@ort SPIRAL uses search and learning techniques to traverse the
example of the use of empirical search is ATLAS, a lineaget of these alternative implementations for the same given
algebra library generator [11], [12]. The idea behind ATLAS transform to find the one that is best tuned to the desired
to generate platform-optimized BLAS routines (basic lingla platform while visiting only a small number of alternatives
gebra subroutines) by searching over different blockingtet We believe that SPIRAL is unique in a variety of respects:
gies, operation schedules, and degrees of unrolling. ATLASS SPIRAL is applicable to the entire domain of linear dibita
relies on the fact that LAPACK [13], a linear algebra librarysignal processing algorithms, and this domain encompasses
is implemented on top of the BLAS routines, which enables large class of mathematically complex algorithms; 2) SPI-
porting by regenerating BLAS kernels. A model-based, arRIAL encapsulates the mathematical algorithmic knowledge o
thus deterministic, version of ATLAS is presented in [14}this domain in a concise declarative framework suitable for
The specific problem of sparse matrix vector multiplicationcomputer representation, exploration, and optimizatidmis—t
is addressed in SPARSITY [12], [15], again by applyinglgorithmic knowledge is far less bound to become obsolete
empirical search to determine the best blocking strategyfoas time goes on than coding knowledge such as compiler
given sparse matrix. References [16], [17] provide a prograoptimizations; 3) SPIRAL can be expanded in several direc-
generator for parallel programs of tensor contractionsclvh tions to include new transforms, new optimization techeiu
arise in electronic structure modeling. The tensor contac different target performance metrics, and a wide variety of
algorithm is described in a high-level mathematical lammgja implementation platforms including embedded processods a
which is first optimized and then compiled into code. hardware generation; 4) we believe that SPIRAL is first in
In the signal processing domain, FFTW [18]-[20] usegemonstrating the power of machine learning techniques in
a slightly different approach to automatically tune the imautomatic algorithm selection and optimization; and, final
plementation code for the discrete Fourier transform (DFT§) SPIRAL shows that, even for mathematically complex
For small DFT sizes, FFTW uses a library of automaticallgigorithms, machine generated code can be as good as, or
generated source code. This code is optimized to perfogometimes even better, than any available expert hantewrit
well with most current compilers and platforms, but is natode.
tuned to any particular platform. For large DFT sizes, the Organization of this paper. The paper begins, in Section I,
library has a built-in degree of freedom in choosing th@ith an explanation of our approach to code generation and
recursive computation, and uses search to tune the code todptimization and an overview of the high-level architeetof
computing platform’s memory hierarchy. A similar approaclsPIRAL. Section IIl explains the theoretical core of SPIRAL
is taken in the UHFFT library [21] and in [22]. The ideathat enables optimization in code design for a large class of
of platform adaptive loop body interleaving is introduce®SP transforms: a mathematical framework to structure the
in [23] as an extension to FFTW and as an example ofagorithm domain and the language SPL to make possible
general adaptation idea for divide and conquer algorithreficient algorithm representation, generation, and maaip
[24]. Another variant of computing the DFT studies adaptati tion. The mapping of algorithms into efficient code is the
through runtime permutations versus re-addressing [2B]. [subject of Section IV. Section V describes the evaluation of
Adaptive libraries for the related Walsh-Hadamard tramafo the code generated by SPIRAL—by adapting the performance
(WHT), based on similar ideas, have been developed in [2Rjetric, SPIRAL can solve various code optimization prokdem
Reference [28] proposes an object-oriented library stahidet The search and learning strategies that guide the automatic
parallel signal processing to facilitate porting of botlyreil feedback-loop optimization in SPIRAL are considered in-Sec
processing applications and their performance acrosdlgdaraion VI. We benchmark the quality of SPIRAL's automati-
platforms. cally generated code in Section VII, showing a variety of
SPIRAL. In this paper we present SPIRAL, our researcBxperimental results. Section VIII discusses currenttitions
on automatic code generation, code optimization, andglatf of SPIRAL and ongoing and future work. Finally, we offer
adaptation. We consider a restricted, but important, domajonclusions in Section IX.
of numerical problems, namely digital signal processirgpal
rithms, or more specifically, linear signal transforms. BRI
addresses the general problgdaw do we enable machines to
automatically produce high quality code for a given platfig
In other words, how can the processes that human experts usie this section we provide a high-level overview of the
to produce highly optimized code be automated and possil8PIRAL code generation and optimization system. First, we

II. SPIRAL: OPTIMIZATION APPROACH TOTUNING
IMPLEMENTATIONS TO PLATFORMS

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 3

explain the high-level approach taken by SPIRAL, whicl as the set of implementations that SPIRAL can generate.
restates the problem of finding fast code as an optimizatidine degrees of freedom in translating fraf to Z reflect
problem over the space of possible alternatives. Secondxwe the implementation choices that SPIRAL can consider for the
plain the architecture of SPIRAL, which implements a flegiblgiven algorithms. Finally, the recursive structureffand thus
solver for this optimization problem and which resembless thZ, enables the use of various, transform independent, search
human approach for code creation and optimization. Fipalgnd learning techniques that successfully produce veryl goo
we discuss how SPIRAL's architecture is general enough solutions for (1), while generating only a small subsefZof
solve a large number of different implementation/optirtica SPIRAL's architecture, shown in Fig. 1, is a consequence
problems for the DSP transform domain. More details aé these observations and, for the class of DSP transforms

provided in later sections. included in SPIRAL, can be viewed as a solver for the opti-
mization problem (1). To benchmark the performance of the
A. Optimization: Problem Statement transform implementations generated by SPIRAL, we compare

We restate the problem of automatically generating soff}ém against the best available implementatiovisenever
ware (SW) implementations for linear digital signal proces®0ssible For example, for thFT, we benchmark SPIRAL
ing (DSP) transforms that are tuned to a target hardware (H#gainst theDF'T' codes provided by FFTW, [18], [19], and
platform as the following optimization problem. L& be a 2dainst vendor libraries like Intel's IPP (Intel Perforroan
target platform,T,, a DSP transform parameterized at leadtrimitives) and MKL (Math Kernel Library); the latter are
by its sizen, I € T a SW implementation of,,, whereZ is coded by human experts. However, b_ecause. Of. SPIRAL's
the set of SW implementations for the platfoiPhand trans- bréadth, there are no readily available high quality immgem
form T,,, and C (T,,,P,T) the cost of the implementatioh tations for many of SPIRAL's transforms. In these cases, we

of the transformT,, on the platformP. explore different alternatives generated by SPIRAL itself

The implementatiof of T,, that is tuned to the platfor® ~In the following paragraphs, we briefly address the above
with respect to the performance cagtis two challenges of generating the set of implementati@ns

A . and of minimizingC. The discussion proceeds with reference
I=I(P) = arg i, C(T,,P.I). (1) to Fig. 1 that shows the architecture of SPIRAL as a block
diagram.

For example, we can have the following: as target platfém
a particular Intel Pentium 4 workstation; as transfdliy the DSP transform (user specified)
discrete Fourier transform of size = 1024, which we will
refer to asdDF T4, OF the discrete cosine transform of type 2
and size32, DCT-235; as SW implementatioh a C-program
for computingT,,; and as cost measufe the runtime ofl on Algorithm Formula Generation controls
P. In this case, the cost depends on the chosen compiler and Level Formula Optimization
flags, thus this information has to be includeditnNote that ot as form
with the proliferation of special vendor instruction setach A ShL language o
as vector instructions that exceed the standard C prograghmi) '
language, the set of all implementations becomes in generdf"p'egigfatm” Implementation controls_ I8
platform dependent, i.eZ = Z(P) with elementsl = I(P). (SPL Compiler) Code Optimization £

To carry out the optimization in (1) and to automatically =
Igenerate the tuned SW implementatibmposes several chal- im;é;";,:far{ion *
enges:

« Set of implementations Z. How to characterize and Evaluation Compilation performance

generate the séf of SW implementationd of T,,? Level Performance Evaluation
o Minimization of C. How to automatically minimize the
costC in (1)?

In principle, the set of implementationg for T,, should
be unconstrained, i.e., includdl possible implementations.
Since this is unrealistic, we aim at a broad enough set @f ;1 1ne architecture of SPIRAL.

implementations. We solve both challenges of characteyizi

and minimizingC by recognizing and exploiting the specific

structure of the domain of linear DSP transforms. This struc)

ture enables us to represent algorithms Ty as formulas B Set of Implementatioris

in a concise mathematical language called signal proggssin To characterize the set of implementatiols we first
language (SPL), which utilizes only a few constructs. Ferth outline the two basic steps that SPIRAL takes to go from
it is possible to generate these SPL formulas (or algorithnthe high-level specification of the transforiy, to an actual
recursivelyusing a small set afulesto obtain a large formula implementationI € 7 of T,. The two steps correspond
spaceF. These formulas, in turn, can be translated into code the ALGORITHM LEVEL and to the MPLEMENTATION
The SPIRAL system implements this framework and we defiheeVEL in Fig. 1. The first derives an algorithm for the given

optimized/adapted implementation

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 4

transformT,,, represented asfarmulaF € F whereF is the often not efficient when used for automatically generatetbco

formula or algorithm space fdI',,. The second translates then particular, for large blocks of straightline code (i.eqde

formula F into a progranl € Z in a high-level programming without loops and control structures).

language such as Fortran or C, which is then compiled by anBoth blocks, AGORITHM LEVEL and IMPLEMENTATION

existing commercial compiler. LEVEL are used to generate the elements of the implemen-
Algorithm level. In SPIRAL, an algorithm for a trans- tation spaceZ. We now address the second challenge, the

form T, is generated recursively usingreakdown rules optimization in (1).

and manipulation rules Breakdown rules are recursions for

transforms, i.e., they specify how to compute a transfoomfr S

other transforms of the same or a different type and of tr(l:e' Minimization ofC

same or a smaller size. TheoRMULA GENERATION block Solving the minimization (1) requires SPIRAL to evaluate

in Fig. 1 uses a database of breakdown rules to recursivég costC for a given implementatiod and to autonomously

expand a transforrfT',,, until no further expansion is possibleexplore the implementation spade Cost evaluation is ac-

to obtain a completely expanded formiac F. This formula complished by the third level in SPIRAL, thevELUATION

specifies one algorithm fol,,. The FORMULA OPTIMIZA- LEVEL block in Fig. 1. The computed valu€(T,,,P,1I) is

TION block then applies manipulation rules to translate tHgen input to the BARCH/LEARNING block in the feedback

formula into a different formula that may better exploit théoop in Fig. 1, which performs the optimization.

computing platform’s HW characteristics. These optimiarag Evaluation level. The BEVALUATION LEVEL is decomposed

at the mathematical level can be used to overcome inherétip two blocks: the ©MPILATION and FERFORMANCE

shortcomings of compiler optimizations, which are perfedn EVALUATION . The GOMPILATION block uses a standard com-

at the code level where much of the structural information iler to produce an executable and theRRORMANCEEVAL -

lost. UATION block evaluates the performance of this executable, for
SPIRAL expresses rules and formulas in a specigkample, the actual runtime of the implementatibon the

language—thesignal processing language (SRLwhich is given platformP. By keeping the evaluation separated from

introduced and explained in detail in Section III; here, wdyo implementation and optimization, the cost meadrean eas-

provide a brief glimpse. SPL uses a small set of construdtg be changed to make SPIRAL solve various implementation

including symbols and matrix operators. Symbols are, f@ptimization problems (see Section II-E).

example, certain patterned matrices like the identity dfy, Search/Learning. We now consider the need for intelligent

of sizem. Operators are matrix operations such as matrix mulavigation in the implementation spadeto minimize (or

tiplication or the tensor product of matrices. For example, approximate the minimization ofC. Clearly, at both the

the following is a breakdown rule for the transfol@CT-2,, ALGORITHM LEVEL and the MPLEMENTATION LEVEL, there

written in SPL: are choices to be made. At each stage of HERMULA
GENERATION, there is freedom regarding which rule to ap-
DCT-2, — L (DCT-2,, ® DCT-4,,) ply. Different choices of rules lead to different formulas (

(Fe L)L ®Jm), n=2m. (2) algorithms)F € F. Similarly, the translation of the formul&
))) to an actual progrant € Z implies additional choices, e.g.,
This rule expands thBCT-2 of sizen = 2m into transforms the degree of loop unrolling or code reordering. Since the
DCT-2 and DCT-4 of half the sizem, and additional nymper of these choices is finite, the sets of alternatives

operations (the part that is not bold-faced). _ ~ F andZ are also finite. Hence, an exhaustive enumeration
An example of a manipulation rule expressed in SPL IS of all implementationsI € Z would lead to the optimal
I, ®Am — L™ (A, © 1,) L™ | implementationI. However, this is not feasible, even for

small transform sizes, since the number of available alyms
We will see later that the left hand sidg ®A,, is a paral- and implementations usually grows exponentially with the
lelizable construct, while the right hand sidg,, ® I,, is a transform size. For example, the current version of SPIRAL
vectorizable construct. reports that the size of the set of implementatidngor the

Implementation level. The output of the AGORITHM DCT-24, exceedd .47-10'°. This motivates the feedback loop
LEVEL block is an SPL formuld < F, which is fed into in Fig. 1, which provides an efficient alternative to exhaest
the second level in Fig. 1, themPLEMENTATION LEVEL, also search and an engine to determine an approximate solution to
called the SPL ©MPILER. the minimization in (1).

The SPLCOMPILER is divided into two blocks: the M- The three main blocks on the left in Fig. 1, and their
PLEMENTATION and GoDE OPTIMIZATION blocks. The M- underlying framework, provide the machinery to enumerate,
PLEMENTATION block translates the SPL formula into C oirfor the same transform, different formulas and differenplien
Fortran code using a particular set of implementation oygtio mentations. We solve the optimization problem in (1) thioug
such as the degree of unrolling. Next, theo@E OPTI- an empirical exploration of the space of alternatives. This
MIZATION block performs various standard and less standaisd the task of the SARCH/LEARNING block, which, in a
optimizations at the C (or Fortran) code level, e.g., commdaedback loop, drives the algorithm generation and cosmtrol
subexpression elimination and code reordering for logalitthe choice of algorithmic and coding implementation opgion
These optimizations are necessary as standard compikers SPIRAL uses search methods such as dynamic programming

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 5

and evolutionary search (see Section VI-A). An alternate
approach, also available in SPIRAL, uses techniques from

artificial intelligence tolearn which choice of algorithm is

best. The learning is accomplished by reformulating the- opt
mization problem (1) in terms of a Markov decision process
and reinforcement learning. Once learning is completed, th
degrees of freedom in the implementation are fixed. The
implementation iglesignedvith no need for additional search

(see Section VI-B).

An important question arises: why is there is a need to
explore the formula spacg at all? Traditionally, the analysis
of algorithmic cost focuses on the number of arithmetic
operations of an algorithm. Algorithms with a similar numbe

of additions and multiplications are considered to havelaim

cost. The rules in SPIRAL lead to “fast” algorithms, i.e.eth
formulasF € F that SPIRAL explores are essentially equal
in terms of the operation count. By “essentially equal” we

mean that for a transform of size, which typically has a

complexity of ©(nlog(n)), the costs of the formulas differ
only by O(n) operations and are often even equal. So the

formulas’ differences in performance are in general nosalte

of different arithmetic costs, but are due to differences in «

locality, block sizes, and data access patterns. Since wiamg

have an hierarchical memory architecture, from registers—
the fastest level—to different types of caches and memory,

different formulas will exhibit very different access time
These differences cause significant disparities in perdoca
across the formulas iF. The SFEARCH/LEARNING block

searches for or learns those formulas that best match tipet tar
platforms memory architecture and other microarchitedtur

features.

D. General Comments

The following main points about SPIRAL’s architecture are

worth noting.

level optimizations (©DE OPTIMIZATION block) such as
common subexpression elimination. [Mpndeterministic
optimizationsarise from choices whose effect cannot eas-
ily be statically determined. The generation and selection
of these choices is driven by theEBRCH/LEARNING
block. These optimizations are also divided into algorith-
mic choices and implementation choices.

Because of its modularity, SPIRAL can be extended in
different directions without the need for understandirig al
domains involved.

SPIRAL abstracts into its high-level mathematical frame-
work many common optimizations that are usually per-
formed at the low-level compilation step. For example, as
we will explain in Section IV-E, when platform specific
vector instructions are available, they can be matched to
certain patterns in the formulas and, using mathematical
manipulations, a formula’s structure can be improved for
mapping into vector code. Rules that favor the occurrence
of these patterns in the produced formula are then natu-
rally selected by the search engine in SPIRAL to produce
better tuned code.

SPIRAL makes use of run-time information in the opti-
mization process. In a sense, it could be said that SPIRAL
carries out profile-driven optimization although compiler
techniques reported in the literature require profiling to
be done only once [29], [30]. Compiler writers do not
include profiling in a feedback loop to avoid long compi-
lation times, but for the developers of library generators
like SPIRAL the cost of installation is less of a concern
since installation must be done only once for each class
of machines.

With slight modifications, SPIRAL can be used to au-
tomatically solve various implementation or algorithm
optimization problems for the domain of linear DSP
transforms, see Section II-E.

Next, we provide several examples to show the breadth of

o SPIRAL is autonomous, optimizing at both the algoSPIRAL.

rithmic level and the implementation level. SPIRAL
incorporates domain specific expertise through both s Applications of SPIRAL
mathematical framework for describing and generating SPIRAL'’s current main application is the generation of very
algorithms and implementations and through its effedast, platform-tuned implementations of linear DSP transfs
tive algorithm and implementation selection through thier desktop or workstation computers. However, SPIRAL'S
SEARCH/LEARNING block. approach is quite versatile and the SPIRAL system can be used
« The SPL language is a key element in SPIRAL: SPfor a much larger scope of signal processing implementation
expresses recursions and formulas in a mathematical fopnoblems and platforms: (1) it goes beyond trigonometric
accessible to the transform expert, while retaining all theansforms such as the DFT and the DCT, to other DSP
structural information that is needed to generate efficietinsforms such as the wavelet transform and DSP kernels
code. Thus, SPL provides the link between the “highlike filters; (2) it goes beyond desktop computers and beyond
mathematical level of transform algorithms and the “lowC and Fortran to implementations for multiprocessor maehin
level of their code implementations. and to generating code using vendor specific instructidees li
« SPIRAL’s architecture is modular: it clearly separateSSE for the Pentium family, or AltiVec for the Power PC; (3) it
algorithmic and implementation issues. In particular, thgoes beyond runtime to other performance metrics including
code optimization is decomposed as follows. D¢- accuracy and operation count. We briefly expand here on two
terministic optimizationsare always performed withoutimportant examples to illustrate SPIRAL's flexibility. Mer
the need for runtime information. These optimizationletails are provided later in Sections V and VII.
are further divided into algorithm level optimizations Special instructions and parallel platforms.Most modern
(FOrRMULA OPTIMIZATION block) such as formula ma- platforms feature special instructions, such as vectdruns
nipulations for vector code, and into implementatiotions, which offer a large potential speedup. Compilers are

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 6

restricted to code level transformations and cannot take fu We divide the framework into the following parts: trans-
advantage of these instructions, except for simple numleridorms, the language SPL, breakdown and manipulation rules,
algorithms. SPIRAL automatically generates code that usasd ruletrees and formulas. Finally, we explain how the
these special instructions. This is achieved in three stefimmework is implemented in thedRMULA GENERATION

1) by identifying structures in SPL formulas that can band FORMULA OPTIMIZATION blocks in Fig. 1.

naturally mapped into code using these special instrugtion

2) by identifying SPL manipulation rules whose applicatioA. Transforms

produces these structures; these rules are included ieto thgpRAL generates fast implementations for linear discrete
FORMULA OPTIMIZATION block in Fig. 1; and 3) by ex- gignal processing (DSP) transforms. Although in the DSP
tending the MPLEMENTATION block in Fig. 1 to produce jierature transforms are usually presented in the form of

code that uses those special instructions. We providelsleta;mmations, we express them equivalently as a matrix-vecto
for vector instructions in Section IV-E. We also have res“'?nultiplication y = Mgz. In this equation,z and y are

demonstrating that the same approach can be used to gengg{fectively, the input and the outpudimensional vectors (or
code for SMP platforms (see Section IV-F). signals) that collect the signal samples, and/ is then x n

~ Expanding SPIRAL: new transforms and rules. SPIRAL transform matrix. Usually, the transfordv exists for every
is easily expanded with new transforms and/or new rulggyyt sizen. An example is the discrete Fourier transform

by including them in the rule database of th@RMULA (DFT), which is defined, for input size, by then x n DET
GENERATION block. This is achieved without affecting thematrix

remaining components of SPIRAL, provided that the new rules y i ‘
can be expressed using the SPL constructs currently aleilab DFT,, = [wi o<k ecn, wn =e 2™/ i=V=1. (3)

n .SPIRAL' If this is not the case, .SP.L can be _extendqﬂ SPIRAL, a transform is a parameterized class of matrices.
to include new constructs. Once this is accomplished, theq represented symbolically by a mnemonic name such
entire functionality of SPIRAL, including the code genérat as ‘DFT” and by a list of parameters, such as the size
Fhe SEARCH/.LEARN'NG bloc!<, and_the automatic tuning ofg specifying the parameter(s), we obtain an instance of a
implementations becomes immediately available to the n“i‘}gnsform which we will also refer to as a transform. An

transform or rule_. . . example isDFTg. Transforms are written using bold-faced
Other applications. There are various other |mplementafype. Transform matrices, as well as the input and output
tion/algorithm optimization problems that can be addre}ssgeCtors can be real or complex valued.

by the SPIRAL system. Examples include the generation of ot the time of this writing, SPIRAL contains 36 transforms
numerically accurate code, multiplierless implementegjoor (some of which are variants of each other).
a!gorithms with minimal (_)peratiqn counts. We will briefly Trigonometric transforms. We provide some important
discuss these extens.|ons |r.1 Se.ct|on' V. .] examples of DSP transforms for which SPIRAL can generate
In summary, the dISCl:ISSan in this overview outlined h_O\f{med code. We first consider the class of trigopnometricstran
SPIRAL integrates algorithmic knowledge with code mappingms that, besides thBFT in (3), includes the following
and feedback optimization, and pointed out the capalslte tansforms: all the 16 types of discrete cosine and sine
the resulting system. The SPIRAL system can be adaptedtgnsiorms (DCTs an®STSs), of which the most commonly
new platforms, extended with new linear transforms and thgjseq (e.g., in the JPEG and MPEG multimedia standards)
algorithms, and extended with new performance measurgss the DCTs of types 2, 3, and 4; the inverse modulated
Extensions of the system, once completed, apply to theeentj (IMDCT), which is used in MPEG audio compression
collection of DSP transforms and kernels as well as to the fuk;nqards and is a rectangular transform; thelb@l’ (RDFT)
set of problems included in its current domain rather that jup, 4 computes th®FT on a real input data set; the Walsh-

a single transform or a single problem type. Hadamard transformWHT); and the discrete Hartley trans-
Now we begin the detailed description of SPIRAL. form (DHT). Some of these transforms are defined as follows.
DCT-2, = k@ L)r 4
Ill. SPIRAL’S MATHEMATICAL FRAMEWORK AND [cos ;"]Oﬁ’fak"’ “)
FORMULA GENERATION DCT-3, = DCT-2, (transpose) (5)
2k+1)(20+1)m
This section details SPIRAL's mathematical framework to DCT-4, = [COS()4(n :]0§k,£<n’)

represent and generate fast algorithms for linear digitplad IMDCT, = [COS (2k+1)(2é+1+n)7r] @)

processing (DSP) transforms. The framework is declarative an 0sk<Zn,0sb<n’

nature, i.e., the knowledge about transforms and algosithm RDFT, = [rkclogk.e<n, ®)

is represented in the form of equations and rules. The frame- ~Jcos 2“7“, kE<|%]

work enables the following: 1) The automatic generation of Tt = —sin 7KL | 2] ’

transform algorithms; 2) the concise symbolic represenmat WHT nWHT

of transform algorithms a®rmulasin the language SPL that WHT, = {WHTng —WHTnZ , 9)
n n

we introduce; 3) the structural optimization of algorithins
their formula representation; and 4) the automated mapping WHT; = DFT>,
into various code types, which is the subject of Section IV. DHT = [cos2kT 4 sin %]0§k7@<n' (10)

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 7

Note that the Walsh-Hadamard transform in (9) is definefl = f,. = per, is
recursively. 011,
Besides these trigonometric transforms, SPIRAL includes vart = Iy

other transforms and DSP kernels. In fact, in SPIRAL, any L0
linear operation on finite discrete sequences, i.e., ma#&otor

multiplication, qualifies as a transform. In particular,sth
includes linear filters and filter banks. Discrete wavelet transform. Many applications, such as

JPEG2000 [32], make use of a 2-channel DWT, which is usu-

Filters. We recall that a filter in DSP computes the congy defined as the recursive bank of filters and downsamplers
volution of two sequences: one is the signal being filteredpown in Fig. 2.

the input signal; the other is the sequence that charaeteriz])])]
the filter, its impulse response. As important examples, we The filters in the filter bank .are_llnear, and hence is the
consider finite impulse response (FIR) filters and the diecrd®WT- In matrix form, the DWT is given by

wavelet transforms (DWTs). DWT/HF (h[2], gl2]) =
Although we can represent FIR filters and the DWT as

i sefofe (TTP1 11,28)
matrices, it is more convenient, and more common, to define (L n), Filt; (Hk:o hﬁ } i
them iteratively or recursively, as was the case with the (1 n/2), Filtl/r (g[zQ" I TTi=2 n)22])
WHT above. We start with the basic building block, the FIR

wherel,, denotes the: x n identity matrix.

filter transform. The filter's output is the convolution ofit : , (13)
impulse response and an infinite support input signal. The (1 8),, Filt/"/ (g[z"] h[2?] h[2])

filter impulse response can be viewed as the column vector (1 4), Filt/-/ (9[2?] h[z])
h=1[hi,...,ho,...,h_,]T of lengthl 4+ + 1, or as thez- L (1 2), Filt!" (g[2])]

transform polynomiahlz] (e.g., [31]), where (| k), is the n/k x n matrix that selects everyth

! element from its input, starting with the first. The ma-
hlz] = Z hi 27", trix form (13) is obtained from Fig. 2 by observing that
k=—r Filt, . (h[2]) - (1 k) yrisnr = (L k), - Filt, (h[z*]). (Note
The output of the FIR filter for output points is computed that when stacking filters as in (13), the defining polynomial
by multiplying the relevant (i.e., contributing to thesetmuts) may need to be zero extended to equalize the sizes of the
finite subvector of lengt + [+ r of 2 by the FIR transform blocks.)
matrix Filt,, (h[z]) given by

hy - h_,
hy - h_,
Filt,, (h[:]) = L . NGE)

hy - h_, B. SPL: Signal Processing Language

In practice, signals are of finite duratiom. To account
for boundary effects and to enable filtering, i.e., multipty The significance in digital signal processing (DSP) of the
with (11), these signals are thus extended to the left (up) aansforms introduced in Section Ill-A arises from the exis
to the right (below) to have length-+ -+ . Linear extensions tence offast algorithmsto compute them. The term “fast”
can be also interpreted as matrix-vector multiplicatiorighw réfers to the number of operations required to compute the
an(n+1+r)xn matrixEj;I ,lf;:’ wheref; and f, specify the left transform: fast algorithms for transforms of sizetypically
and the right signal extension type, ahandr are the number reduce the number of operations fro@(n?) (as required
of left and right extension points. Examples of extensigrey by direct evaluation) ta)(nlog(n)). Furthermore, these al-
include: periodic ger), whole-point and half-point symmetric 90rithms are highly structured. To exploit the structure of
or antisymmetric \s/hs/wa/hl and zero-paddingzérg. For the DSP transforms, SPIRAL represents these algorithms
example, in ger extension, the signal is extended bgoints N & specially designed language—SPL (signal processing
to the left and byr points to the right, by assuming that thdanguage)—which is described in this section. For example,
signal is periodically repeated beyond its fundamentaioper @n important element in SPL is the tensor or Kronecker
which is given by the actual available data. After extendingfoduct, whose importance for describing and manipulating
the signal, we can define trextendedFIR filter transform as DFT algorithms was already demonstrated in [33], [34]. Afte

the composition of both the FIR filter transform (11) and th#itroducing SPL, we develop the framework to efficiently
extension transform: generate and manipulate algorithms for DSP transforms in
Sections IlI-C and IlI-D.
Filt//" (h[z]) = Filt,, (h[z]) - E//" (12)

n,l,r’

We start with a motivating example. Consider the discrete
where the parametefsandr are implicitly given byh[z]. For cosine transform (DCT) of type 2 defined in (4) and given by
example, the matri>Efj7’l{; for periodic signal extension, i.e., the following4 x4 matrix, which is then factored into a product

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 8

n:) (12)— ()
n) (12) o) 12w
9(2) —@—> (W)nss

Fig. 2. Filter bank interpretation of the DWT.

of three sparse matrices. We use the notatipp- cos kw/8. bers a;, can be real or complex and can be represented
1111 in a variety of ways. Examples include rational, floating
o en or o point, special constants, anohtrinsic functions, such as
1 3 5 7

DCT-2 = | ' 0 . 1,3/2,1.23,1.23¢-04, 7, sqr(2), andsin(3/2).
cs ¢ ¢ cs Symbols.Frequently_occurring classes of_ matrices are rep-
10001 1 0 olll o o 1 _reser_1ted by parametenzeylr_nbolsExamplesmclude thexr_z
001 0lles s 0 0 01 1 0 identity matrixI,,; the matrixJ,, obtained from the identity
= 6 matrix by reversing the columns (or rows); thex n zero
0 L0 0010 0 ereg))l 00 —1 matrix 0,,; the twiddle matrix
0 00 1|0 0 ¢ ¢/ |01 =1 0 "
14) T = diag(w2, ... ,w,(lk_l)'o,
The right hand side of equation (14) decomposes the matrix U wgbkfl)-l
DCT-2, into a product of three sparse matrices. This fac- noy ’
torization reduces the cost for computing the transforne (th ;2.&5/}@71) Dk,

matrix-vector product) from 12 additions and 12 multiptica
tions to 8 additions and 6 multiplications. To avoid a polsib the stride permutationmatrix L, which reads the input at
confusion, we emphasize again that this cost does not re$tide & and stores it at stride 1, defined by its corresponding
to multiplying the three sparse matrices together, but & tipermutation:

computation of the matrix-vector produgt= DCT-2,z in
three steps (corresponding to the three sparse matriaes), a
it is in this sense that (14) is considered as an algorithiihe 2 x 2 rotation matrix (with angle«)
for DCT-2,. Equation (14) shows further that, besides their

Ly ci(n/k)+j—jk+i, 0<i<k, 0<j<n/k;

sparseness, the matrix factors are highly structuredtifglizny Ry = { cosa sl a} ;

this structure and then making use of it is a key concept in Tsmacosa

SPIRAL and provides the motivation for SPL. and thebutterfly matrix which is equal to the x 2 DFT
SPL is a language suitable to express products of structufgdtrix, but not considered a transform (i.e., it is termjinal

sparse matrices using a small set of constructs and symbols. 1 1

However, as we will see, this set is sufficient to represent a Fo = L _J .

large class of different transform algorithms. Table | jpdes

a grammar for SPL in Backus-Naur form (BNF) [35] as the Transforms. SPL expresses transforms as introduced in

disjoint union of different choices of rules (separated by Section IlI-A. Examples includeDFT,, DCT-2,, and

vertical line “”) to generate valid SPL expressions. SymbolEilt,, (k[z]). In our framework, transforms are fundamentally

marked by (-) are non-terminal (spl) is the initial non- different from the symbols introduced above (as emphasized

terminal, and all the other symbols aerminals We call the by bold-facing transforms), which will be explained in Sec-

elements of SPormulas The meaning of the SPL constructgions [lI-C and 1lI-D. In particular, only those formulaséth

is explained next. do not contain transforms can be translated into code. Both,
Generic matrices. SPL provides constructs to represenine set of transforms and the set of symbols available in SPL

generic matrices, generic permutation matrices, and genei'e user extensible.

sparse matrices. Since most matrices occurring withinstran Matrix constructs. SPL constructs can be used to form

form algorithms have additional structure, these consdrustructured matrices from a set of given SPL matrices. Exam-

are rarely used except diagonal matrices. These are writfgas include the product of matricesB (sometimes written

as diag(ao, . ..,a,—1), Where the argument list contains theas A- B), the sum of matricesl+ B, and the direct sur® and

diagonal entries of the matrix. Scalars, such as the nuthe tensor or Kronecker produet of two matricesA and B,

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 9

TABLE |
DEFINITION OF THE MOST IMPORTANTSPL CONSTRUCTS INBACKUS-NAUR FORM; n, k ARE POSITIVE INTEGERS «, a; REAL NUMBERS.

(sph = {(generig | (symbo) | (transform |

(spl) -+~ (sph | (product)
(sph @ ... ® (sph | (direct sum)
(sph @ ----@(spl | (tensor product)
L, ®x(sph | I, @*(spl) | (overlapped tensor product)
(sp | (conversion to real)

(generi¢ = diag(ag,...,an-1) | ...

(symbo) == I, | J, | Ly | Ra | Fo | ...

(transformy = DFT, | WHT,, | DCT-2, | Filt,, (h[z]) | ...
defined, respectively, by DCT, type 2, size.ANe return to thdD CT-2, factorization

A in (14). In SPL, it takes the concise form
A®B= [B] , and
DCT-2, = L3(DCT-2, ® DCT-4,)

(Fooh)(L®lJs). (16)

The stride permutatiorl; is the left matrix in the sparse
factorization of (14) while the direct sum of the twaCTs

A® B =[ay,B], whereA = [ay].

Two extensions to the tensor product in SPIRAL are riwe
and thecolumn overlapped tensor produdefined by

I in (16) is the middle matrix in (14). The last factor in (14) is
split into the last two factors in (16).

DownsamplingThe downsampling-by-2 operator used, e.g.,

In@rd = . ’ in the DWT transform (13) is given by

(15) (l 2)n = [ITL/Q On/Z} Lg .
IZ Transform definitionsUsing SPL, we can define some of the
E previously introduced transforms more concisely. Example
[, @A = ‘ include the Walsh-Hadamard transform in (9) and the filter
' transform in (11), which become

Above, ®;, overlaps the block matrice4 by k& columns, while WHTy: = F2®...9F;, (k-fold), (17)
below, ®* overlaps the block matriced by k rows. Note Filt, (h[z]) = Li®uyr[hi---ho---hp]. (18)
that the left operand v, and ®* has to be the identity
matrix. SPIRAL also uses a similarly definealv andcolumn
overlapped direct sun®;, and©*, respectively.

Multidimensional transformdf T, is a transform, then its
m-dimensional counterparitD-T),, «...xn,, fOr anns x---x
ol n., input array, arranged lexicographically into a vectorhis t

Conversion to real data format (-). Complex trans- m-fold tensor product
forms are usually implemented using real arithmetic. Magio
data formats are possible when converting complex into real mD-To,xiny =Ty ® ... @ Ty, (19)

arithmetic, the most popular being probably tmerleaved Fqr example,2D-DFT,,, «,, = DFT,, ® DFT,, is the

Complex formatin which a Complex vector is represented wao-dimensiona|DFT on anny X na input array arranged
alternating real and imaginary parts of the entries. To@s®r into a vector in row-major order.

this conversion in the mathematical framework of SPIRAL, we

first observe that the complex multiplicatidn + :v)(y + i)

is equivalent to the real multiplicatioft 7*][¥]. Thus, the C. Rules

complex matrix-vector multiplicatiol/z € C" corresponds
to Mz’ € R?", where M arises fromM by replacing every tr

, : . |
entry u + Zlv by the corrlespfondlng XE] matrix abO\I/e, and present the framework to capture and generate these algit
is in interleaved complex format. Thus, to translate comple,qing ryles As we mentioned in Section I, SPIRAL has

formulas into real formulas in the interleaved format, SP, tynes of rules, breakdown rules and manipulation rules,
introduces the new operat@y) : M — M, whereM iS any \nich have different purposes. Breakdown rules are used by
SPL formula. Other formats can be handled similarly. the FORMULA GENERATION block (see Fig. 1) to generate

Examples. We now illustrate SPL using several simplalgorithms, represented as SPL formulas. Manipulatioasrul
examples. The full relevance of SPL will become clear in there used by the BRMuULA OPTIMIZATION block to optimize
next section. algorithms. We discuss both types in detail below.

We have indicated before that the language SPL was in-
oduced to represent transform algorithms. In this sactie

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 10

Breakdown rules. A breakdown rule is a decomposition ofto (32) are not only compact but also clearly exhibit the
a transform into a product of structured sparse matrices tiséructure of the rules. Although these rules are very diffier
may contain other, usually smaller, transforms. We showé&@m each other, they only include the few constructs in SPL,
earlier an example for th@CT-2, in (16). Formally, a which makes it possible to translate the algorithms geadrat
breakdown rule is an equation of matrices, in which the leftom these rules into code (see Section V). As a final note,
hand side is a transform and the right hand side is an SRk mention that SPIRAL's database includes over one hundred

formula. We use “” instead of ‘=" to emphasize that it is a breakdown rules.

rule. A small subset of the rules for trigonometric transfer Manipulation rules. A manipulation rule is a matrix equa-

available in SPIRAL rule database, are listed here. tion in which both sides are SPL formulas, neither of which
Breakdown rules: trigonometric transform$he rules are contains any transforms. These rules are used to manipulate

shown in Table IIl. Rule (20) is the Cooley-Tukey FFT rulethe structure of an SPL formula that has been fully expanded

Rule (21) is the prime-factor FFT from Good-Thomds3;, using breakdown rules. Examples involving the tensor produ
@, are permutations (see [34], [36] for details). Rule (22) igclude

Rader’s FFT algorithm (see [36]) and is used for prime sizes;
R, is a permutation and,, is the direct sum of & x 2 matrix Am ® Bn = (Am @ 1) (Im ©Bn) (34)
and a diagonal. Rule (23) was recently derived [37]. Noté théB,, ® A,,) — L' (A, @ B,) L' — (A, ® Bn)Lm (35)

transposition of this rule yields a rule f@pCT-2,,. Finally, L . . i)
(26) is an iterative rule for thaVHT. where (A, ® B,,) is the notation fomatrix conjugation

efined in this case by the middle term of equation (35).
ule (34) is referred to as the multiplicative property oé th
tensor product. These are some of the manipulation rules

[aevailable for the tensor product see [41].

'Manipulation rules for the stride permutation [33] include

Next, we consider rules for the filter and the discrete wavel
transforms.

Breakdown rules: filter transform and DWTFilter banks
can be represented by matrices of filters, [38]. For examp
for two FIR filters given byh[z] and g[z], one stage of a

corresponding filter bank is given by the transform the following
i Lyt - L 36
Filtn h[Z] = Flltn (h[Z]) . (27) lm(n,n ! k)mn Z'mn kmn kmn ()
glz] Filt,, (g[z]) Loy — LMot Lo (37)
This will be used in the breakdown rules for filter trans- L — (LY @L,) (e @ L") (38)
forms and for the discrete wavelet transfoldWT shown Lm" — (Ik®LZ")(L'§”®Im) (39)

in Table Ill. Rule (28) is the overlap-save convolution rule o

[31]. Rule (29) arises from the convolution theorem of the We introduced in Subsection 1I-B the operatoy that
DFT [31]. Elements of the diagonal matrix are th¥FT we used to translate complex formulas into real formulas in
coefficients ofh whereh|z] = h[z] mod (2™ —1). Rule (30) the complex interleaved format. Manipulation rules forsthi
represents Mallat's algorithm for computation of the DWTonstruct include

(e.g., [39]) and could also be used to define the DWT.
Rule (31) is similar to (30) but the downsampling operator T
is fused into the filter matrix to save half of the number of AB—AB
operations. Rule (32) is the polyphase decomposition fer th A®B—-A®B
DWT [39] and requiresf;, f € {per, _zero}. Tr_lere are many T 0A—1, 4
other breakdown rules for the DWT included in SPIRAL, most - S om
notably thelifting rule that decomposes polyphase filter banks A@ Ly — (L @ L") (A @ 1n) (I, @ L")

into lifting steps [40]. A different data format for complex transforms leads to a

Terminal breakdown rulesFinally, we also use rules to different operator(-) and to different manipulation rules.
terminate base cases, which usually means transformsef sizgp|RaL uses currently about 20 manipulation rules; this
2. The right hand side of &rminal ruledoes not contain any ., mber will increase as SPIRAL evolves.

transform. Examples include for the trigonometric transf®
DFT2 — FQ,
DCT-2, — diag(1,1/v2) Fa, (33)
DCT-4; — J2 Ri3q/s, D. Ruletrees and Formulas
and for the DWT

A— A®I,, for Areal

Ruletrees. Recursively applying rules to a given transform
b ho e hey] o 10 obtal
A in a fully expanded formula leads conceptually to a
9t go g-r tree, which in SPIRAL we call auletree Each node of the
The above breakdown rules, with the exception of (23), atese contains the transform and the rule applied at this .node
well known in the literature; but they are usually expressetls a simple example, consider ti@CT-2,, expanded first
using elaborate expressions involving summations and wek in (16) and then completely expanded using the base case
complicated index manipulations. In contrast, equatid® (rules (33). The corresponding tree (with the rules omitied)

DWTL (h[2], g[2]) —

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 11

TABLE Il
SOME RULES FOR TRIGONOMETRIC TRANSFORMS

DFT, — (DFT,®L,)T" (I DFT,,)L}, n=km (20)
DFT, — P,(DFT,®DFT,,)Q,, n=km, ged(k,m)=1 (21)
DFT, — R/ (L®DFT,_,)D,(I,®DFT,_1)R,, p prime (22)
Im 0 - Jm—
DCT-3, — (I,®J,)L" (DCT-3,,(1/4) ® DCT-3,,(3/4))(F,®1,,) 1@ YL on=2m (23)
m ﬁ (Il @2 Im)
DCT-4, — S,DCT-2,diagy<).,(1/(2cos ZEEUTY) (24)
IMDCTs,, — (Jn®L,®L, &) (([ﬂ ® Im) @ ([ﬂ ® Im>> Jom DCT-4y,, (25)
t
WHT,:. — H(I2k1+---+ki,1 ®@ WHT,x, ®I2ki+1+---+kt), k=ki+-+k (26)
=1
TABLE Il
SOME RULES FOR FILTERS AND THEDWT.
Filt, (hz]) — T®, Filt, (b)), hlz]l= > hpz* (28)
—r<k<l
Filt’*"®"(n[z]) — DFT, " diagycyen(ax) DFT,, (ao,...,an_1)" = DFT,h (29)
DWTL (e gl) — (DWELE (gl o1,.2) (1 2), Finefos (|]]) (30
DWsz,fr (h[ZLg[ZD N (D'WTflvfr (h[z],g[z])QBIn/Q) { 171,/2 Qitr-1 [hl...ho...hﬂ«}] thlfr) (31)
n n/2 In/2 Rpar_1 [gl"'QO"'g—r] n,l,r—
fiofr fiofr aufife (| Deverdz] houd(2] n
DWT/F (Lgl) — (DWTLE (lgle) o 1,) Fitefer (| Do) Bosde]) @)
given by in a different form. The information about the intermediate
expansions of the transform is lost in the formula, but the
DCT-24
formula captures the structure and the dataflow of the compu-
/\ tation, and hence can be mapped into code. As an example,
DCT-2, DCT-4, (40) the completely expanded formula corresponding to (14)), (16

and (40) is given by
We always assume that a ruletree is fully expanded. A rdetre
clearly shows which rules are used to expand the transformDCT-2, = Lj(diag(1,1/v2) Fo & J2 Ry3,/s)
and, thus, uniquely defines an algorithm to compute the (Fo@I) (@ Jp). (41)

transform. We will show in Section I1lI-B that, by labeling]))
specific components of the trees withgs the ruletree also The formula in (16) cannot be translated into code in SPIRAL

fixes degrees of freedom for the resulting implementatioR€cause itis not fully expanded: its right hand side costtie
Ruletrees are a convenient representation of the SPL fagndffansformsDCT-2; and DCT-4,, which arenonterminals.
they represent: they keep the relevant information fortorga !N contrast, (41) is a fully expanded formula since it expess
the formula, they are storage efficient, and they can be man]BCT—24 exclusively in terms of terminal SPL constructs. A
ulated easily, e.g., by changing the expansion of a subiee. fully expanded formula can be translated into code.

these issues, particularly the last one, are very impoftant ~ The above rule framework defines a formal language that is
our search methods (see Section VI-A), since they requée t subset of SPL. The non-terminal symbols are the transforms
efficient generation of many ruletrees for the same transforthe rules are the breakdown rules available in SPIRAL, and
We also use the ruletree representation for defining “featur the generated language consists of those formulas thaastre f
of a formula to enable learning methods, see Section VI-Blgorithms for the transforms.

However, when translating a formula into code, it is necgssa Alternatively, we can regard this framework as a term
to convert the ruletree into an explicit SPL formula. rewriting system [42]. The terms are the formulas, the vari-
Formulas. Expanding a ruletree by recursively applyingbles are the transform sizes (or, more general, the tnansfo
the specified rules top-down, yields ampletely expanded parameters), the constants all other SPL constructs, and th
(SPL) formula or simply aformula Both the ruletree and the rules the breakdown rules. The transform algorithms arsetho
formula specify the same fast algorithm for the transforat, bformulas in normal form. If we consider only rules that

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 12

decompose a transform into smaller transforms such as (20les and formulas (see Section V-B); 2) GAP can be easily

or that terminate transforms such as (33), then it is easydrtended; and 3) GAP is easy to interface with other programs
prove that formula generation terminates for a given trammsf and the GAP kernel can be modified when necessary since the
However, the existence of translation rules such as (24) miayl source code is available.

introduce infinite loops. In practice, we make sure that wig on

include translation rules that translate transforms othéig IV. FROM SPL FORMULAS To CODE

complexity into transforms of lower complexity to ensure In this section, we discuss the second level in SPIRAL, the

termination. Obviously, the rewriting system is not confit+e- MPLEMENTATION LEVEL (see Fig. 1), which comprises the
and it is not meant to be—since the purpose is to combine 4&?0 blocks MPLEMENTATION and CDDIéOPTIMIZATION We
various rules to generate many different algorithms forheaglso refer to this level as the SPLOBIPILER, Since its purpose
transform. is to translate SPL formulas into code. By generating code fo

Formula space F. In general, there are few rules (say 1€Sg tomy1a 4, we mean generating code for the matrix vector
than 10) per transform, but the choices during the rec”rs'?{ﬁjltiplication y — Az, wherez andy are input and output
expansion lead to a large number of different formulas. §he§ectors of suitable size

choices arise from the choice of rule in each step, but also,Up to this point, the motivation to consider the formula

in some cases, from different instantiations of one rulg.(€. .o hresentation of transforms has been purely mathematical
rule (20) has a degree of freedom in factoring the ransforgp, is 5 natural representation of algorithms from the algo-
size). When a formula is recursively generated, these c80i¢gnmg expert's point of view, and SPL enables the genamatio
lead to a combinatorial explosion and, in most cases, 10 gfiany alternative formulas for the same transform. Howeve
exponentially growing number of formulas for a given ransyy e will see in this section, SPLs ruletrees and formulas

form. The different formulas for one transform all have $mi ;¢ retain the necessary information to translate forsninie

arithmetic cost (number of additions and multiplicatioaglal ¢iient code including vector and parallel code. Furtt

“ofr cIPseI (0 the be_sﬁt kr?OW” (dﬂue to thhehchome Olf ‘g00d” &p facilitates the manipulation of algorithms using rules
ast” rules), but di ermn da;a ow, which in turn leads to a(see Section 11I-C). This manipulation enables SPIRAL to

usually large spread in runtime. Finding the best formula bsptimize the data flow patterns of algorithms at the high,

the challenge. mathematical level. Current compilers strive to acconmplis

The set of alternative formulas that can be generated Qyo, ontimizations on the code level but, in the domain
recursive application of applicable rules constitute theaf ¢ transforms, very often fail or optimize only to a rather

formulas 7. Even though this set is very large, its recursivgy,saq degree. In Section VII, we will show experimentsttha
structure allows search methods such as dynamic progr@nm&fémonstrate this problem.

and evolutionary search, see Section VI-A, to operate quite|, he following, we first slightly extend the language SPL

efficiently. as introduced in Section I1I-B through the notion of tagst tha
fix implementation choices when SPL is translated into code.
E. Formula Generation Then, we introduce a major concept in SPL—tiegenplate
mechanism, which defines the code generation. Finally, we
SeQ‘pIain standard (scalar) code generation, and, with letssld

clear road map on how to implement th@®®vULA GEN- : ' ' .
. . ector code generation and the first experiences in SPIRAL
ERATION block in SPIRAL (see Fig. 1). The block need%/vith prarallel godergelneration Irst expent S|

three databases to generate the formula space: one defines
the transforms and the other two define the breakdown and
manipulation rules, respectively. Information about sfanms A. SPL and Templates
includes their definition (for verification of formulas and As introduced in Section 1lI-B, Table I, SPL describes
code), type and scope of parameters (at least the size), @aghsform algorithms as formulas in a concise mathematical
how to formally transpose them. Information provided fonotation.
rules includes their applicability (i.e., for which trapngfn Implementation choices: tagsBesides formula constructs,
and parameters), children, and the actual rule. Ruletreds &PL supportgagsin ruletrees and the corresponding formu-
formulas are both implemented as recursive data types. & mtas. The purpose of these tags is to control implementation
detailed description can be found in [43], [44]. choices, i.e., to instruct the compiler to choose a specific
We used the GAP 3 [45] computer algebra system tmde generation option, thus fixing the degrees of freedom
implement the high-level components of SPIRAL includingn the compiler. In the current version of SPIRAL, the most
the FORMULA GENERATION, the FORMULA OPTIMIZATION, important implementation choice considered is the degfee o
the SEARCH and the user interface. GAP was chosen for thenrolling, which can be controlled eithgtobally or locally.
following reasons: 1) GAP provides data types and functiofifie global unrolling strategy is determined by an integer
for symbolic computation, including exact arithmetic fa-r threshold that specifies the smallest size of (the matrixeeor
tional numbers, square roots of rational numbers, roots gfonding to) a subformula to be translated into loop codes Th
unity, and cosine and sines of angles wherer is a rational threshold may be overridden by local tags in the formula that
number. These are sufficient to represent most transforehs aflow a finer control. Experiments have shown that a global
rules, andexact arithmetic can be used to formally verifysetting is sufficient in most cases [44]. Tags will most kel

The framework presented in the previous section provide

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 13

become even more relevant in future versions of SPIRAL when SPL formula
more implementation strategies with indeterminate outcom ‘
are included.
Templates. The translation of SPL formulas to code is Intermediate Code Generation -efmmm Templates
defined throughemplates A template consists of a param- Loop Unrolling/Inlining

eterized formula construcd, a set of conditions on the

. Precomputing Intrinsics
formula parameters, and a C-like code fragment. Table IV

shows templates for several SPL symbols, the stride permuta Optimization
tion L™, the J,, matrix, the butterfly matri¥'s, and a generic Target Code Generation
diagonal matrixD. Table V shows templates for several matrix ;
constructs.

Templates serve four main purposes in SPIRAL: 1) they Target code

specify how to translate formulas into code; 2) they are a _
tool for experimenting with different ways of mapping d '3 The SPL compiler.
formula into code; 3) they enable the extension of SPL with
Z%%::?ﬁ;gcgpstg:;otr?:; '22%/ ;t/):t ?ﬁgﬂi‘;éoiﬁxgﬁfﬁ?vﬁ g table references are expanded back into constantse if th
I : . ' [Il h lei f th .
4) they facilitate extending the SPL compiler to general eOp 's not unrolled, the table is part of the generated code

ial code t h de with vector instructi Loop unrolling. Loops marked for unrolling are fully
Z%?:(t:i(?n (K)/-Ee) ypes such as code ector instructiors (%%rolled; currently, the SPL compiler does not supportiphrt

. . .. unrolling. A reasonably large degree of unrolling is uspall
Each template is written as a separate function impl 9 y arg 9 g N

e-
. . S very beneficial, as it creates many opportunities for opamni
menting a parameterized SPL construct with its own sco y Y obp

B8ns. As a simple example, consider the rotation matrix
for variables. However, when incorporated into the germerat P pie,
cos(m/8) sin(m/8)

code, the variables local to different templates are giveque R e —
names to disambiguate them and to incorporate them into one ™/8 7 | —sin(n/8) cos(n/8)]|"

common name space. The template code is specialized e there is no special template for a rotation, the canpil
substituting all of the template parameters (esgz¢ andstr generates a regular matrix multiplication block with twetea!
in L3,%) by their respective values. loops, and a separate data tablet0 to contain the elements

Although the template specialization step is similar tgf the matrix. This code and the resulting unrolled code is
the partial evaluation described in [46], it does not reguitspown below.

complicated binding-time analysis, because the only cbntr loop code:
flow statements in the code generated from formulas are o (jo0 = 0; i0 < 2; i0++) {
loops with known bounds. This is because currently, SPIRAL y[i0] = 0;

does not generate code for parameterized transforms, but on ~ for (il =0; il <2 il++) {
fO = matO[i0x2+i 1] * x[i1];

for instantiations. Transform size and other parametees ar y[i0] = y[i0] + fO:
already fixed in the formula generation process. This mdies t }
specialization of the initial code generated from the folamu }
straightforward. unrolled code:
y[0] = 0;
fO = 0.9238795325112867 * x[0];
B. Standard Code Generation y[0] = y[0] + fO;
. . 0 = 0.3826834323650898 * x[1];
The SPL compiler translates a given SPL program describ- y[0] = y[0] + fO;
ing a formula into C (or Fortran) code. This translation is Y[l =0
. . S f0 = (-0.3826834323650898) * x[O0];
carried out in several stages shown in Fig. 3. y[1] = y[1] + foO;
Intermediate Code Generation. The first stage of the f0 = 0.9238795325112867 * x[1];
compiler traverses the SPL expression tree top-down, +ecur Y[1l = y[1] + f0;

sively matches subtrees with templates, and generates CAs this example shows, full unrolling enables constantetabl
like intermediate code from the corresponding template bgferences to be inlined and additional optimizations to be
specializing the template parameters with the values édhi performed. In this case all additions of zero can be elingidat
from the formula. Precomputation of intrinsics. Besides constants, the code
Next, based on the local unrolling tags and the globatay call predefined transcendental functions sucki&s) to
unrolling threshold, the compiler identifies loops that Wldo represent scalars. These functions are caifathsic, because
be unrolled and marks them accordingly in the intermediatiee compiler has special support for handling them.
representation. When the compiler encounters an intrinsic function, the
Constructs like diag” or other generic matrices allow listsfunction call is not inserted in the target code. Insteadl, al
of constant scalar values as arguments. Constants are sg@ssible arguments to the function are computed by the
in constant tablesnatN, to enable looping. These tables areompiler. This is possible since all loop bounds are known
used in the subsequent compiler stages. If the loop is wakollat compile time. The compiler will then replace the original

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

TABLE IV

EXAMPLES OF TEMPLATES FORSPLCONSTRUCTS SYMBOLS.

LSt [size > 1 A str > 1 A size mod str = 0]

size

doil=0..blk-1
y[il + i0sblk] = x[iO*str + i1]

Jsiz& [Size 2 1]

blk = size / str
doi0 =0..str-1
do il =0..blk-1
y[il + i0xblk] = x[iO*str + i1]

end end
end end
Fa diag(D)
y[0] = x[0] + x[1] do i0 = 0..Length(D)-1
y[1] = x[0] - x[1] y[i0] = Di0] » x[iO]
end
TABLE V
EXAMPLES OF TEMPLATES FORSPLCONSTRUCTS MATRIX CONSTRUCTS
A-B I, ®A
deftemp t Rows(B) doi0 =0..n-1
call B(t, x) call A(subvec(y, i0*xRows(A),
call A(y, t) (i 0+1) *Rows(A) -1),
subvec(x, i0*Cols(A),
(i0+1)*Col s(A)-1));
end
A® B Commonly used key words:

call A(subvec(y,
subvec(x,

0, Rows(A)-1),
0, Cols(A)-1))

cal | A(y, x) : inserts code for block A with input and outputy
subvec(v, start, end): returns a subvector of

14

call B(subvec(y, Rows(A), deftenmp v N: defines a new temporary vecterof N elements
Rows(A) +Rows(B) - 1), Rows (A) : returns row dimension of A
subvec(x, Cols(A), Col s(A) : returns column dimension of A

Col s(A) +Col s(B)-1))

expressions by references to tables of constants whosesvallihese graphs are useful to visualize, analyze, and compare
are either computed at compile time or initialized at rumjm different code options.
depending on the compiler configuration. In the case they areStatistical backendsutput statistics of the generated code,
initialized at runtime, the compiler produces an initiaion rather than the code itself. Examples include the arithometi
function. cost, the FMA arithmetic cost, the size of the intermediate
Optimization. The optimization stage performs dead codstorage required, or the estimated accuracy. These &sitisin
and common subexpression elimination, strength reductide used as alternatives to runtime for the optimizatioreieit
copy propagation, and conversion to scalars of temporasged by SPIRAL (see Section V-C). The arithmetic cost
vector references with constant indices. This stage will teackend, for instance, enables SPIRAL to search for forsnula
discussed in detail in the next subsection. that implement the transform with the minimal number of
Target code generation.In the last stage, the compilerarithmetic operations.
produces the target code. The target code is customizatiie wi
the following options. L
Standard code generation backengisierate standard C and": C0de Optimization
Fortran code including the required function declaratimom- In this section, we provide further detail on the optimiaati
stant tables, and the initialization function for preconipy stage of the SPL compiler, the fourth block in Fig. 3. The
intrinsics. We focus our discussion on C code generatior. Treason why the SPL compiler performs these optimizations
FMA (fused multiply-add) backend performs an instructionather than leaving them to the C/Fortran compiler is that
selection to produce C code that utilizes fused-multiplg adoractically all of the commonly used compilers do not opgeni
instructions available on some platforms. The multipies machine generated code well, in particular, large segnmants
backend decomposes constant multiplications into additio straightline code (see [11], [20], [47], [48]). The perfa
subtractions, and shifts. optimizations include array scalarization, algebraicifica-
Graphical backendsproduce transform data-flow graphstion, constant and copy propagation, common subexpression

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 15

-6

elimination (CSE), and dead code elimination. The first four 5X10 ‘ ‘ ‘
optimizations will be investigated in more detail below.dde o Share
code elimination will not be discussed, as there are no un- g *% -8~ Optimized i

usual details of our implementation that impact perforneanc
Finally, we briefly discuss FMA code generation.

Static single assignmentAll of the optimizations consid-
ered are scalar optimizations that operate on code converte
to static single assignment (SSA) form, in which each scalar
variable is assigned only once to simplify the required ysial

Array scalarization. C compilers are very conservative
when dealing with array references. As can be seen from the
compilation example in the previous section, the loop Uimgpl
stage can produce many array references with constanemdic
During array scalarization, all such occurrences are cepla 05 ‘ ‘ ‘ ‘ ‘ ‘
by scalar temporary variables. o 5 10 15 20 25 30 35 40 45

Algebraic simplification. This part of the optimizer per- Formula # (size = 32 forall of them)
forms constant folding and canonicalization, which suppor (2) SPARC
the efforts of other optimization passes. 4 w

Constants are canonicalized by converting them to be non-
negative and by using unary negation where necessary. Ex-
pressions are canonicalized similarly by pulling unaryatiegn
as far out as possible. For exampley — y is translated to
—(z +y), and (—z) xy — —(z x y). Unary operators will
usually combine with additive operators in the surrounding
context and disappear through simplification.

These transformations, in conjunction with copy propa-
gation, help create opportunities, previously unavadalfbr
common subexpression elimination (CSE) to further sirgplif
the code.

Copy propagation. Copy propagation replaces occurrences
of the variable on the left hand side of a given “simple” as- 15 ‘ ‘

Execution time in seconds averaged over 10000 trials

=k~ MIPS *
4 Scalarized
-@— Optimized

3.5r

-

Lo

Execution time in seconds averaged over 10000 trials

signment statement with the right hand side of that assighme S ek walothemy
statement, if the right hand side is either a constant, ascal (b) MIPS

or a unary negation of a S(?alar ora CO_nStam' Fig, 4. DFT performance before and after SPL compiler optimizations on
Recall that unary negation expressions are often creaiedparc and MIPS architecture. SPARC: UltraSparc Iil, 7502MForte
during algebraic simplification due to canonicalizatiorop§ Developer 7 compiler, flags -fast -xO5; MIPS: MIPS R12000, 308z,

propagation will move them so that they can combine wit}!PSPro 7.3.1.1 compiler, flag -O3.
additive operators in the new context during further algebr
simplification.

Common subexpression eliminationCommon subexpres- @ DF T3, on two different platforms. The line marked with
sion elimination tries to discover multiple occurrencested stars and labeled “SPARC” in Fig. 4(a), respectively “MIPS”
same expression; it makes sure that these are computed dnllyig. 4(b), shows the execution times achieved by the eativ
once. Our implementation treats subscripted array reéesen SPARC (MIPS) compiler alone. The line marked with triangles
as expressions and, therefore, as eligible for elimination ~and labeled “Scalarized” shows that every formula is imptbv

Optimization strategy. The different optimizations de- by scalarizing the C code before sending it to the native
scribed above have mutually beneficial relationships. Rer icompiler on both platforms. Note that we performed our MIPS
stance, algebraic simplification can bolster copy propagat €xperiments on an R12000 with the MIPSpro compiler. See
and copy propagation can then create new opportunities f8¢] for a case where the same experiments were performed
algebraic simplification. Alternating between these twdi-op With the same compiler on an R10000, but with different
mization passes, the code will eventually reach a fixed poifigsults. In that case, the MIPSpro compiler already achieve
where it is changed no further. good performance without scalarizing or optimizing the e&od

Our implementation strategy is to loop over these differefitst. The line marked with bullets and labeled “Optimized”
optimization passes in the manner prescribed, and to tatminin both graphs of Fig. 4 represents the performance of the
once an entire iteration fails to change the code. DFT codes after the entire optimization following the st

Impact of the optimizations. Merely scalarizing arrays described above. We observe that the additional optinoizati
provides a sizable performance benefit as seen in Fig. bgyond array scalarization significantly improve the code o
These graphs depict the execution time (lower is betteef tSPARC, but not on MIPS.
programs generated for 45 SPIRAL generated formulas forFMA code generation. Some architectures, including

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 16

Itanium 1/2 and Motorola G4/G5, offer fused multiply

add (FMA) instructions, which perform an instruction of the TABLE VI

CODE GENERATION FOR FORMULA(41). ABOVE: INITIAL CODE

form
GENERATION; AND BELOW: AFTER UNROLLING AND INLINING
y«— taxr+tb
CONSTANTS
as fast as a single addition or multiplication. Most staddar
compilers cannot generate the optimal FMA code as it may initial code generation:
require changing the algorithm and/or the order of computg-¢ J,
tion. for (i0 =0; i0 < 2; i0++) {

To generate explicit FMA code, we use an algorithm that O:ZH 8] ;0?([: 8]; }2 i0+4) {

traverses the data flow graph propagating multiplicatians] t2[i0+2] = x[-i0+3]; }
fusing them with additions where possible [49]. The alduwrit Fo @l
has the property that the number of multiplications left-“utor (io = 0; 10 < 2; i0++) {
fused” is at most the number of outputs of the transform. We t1[i0+2] = t2[i0] - t2[i0+2];
implemented the algorithm by extending tibeirg instruction ti[io] = t2[io] + t2[io+2]; }
selection framework for expression trees [50]. Unlike dead diag(1,v2/2)F2 ...
compilers, this algorithm can produce code that matches tH %é} = Iﬂg} . :ﬂ H
best published FMA arithmetic cost for many transformsgor (i0 = 0; i0 < 2; i0++) {
including the DFT [51], [52]. t0[i0] = matO[iO] * t3[iO0]; }
Our FMA generation algorithm can also be performed more g 5, g

concisely at the formula level (similar to the vector codefor (i0 = 0; i0 < 2; i0++) {
generation discussed below) rather than at the code lelid. T t4[i0] = 0; ,

. . . . for (il =0; i1l <2; il++) {
method is currently being integrated into SPIRAL. fO = mati[i 0«2 + i1] * ti[i1+2];

t4[i0] =t4[i0] + fO; } }

D. Compilation Example. fOEOE: 8+Z] 0. itg[fi g+1i ?T) {

To demonstrate the most important stages of the compile,
we discuss the compilation of the SPL formula in (41). The%or (i0=0; 10 <2 i0++) {
size of the formula is 4, which is smaller than the default for (il =0; i1l < 2; il++) {
global unrolling threshold 16. Thus, the generated codé wil ~ Y[2*1 0+ 1] = tO[i0+2«i1]; } }
be completely unrolled. In the unrolled code, all reference
to precomputed coefficient tables and transcendentalifurgct
will be inlined during the unrolling stage, and the intrinsi after unrolling and inlining constants:
precomputation stage will be omitted.

We look at the output of all the stages of the compiler for :g{(ﬂ -);%(1)}

this expression. t2[2] = x[3];
Intermediate code generation from SPL templatesThe t2(3] = x(2];

initial stage of the compiler converts the SPL expressiee tr 1151 = (210] - t2[2];

for (41) into the looped intermediate code (Table VI, todeT t1[0]
generated code is annotated with formula fragments to showt 1[3]
the origin of the code. il

Loop unrolling. All of the loops generated in the previous t3[1]
stage are unrolled because of the small transform dimensiort 3[0]
n = 4 < 16, where16 is the default setting as mentioned. :g{ 1]
After full unrolling, the tablesmat N are no longer needed,

and the compiler directly substitutes the computed valuest4[0] = 0
fO = 0.3826834323650898 * t1[2];

t2[0] + t2[2];
t2[1] - t2[3];
t2[1] + t2[3];

t1[0] - t1[1];
t1[0] + t1[1];
1. 0000000000000000 * t3[0];
0.7071067811865476 * t3[1];

(Table VI, bottom). t4[0] = t4[0] + fO:
Scalar optimization and target code generation.Loop f0 = (-0.9238795325112867) * t1[3];
unrolling usually creates many opportunities for scalar op t4[0] = t4[0] + fO;

timizations, and also creates unnecessary temporary Saray’ g = o o9sg705325112867 « t1[2]

(tO, t1, t2, t3, t4 in Table VI, bottom). Array scalarization t4[1] = t4[1] + fO;

converts redundant temporary arrays into scalars, andttigen Ig[;] 0;3?5??]34325850898 * t1[3];

code is converted into SSA form (i.e., each scalar variable i t0[2] = t4[1];
assigned only once). As was mentioned earlier, this sireplifi t0[3] = t4[0];
the analysis required for further optimization. _ .
After the code optimization, the compiler outputs the targe ﬁ (H _ :8{ g} ;
code including the transform function declaration and an in y[2] = to[1];
tialization function. Since our unrolled code does not usg a Y[3] = t0[3];

tables, the initialization function is empty. The resuiticode

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 17

TABLE VI
FINAL GENERATED C CODE AND FMA CODE FOR THE FORMULA(41).

C code:
voi d sub(doubl e *y, double *x) {
double fO, f1, f2, f3, f4, f7, f8, f10, f11;
= x[0] - x[3];
x[0] + x[3];
x[1] - x[2];
x[1] + x[2];
fli- £3;
f1 + f3; \
0.7071067811865476 * f4;
. 9238795325112867 * fO;
. 3826834323650898 * f2; ‘
f7 + £8;
f10 0. 3826834323650898 * fO0;
fl11 (-0.9238795325112867) =* f2;
y[3] = f10 + f11;

—
N
o

—_
~
1
nooi

y[1]

}
void init_sub() {

}
FMA code:
voi d sub(doubl e *y, double *x) { ‘ viol ‘ ‘ Vil ‘ ‘ Vi1l ‘ ‘ yi3l ‘
double fO, f1, f2, f3, f4, £1000, f1001;
f1 = x[0] + x[3];
f3 =x[1] + x[2]; Fig. 5. Standard and FMA data flow graphs generated by SPIRAL f
y[0] = f1 + f3; formula (41). Multiplications are shaded dark gray, FMAs sinewn as dark
f4 =f1 - £3; gray rectangles.
y[2] = 0.7071067811865476 * f4;
f0 = x[0] - x[3]; TABLE VIII
f2 = x[1] - x[2];
£1000 = fra(f0, 0.4142135623730951, f2): SHORT VECTORSIMD EXTENSIONS
y[1] = 0.9238795325112867 * f 1000; _
£1001 = fma(fo, (-2.4142135623730945), f2): [Vendor [Name [v-way [Precision] Processor |
y[3] = 0.3826834323650898 f1001;] . Pentium I
} Intel SSE 4-way single Pentium 4
void init_sub() { Intel SSE2 2-way | double Pentium 4
} 4-way | single .
Intel SSE3 2-way | double Pentium 4
) .) o Intel IPF 2-way single ItI;?lri]Llllrj’an
is shown in Table VII, top. Further optional FMA optimizatio :
. . AMD 3DNow! 2-way single K6
saves two instructions (Table VII, bottom). VD Enhanced | . il K7, Athlon XP
Fig. 5 shows the two data flow graphs, produced by the 3DNow! Y 9 Athlon MP
graphical backend, for the codes in Table VII. Each internal amp SDNow! 1 vay | single Athlon XP
. . L . Professional Athlon MP
node in the graph represents either an addition (light gray Zway | Single
circle), a multiplication by a constant (dark gray circlej,an AMD AMD64 4-way | single Act)hg?e”me:
FMA instruction (dark gray rectangle). For the latter, thpit I o i'Way d‘?Ubl'e L
. . - . otorola iVec -way single XX
being multiplied is marked with a bold edge. IBM AliVeo Zway | single | PowerPC 970 G5
IBM Double FPU | 2-way double | PowerPC 440 FP2

E. Vector Code Generation

Most modern processors feature short vector SIMD (single
instruction, multiple data) extensions. This means thaisge- complicated access patterns usually found in transformdier
ture provides data types and instructions to perform flgatifas. In Section VII, for example, we will show that compiler
point operations on short vectors at the same speed as a,singgctorization, when used in tandem with SPIRAL, can, for the
scalar operation. The short vector extensions have differdF'T, achieve moderate speed-ups (about 50%), whereas the
names for different processors, have different vector tlesig best possible code is at least a factor of 2 faster.
v, and operate in single or double precision. An overview is As a consequence, when striving for highest performance,
provided in Table VIII. the common current practice is to hand-code vector instruc-
Short vector instructions have the potential to speed uptians. This can be done at the C level through the use of
program considerably, provided the program’s data flow efintrinsics” provided by the respective architecture verg]
hibits the fine-grain parallelism necessary for their aggilon. but poses major challenges to software developers: 1) each
Since vector instructions are beyond thtandard C/Fortran vector extension provides different functionality and itizin-
programming model, it is natural to leave the vectorizatiosics interface is not standardized, neither across prafpnor
to a vectorizing compiler. Unfortunately, to date, compileracross compilers, making the written code non-portabl¢he)
vectorization is very limited; it fails, in particular, fothe performance of vector instructions is very sensitive todhta

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 18

access; a straightforward use oftdaterioratesperformance Finally, we need vectorizable permutations. Clearly, perm
instead of improving it; and 3) in a library of many transfam tations of the formP @ I,, match (42) and are thus naturally
each transform needs to be hand-coded individually. In theappable into vector code. Another important class canefst
following, we give an overview of how we overcome thespermutations that can be vectorized using a small number of
problems by extending SPIRAL tautomatically generate in-register data reorganization instructions. The peatins
optimized vector code. We note that by extending SPIRAL to L2 oy o

handle vectorization, the third difficulty is immediatebken Pedly Ly L} (44)

care of. For a more detailed description, we refer to [S3}S5 are of that type and play an important role in the vectorizati

and to [56] in this special issue. of DFT algorithms based on the Cooley-Tukey rule (20). The
Our approach to vector code generation for SPL formulagtual implementations of these instructions differ agisisort
consists of two high-level steps. vector architectures; however, they share the charatbsris

. We identify which basic SPL formulas or structuredhat they are dpne fully in-register, using only a few vector
within formulas can be mapped naturally into vectof€order instructions.
code; then we derive a set ahanipulation rulesthat Further, if P is a vectorizable permutation of the form (42)
transform a given SPL formula into another formula@r (44), then the same holds fdy @ P. Finally, for v = 4,
that can be better vectorized. These manipulations awe also consider permutations of half-vectors, namely ef th
incorporated into the GRMULA OPTIMIZATION block in form P®I,. These permutations reorganize complex numbers
Fig. 1 and can overcome compiler limitations since thepto the interleaved complex format and are thus important f
operate at the “high” mathematical level. The manipul&omplex transforms. For example, Intel's SSE vector exoens
tion rules are parameterized by the vector length provides memory access instructions for these permutation

« We define a short vector API on top of all current vector Building on the constructs introduced above, we can com-

extensions, which is sufficient to vectorize a large clagsietely vectorize any expression of the form
of SPL formulas. The API is implemented as a set of

C macros. The SPL compiler is then extended to map [1P.Di(Ai ® 1,)EiQ;, (45)

vectorizable formulas into vector code using this API. i

where P;, Q; are vectorizable permutations, aid, F; are

irect sums of matrices of the form (43). The class of forraula
(45) is general enough to cover the'T formulas based

Formula manipulation. We start by identifying formulas
that can be naturally mapped into vector code. The list is

no means exhaustive, but, as it turns out, is sufficient for' he Coolev-Tukev breakd le (20 T |
large class of formulas. We assume that the formula is regaﬂat e Cooley-Tukey breakdown rule (20), HEHT formulas

valued, i.e., if the original formula is complex, we first gert 025€d 0n (26), and the higher-dimensional transforms (19).
it into a real formula using the conversion operatgrand the ~ We briefly illustrate the vectorization manipulations with
manipulation rules introduced in Section IlI-C. Furthere wthe Cooley-Tukey rule (20). To manipulate a given formula
denote the vector length with; on current platforms, only into the form (45), we use manipulation rules including
v = 2,4 are available (see Table VIII). We refer to a vectopduations (35) to (39). Using these manipulations, we can
instruction for vectors of lengths also as av-way vector Vectorize every Cooley-Tukey rule based formula, provided
instruction. that forn = km in (20), v | k,m, which impIie3u2 | n. In

The most basic construct that can be mapped exclusivéws case the manipulated formula takes the following form,
into vector code is the tensor product

AT, (42)

n

DF Ty = (Imn @ L2) (DFT,, @12 ® L) T,

(lz @ @2 0L) (1 01y") (DFT, 1))
where A is anarbitrary formula. The corresponding code is mn)

obtained by replacing each scalar operation in the code for : (L%" ®Lzy) , (46)
y = Ax by the corresponding-way vector instruction. This —mn) _ _

is best understood by visualizing the structuredof I,; the WhereT, —is a direct sum of matrice$' shown in (43).

exampleF, ® 1, for v = 4 is provided in Table IX. The operator(-) is as defined in Section IlI-B. Note that (46)
Further, the following structured matrig matches (45) and is, hence, completely vectorizable, ilep
’ dently of the further expansion of the smaller occurivigTs.

g — [dilag(ao»m,au—l) d.iag(b()w--,bu—l)] This is crucial for obtaining a searchable space of formulas
diag(co, ..., cy—1) diag(do,...,dy-1) (43) that exhibit different data flows.
= L¥ (@(KK” {“i Z’D L2 Code mapping.After a formula is vectorized by the means
sl ds

of formula manipulation, the parts of the formula match-
can be mapped into 4 vector multiplications and 2 vectang the pattern in (45) are mapped into vector code. The
additions. The sparse structure®fn (43) is equivalent to the remaining part of the formula is mapped into scalar code
structure of (42), only the actual values of the entriesediff using the standard SPL compiler. For a formula matching
The matrix S appears often in DSP transforms, for examplé45), first, vector code is generated fdf @ I, by generating
in the DFT when converting the complex twiddle factors intescalar code forA; and replacing the scalar operations by

a real matrix using th¢-) operator. the corresponding/-way vector operations (e.gt,=a+b is

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 19

Matrix Scalar Code foy = Fa x Matrix Vector Code fory = (F2 ® I1)X

void F2xl14 (float *y, float *x) {
LOAD_VECT(x0, x + 0);

Fy = void F2(float »y, float *x) { Fo@ly = LOAD_VECT(x1, x + 4);
11 y[0] = x[0] + x[1]; L L ADD _VECT(y0, x0, x1);
{1 _1}) y[1] = x[0] - x[1]; {14 —LJ STORE_VECT(y + 0, y0);

SUB_VECT(yl1, x0, x1);
STORE_VECT(y + 4, yl);

TABLE IX
VECTORIZATION OFy = (F2 ® 14) ~ FOR A4-WAY VECTOR EXTENSION USING THE PORTABLESIMD API.

replaced byVEC ADD(t, a, b)), and by replacing array to minimize parallel overhead and to achieve good processor
accesses by explicit vector load and store instructionst,Neutilization.
the permutationd®;, andQ; are implemented by replacing the Relatively simple extensions to the code generator can
vector loads and stores by combined load/store-and-permbe utilized to produce parallel code for both symmetric
macros provided by our short vector API. In the final stepnulti-processors (SMP), where multiple processors share a
the arithmetic operations required @y; and E; are inserted common memory with uniform access time, and distributed-
between the code foA ® I, and the vector memory accessnemory parallel computers, where remote memory is accessed
and permutations introduced in the previous step. over an interconnect with non-uniform memory access. For
As a small example, we show a vector store fused witlistributed-memory computers, code can be produced bgusin
L%, provided by our API, and implemented in SSE using the shared-memory programming model where remote memory
Intel C++ compiler intrinsics. It is one of the cases in (4d) f is accessed implicitly, or by using a distributed-memorg-pr

v=4. gramming model, where explicit message passing is required
#define STORE L 8 4(v, w, p, q) { In either approach, alternate formulas for the same tramsfo
_ m28 t1,t2; may access memory in different patterns leading to more or
s = _mm unpackl o_ps(v, w); less remote memory accesses.
tm;]gmr—gnggfg?'gf?(v’ W We realized these ideas in preliminary experiments with
“mmstore_ps(q, t); } the WHT on both shared-memory multiprocessors [59] and

. distributed-memory computers [60]. The parallel code was
In this example,v,w,s,t are vectors of length 4 and y b [60] P

o . ! _ . enerated using OpenMP [61] for shared-memory paral-
the permutation is performed with the first two mstructwns%lism and MPI [62] for distributed-memory parallelism. We
Assuming the vectors are indexed with 0,1,2,3, itsis=

performed additional experiments using a special-purpose
(vo, wo, v1,w1) ANt = (vz, w2, v3, ws). distributed-memory parallel computer designed for the -com
putation of theDFT and WHT [63]. In this case, a search
F. Code Generation for Parallel Platforms over a family of related formulas was used to minimize the

In many situations, parallel processing may be needed digmber of remote memory accesses.
to real-time constraints or when a large amount of data needdtule (26) decomposes th&HT into a sequence of factors
to be processed. Despite tremendous advances, parateliZf the form(I,, © WHTy:; ®1,,) containingmn independent
compilers, similar to vectorizing compilers, cannot cotepecomputations oWHT,;, at striden, which can be computed
with the best possible hand-optimized code, even for xelbti in parallel. A barrier synchronization must be inserteduaen
simple programs [57], [58]. In this section we show a firdhe factors. The strided access patterns may prevent ghnefet
step towards generating parallel code using SPIRAL. THeo associated with cache lines and may introduce falsérghar
high-level approach is similar to vector code generati(me(sWhere different processors share a common cache line even
Section IV-E): 1) identify constructs that can be mappet@ough they do not access common data elements [59]. Thus,
into parallel code; 2) manipulate a given formula into theddle (26) only serves as a starting point to optimize the WHT
parallelizable constructs; and 3) map the manipulated ditam Structure for parallel target platforms.
into efficient code. Formula manipulation. Using the manipulation rules from

SPIRAL’s constructs, in particular the tensor product amgection IV-E, (26) can be modified to obtain the different
direct sum, have natural interpretations for parallel compStructure
tation [33] and many of the traditional optimizations used ¢
to achieve better granularity, locality, and load balanee ¢ WHTy: = [[P (Is—s, @ WHTo,)P, (47)
be achieved through formula manipulation. Using formula i=1
manipulation, SPIRAL can explore alternate formulas thaymwhere P; is a sequence of permutations. One possibility is
exhibit explicitly parallelizable subcomponents. Pagilinple- to chooseP; = Lgf There are also other choices, since the
mentations are obtained using parallel directives/famstiin sequence of permutatioi#? is not unique. When = 2 and the
the templates for these constructs. A search can be usedlto fiarmutations are computed at runtime, the algorithm of [26]
the best combination of parallel and sequential code, amsl trobtained. This variant can lead to better performance onsSMP

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 20

. . L TABLE X
due to reduced cache misses and bus traffic. In a dlstrlbutegSEUDOCODE FOR ANSMP IMPLEMENTATION OF THE WHT OF SIZE

memory environment, different sequences of permutatiead |
to different locality and the SPIRAL search engine can be&use
to determine the sequence with the minimal number of remote
memory accesses. .
. . . . SMP code for WHT:
Further manipulation can be used to combine adjacentyyqqin paraliel region
permutations to obtain r=n;s=1:id = getthreadid():

n = 2% AND DISTRIBUTED-MEMORY PSEUDG-CODE FOR THE STRIDE
PERMUTATION.

t num = gettotal thread();
WHT,: = (H Qi(Tpk—+; ®WHTyx,)) P, (48) fori=1, ...t

i=1 r=r/n;

where@; = Pi,lefl (where we assume& = I,x). This has fOf_'d = id, ..., r*s -1, step = num
the benefit of reducing the amount of message passing ina =1d/s;
distributed-memory environment. Further factorizatidnthee k = id mod s; ‘
permutations); can be used to obtain formulas that group the Tinssths = WHTn * @50 4y o
data into larger blocks, which can both reduce communinatio 5 ~S s

cost and improve cache utilization. #parallel barrier

Code generation.Parallel code for SMPs can be generated #€nd parallel region
for SPL programs through the use of parallel directives & th
templates for parallel constructs such as the tensor ptoduc
It is straightforward to insert parallel loops whenevgrz A
occurs in a formula; however, in order to obtain good par- _
allel efficiency, we should only introduce parallelism when!™ SteP 1: Construction of MPI data type */
it improves performance; further, it is important to avoid/~"9uments: localN, totaiRank, stride
creating and deleting threads multiple times. It is best t§'°ck = stride /totalRank
create a parallel region and introduce explicit scheduting ~ '°Ca!S = localN / stride
synchronization as needed for the different constructsleT# MPI-Typevector(block, local$, localSttotalRank,
(top) shows the parallel code for an SMP implementation of DOUE_BLE' ENEW.TYPE)
the iterative rule of theWHT in equation (26): the notation MP'-TyPe-cOMMIENEW.TYPE)
zy . indicates a subvector af of sizen equal to(x(b), z(b+
s),...,x(b+(n—1)*s)). While the code was created by using
formula manipulation and the techniques of Section IV-Ag th
code involves features not currently supported by SPIRAL,
such as variable loop bounds and in-place computation. We k=)
made experiments with this and other parallel code with a °fets = id " block _
special package for computing the WHT [27], [59], [60]. for (i = offsets; i < (block + offsets); ++ 1)

Code generation for distributed memory machines is more ' 0 =1] < localSize; j += stride)
involved. Data must be distributed amongst the processors, bufferfkc++] = Xl
locality maximized, and communication minimized. If a dis-
tributed shared-memory programming model is used, explici
communication is not required; however, data access patter
must be organized to minimize remote memory access. Since
SPIRAL can make modifications at the formula level, alteznat
data access patterns can be explored and optimized automat-
ically. In a distributed memory programming model, explici
send/receive operations must be inserted, taking intousdco
the data distribution. For th&VHT, where the data size is @y, \hich is responsible for measuring the performance
power of two, data can be distributed using the high-orde bi,¢ yhe generated code and for feeding the result into the
of the data address as a processor identifier and the Iow-orggARCH/LEARNING block.
bits as an offset into the processors local memory. In thsg ca The BVALUATION LEVEL block fulfills three main func-

Communication. arises from permut_ations in the formula, a'?f?)ns: 1) compilation of the source code into machine code;
these permutations can be automatically converted to rgessaz) optional verification of the generated code; and 3) mea-

passing code (see Table X, bottom, for an example).AdditiorEuremem of the performance of the generated code. The

details are available in [60]. performance metric can be the runtime of the compiled code,
or it can be some other statistics about the code such as the
V. EVALUATION number of arithmetic operations, the instruction coung th
After formula generation and code generation, the thimumber of cache misses, or the number of FMA instructions.
conceptual key block in SPIRAL is theVELUATION LEVEL Other performance measures such as numerical accuracy or

distributed memory code for the stride permutation:

for (round = 0; round< totalRank; ++ round)
/* Step 2: Local data rearrangement */
id = handshake[round]

/* Step 3: Global communication */

offsetr = id * localS

MPI_Sendrecv(buffer, localN/totalRank, DOUBLE,
id, 0, y+offsetr, 1, NEW.TYPE, id, O,
MPI_COMM_WORLD, &status)

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 21

code size can also be used. The performance evaluation blocBoth, rule verification and formula verification are per-
makes it easy to switch between performance measures ofdoned exclusively at the formula level, i.e., no code is

add new ones. generated. Their purpose is to verify transform algoritfamd
to debug the formula generator. Code verification is disstiss
A. Compilation next.

. . Code verification. For the verification of the generated
To obtain a performance measure, such as the runtime

: : : . code, SPIRAL provides a variety of tests.
the code generated by SPIRAL is compiled, linked with thé The most important test applies the generated code to an

performance measuring driver, and executed. At mstahatlinput vectorz and compares the output vectpto the correct

tlme_l, bSI PIRAL _Idetec;s fthTt' matchme dconﬂgurz;tu;n and.lﬂ}gsultgj obtained by computing the transform by definition (the
.e;va| a'I (;lcompl ers, defaulting to vendor supplied CoRRIL ., qq for computing a transform by definition is also generate
It avarianle. by SPIRAL). The norm of the errdty — g|| (different norms

Interfacing external programs, like C com_pilers, porta_blgre available) is returned, and has to be below a threshaial. T
across platforms and operating systems, and integratffeg-di odes are available. The first mode performs this comparison

ent performance measures is a non-trivial problem. In SRIR n the entire set of (standard) base vectors. The correct

we have implemented a library we call “sysconf” to prowd% tputs need not be computed in this case, since they are the

a} portable and erybIe so_lut|on. For example, thg SYSCOBEIumns of the transform matrix. For a transform of siz¢he
library stores the information about compilers availabte o

ST i . : .~ algorithms are typicallyO(n?log(n)); thus, this verification
the machine in a set of configuratigrofiles Each profile . 9 . .
includes the path to the compiler and to the linker, thg O 18(). The second mode performs this comparison

X)) ither on one or on several random vectorsHere the cost
target_ Ianguage .(C or Fortran) and ObJ?Ct file ex;ensmns, § O(n?) for computing the correct outputs by definition.
compller_ mvoc;auop syntax, the compiller and Imker flags, As a variant of the above tests, two generated programs can
the 'reqwred libraries, gnd the test driver execution synt e compared against each other on the standard basis or on a
Profiles can be nested in order to create groups; for exam

)) N o) ! &t of random vectors.
if the “c.gce” profile includes all the information necegsar The verification on the basis described above can be ex-
to use gcc, “c.gcc.optl” and “c.gcc.opt2”

may be created {8nded further to obtain an actual proof of correctness. &gm

ldlffelrengat?_ betv;/.een op;_t;on sets with d'fﬁ?;emb opukr]m.uak the code generated by SPIRAL contains only additions and
evels. Lonhiguration profiles are very usetul for benchray multiplications by constants as arithmetic operationsusth

different compilers, and for evaluating the effects of eliént the entire program has to encode a linear function provided

comp!:er_optlor:js. Further, profll_es can b(ej_(f:fonflgurtledffo;:fo all the arrays are accessed within their allowed index range
compilation and remote-execution on a different platioRor o can pe tested). If two linear functions coincide on a

examplg, this (;apability is used _tq produce the IP.AQ re-su %sis, they must coincide for each input vector, which psove
shown in Section VII. Also, additional C-to-C optimization, ... iness (up to a numerical error margin).

passes are easily incorpqr ated into a profile to accommoQat%ther verification methods we have experimented with
various research tools. Finally, p_roﬂles allow the examuti include tests for transform specific properties, such as the
of other programs to compute various performance measurgsnyolution property of the DFT [64], [65]

e.g., obtained by statically analyzing the C or compiledecod |, actice, because of the speed, we use the verification

on one random vector, which usually proves to be sufficient.
B. Verification By including this verification in a loop that generates ramdo
SPIRAL provides several modes of (optional) verificatioffansforms, random formulas, and random implementation
for its automatically generated code: 1) rule verificatiorptions, bugs in SPIRAL can be found efficiently. To factita
2) formula verification; 3) code verification; and 4) recuesi debugging, once a bug in the generated code is found, another
code verification. We briefly discuss these modes. routine recursively finds the smallest subformula that poes
Rule verification. SPIRAL requires all transforms to haveerroneous code.
a definition, which is a function that constructs the transfo
matrix given its parameters. Since rules decompose tramsfo C. Performance/Cost Measures
into other transforms, each rule can be verified for fixed By default, SPIRAL uses the runtime of the generated
parameter choices. Namely, the rule is applied to the toamsf code as a performance measure, but other measures can be
once, and the resulting formula, in the formula generatahosen. This property makes SPIRAL a versatile tool that
is converted into a matrix and compared to the origingan be quickly adapted or extended to solve different code
transform. This type of verification is usuakyact since most optimization problems in the transform domain. Examples of
transforms and their formulas have exact representatiors d¢onsidered performance measures, besides runtime, éclud
to the symbolic computation environment provided by GARBccuracy, operation count, and instruction count. We also
(see Section llI-E). started preliminary work on performance models that can
Formula verification. A fully expanded formula is verified be applied at the algorithmic level without compiling and
similarly to a rule by converting it into the represente@xecuting the generated code.
matrix and comparing it to the original transform. Againisth Runtime. There are various ways of measuring the runtime;
verification is usually exact. obtaining accurate and reproducible results is a noratrivi

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 22

problem. A portable way of measuring runtime uses thgoint only processorsiultiplierlessimplementations of small
C clock() and computes the runtime as an average over a langssform kernels become viable candidates. “Multiptiss’
number of iterations. This implies that, for small trangfior means multiplications by constants are first representeal in
sizes, the runtimes do not reflect any compulsory cache misfiged point format and then replaced by additions and shifts.
arising from loading the input into cache. Where possiblé; SH-or example, a constant multiplication = 5z is replaced
RAL uses the processor’s built-in cycle counters, whichadre by y = (¢ <« 2) + «. Since DSP transforms are linear,
higher resolution and thus allow for much faster measurémeér, consist exclusively of additions and multiplicatiobg
as only a few iterations need to be timed. Depending on thenstants, this procedure produces a program consisting of
precision needed (for instance, timing in the search reguiradditions and shifts only. The problem of finding the least
less precision than timing the final result), SPIRAL mawddition implementation for one given constant is NP-hard
need to run such measurements multiple times and take [fi@]. We have reimplemented and extended the best known
minimum. Taking the minimum over multiple measurementsiethod [71] and included it as a backend into SPIRAL to
and keeping the number of repetitions per measurement I@enerate multiplierless code for a given formula and for-use
reduces the influence of other running processes, unknospecified constant precisions. Clearly, if these precssiare
cache states, and other nondeterministic effects. reduced, also the arithmetic cost (measured in additiohs) o
Operations count. For theoretical investigations (and soméhe resulting implementation can be reduced. This leadseto t
applications as well) it is desirable to know the formul#ollowing optimization problem: for a given transforif, find
requiring the fewest number of operations. Most formula ththe formula A with the least number of additions that still
SPIRAL generates, have, by construction, minimal known (&atisfies a given accuracy threshglavith respect to a given

close to minimal) operation count, however, there are a feggcuracy measurd, i.e., N(4) < q.
exceptions. We solve this problem automatically by using SPIRAL with

The first example is the class of Winograd algorithms [6é]'€ following high-level steps (see [72], [73] for more disja
for small convolutions and small DFT sizes, which exhibit a * Generate a numerically accurate formuafor 7' as
large spread in operation counts. We have used SPIRAL to described in Section V-C.
search this space for close to optimal solutions [67]. « Find the b_est assignment of bit-widths to the occurring
The second example arises when generating formulas using ONStants ind such that the thresholgl holds. We have
fused multiply-add (FMA) instructions (Section IV-B), si@ solved this problem using a greedy or an evolutionary
known FMA algorithms for transforms are usually hand- ~S€&rch. The code was assumed to be completely unrolied
derived and are only available for a few transforms, e.d.],[5 so that the bit-widths could be chosen independently for
[52], [68]. Using SPIRAL we obtain FMA code automatically; ~ €ach constant. _
in doing this, wefound most of the published algorithms In this optimization problem, we have considered several

automatically and generated many new ones for the transforfdfget accuracy measureg-) including numerical error mea-
contained in SPIRAL. sures such as (49), and also application driven measures. An

xample of the latter is the optimization of th®IDCT and
IeDCT of type 2 in an MP3 audio decoder, [74]. Here, we
ose the compliance test defined by the MP3 standard as the
curacy threshold. The evaluation was done by insertiag th

generated code into an actual MP3 implementation.

Accuracy. For many applications, and in particular for thos
using fixed point code, numerical accuracy may be of greatI
importance than fast runtime. SPIRAL can be easily extend
to search for accurate code, simply by adding a new ¢

function for accuracy. Performance modeling.SPIRAL generally uses empirical
Let A be a forrrllula. fqr the .exact' trangfon‘ﬁ = 4. runtimes and searches to find efficient implementationss It i
When implemented 'h.'b't f_|xed point arlthm_etlc, this formula beneficial, both in terms of understanding and in reducing
represents an approximation of the mafixi.e., Ax.oit ~ T search times, to utilize performance models and analftical
Thus, as a measure of accuracy of the formdjave use solve the optimization problems for which SPIRAL finds
Ni(A) = [|A — Agpirl], (49) approximate solutions. Unfortunately, determining medeéat
) . _accurately predict performance is very difficult becauselmo
where||-|| is a matrix norm. There are several norms possiblgiy processors have many interdependent features that affe
good choices are the matrix norrfis||, that aresubordinate performance. Nonetheless, it is possible to obtain aralyti
to the vector normg - [|,, (see [69] for more details on norms).regyits for restricted classes of formulas using simplified
Given N (A), input dependent error bounds can be derived tﬁérformance models, see [63], [75]-[77] for results agtlle
assuming an input and settingy = Az (the exact result) and {5 the WHT and the DFT. While these results do not

y = Appirx (the approximate result) to get accurately predict performance, they give insight into the
[y = lleo < 1A = Agbitl oo #]]c0 = Ni(A)][2]]oo- search space and provide heuristics that may reduce thensear
_ _ time. Moreover, they can be used to explore performance on
For fast evaluation, we choose the matrix nofif/||- = processors that are currently not available.
max; { Y | M 5]} To illustrate the results obtained and their limitationsp-c

Cost functions for multiplierless implementations. On sider the factorization of thGVHT in equation (26). The
platforms where multiplications are significantly more exformula can be implemented with a triply nested loop, where
pensive than additions (e.g., ASICs, but possibly also fixéke outer loop iterates over the product and the inner twpdoo

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 23

implement the tensor product. The recursive expansions exfhaustive enumeration and testing, this feedback loodsnee
WHT,:, are computed in a similar fashion. Even thougto be controlled by empirical strategies that can find clase t
the current version of the SPIRAL system cannot produaptimal solutions while visiting only a fraction of the pdse
code with recursive calls, it is still possible to implemenalternatives. These strategies have to take advantageeof th
this formula with a recursive function (see [27]), where thparticular structure of the algorithms.

recursive expansions & HT,, are computed with recursive We consider two fundamentally different strategies, as ind
calls to the function, and, in the base case, are computested already by the name of th&e &RCH/LEARNING block
with straight-line code generated by SPIRAL. In this implein Fig. 1:

mentation, different instantiations of the rule, corrasiag , searchmethods control the enumeration of algorithms

to different decompositiond = k; + ---k;, will lead to and implementations at code generation time and guide
different degrees of recursion and iteration, which imptieat this process towards finding a fast solution. Search is the
the code may have different numbers of machine instructions method implemented in the current SPIRAL system.

even though all algorithms have the exact same arithmetic, Learning methods operate differently. Before the actual

cost. LetIWy« be one suchVHT formula and letA(n) the code generation (offline), a set of random formulas in-
number of times the recursiveVHT procedure is called, cluding their runtimes are generated. This set constitutes
Ai(k) the number of times a base case of stzehere it is the data from which the EARNING block learns i.e.,
assumed thalt < 8) is executed, and.; (k), L (k), andLs(k) extracts the knowledge of how a fast formula and im-
the number of times the outer, middle, and inner loops are plementation are constructed. At code generation time,
executed throughout all recursive call_s. Then the total lmerm this knowledge is used to generate the desired solution
of instructions required to execui&: is equal to deterministically. We have implemented a prototype of

8 3 this approach for a specific class of transforms including

aA(k)+ Y o Ai(k)+ Y BiLi(k), (50) the DFT.
=1 i=1

In the following, we explain the SARCH/LEARNING in
where « is the number of instructions for the code in thereater detail.
compiled WHT procedure executed outside the loops, is
the number of instructions in the compiled straight-lineleo
implementations of the base case of dizendg;, i = 1,2,3is A Search
the number of instructions executed in the outer-most, fajdd The goal of thesEARCH block in SPIRAL (see Fig. 1) is
and inner-most loops in the compil8dHT procedure. These to control the generation of the formulas and the selection o
constants can be determined by examining the generaiegblementation options, which, in the current version,hie t
assembly code. Suppoge= k1 + - - - + k; is the composition degree of unrolling. The search 1) has to be able to modify
of k£ corresponding to the factorization in equation (26); thepreviously generated formulas; and 2) should be transform
the functionsA(k), A;(k), L;(k) satisfy recurrence relationsindependent in the sense that adding a new transform and/or
of the form F(k) = 22:0{2“’“@(!4,;) + f(i)}, where f(i) new rules requires no modification of the search. To achieve
depends on the function and is equal 1gt, 0, 1, 28=%: poth goals, the search interfaces with the ruletree reptase
2kit+ki-1 respectively. While it is not possible to obtain aion of formulas and not with the formula representatiore(se
closed-form solution to all of the recurrences, it is polesibSection IIl).
to determine the formula with minimal instruction count, The current SPIRAL system features five search methods.

compute the expected value and variance for the number of, gyhaustive searchnumerates all formulas in the formula

instructions, and calculate the limiting distribution [7879]. spaceF and picks the best. Due to the large formula
The problem with these results is that the instruction count spaceF, this is only feasible for very small transform

does not accurately predict performance on modern heavily gjseg.

pipelined superscalar processors with deep memory hierar-, Random searctenumerates a fixed number of random
chies, and that it is not clear how to extend the results teemor t5rmulas and picks the best. Since fast formulas are

general classes of formulas. While additional results haenb usually rare, this method is not very successful.

obtained for cache misses, a general analytic solutionhigso Dynamic programmindends itself as a search method

been obtained for direct-mapped caches. Additional chgée due to the recursive structure of the problem. For most

must be overcome to obtain more general analytic results and problems it is our method of choice.

to incorporate these insights into the SPIRAL system. « Evolutionary searchuses an evolutionary algorithm to
find the best implementation. This method is particularly

VI. FEEDBACK OPTIMIZATION: SEARCH AND LEARNING useful in cases where dynamic programming fails.

One of the key features of the SPIRAL architecture (see* Hill climbing is a compromise between random search
Fig. 1) is the automated feedback loop, which enables SPI- @nd evolutionary search and has proven to be inferior to
RAL to autonomously explore algorithm and implementation ~ the latter. See [44] for an explanation of this technique
alternatives. Intuitively, this feedback loop provides!fRL in the context of SPIRAL.
with the “intelligence” that produces very fast code. Since We explain dynamic programming and the evolutionary
the algorithm and implementation space is too large for aearch in greater detail.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 24

Dynamic programming. The idea of dynamic program-
ming (DP) is to recursively construct solutions of largelpro
lems from previously constructed solutions of smaller prob
lems. DP requires a recursive problem structure and, hénce,
perfectly suited for the domain of transform algorithms.

We have implemented the DP search in a straightforward
way as follows. Given a transforrfi’, we expandl one
step using all applicable rules and rule instantiations (for /
parameterized rules). The result is a §87% |k = 1,...,m} (b) regrow © Copy'”
of m ruletrees of depth 1 (as (40)) or O (if the rule is a termin N . .

. ig. 6. Ruletree manipulation for the evolutionary searehcfoss-breeding;
rule). For each of these ruletredsl), the set of children () (q4) three types of mutations: regrow, copy, and swap.
{C;li =1,...,ji} (the C; are again transforms) is extracted,
and for each of these childreti;, DP is called recursively to
return a ruletreeRC;, which is fully expanded. Inserting thea different node representing the same transform; arsivap
ruletreesRC; into RT}. (that means replacing; by RC; in exchanges two subruletrees belonging to the same transform
RTy), fori=1,...,ji, yields a fully expanded ruletreRT] See Fig. 6 for an illustration. The trees that undergo cross-
for T'. Finally the best (minimal cost) ruletree among fR&, breeding and mutation are randomly selected, and the number
is returned as the result far. of those trees is a parameter. Finally, the increased ptipula

To see how DP reduces the search space consi@d#® is shrunk to a size smaller tham by removing the slowest
of size 2™ and only the Cooley-Tukey rule (20). Usingtrees. Then the population is increased to the originalisizg
recurrences, one can show that the number of formulasaidding random trees to yield the populati®. This process
O(4"/n?/?) (the number of binary trees by using Stirling’'sis repeated for a given number of iterations or until the best
formula, [80, pp. 388-389]), whereas DP visits ofilyn?). member of the population does not improve the minimization

The inherent assumption of DP is that the best code fany further. For a more detailed discussion and evaluatfon o
a transform is independent of the context in which it ithe evolutionary search, we refer to [44], [82].
called. This assumption holds for the arithmetic cost (Wwhic The problem with evolutionary search (in general) is that it
implies that DP produces the optimal solution), but not fer t may converge to solutions that are only locally optimal.
runtime of transform algorithms. For example, the left deral
transform (child) in the DFT rule (20) is applied at a strideB. Learning
which may cause cache thrashing and may impact the choice .)
of the optimal formula. However, in practice, DP has proven S€arch becomes more difficult as the number of possible
to generate good code in reasonably short time [44] and tHULElrees increases. However, it is easy to collect a set of
is the default search method in the current version of SPIRAfUNtimes for random implementations of a given transform.

Finally, we note that the vector extension of spiraLThis data could be used to learn how to construct a fast

requires a special version of DP, which is motivated letree for that transfqrm. Further, we haye found thq& thi
the manipulated formula (46). As explained above, the firkpowledge can be applied to generate fast implementatibns o

expansion (shown in (46)) is vectorized, whereas the Smawgfferent sizes of a given transform, even when the knowdedg

occurringDFTs can be expanded arbitrarily since their contelyas gathered from only a single transform size.
is ©1,, which ensures they are vectorizable (matching (42)). OUr approach consists of two stages.
To account for the conceptual difference between the firdt an « Modeling Performance of Individual NodeEhe first step
the remaining expansions we need a variant of DP, which we begins by collecting timing information for each individ-
introduced in [54]. ual node in a set of random ruletrees. From this data,
Evolutionary search. It is valuable to have another search ~ We then learn how to construct a model that accurately
method available to evaluate DP and overcome its possible Predicts the runtimes for nodes in ruletrees. This effort
Shortcomingsy particu|ar|y in view of the growing number of requires a well-chosen set of features that describe a node
applications of SPIRAL (e.g., Sections Ill and V-C). Evolu- and its context within the larger ruletree.
tionary search operates in a mode that is entirely differente Generating Fast Implementationshe second step uses
from the DP mode; it attempts to mimic the mechanics of the model developed in the first step to then generate
evolution, which operates (and optimizes in a sense) throug ruletrees that have fast running times.
cross-breeding, mutation, and selection [81]. Our discussion will focus on th&VHT and theDFT. For
For a given transform, the evolutionary search generatie WHT we consider only ruletrees based on rule (26) with
an initial population P, of a fixed sizen of randomly the restrictiont = 2 (2 children); for theDF'T we consider
selected ruletrees. Then, the population is increasedgusonly ruletrees based on the Cooley-Tukey rule (20). Botbsul
cross-breedingand mutation Cross-breeding is implementedhave similar structure, in particular, for a DFT or a WHT of
by swapping subtrees with the same root (transform) of tveize n, andn = km, the left child Ty in both cases appears
selected ruletrees if; (see Fig. 6, left). Three different typesin a tensor product of the forit'y ® I,,,, which meansTy, is
of mutations are used: 1¢growexpands a selected node usingomputedm times at stridem. In the following, we callm
a different subruletree; 2opycopies a selected subruletree tadhe stride of the ruletree nodB;. As a transform is expanded

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 25

recursively, the strides accumulate, e.g., fo= km, m = « Size and stride of the given node.

k'm’, two applications of the rule lead to a left child with « Size and stride of the given node’s parent.

stride m + m’. The focus in this section are large transform « Size and stride of each of the given node’s children and

sizes. Thus, to further restrict the algorithm space, waluse grandchildren.

SPIRAL to pregenerate straightline code implementatidns o « Size and stride of the given node’s common parent.

WHTSs and DFTs of sizeg', ..., 27. These are used as leaves por the WHT, all of the work is performed in the leaves

in the ruletrees. This means, if the ruletree is generateeleh \yith no work being done in the internal nodes, so the features

step either a rule is applied or, if the node is small enoughyg the children and grandchildren were excluded for@fET

leaf can be chosen to terminate. since the leaves were the only interesting nodes to consider
Modeling Performance. Itis possible to carefully time each yowever, internal nodes in @DFT ruletree do perform work

individual node of a ruletree as it runs. The runtime for agnq thus the full set of features was used for IHET.

internal node is calculated by subtracting off the runtiroés Giyen these features for ruletree nodes, we can now use

the subtrees under the node from the total runtime for tgyngard machine learning techniques to learn to prediet ru

tree rooted at the given internal node. To allow our methogs,es for nodes. Our algorithm for a given transform is as
to learn across different transform sizes, we divide thealct follows:

runtimes by the size of the overall transform and learn osehe
values.

In order to learn to model the runtimes for different nodes,
we must define a set of features that describe nodes i

1) Run a subset of ruletrees for the given transform, cellect
ing runtimes for every node in the ruletree.
ﬁ) Divide each of these runtimes by the size of the overall

. . . transform.
ruletrees. To allow the modeling to generalize to previpusl X . .
unseen ruletrees, the features should not completely idescr 3) eD;rT}erlbe each of the nodes with the features outlined

the ruletree in which the node is located. However, a single4 Trai functi imati lqorithm t dict f
simple feature such as the node’s size may not provide) rain a iunction approximation aigorithm to predict for
nodes the ratio of their runtime to the overall transform

enough context to allow for an accurate model to be learned. "
Intuitively, our features are chosen to provide our methdt w SIze.
the domain knowledge about the transform algorithms. We have used the regression tree learner RT4.0, [83], for
Clearly the size of the transform at the given node is &h function approximation algorithm in the results presente
important feature as the size indicates the amount of data there. Regression trees are similar to decision trees exaipt
the node must process. The node’s position in the ruletreethi®y can predict real valued outputs instead of just categor
also an important factor in determining the node’s runtim&lowever, any good function approximation method could have
This position often determines the stride at which the nodrgen used.
accesses its input and output as well as the state of the caché&/e trained two regression trees on data collected from
when the node’s computation begins. However, it is not ag edsinning a random set of siz#® WHT implementations, one
to capture a node’s position in a ruletree as it is to captisre from data for a Pentium Il and one from data for a Sun
size. UltraSparc lli (later often referred to simply as Pentiundan
A node’s stride can be computed easily and provides infdsun). We also trained another regression tree on data teallec
mation about the node’s position in a ruletree and also abdtam running a random set of sizZ8® DFT implementations
how the transform at this node accesses its input and outp@f Pentium. Specifically, we chose a random 10% of the nodes
To provide more context, the size and stride of the pareditall possible binary ruletrees with no leaves of stzedo train
of the given node can also be used as features. These featar#sregression trees (we had previously found that the subse
provide some information about how much data will be shared binary ruletrees with no leaves of si2é usually contains
with siblings and how that data is laid out in memory. Furthethe fastest implementations).
for internal nodes the sizes and strides of the node’s @hildr To test the performance of our regression trees, we evaluate
and grandchildren may also be used. These features desctiteér predictions for ruletrees of sized? to 22°. Unfortu-
how the given node is initially split. If a node does not haveately, we could not evaluate them against all possiblerede
a given parent, child, or grandchild, then the correspandisince collecting that many runtimes would take prohiblgive
features are set te-1. long. Instead we timed subsets of ruletrees that previops-ex
Knowing which leaf in the ruletree was computed prior teience has shown to contain the fastest ruletrees. Spdiifica
a given node may provide information about what data fer the WHT, for sizes2'6 and smaller we used binary
in memory and its organization. Let the common parent lseletrees with no leaves of siz&* and for larger sizes we
the first common node in the parent chains of both a givetrsed binary rightmost ruletrees (trees where every leftl éi
node and the last leaf computed prior to this node. The siadeaf) with no leaves of siz2!. For theDFT, we were not
and stride of this common parent actually provides the bestrtain that rightmost ruletrees were best; so, we onlyuetal
information about memory prior to the given node beginningp to size2!® over all binary ruletrees with no leaves of size
execution. The common parent’s size indicates how much data
has been recently accessed by the previous leaf and at whator each ruletree in our test set, we used the regressian tree
stride the data has been accessed. to predict the runtimes for each of the nodes in the ruletree,
Thus, we use the following features: summing the results to produce a total predicted runtime

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 26

TABLE XIlI 180408
ERROR RATES FOR PREDICTING RUNTIMES FOR ENTIRBFT RULETREES ' "
ON PENTIUM. g 1.6e+08 - .
Size | 2!2 213 214 15 9l6 olT 9l8 g L4e+08 R e
o T et A
Errors |19.3% 9.3% 10.7% 7.3% 5.0% 7.3% 7.9% £ S t
~ 12 +08 I&t (G s +.
g .2e e uﬁw? .
= - i ;%,+§:
c - L +
é 1e+08 ++t§§£ X e
< i $oabs
for the ruletree. We evaluate the performance of WIHT e Hy S
. L , I 2 8e+07 5l
regression trees both at predicting runtimes for individua e
nodes and for predicting runtimes for entire ruletrees. We 6e+07
report average percentage error over all nodes/ruletreesri 6e+07 8e+07 1le+08 1.2e+08 1.4e+08 1.6e+08
i . Predicted Runtime (in CPU cycles)
given test set, calculated as:
(a) Pentium lIl
1 a; — Di
Z M, 1.46+08
|TestSek i a;
i€ TestSet W
. . ‘? 1.2e+08 coepn!
where a; and p; are the actual and predicted runtimes for el R LR P
node/ruletree. S Leros M:f%g;fi (SN S B
Table XI presents the error rates for predicting runtimes fo & L - v; RIS
individual WHT leaves. In all cases, the error rate is never < go.07 R YT Z*fi‘ﬁ%;;g{ T
i . . . LR Ly o
greater than 20%. This is good considering that the regnessi £ RS £
trees were trained only on data collected from running size 3 ee+07 e~ .
216 WHT transforms. s SERE
Table XII presents the error rates for predicting runtinms f =~ & 4e+07 |- e 2
entireWHT ruletrees. Not surprisingly, the results here are not
. . . . 2e+07
as good as for individual leaves, put still good considetiray 26407 46407 66407 86407 16408
different ruletrees can have runtimes that vary by a factor o Predicted Runtime (in CPU cycles)
210 10. (b) Sun UltraSparc lli

Fortunately' the runtime predictor Only needs to be able It—% 7. Actual runtime vs. predicted runtime for all binary highost
order the runtimes of ruletrees correctly to aid in optirti@® WHT,1o ruletrees with no leaves of siz2' on Pentium and Sun. The
The exact runtime of a ruletree is not necessary; just a ciorréisplayed liney = z in both plots represents perfect prediction.
ordering of ruletrees is necessary to generate fast reketre
To evaluate this, we plotted the actual runtimes of ruletree
against their predicted runtimes. Fig. 7 shows plots foe sigonstructing fast ruletrees. At larger sizes, there areyman
219 WHT transforms (the plots for the other sizes loolossible ruletrees and it can be difficult to even enumerate

similar). Each dot in the scatter plots corresponds to oRd the ruletrees, let alone obtain a prediction for each. one
ruletree. The dot is placed vertically according to its attu\We now describe a method for generating ruletrees that have
runtime and horizontally according to the predicted ruetinmfast runtimes.
from the regression tree. The ling = z is also plotted Generation of ruletrees begins with a given transform and
for reference. The plots show that as the actual runtimeie for which a fast implementation is desired. We then need
decrease for ruletrees, so do their predicted runtimeshé&wr to choose a factorization of this transform, producingdrieih
the ruletrees that are predicted to be the fastest can betseeior the root node. Recursively, we again choose children for
also be the ruletrees with the fastest actual runtimes., thas each of the root node’s children, and so on until we decide to
runtime predictors perform well at ordering ruletrees adoy leave a particular node as a leaf.
to their actual runtimes. Our approach is to define a set of states encountered during
Table XllI shows the error rates for predicting runtimes fothe construction of fast ruletrees. We define a value functio
entireDFT ruletrees running on Pentium. Except for si?é, over these states and show how that value function can
the error rates here are quite excellent, especially cerisigl be quickly computed. We then show how to construct fast
that the learned regression tree was only trained on datareletrees given the computed value function.
size21®. The scatter plots fobFTs look very similar to those In the previous modeling work, we designed a set of features
for the WHT already displayed. They clearly show that théhat allowed for accurate prediction of runtimes of ruletre
learned regression tree is ordering formulas correctlytaatl nodes. Thus, these features seemed ideal for describing our
particularly the ruletrees with the fastest predicted immas state space. During the construction of ruletrees, we ibescr
actually have the fastest runtimes. nodes by their features and consider this to be the node’s
Generating Fast Implementations. While the previous state. So, it is possible for two nodes in different ruletree
work presents a way to accurately predict runtimesMadT to be considered the same state and for two nodes of the same
and DFT ruletrees, it still does not solve the problem ofransform and size to be considered different states.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 27

TABLE XI
ERROR RATES FOR PREDICTING RUNTIMES FORVHT LEAVES.

Pentium Il Sun UltraSparc lli
Binary No2!-Leaf Binary No2!-Leaf
Binary No2!-Leaf Rightmost Binary N&!-Leaf Rightmost
Size | Errors Size | Errors Size | Errors Size | Errors
213 1 13.0% 217 1 11.4% 213 8.7% 217 116.5%
214 | 13.8% 218 | 12.9% 214 8.7% 218 | 16.9%
215 | 15.8% 219 | 12.6% 215 | 10.9% 219 | 18.9%
216 | 14.6% 220 | 12.7% 216 | 7.3% 220 | 20.0%
TABLE XII

ERROR RATES FOR PREDICTING RUNTIMES FOR ENTIR&VHT RULETREES

Pentium Il Sun UltraSparc i
Binary No2!-Leaf Binary No2!-Leaf
Binary No2!-Leaf Rightmost Binary N@!-Leaf Rightmost
Size | Errors Size | Errors Size | Errors Size | Errors
2131 20.1% 217 1 14.4% 2131 23.5% 2171 13.3%
214 | 22.6% 218 1 14.1% 214 | 17.6% 218 1 15.2%
215 | 25.0% 219 1 12.5% 215 | 25.8% 219 1 19.8%
216 | 18.1% 220 | 10.1% 216 | 36.5% 220 | 21.2%

TABLE XIV

We now define the optimal value function over this state
ALGORITHM FOR COMPUTING VALUES OF STATES

space. For a given state, we consider all possible subtnaés t

could be grown under that node along with the possibility @onput eval ues(St at e)

leaving the node as a leaf. We then define the value of this stat! f V(State) al ready menori zed
to be the minimum sum of the predicted runtimes for each, Le‘:“;;‘ V(State)

of the nodes in a subtree, taken over all possible subtrees.f State can be a I eaf

These predicted runtimes are determined by the regression Mn = PredictedPerfor mance(St at e)
P y 9 for SetOf Children in PossibleSetsO Chil dren(State)

trees trained in the previous section. Mathematically, Sum = 0
. . for Child in SetOf Children
V(state) = min Z PredictedPerformance(node Sum += Conput eVal ues(Chi | d)
sublrees tecsubtree Sum += Predi ct edPer f or mance(St at e)

L. . . if Sum< Mn
Note that the state of a node indicates its children and Mn = Sum

grandchildren for theDFT while we excluded these features V(State) = Mn
for the WHT. So for theDFT the minimum is really only ~ fétu'n Mn
taken over valid subtrees given the state.

We can rewrite this value function recursively. For a given) . o
state, we consider all possible one-level splittings of tH&'NY dynamic programming to efficiently compute the value

current node along with the possibility of leaving the nodi/nction. Table XIV displays the dynamic programming al-
as a leaf. The value of this state is then the minimum of torithm for computing values of states. Again the algorithm
predicted performance of the current node plus the sum ¥f€ds to be slightly modified for thBFT where the state

the values of any immediate children of the node for the bedgscription includes its children. The outer “for” loop ie-a
splitting. That is, tually computed over the possible great-grandchildreteats

of just the children. It should also be noted that this dyrami
programming is different from that presented earlier in the
section on search (Section VI-A) in that this algorithm is
) considering states described by many features besides just
+ > V(Ch”d)) node’s transform and size and that values are obtained from
childesplitting the learned regression trees. Due to the memorization oésal
For the DFT, the state already describes the immedia®f States, this algorithm is significantly sub-exhaustiieces
children. However, the full state description of the childis during an exhaustive search the same state would appear in
not known, since it includes the grandchildren, i.e., theagy many different ruletrees.
grandchildren of the original node. Thus, for th&'T, the Now with a computed value function on all states, it is
minimum is actually taken over possible great-grandchiidr possible to generate fast ruletrees. Table XV presents our
of the given node. algorithm for generating fast ruletrees, restricting toaoy
This recursive formulation of the value function suggestsiletrees for simplicity of presentation. For each posssalt of

V(state) = min | PredictedPerformance(node
splittings

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 28

TABLE XVIII
EVALUATION OF GENERATION METHOD USINGDFT RUNTIME
PREDICTORS FORPENTIUM.

children for a given node, the algorithm looks up their value
These values are added to the predicted performance of the
current node and compared against the value function of the
current state. If equal, we then generate the subtrees timeler

children recursively. Again for th®FT, the algorithm needs Genebrate()j(. rulbetreie Fw)s?(ygelnerateti rulle;tree
to be modified to loop over the possible great-grandchildren _. nhumber IS best) 15 A7 slower than bes
instead of the children Size | known ruletree known ruletree
instead o - 212 16 14.3%
Since our regression tree models are not perfect, we may”, . 1 0'00/
wish to generate more than just the single ruletree with the ;14 5 13.60/0
fastest predicted runtime. If a small set of ruletrees were 515 1 0'00/0
generated, we could then time all the generated ruletregs an 516 1 0'00/0
choose the one with the fastest runtime. We have implemented”, 82 3.60/0
an extended version of the FastTrees algorithm that allows f 218 11 6 0/0
a tolerance and generates all ruletrees that have within th 2 5%

tolerance of the predicted optimal runtime.
Tables XVI and XVII show the results of generating fast
WHT ruletrees for Pentium and for Sun respectively. To e start with an overview of the presented experiments:

evaluate our methods, we again exhaust over sub-spaces of Perf de show th ; q
ruletrees known to contain fast implementations since it is * erformance spreadve show Ihe performance spread,

impossible to obtain runtimes for all possible ruletreesain with respect to runtime and other measures, within the

reasonable amount of time. In both tables, the first column formula space for a given transform. .

indicates the transform size. The second column shows how Benchmarking: DFTWe benchmark the _runtlmg of SPI-

many ruletrees need to be generated before the fastesterilet RAL, generated DFT code'(lnc'ludlng fixed-point code)

is generated. The third column indicates how much slower against the_best available libraries.

the first ruletree generated is compared to the fastestealet ° Benchmarking: other transformiéde benchmark SPIRAL

Let G be the set of the first 100 ruletrees generated by our generated code for other transforms: the DCT and the

methods and leB be the set of the best 100 ruletrees found by WHT_') !

exhaustive search. The fourth column displays the number of* Runﬂme SIUd'?S Of FIR f|lters anq the DW¥e compare

items in the intersection aff and B. Finally, the last column different alg<_)r|thm|c choices for fllter_s and the DWT.

shows the rank of the first element s not contained inG. ¢ Platform_tunlr_wg.We demonstrate the importance of p_lat-
In all cases, the fastest ruletree for a giveiHT transform form tuning, i.e., the dependency of the best algorithm

size was generated in the first 50 formulas produced. This is 2nd code on the platform and the data type. _

excellent considering the huge space of possible ruletreds ~ * Compiler flagsWe show the impact of choosing compiler

the fact that this process only used runtime informatiomei flags. _ ,

by timing ruletrees of siz&6. Except for a few cases on the * Parallel platforms.We present prototypical results with

Sun, the very first ruletree generated by our method had a 2dapting the WHT to an SMP platform. _
runtime within 6% of the fastest runtime. Further, in all but * Multiplierless codeWe show runtime experiments with
one case, at least 40 of the 100 fastest ruletrees known to us 9enerated multiplierless fixed-point DFT code.

were generated as one of the first 100 ruletrees. On occasiorf, Runtime of code generatiove discuss the time it takes
the fourth fastest ruletree was not generated in the first 100 SFIRAL to generate code.

ruletrees. The platforms we used for our experiments are shown in

Table XVIII shows the results for generating faBFfT Table XIX. For each platform, we provide the following: a
ruletrees on Pentium. The results are excellent with thiesas descriptive mnemonic name, the most important microarchi-
ruletree being generating usually within the first 20 an@mft tectural information, and the compiler and compiler flagsdus
as the very first ruletree. Further, the first ruletree to B&e used DP (dynamic programming) for all searches. For
generated had a runtime always within 15% of the runtimector code we used the vector version of DP (see Section VI-
of the fastest formula. A).

In this section, we have described a method that automati-Performance spread.The first experiment investigates the
cally generates fastVHT andDFT ruletrees. To do this, we spread in runtime as well as the spread with respect to
also presented a method that accurately predicts runtiores éther performance measures of different formulas genérate
ruletrees. More details and results can be found in [84]-[8tby SPIRAL for the same transform on p4-3.0-lin.

In the first example, we consider a small transform, namely
VII. EXPERIMENTAL RESULTS aDCT-2,s, for which SPIRAL reports 1,639,236,012 differ-

In this section we present a selected set of experiments amd formulas. We select a random subset of 10,000 formulas
performance benchmarks with SPIRAL’s generated code. \&Wad generate scalar code. By “random formula” we mean
remind the reader that in the SPIRAL lingo the expressidhat a rule is chosen randomly at each step in the formula
“completely expanded formula,” or simply “formula,” meangyeneration (note that this method is fast but selects mdstr
a transform algorithm. non-uniformly). Fig. 8(a) shows a histogram of the obtained

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

TABLE XV

ALGORITHM FOR GENERATI

Fast Trees(State)

Trees =

{

if State can be a | eaf
if V(State) == PredictedPerfornmance(State)

Trees

= { Leaf(State) }

NG FAST RULETREES

for RightChild in PossibleRi ghtChildren(State)

Left Chi |

d =

Mat chi ngChi | d(St at e,

Ri ght Chi | d)

if V(LeftChild) + V(R ghtChild)

+ Predi ctedPerformance(State)

V(St ate)

for RightSubtree in FastTrees(R ghtChild)
for LeftSubtree in FastTrees(LeftChild)

29

Trees = Trees U { Node(Left Subtree,
return Trees

Ri ght Subtree) }

TABLE XVI

EVALUATION OF GENERATION METHOD USING AWHT RUNTIME PREDICTOR FOR APENTIUM.

Number of top 100

Generated ruletree First generated ruletreg best known ruletrees in First best known rule-

number X is best| is X% slower than best top 100 generated rule- tree not in top 100 gent
Size | known ruletree known ruletree trees erated ruletrees
213 5 3.4% 69 19
214 4 3.0% 63 19
215 3 2.1% 68 16
216 4 1.7% 63 18
217 5 0.1% 54 36
218 4 2.0% 60 24
219 1 0.0% 44 36
220 4 1.7% 64 24

TABLE XVII
EVALUATION OF GENERATION METHOD USING AWHT RUNTIME PREDICTOR FOR ASUN.
Number of top 100

Generated ruletree First generated ruletreg best known ruletrees in First best known rule

number X is best| is X% slower than best top 100 generated rule- tree not in top 100 gent
Size | known ruletree known ruletree trees erated ruletrees
213 14 77.7% 20 6
214 20 12.8% 70 24
215 1 0.0% 68 38
216 2 4.3% 70 20
217 7 18.0% 47 10
218 38 5.9% 46 7
219 17 3.3% 46 4
220 47 1.4% 52 4

runtimes, and Fig. 8(b) shows a histogram of the number gffread to about 25%. This means that different formulas are
assembly instructions in the compiled C code. The spreaddifferently well suited for FMA architectures. In Fig. 8(eje
runtimes is approximately a factor of 2, and the spread pfot runtime versus arithmetic cost. Surprisingly, theriatas

the number of instructions is about 1.5, whereas the spreaith lowest arithmetic cost yield both slowest and fastest
in arithmetic cost is less than 10% as shown in Fig. 8(auntimes, which implies that arithmetic cost is not a preatic
The large spread in runtime and assembly instruction casntof runtime in this case. Finally, Fig. 8(f) shows the accyrac
surprising given that each implementation is high qualdge spread when the constants are cut to 8 bits; it is about arfacto
that underwent SPL and C compiler optimizations. Also, fasf 10 with most formulas clustered within a factor of 2.
transforms of this size and on this platform no cache problem |, the second example, we show a runtime histogram

arise. Conversion into FMA code (explained in Section IV-Ghr 20,000 random SPIRAL generated formulas for a large
reduces the operations count (see Fig. 8(d)), but incredsesransform, namelyDFTyis, using only the Cooley-Tukey

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 30

TABLE XIX
PLATFORMS USED FOR EXPERIMENTS“HT” MEANS HYPER THREADING L1 CACHE REFERS TO THE DATA CACHE THE COMPILERS ARE ICC (INTEL
C++ COMPILER); GCC (GNU C COMPILER); CCR (IBM XL C COMPILER, SMPMODE).

[name [CPU [GHz] 0SS] caches | compiler | compiler flags]
p4-3.0-win Pentium 4 (HT) | 3.0 WinXP 8KB L1, 512KB L2 icc 8.0 IQxKW /G7 /O3
p4-3.0-lin Pentium 4 (HT) | 3.0 Linux 8KB L1, 512KB L2 | gcc 3.2.1 —06 —fomit-frame-pointer

—malign-double —fstrict-aliasing
—mcpu=pentiumpro

p4-2.53-win Pentium 4 2.53 | Win 2000 | 8KB L1, 512KB L2 icc 6.0 /IQxW /G7 /03
p3-1.0-win Pentium I11 1.0 | Win 2000 | 16KB L1, 256 KB L2 | icc 6.0 /QXW /G6 /03
xeon-1.7-lin Xeon 1.7 Linux 8KB L1, 256 KB L2 | gcc 3.2.1 —0O6 —fomit-frame-pointer

—malign-double —fstrict-aliasing
—mcpu=pentiumpro

xp-1.73-win AthlonXP 2100+| 1.73 | Win 2000 | 64KB L1, 256 KB L2 | icc 6.0 /QXW /G6 /O3
ibms80-0.45-aix| PowerPC RS64C 0.45 AIX 128KB L1, 8MB L2 | ccr 5.0.5 -gsmp=omp -O5 -q64
(12 processors)
ipag-0.4-lin XScale PXA250| 0.4 Linux 32+2KB L1 gcc 3.3.2 -O1 -fomit-frame-pointer
(IPAQ HP 3950) -fstrict-aliasing

-march=armv5te -mtune=xscale

1000 1000 . . . 5000
» 800 800f » 4000F
£ @ £
£ g £
] £ £
S 600 5600 §,3000
© 5 ©
5 = 5
5 400 S400f %5 2000F
o £ o
€ 2 £
> =}
< 200 200 = 1000} |
0 . L1 | |
0 3 %50 300 350 400 450 %0 290 300 310 320
runtime [s] vin’ number of assembly instructions in compiled C code arithmetic cost [# ops]
(a) runtime (b) assembly instructions (c) arithmetic cost
-7
3000 : : : : 6210 : ‘ ‘ 3500
2500 . 3000
2 il : 2
2500
£ 20001 7 1 £
5 24 il ’ ; 52000
£ 1500 E il <
2 24 i iy 1500
21000 | ! iy k-
i
5 N £ 1000
c oL c
500 500
I||| 1 III|I||I.|I|| I I | I X ; ; ; 0 1 X I_
%0 230 240 250 260 380 290 300 310 320 0 002 004 006 008 01 012
arithmetic cost including fma [#ops] arithmetic cost accuracy when cut to 8 bits
(d) FMA cost (e) runtime versus arithmetic cost (f) accuracy

Fig. 8. Histograms of various data for 10,000 random fast féeméor aDCT-232. From left to right: a) runtime; b) number of assembly instromesi in
the compiled C code; c) arithmetic cost; d) FMA optimized arittimeost; e) runtime versus arithmetic cost. f) accuracy whe&ndown to 8-bit fixed point;
Platform: p4-3.0-lin.

rule (20) on p4-3.0-win. The formulas are implemented idifferently well suited to vectorization, the performarafeall
scalar code (see Fig. 9(a)) and in vector code (see Fig..9(@sted20, 000 formulas, including the slowest, is improved by
The spread of runtimes in both cases is about a factor of B, wBPIRAL's vectorization.

most formulas within a factor of 3. The best 30% formulas

are scarce. The plots show that, even after the extensive codConclusion: performance spreadilthough different for-
optimizations performed by SPIRAL, the runtime performand”nmas for one transform have a similar operation count (see
of the implementation is still critically dependent on th&lg. 8(c)), their scalar or vector code implementations in
chosen formula. Further, histogram Fig. 9(b) looks very mucSPIRAL have a significant spread in runtime (Figs. 8(a) and
like a translation to the left (shorter runtime) of the higtam 9)- This makes a strong case for the need of tuning imple-
Fig. 9(a). This demonstrates that the vectorization amproamentations to platforms, including proper algorithm stdey

in SPIRAL is quite general: although different formulas ar@S discussed in Section Il. The same conclusion applies to
other performance costs as illustrated by the significargazp

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 31

300 ‘ ‘ ‘ ‘ ‘ ‘ performance. Solid lines correspond to SPIRAL generated
code, dotted lines to the Intel libraries, and dashed lines
to FFTW and other libraries. We focus the discussion on
Fig. 10(a), starting from the bottom up. The lowest line is
the GNU library, which is a reimplementation of FFTPACK,
a library that was frequently used a decade ago. The library
is a reasonable C implementation but without any adaptation
mechanism or use of vector instructions. The next two limes a
FFTW 3.0.1 and SPIRAL generated scalar C code, which are
about equal in performance. Considerably higher perfooman
is achievable only by using vector instructions. The nax¢ li
shows the speed-up obtained through compiler vectorizatio
as enabled by a flag, used in tandem with SPIRAL. This is a
Ml e ‘ fair evaluation of compiler vectorization as tse ARCH block

2501

N

o

o
T

[y
o
o

number of algorithms
&
o

0.01 0.02 0.03 0.05 0.06 . . .
runtime [s] will find those formulas the compiler can handle best. The
(a) scalar code (double precision) speed-up is about 50%, obtained with no additional effort.
350 ‘ ‘ ‘ We note that FFTW cannot be compiler vectorized due to its

complex infrastructure. This 50% speed-up is, howevery onl

a fraction of the speed-up achieved by the best possiblewect

code, which is about a factor of 2 faster, or a factor of 3 over
the best scalar code. This performance is achieved by MKL,
IPP, FFTW, and SPIRAL (the top four lines). We speculate on
the reason for their relative performance:

« For small sizes, within L1 cache, SPIRAL code is best by
a margin, most likely due to the combination of algorithm
search, code level optimizations, and the simplest code
structure.

« Outside L1 but inside L2 cache the Intel libraries are
fastest, most likely since the code is inplace and possi-
bly due to optimizations that require microarchitectural

number of algorithms

0 0.005 0.01 0.015 0.02

runtime [s] information not freely available.
(b) SSE vector code (single precision) « For larger sizes, FFTW seems to hold up the best, due
Fig. 9. Histogram of 20,000 random SPIRAL generated scatar 3SE to a number of optimization specifically introduced for
vector implementations for BFT of size 2'6. Platform: p4-3.0-win. large sizes in FFTW 3.0 [18].

Similar observations can be made for double precision code,

see Fig. 10(b).
in Fig. 8(d) for the FMA optimized arithmetic cost and in Regarding cache effects, we mention that for single pre-
Fig. 8(f) for the accuracy performance cost. cision, approximately 32 bytes per complex vector entry are

Benchmarking: DFT. We first consider benchmarks ofneeded (input vector, output vector, constants and spkep
the code generated by SPIRAL for ti&'T on p4-3.0-win while for double precision 64 bytes are needed. Taking into
against the best available DFT libraries including MKL 6rila account the Pentium 4's 8 KB of L1 data cache, this implies
IPP 4.0 (both Intel's vendor libraries), and FFTW 3.0.1. Fdhat FFTs of size 256 (single precision) and 128 (double
most other transforms in SPIRAL, there are no such readiyecision) can be computed completely within L1 data cache.
available high quality implementations. Similarly, the 512 KB L2 cache translates into sizeQUf (for
Fig. 10 shows the results for th®FT,.—-DFT.s. Single precision) an@'? (for double precision), respectively.

The performance is given in pseudo MFLOPS computedFinally, we also consider implementations of thé'T on
as 5nlog,(n)/runtime, which is somewhat larger than reaipad-0.4-lin, which provides only fixed point arithmetic.ew
MFLOPS, but preserves the runtime relations. This is ineompare the performance of SPIRAL’'s generated code with
portant for comparison since different implementationsymahe IPP vendor library code for this platform. For most sizes
have slightly different arithmetic cost. (Note that for ather IPP fares considerably worse, see Fig. 11, which shows the
transforms we use real MFLOPS.) The peak performangeseudo) MFLOPS achieved across a rang®Bfl' sizes:2!
of p4-3.0-win is, for scalar code, 3 GFLOPS (single antd 2'2.
double precision), and for vector code 12 GFLOPS (single Conclusion: DFT benchmarking-or the DFT, SPIRAL
precision) and 6 GFLOPS (double precision). Th&T is scalar code is as competitive as the best code available. On
computed out of place with the exception of the IPP cod®l-3.0-win, SPIRAL automatically generated vector code is
and the Numerical Recipes code [87], which are computéakter by a factor o to 3 compared to the scalar code, on
inplace. In these figures, higher numbers correspond terbepar with IPP and MKL, Intel's hand-tuned vendor libraries.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

Fig. 10.

8000

7000

6000

5000

4000

performance (pseudo MFLOPS)

3000} !
‘I

‘‘‘‘‘

botifoes

IPP 4.0 (inplace)

Intel MKL 6.1

FFTW 3.0.1 SSE
SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL

FFTW 3.0.1

GNU sci. lib. (inplace)

1000 _A__‘—-""-_‘--A--‘--*--"--A‘—A___‘F__
O | | | | |
4 6 8 10 12 14 16
size (Iogzn)
(a) single precision
4500 T

performance (pseudo MFLOPS)

Thegifoes

IPP 4.0 (inplace)
Intel MKL 6.1

+ FFTW 3.0.1 SSE

SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL

+ FFTW 3.0.1

GNU sci. lib. (inplace)
Num. Rec. (inplace)

1000
A AR AEE P NI —
500 ' ks SOl S
-‘\
~
0 | | | | |
4 6 8 10 12 14 16

size (Iogzn)

(b) double precision

FFT performance comparison (in pseudo MFLOPS) of #st available libraries. Platform: p4-3.0-win.

32

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 33

140

blocking rule are enabled (triangles and bullets, respeigi.

We consider now Fig. 14(b), which compares the effect of
different rules on thWT runtime performance. We choose
the variant known as Daubechies 9-7 wavelet, enforce three
different rules for the top-level expansion, with Mallatisle
being the baseline (horizontal line &), and compare the
generated codes in each case. The polyphase rule (squares) i
consistently inferior, whereas the lifting steps ruleaftgles)

"'»} improves over Mallat’s rule for input sizes betwegh and

B 212 Beyond this size, Mallat’s rule is clearly best as top-leve
200 & 1 rule.

& ‘ ‘ ‘ ‘ Platform tuning. We now investigate the impact of per-
10 12 formance tuning (see the table and the plot in Fig. 15). The
table shows the (upper part of the) best ruletrees found for a
DFT of size 2! using only the Cooley-Tukey rule (20), for
p4-2.53-win (single and double precision), p3-1.0-wimg@b
precision), and xp-1.73-win (single precision). Each naue
the trees is labeled with the exponent of th&'T size at
On ipag-0.4-lin, SPIRAL generated code can be as much tag node; for example, the root node in all trees is labeled
4 times faster than IPP’s code. by 10, the exponent of the size of the transfoR¥. Most of

Benchmarking: other transforms. We compare IPP to the 12 ruletrees in this table are different from each other,
SPIRAL on p4-3.0-win for the DCT, type 2, in Fig. 12(a). Bottmeaning that SPIRAL finds different trees when searching
for single and double precisions, the SPIRAL code is abouff@r the best tuned formula for a given machine. Particularly
factor of 2 faster than the vendor library code, achieving ugorth noting is the difference between the balanced rudstre
to 1500 MFLOPS (scalar code). found by SPIRAL for p3-1.0-win and xp-1.73-win, and the

Figs. 12(b) and 12(c) study the performance of the cawmnbalanced ruletrees found for p4-2.53-win.
responding 2D-DCT, which has the tensor product structureThe plot on the right of Fig. 15 further explores the
(19) that enables SPIRAL vectorization. Again we compasffect of tuning the implementation @FT5:.0: how does an
generated scalar code, compiler vectorized code, and SPIRifplementationI(P;) tuned to a given platforn; perform
vectorized code. Compiler vectorization fails for singleq@- on another target platforr®s? In particular, isI(P;) still
sion, i.e., SSE (Fig. 12(b)), but yields a speed-up for deuliuned to the target platforn®,? The answer is no as we
precision, i.e., SSE2 (Fig. 12(c)). SPIRAL generated wectexplain next.
code is clearly best in both cases and across all considereéfor DFT size2®,...,2'3 we use SPIRAL to generate the
sizes. For SSE, up to 4500 MFLOPS and up to a factor oft®@st code for five different combinations of platforms anthda
speed-up over scalar code are achieved. types: p4-2.53-win SSE, p4-2.53-win SSE2, xp-1.73-win SSE

We consider now th&HT, whose formulas have the sim-p3-1.0-win SSE, and p4-2.53-win float. Then, we generate SSE
plest structure among all trigonometric transforms. Fig(a)l code for each of the obtained formulas and run it on p4-2.53-
considers single precision and Fig. 13(b) double precisigvin. The slowdown factor compared to the code tuned to p4-
implementations, respectively. These figures show thatinag 2.53-win SSE is shown in the plot in Fig. 15 (i.e., higher is
vectorization by SPIRAL produces efficient code, up to worse in this plot).
factor of 2.5 and 1.5 faster than scalar code for single andFirst, we observe that, as expected, the best code is the one
double precision, respectively. Interestingly, vectatian of tuned for p4-2.53-win SSE (bottom line equal to 1). Beyond
the SPIRAL code by the compiler is in this case also succe$gat, we focus on two special cases:
ful, with gains that are comparable to the gains achieved by Same platform, different data typ&he best algorithm
SPIRAL vectorization. generated for p4-2.53-win SSE2, when implemented in

Runtime studies of FIR filters and the DWT. Fig. 14(a) SSE, performs up to 320% slower than the tuned im-
compares different SPIRAL generated scalar implememtstio plementation for p4-2.53-win SSE. The reason for this
of an FIR filter with 16 taps and input sizes varying in large gap is the different vector length of SSE2 and
the range2'—22° on xeon-1.7-lin. The plot shows runtimes SSE (2 versus 4), which requires very different algorithm
normalized by the runtime of a base method. The base method structures.
is a straightforward implementation of the filter transform « Same data type, different platforrode generated for
using overlap-add with block size 1; its performance is give p3-1.0-win SSE and run on the binary compatible p4-
by the top horizontal line at 1 and not shown. In this figure, 2.53-win SSE performs up to 50% slower than the SSE

T T
A Intel IPP
—8— SPIRAL

1201

1001

801

601

pseudo MFLOPS

40+

6
Iogz(size)

Fig. 11. Performance of SPIRAL generated fixed-pddtT code for sizes
219212 on IPAQ vs. Intel IPP 3.0. Platform: ipag-0.4-lin.

lower is better (meaning faster than the base method). The
dashed line (squares) shows the relative runtime if only the
overlap-add rule with arbitrary block sizes is enabled—an gai

of about 85% over the base method. Further gains of 10—

code tuned for p4-2.53-win. This is a very good example
of the loss in performance when porting code to newer
generation platforms. SPIRAL regenerates the code and
overcomes this problem.

20% are achieved if in addition the overlap-save rule and theCompiler flags. In all prior experiments we have always

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 34

1500 2600

4500

= SPIRAL
~¥- SPIRAL vect. comp.
-8 SPIRAL SSE2

4000f 2400r

3500} 22001

10001 20001

30001

0
4 14 Q. 1800F
S S 2500t = SPIRAL S}
[T ~¥- SPIRAL vect. comp. T L
= = - SPIRAL SSE S 1600
2000+
500 1400+
e —A- SPIRAL (double) 15000 Y
1 . IPP 4.0 (double) 1200
3 ¥ SPIRAL (float) n
I B ‘@ IPP 4.0 (float) 1000 1000}
A
% 2.5 35 4 45 55 6 500, 25 35 4 45 5.5 6 8% 2.5 35 4 45 5 5.5 6
k= Iogz(gze) k=|ogz(5|ze) k:|0g2(5|ze)
(a) 1IDDCT vs. IPP (b) 2D DCT float (c) 2D DCT double

Fig. 12. (a) Comparing the performance (in MFLOPS) of SPIRAbagated code and IPP forlaCT-2 of size2*, 2 < k < 6 for single and double
precision. (b) and (c) 2DCT float and double precision: scalar SPIRAL code, scalar SRIB#de compiler vectorized, and SPIRAL vector code. Platform:
p4-3.0-win.

4000
35001
3000+
2500+
0
& 2000f
= Tk
T 2
15004 .- R
e . i
10004 =TTy * -% - SPIRAL g
A SPIRAL (comp. vect.) 400 | A SPIRAL (comp. vect.) (-
500/ | —e— SPIRAL SSE 7 200l L= SPIRAL SSEZ]
0 L L L L L 0 L L L L L
4 6 8 10 12 14 4 6 8 10 12 14
Id(size) Id(size)
(a) single precision (b) double precision

Fig. 13. WHT performance (in MFLOPS) of SPIRAL generated scalar code, dempectorized code, and vector code for (a) single and @)bie
precision. Platform: p4-3.0-win.

5 03 ‘ . : -83.5
2 -m- Overlap—Add Rule g —e— Mallat Rule
g A" + Overlap-Save Rule E 4| = Polyphase Rule | .4 |
@ 025 —e— + Blocking Rule i a -v- Lifting Rule A
’ -

g g i \'-V‘ -v-Y
Q = L} .
£ 02f : . - *52.5’ ll LI pers
2 = .
= |53 IS
2] L L T S | g
20.15 A A AL @ 2r w 1
2 o
_) e
£ E
2 B
o 01r . 81.
£ E
IS €
> >
- 0.05f] = *—0—0—o
2 2
a a
[[
= 0 | | | | | | | | ‘—05 I I I I I I I I I

2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 20

Iogz(input size) Iogz(input size)
(a) FIR filter (b) DWT

Fig. 14. (a) Runtime comparison of generated filter code (16)tdpund with increasing sets of rules enabled, normalizedthey straightforward
implementation. (b) Runtime comparison of the best found DWT impletation for three different choices of the uppermost rutemalized by Mallat's
rule. Platform: xeon-1.7-lin.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 35

4.5 ‘ ‘ ; ; : : ‘
P4 P4 Pl Athlon XP -v- Eent?umigggz
. . . L —=— Pentium I
(sll(:]gle) (diuble) (single) (single) 4 —% Athlon XP SSE
10 10 A Pentium lll SSE
scalar code 2/\5 z/\s 4/\6 4/\6 S 35 —e— Pentium 4 float ||
/\ /\ VANWAN /N /N 8
2 6 2 6 2 22 4 2 23 = < 3t
10 10 10 10 =
scalar code PN /\ PN PN 8 2.5}
compiler vect. 4 8 2 8 8 4 A 8 Ea
P ANVAN /N VAN VANIVAN 5
2 2 4 2 2 6 2 4 2 2 2 2 4 2 2+
0 0 A N Lk o >,
10 10 . e - X
S\ill’?;rgr_cgdSeE 8/\2 9/\1 5/\5 5/\5 15 —*‘\ ';*—— Ca ‘ N
doublo = sse2 | £ 7 AN AA A
/N\ /N 2oz 2oz 5 6 7 8 9 10 11 12 13
5 5 2 s Iog2(5|ze)
Fig. 15. Left: The best foundFT formulas forn = 210, represented as breakdown trees; right: crosstiming of D& ruletree, size5,...,213,

generated for various platforms, implemented and measured mtiufe4 using SSE. Platforms: p4-2.53-win, p3-1.0-win, Xp3twin.

used a predefined and fixed combination of C compiler flag€1 -march=pentium4,” and produce a runtime histogram
to compile the SPIRAL generated code (see Table XIXjor the DCT-23, implementation generated in the previous
Assessing the effects on performance of compiler optionsdgperiment. The spread in runtimes of more than a factor of 3
difficult, because: 1) there are many different options (th#emonstrates the big impact of the choice of compiler flags.
extreme case is gcc 3.3 with a total of more than 500 differefihe best compiler options in this histogram produce a rumtim
documented flags, more than 60 of which are related ¢m sec.) of aboutl.8 - 107, whereas the best flags found by
optimization); 2) different options can interact and/onflict ACOVEA in the previous experiment produdes7 - 1077,

with each other in non-trivial ways; 3) the best options ligua Parallel platforms. Section IV-F showed how SPIRAL
depend on the program being compiled. In SPIRAL, we haweuld be used to generate parallel code and showed a family
not yet addressed this problem; in fact, for gcc, SPIRAL use$ shared-memory and distributed-memory parallel alparit

the same optimization options as FFTW by default. for the WHT. Figure 17 considers the WHT siz2’s ..., 2%

In the absence of clear guidelines, choosing the right setarid shows the speedup obtained with the generated routines.
compiler flags from the large set of possibilities poses laot Speedup is computed for each number of threads as the ratio of
optimization problem that can be solved by a heuristic sear¢he best sequential algorithm/implementation found caegha
ACOVEA (Analysis of Compiler Options via Evolutionaryto the best parallel algorithm/implementation found. Wedus
Algorithm) [88] is an open-source project that uses an evdynamic programming in each case to automatically optimize
lutionary algorithm to find the best compiler options for granularity, load balance, cache utilization, and the céigle
given C program. of appropriately optimized sequential code. The platfosna i

We apply ACOVEA to SPIRAL generated code for thél2 processor shared-memory multiprocessor platform iBms8
DCT, type 2, of sizes2',...,25 on p4-3.0-lin. First, we 0.45-aix [89].
generate the best (scalar) implementations using the ltlefau Figure 17 shows that, for up to 10 threads, nearly linear
configuration (denoted by “gcc -O3” in the plot; the comspeed-up is obtained for large transform size and parzdleli
plete set of flags is in Table XIX). Second, we retime thton is found to be beneficial for transforms as small2d4
obtained implementations with a lower level of optimizatio The performance reported here is better than that repanted i
(denoted by “gcc -O1,” in reality “-O1 -fomit-frame-poimte [59], due to searching through additional schedules anugusi
-malign-double -march=pentium4”), and also with the Intdbop interleaving [23] to reduce cache misses and falserghar
Compiler 8.0 (denoted by “icc /O3,” the options were “/O3A straightforward parallelization method leads to far ide
Itpp7”). Finally, we run the ACOVEA evolutionary search foperformance. For example, for 10 threads, only a factor of
gcc compiler flags for each implementation. The results aabout 3 is achieved this way; a parallelizing compiler fares
shown in Fig. 16(a), which displays the speed-up compareden worse than that. These results are not shown, please ref
to “gcc -O1” (higher is better) for each of the 6 DCT codedo [59] for more details. In summary, even for as simple a
All sets of flags found by ACOVEA include at least “-O1 -transform as the WHT, search through a relevant algorithm
march=pentium4.” This justifies our choice of “gcc -O1” as thspace is crucial to obtain the optimal performance.
baseline. Note that “gcc -O3” is always slower than “gcc *O1, Multiplierless code. SPIRAL can generate multiplierless
which means that some of the more advanced optimizationsde (see Section V). This is important for platforms that
can make the code slower. In summary, ACOVEA gives dature a fixed point processor such as the IPAQ and showcases
additional speedup ranging from 8% to 15% for the relevaat unique advantage of SPIRAL, as we are not aware of
larger DCT sizes* 8) in this experiment. other multiplierless high performance libraries. In a rault

The plot in Fig. 16(b) was also produced with the helplierless implementation, a lower accuracy approximatbn
of ACOVEA. Instead of performing an evolutionary searctthe constants leads to fewer additions and, thus, pothntial
we create an initial random population of 2000 compilefaster runtime. This effect is shown in Fig. 18 fBFTs of
flag combinations, each of them again including at leagarious sizes3 < n < 64, implemented in each case using

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 36

80 %
60 %

40 %

—e— gcc —0O1
@ gcc —0O3
—*— gcc/acovea ||
-v- icc /O3

speedup over gcc —O1

-40%r-

-60%,
1

2 3 4
Iogz(size)

(a) improvement from compiler options search IICT-2 of sizes

21,26,

70

60

50

40

30

20

number of compiler option combinations

10

(b) histogram of 2000 random compiler flags combinations for
the best found implementation f@ CT-235.

Fig. 16.
ACOVEA.

Jany
o

runtime [s]

x 107

Analysis of the impact of the choice of compiler flagsngs

speedup

P N Wb OO N 0O ©
T

sequential WHT
2 threads
4 threads
6 threads
8 threads
10 threads

=

2

Fig. 17.

4

WHT size log(N)

6 8 10 12 14 16 18 20 22 24

Speed-up for parallel code generatedWiHT ., 1 < k < 24,

for up to 10 threads. Platform: ibms80-0.45-aix with 12 preoes.

-5
x 10
25—
Il 8 bit
[14 bit
Bl mults

15¢

runtime [s]

0.5r

O????Ug"dﬂﬂnﬂﬂﬂﬂd

9 10 11 12 13 14 15 16 18 20 30 32 36 64
size

Fig. 18. Runtime performance (lower is better) of variddBTs of sizes
between 3 and 64. For each size, the rightmost, middle, amddsftbar shows
(fixed point) code using multiplications and 14-bit and 8-mitiltiplierless
code, respectively. Platform: ipag-0.4-lin.

either multiplications or additions and shifts with the stants
approximated to 14 or 8 hits, respectively. Note that theecod
has to be unrolled to allow for this technique. The figure show
an improvement of up to 10% and 20%, respectively, for the
14-bit and 8-bit constant multiplierless code.

Runtime of code generation. SPIRAL requires only
compile-time adaptation; thus, at runtime, no time is spent
in further optimizing the code. Depending on the optimizati
strategy, the problem size, and the timer used, the optiioiza
may take from the order of seconds to the order of hours.
For instance, the generation of a scalar DFT library for two-
powers up to2?° is done in 20-30 minutes on a Pentium 4,
while the corresponding vector code generation takes on the
order of hours. Problem sizes around 64 are optimized within
a few minutes. Note that SPIRAL generates code entirely from
scratch, i.e., no code or code fragments for any transfoam ar
already pregenerated or handcoded in SPIRAL. In this réspec
SPIRAL is similar to ATLAS with roughly similar code
generation times. Compared to FFTW, SPIRAL needs longer
to produce optimized code. However, in FFTW, real code
generation (i.e., from scratch) is done only for small tfarma
sizes and for unrolled code. These codelets (in FFTW lingo)
are pregenerated and distributed with the package. Further
the codelet generation is deterministic, i.e., producesstme
result independently of the machine. The optimization for
larger FFT sizes in FFTW is done at runtime by determining,
through dynamic programming, the best recursion strategy
among those supported by FFTW. The available recursions
are built into the rather complex infra-structure of FFTW.
For example, for a one-dimensional DFT of composite size
and in SPIRAL lingo, these recursion strategies are all the
right-most ruletrees based on the Cooley-Tukey breakdown
rule (20), where the left leaf is a codelet. Restricting tHeTD
computation to this restricted class of algorithms is a sleni
based on the experience of the FFTW developers. In SPIRAL,
the candidate algorithms are deliberately as little cairstd
as possible, leaving the selection entirely to the system.

Conclusions.We draw the following main conclusions from

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

our experiments:

« For any given transform, even for a small size, there

is a large number of alternative formulas with a large
spread in code quality, even after applying various code ¢
optimizations (Figs. 8 and 9).

The difference in runtime between a “reasonable” im-
plementation and the best possible can be an order of
magnitude (e.g., a factor of 10 in Fig. 10(a) between the
GNU library and the IPP/FFTW/SPIRAL code).

Compiler vectorization is limited to code of very simple
structure (e.g., Fig. 13), but fails to produce competitive
code for more complex data flows, e.g., Figs. 10, 12(b),
and 12(c). SPIRAL overcomes this problem through
manipulations at the mathematical formula level; all other
vector libraries involve hand coding.

The performance of SPIRAL generated code is compa-
rable with the performance of the best available library
code.

VIII. L IMITATIONS OF SPIRAL, ONGOING AND FUTURE

WORK *
SPIRAL is an ongoing project and continues to increase in

scope with respect to the transforms included, the types of

code generated, and the optimization strategies includéd.
give a brief overview of the limitations of the current SPIRA

system and the ongoing and planned future work to resolve

them.

« As we explained before, SPIRAL is currently restricted
to discrete linear signal transforms. As a longer term
effort we just started to research the applicability of
SPIRAL-like approaches to other classes of mathematical
algorithms from signal processing, communication, and
cryptography. Clearly, the current system makes heavy
use of the particular structure of transform algorithms
in all of its components. However, most mathemati-
cal algorithms do possess structure, which, at least in
principle, could be exploited to develop a SPIRAL like
code generator following the approach in Section II-A.
Questions that need to be answered for a given algorithm
domain then include:

— How to develop a declarative structural representation ,
of the relevant algorithms?

— How to generate alternative algorithms and how to
translate these algorithms into code?

— How to formalize algorithm level optimizations as
rewriting rules?

— How to search the algorithm space with reasonable ,
effort?

Currently, SPIRAL can only generate code for one spe-
cific instance of a transform, e.g., for a transform of
fixed size. This is desirable in applications where only
a few sizes are needed which can be generated and
bundled into a lightweight library. For applications with
frequently changing input size, a package is preferable,
which implements a transform for all, or a large number «
of sizes. To achieve this, recursive code needs to be
generated that represents the breakdown rules, which is

37

ongoing research. Once this is achieved, our goal is to
generate entire packages, similar to FFTW for the DFT,
on demand from scratch.

The current vectorization framework can handle a large
class of transforms, but only those whose algorithms are
built from tensor products to a large extent. In this case,
as we have shown, a small set of manipulation rules is
sufficient to produce good code. We are currently working
on extending the class of vectorizable transforms, e.g., to
include large DCTs and wavelets. To achieve this, we
will identify the necessary formula manipulation rules
and include them into SPIRAL. With a large manipulation
rule database ensuring convergence and uniqueness of the
result (confluence) also becomes a problem. To ensure
these properties, we will need a more rigorous approach
based on the theory of rewriting systems [42].

Similarly, and with an analogous strategy, we are in the
process of extending SPIRAL's code generation capabili-
ties for parallel platforms. These extensions are cutyentl
still in the prototype stage.

Besides vector code, current platforms provide other
potentially performance enhancing features, such as hy-
perthreading (Pentium 4) or prefetch instructions. Hy-
perthreading can be exploited by generating code with
explicit threads, which was the previous goal; we aim
to explicitly generate prefetch instructions through a
combination of formula manipulation and loop analysis
on the code level [90].

For some applications it is desirable to compute a
transform inplace, i.e., with the input and output vector
residing in the same memory location. SPIRAL currently
only generates out-of-place code. We aim to generate
inplace code directly after a formula level only analysis.
SPIRAL can generate fixed point code, but the decision
for the chosen range and precision, i.e., the fixed-point
format, has to be provided by the user. Clearly, the
necessary range depends on the range of the input values.
We are currently developing a backend [91] that chooses
the optimal fixed point format once the input range is
specified. The format can be chosen globally, or locally
for each temporary variable to enhance precision.

To date the learning in SPIRAL is restricted to the
selection of WHT ruletrees and DFT ruletrees based on
the Cooley-Tukey rule. An important direction in our
research is to extend the learning framework to learn and
control a broader scope of transforms and to encompass
more degrees of freedoms in the code generation.

For many transforms, in particular the DFT, there are
many different variants that differ only by the chosen
scaling or assumptions on input properties such as sym-
metries. Most packages provide only a small number of
these variants due to the considerable hand-coding effort.
In SPIRAL many of these variants can be handled by just
including the specification and one or several rules. We
are in the process of extending SPIRAL in this direction.
We are just in the process of finishing an improved
redesign of the SPIRAL system with considerably in-
creased modularity to enable all the above extensions with

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

38

reasonable effort. The possibility of extending SPIRALDennis Healy, Doug Cochran, and more recently with Fred-
e.g., by inserting a backend code optimization module, erika Darema, during the development of SPIRAL.

by connecting it to an architecture simulator, has led to The acronym SPIRAL means Signal Processing Implemen-
its occasional use in class projects in algorithm, compilgation Research for Adaptable Libraries. As a tribute to-Aus
and architecture courses. The vertical integration of diinder, the SPIRAL team decided early on that SPIRAL should

stages of software development in SPIRAL allows thiékewise stand for (in reverse) Louis Auslander’s Remaliab
students to study the complex interaction of algorithmisleas for Processing Signals.

mathematics, compiler technology, and microarchitecture
at hand of an important class of applications.

« Finally, as a longer term research effort and leaving the
scope of this paper and this special issue, we have startEd
to develop a SPIRAL-like generator for hardware designs
of transforms for FPGAs or ASICs.

[2]
IX. CONCLUSIONS

REFERENCES

K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzam,
D. Padua, K. Pingali, P. Stodghill, and P. Wu, “A comparisorewipiri-
cal and model-driven optimization,” iRroc. ACM SIGPLAN conference
on Programming Language Design and Implementation (PL@l). 38,
no. 5. ACM Press, 2003.

T. Kisuki, P. Knijnenburg, and M. O’'Boyle, “Combined set®n of tile
sizes and unroll factors using iterative compilation,”Rnoc. Parallel
Architectures and Compilation Techniques (PACAQ00, pp. 237—-246.

We presented SPIRAL, a code generation system for DSB| w. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, “Automatic pragn trans-

transforms. Like a human expert in both DSP mathematics

and code tuning, SPIRAL autonomously explores algorithm
. ; . L - 4]

and implementation choices, optimizes at the algorithmit¢ a

at the code level, and exploits platform-specific featu@s t

create the best implementation for a given computer. Fyrth 5]

formations for virtual memory computers,” Proc. National Computer
Conference1979, pp. 969-974.

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wplfe
“Dependence graphs and compiler optimizations,”Proc. 8th ACM
SIGPLAN-SIGACT Symp. Principles of Programming LanguagesM
Press, 1981, pp. 207-218.

F. Allen and J. Cocke, “A catalogue of optimizing transfations,” in

SPIRAL can be extended and adapted to generate code for NeW pesign and Optimization of Compiler®. Rustin, Ed. Prentice-Hall,

transforms, to exploit platform-specific special instions,
and to optimize for various performance metrics. We havé®
shown that SPIRAL generated code can compete with, and
sometimes even outperform the best available hand-writtdi]
code. SPIRAL's approach provides performance portability
across platforms and facilitates porting the entire tramsf g
domain across time.

The main ideas behind SPIRAL are to formulate thd®!
problem of code generation and tuning of transforms as fag
optimization problem over a relevant set of implementation
The implementation set is structured using a domain-speciﬂll
language that allows the computer representation, geoeyat
and optimization of algorithms and corresponding code. The
platform-specific optimization is solved through an engaiti
feedback-driven exploration of the algorithm and impletaen 15,
tion space. The exploration is guided by search and learning
methods that exploit the structure of the domain.

While the current version of SPIRAL is restricted tq;3
transforms, we believe that its framework is more generally
applicable and may provide ideas how to create the next
generation of more “intelligent” software tools that pusie t |14
limits of automation far beyond of what is currently possibl
and that may, at some point in the future, free humans from
programming numerical kernels altogether. [15]

X. ACKNOWLEDGMENTS [16]

This work was supported by DARPA through research grant
DABT63-98-1-0004 administered by the Army Directorate
of Contracting and by NSF through award numbers ACR-
0234293, ITR/NGS-0325687, and SYS-310941.

Moura, Johnson, Veloso, and Johnson recognize their eggl
discussions with Louis Auslander on the automatic imple-
mentation of the DFT and other transforms. They and Padua
acknowledge Anna Tsao for teaming them up. Further, the
authors acknowledge the many interactions with Anna Tsao,

1972, pp. 1-30.

] M. E. Wolf and M. S. Lam, “A data locality optimizing algohin,” in

Proc. ACM SIGPLAN conference on Programming Language Desig
and Implementation (PLDI) ACM Press, 1991, pp. 30-44.

I. Kodukula, N. Ahmed, and K. Pingali, “Data-centric meikivel block-
ing,” in Proc. ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI) ACM Press, 1997, pp. 346-357.
K. Kennedy and R. AllenOptimizing Compilers for Modern Architec-
tures: A Dependence-based ApproactMorgan Kaufmann, 2001.

R. Metzger and Z. WerAutomatic Algorithm Recognition and Replace-
ment: A New Approach to Program OptimizatiorMIT Press, 2000.

D. Barthou, P. Feautrier, and X. Redon, “On the equivede of two
systems of affine recurrence equations,Proc. Euro-Par ser. LNCS,
vol. 2400. Springer, 2002, pp. 309-313.

R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated ieog
optimization of software and the ATLAS projecRarallel Computing
vol. 27, no. 1-2, pp. 3-35, 2001, also available as Universit
Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000 fww
netlib.org/lapack/lawns/lawn147.ps).

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petie Vuduc,

C. Whaley, and K. Yelick, “Self adapting linear algebra altfons and
software,” Proceedings of the IEEEvol. 93, no. 2, 2005, special issue
on "Program Generation, Optimization, and Adaptation”.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,Dbn-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensenl APACK Users’ Guide3rd ed. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1999.

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingadind

P. Stodghill, “A comparison of empirical and model-driven opta-
tion,” Proceedings of the IEEBvol. 93, no. 2, 2005, special issue on
"Program Generation, Optimization, and Adaptation”.

E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimizatidramework
for sparse matrix kernelsiht’l Journal of High Performance Computing
Applications vol. 18, no. 1, 2004.

G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, Ghoppella,
D. Cociorva, X. Gao, R. J. Harrison, S. Hirata, S. Krishanrttoor
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Raojam,

P. Sadayappan, and A. Sibiryakov, “Synthesis of high-perémce
parallel programs for a class of ab initio quantum chemistry etsytl
Proceedings of the IEEEvol. 93, no. 2, 2005, special issue on "Program
Generation, Optimization, and Adaptation”.

ﬁ G. Baumgartner, D. Bernholdt, D. Cociovora, R. Harrisdh Nooi-

jen, J. Ramanujan, and P. Sadayappan, “A performance optiarizat
framework for compilation of tensor contraction expressiiois parallel
programs,” inProc. Int’l Workshop on High-Level Parallel Programming
Models and Supportive Environments (held in conjunctioth WEEE
Int'l Parallel and Distributed Processing Symposium (IP®)P), 2002.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]
[35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]

[43]

[44]

M. Frigo and S. G. Johnson, “The design and implementatén [45]
FFTW3,” Proceedings of the IEEE/ol. 93, no. 2, 2005, special issue

on "Program Generation, Optimization, and Adaptation”. [46]
——, “FFTW: An adaptive software architecture for the FFTh
Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Pretes [47]

(ICASSP) vol. 3, 1998, pp. 1381-1384, www.fftw.org.

M. Frigo, “A fast Fourier transform compiler,” iRroc. ACM SIGPLAN
conference on Programming Language Design and Implemientat
(PLDI), 1999, pp. 169-180. [48]
D. Mirkovit and S. L. Johnsson, “Automatic performance tuning in the
UHFFT library,” in Proc. Int'l Conf. Computational Science (ICGSgr.
LNCS, vol. 2073. Springer, 2001, pp. 71-80.

S. Egner, “Zur algorithmischen Zerlegungstheorie direz Transfor-
mationen mit Symmetrie (On the algorithmic decomposition theory
of linear transforms with symmetry),” Ph.D. dissertation, tibag fir
Informatik, Univ. Karlsruhe, Germany, 1997.

K. S. Gatlin and L. Carter, “Faster FFTs via architeetangnizance,” in
Proc. Parallel Architactures and Compilation Techniqu@aCT) 2000.
“Architecture-cognizant divide and conquer algioms,” in
Proc. Supercomputingl999.

D. H. Bailey, “Unfavorable strides in cache memory systgrSsientific
Programming 1995.

N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna, fiBgic data
layouts for cache-conscious factorization of DFT,’Rnoc. IEEE Int'l
Parallel and Distributed Processing Symposium (IPDR2BP0, pp. 693— [53]
701.

J. Johnson and M.{Bchel, “In search for the optimal Walsh-Hadamard
transform,” in Proceedings IEEE Intl Conf. Acoustics, Speech, an{b4]
Signal Processing (ICASSPjol. 1V, 2000, pp. 3347-3350.

J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge, “Ralr&SIPL++:
An open standard software library for high-performance Ipglraignal
processing,’Proceedings of the IEEEvol. 93, no. 2, 2005, special issue
on "Program Generation, Optimization, and Adaptation”.

M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A congiae
study of static and profile-based heuristics for inlining"Proc. ACM
SIGPLAN workshop on Dynamic and Adaptive Compilation anti-Op [56]
mization ACM Press, 2000, pp. 52—-64.

P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu, fiee
guided automatic inline expansion for ¢ progran8dftware - Practice [57]
and Experiencevol. 22, no. 5, pp. 349-369, 1992.

A. V. Oppenheim and R. W. Schafddjscrete-Time Signal Processing
2nd ed. Prentice-Hall, 1999.

ISO/IEC 15444-1:2000, Information technology - JPEG 206tage
coding system - Part 1: Core coding systemt’| Organization for
Standardization and Int'l Electrotechnical Commission.

J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Talimi&
methodology for designing, modifying, and implementing Fautrians-
form algorithms on various architecturesEEE Trans. Circuits, Sys-
tems, and Signal Processingol. 9, no. 4, pp. 449-500, 1990.

C. Van Loan,Computational Framework of the Fast Fourier Transform
SIAM, 1992.

[49]

(50]

(51]

(52]

(58]

(58]

(59]

(60]

G. E. Revész,Introduction to Formal Languages McGraw-Hill, 1983. [61]
R. Tolimieri, M. An, and C. Lu,Algorithms for discrete Fourier
transforms and convolutiornd ed. Springer, 1997. [62]

M. Puschel, “Cooley-tukey FFT like algorithms for the DCT,” in
Proc. IEEE Intl Conf. Acoustics, Speech, and Signal Preces

(ICASSP) vol. 2, 2003, pp. 501-504. [63]
P. P. VaidyanatharMultirate systems and filter banks Prentice-Hall,
1993.

G. Strang and T. Nguyenavelets and Filter Banks Wesley, 1998. [64]
|. Daubechies and W. Sweldens, “Factoring wavelet sfams into
lifting steps,”Journal of Fourier Analysis and Applicationgol. 4, no. 3,

pp. 247-269, 1998. [65]

A. Graham,Kronecker products and matrix calculus with applications
New York: John Wiley & Sons, Halstead Press, Ellis Horwoodiese
Mathematics and Its Applications, 1981.

N. Dershowitz and D. A. Plaisted, “Rewriting,” iHandbook of Auto-
mated Reasonin@A. Robinson and A. Voronkov, Eds. Elsevier, 2001,
vol. 1, ch. 9, pp. 535-610. [67]
M. Puschel, B. Singer, M. Veloso, and J. M. F. Moura, “Fast aut@nat
generation of DSP algorithms,” ifProc. Int'l Conf. Computational
Science (ICCS)ser. LNCS, vol. 2073. Springer, 2001, pp. 97-106. [68]
M. Pischel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, DuRad
M. Veloso, and R. W. Johnson, “SPIRAL: A generator for platie
adapted libraries of signal processing algorithnist'l Journal of High
Performance Computing Applicationgol. 18, no. 1, pp. 21-45, 2004.

(66]

(69]

39

GAP—Groups, Algorithms, and Programmijrithe GAP Team, Univer-
sity of St. Andrews, Scotland, 1997, www-gap.dcs.st-andlka~gap/.
N. D. Jones, C. K. Gomard, and P. Sestdgrtial Evaluation and
Automatic Program GenerationPrentice Hall International, June 1993.
J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPLnguage and
compiler for DSP algorithms,” ifProc. ACM SIGPLAN conference on
Programming Language Design and Implementation (PL.LR0O1, pp.
298-308.

N. Rizzolo and D. Padua, “Hilo: High level optimizatiori BFTS,” in
Proc. Workshop on Languages and Compilers for Parallel Qating
(LCPC) 2004, to appear.

Y. Voronenko and M. Bschel, “Automatic generation of implemen-
tations for DSP transforms on fused multiply-add architezg(ir in
Proc. IEEE Intl Conf. Acoustics, Speech, and Signal Pretes
(ICASSP) 2004.

C. W. Fraser, D. R. Hanson, and T. A. Proebsting, “Enegiimg a simple,
efficient code-generator generatoACM LOPLAS vol. 1, no. 3, pp.
213-226, 1992.

E. Linzer and E. Feig, “Implementation of efficient FFT alghms on
fused multiply-add architectures,” itEEE Trans. Signal Processing
vol. 41, 1993, p. 93.

C. Lu, “Implementation of multiply-add FFT algorithms fosmplex and
real data sequences,” Rroc. Int'l Symp. Circuits and Systems (ISCAS)
vol. 1, 1991, pp. 480-483.

F. Franchetti and M. #&schel, “A SIMD vectorizing compiler for
digital signal processing algorithms,” iAroc. IEEE Int'| Parallel and
Distributed Processing Symposium (IPDP3002, pp. 20-26.

——, “Short vector code generation for the discrete kautransform,”
in Proc. |IEEE Int'| Parallel and Distributed Processing Synsaam
(IPDPS) 2003, pp. 58-67.

F. Franchetti, “Performance portable short vector gfarms,” Ph.D.
Thesis, Institute of Applied Mathematics and Numerical Asay
Vienna University of Technology, 2003, also available asRQRA
Tech. Report TR2003-01, www.math.tuwien.ac.at/ascot omwepc.
univie.ac.at/aurora.

F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhubeffi¢ient utilization
of SIMD extensions,"Proceedings of the IEEEvol. 93, no. 2, 2005,
special issue on "Program Generation, Optimization, andpfetan”.

R. E. J. Hoeflinger, Z. Li, and D. Padua, “Experience ir #utomatic
parallelization of four perfect benchmark programs,’Proc. Workshop
on Languages and Compilers for Parallel Computing (LCP&#r.
LNCS, vol. 589. Springer, 1992.

R. E. J. Hoeflinger and D. Padua, “On the automatic pdizdigon of
the perfect benchmarksEEE Trans. Parallel and Distributed Systems
vol. 9, no. 1, pp. 5-23, 1998.

K. Chen and J. R. Johnson, “A prototypical self-optimgipackage for
parallel implementation of fast signal transforms,”Rmoc. IEEE Int'l
Parallel and Distributed Processing Symposium (IPDFPX)02.

——, “A self-adapting distributed memory package for fasgnal
transforms,” inProc. IEEE Int'l Parallel and Distributed Processing
Symposium (IPDPSP004.

OpenMP,OpenMP C and C++ Application Pragram Interface, Version
1.0, 1998, www.openmp.org.

W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. I,
W. Saphir, and M. SnirMPI: The Complete Referenc2nd ed. MIT
Press, 1998.

P. Kumhom, “Design, optimization, and implementation of aversal
FFT processor,” Ph.D. dissertation, Department of Eleaitrgsd Com-
puter Engineering, Drexel University, 2001.

F. Erdin, “Testing multivariate linear functions: Overcoming theng
erator bottleneck.” irProc. ACM Symp. Theory of Computing (STQC)
vol. 2, 1995, pp. 407-416.

J. Johnson, M. #schel, and Y. Voronenko, “Verification of linear
programs,” poster at Int'l Symp. Symbolic and Algebraic Compaia
(ISSAC), 2001.

S. Winograd Arithmetic Complexity of Computationser. CBMS-NSF
Regional Conf. Ser. Appl. Math. Philadelphia, PA: Societlylhdustrial
and Applied Mathematics, 1980.

J. R. Johnson and A. F. Breitzman, “Automatic derivatiod anplemen-
tation of fast convolution algorithmsJournal of Symbolic Computation
vol. 37, no. 2, pp. 261-293, 2004.

E. Linzer and E. Feig, “New scaled DCT algorithms for fdsmulti-
ply/add architectures,” ifroc. IEEE Int’l Conf. Acoustics, Speech, and
Signal Processing (ICASSPjol. 3, 1991, pp. 2201-2204.

N. Higham, Accuracy and Stability of Numerical Algorithm2nd ed.
SIAM, 2002.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

[70] P.R. Cappello and K. Steiglitz, “Some complexity issuedigital signal
processing,IEEE Trans. Acoustics, Speech, and Signal Processiolg
ASSP-32, no. 5, pp. 1037-1041, October 1984.

O. Gustafsson, A. Dempster, and L. Wanhammar, “Extendsdlteefor
minimum-adder constant integer multipliers,” iIBEE Int'l Symp. Cir-
cuits and Systemsol. 1, 2002, pp. |-73-1-76.

A. C. Zelinski, M. Rischel, S. Misra, and J. C. Hoe, “Automatic
cost minimization for multiplierless implementations of digersignal

[71]

[72]

transforms,” inProc. IEEE Int'l Conf. Acoustics, Speech, and Signal

Processing (ICASSPR004.

M. Puschel, A. Zelinski, and J. C. Hoe, “Custom-optimized mulépli
less implementations of DSP algorithms,”Rmnoc. Int'l Conf. Computer
Aided Design (ICCAD)2004, to appear.

Information Technology—Coding of moving pictures and esged
audio for digital storage media at up to about 1.5 MbitsISO/IEC,
1995.

H.-J. Huang, “Performance analysis of an adaptive dlgor for the
Walsh-Hadamard transform,” Master’s thesis, Department aohi@der
Science, Drexel University, 2002.

M. Furis, “Cache miss analysis of Walsh-Hadamard tramsfal-
gorithms,” Master’s thesis, Department of Computer Scienaexé&
University, 2003.

A. Parekh and J. R. Johnson, “Dataflow analysis of the FB€pt. of
Computer Science, Drexel University, Philadelphia, PA HTdéep. DU-
CS-2004-01, 2004.

J. Johnson, P. Hitczenko, and H.-J. Huang, “Distritoutof a class of
didive and conquer recurrences arising from the computabiithe
Walsh-Hadamard transform,” iRroc. 3rd Colloquium on Mathematics
and Computer Science: Algorithms, Trees, Combinatoriacd Rroba-
bilities, 2004.

P. Hitczenko, H.-J. Huang, and J. R. Johnson, “Distitbuof a class
of divide and conquer recurrences arising from the comprtatf
the Walsh-Hadamard transfornmirheoretical Computer Scienc2003,
submitted for publication.

(73]

[74]

[75]

[76]

(77

(78]

[79]

(80]
rithms 3rd ed. Addison-Wesley, 1997, vol. 1.

(81]

Machine Learning Reading, MA: Addison-Wesley, 1989.

B. Singer and M. \Veloso, “Stochastic search for signabcpssing

algorithm optimization,” inProc. Supercomputing?001.

L. Torgo, “Inductive learning of tree-based regressimodels,” Ph.D.

dissertation, Department of Computer Science, Faculty otrgeis,

University of Porto, 1999.

B. Singer and M. Veloso, “Learning to construct fastreifjprocessing

implementations,”"Journal of Machine Learning Researctol. 3, pp.

887-919, 2002.

——, “Learning to generate fast signal processing impletatons,”

in Proc. International Conference on Machine Learning Morgan

Kaufmann, 2001, pp. 529-536.

B. Singer and M. M. Veloso, “Automating the modeling andioyization

of the performance of signal transformHEZEE Trans. Signal Processing

vol. 50, no. 8, pp. 2003-2014, 2002.

W. H. Press, B. P. Flannery, T. S. A., and V. W. Mumerical Recipes

in C: The Art of Scientific Computin@nd ed. Cambridge University

Press, 1992.

S. R. Ladd, “ACOVEA: Analysis of compiler options via dutionary

algorithm,” 2004, www.coyotegulch.com/acovea/.

IBM, “The RS/6000 enterprise server model S80, techgyland archi-

tecture,” http://www.rs6000.ibm.com/resource/technglegOtecharch.

html.

T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluatio

of a compiler algorithm for prefetching,” ifProc. Int'l Conference

on Architectural Support for Programming Languages and 1@peg

Systems1992, pp. 62—73.

L. J. Chang, I. Hong, Y. Voronenko, and Musthel, “Adaptive mapping

of linear dsp algorithms to fixed-point arithmetic,” iRroc. High

Performance Embedded Computing (HPE2)04.

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

40

Markus Puschel received his Diploma (M.Sc.) in
Mathematics and his Doctorate (Ph.D.) in Computer
Science, in 1995 and 1998, respectively, both from
the University of Karlsruhe, Germany. From 1998-
1999 he was a Postdoctoral Researcher at the Dept.
of Mathematics and Computer Science, Drexel Uni-
versity. Since 2000 he has held a Research Faculty
position at the Dept. of Electrical and Computer En-
gineering, Carnegie Mellon University. DriiBchel

is on the editorial board of the IEEE Signal Process-
ing Letters and was a guest editor of the Journal of

Symbolic Computation and of the Proceedings of the IEEE. Hieaech
interests include scientific computing, compilers, appliedh@matics and

algebra, and signal processing theory/software/hardvidoee details can be
found on http://www.ece.cmu.edupueschel.

D. E. Knuth, The Art of Computer Programming: Fundamental Algo-

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Jos M. F. Moura (S'71-M'75-SM’'90-F'94) re-
ceived the engenheiro electeshico degree from
Instituto Superior €cnico (IST), Lisbon, Portugal,
and the M.Sc., E.E., and the D.Sc. in Electrical
Engineering and Computer Science from the Mas-
sachusetts Institute of Technology (M.I.T.), Cam-
bridge, Massachusetts.

He is a Professor of Electrical and Computer
Engineering at Carnegie Mellon University since
1986. In the year 99-00 he was a Visiting Professor
of Electrical Engineering at M.I.T. He was on the
faculty of IST (1975-84), Genrad Associate Professor ottieal Engineer-
ing and Computer Science (Visiting) at M.L.T. (1984-1986)d a Visiting
Research Scholar at the University of Southern Califoriap@rtment of
Aerospace Engineering, Summers 1978-1981). His researiests include
statistical and algebraic signal and image processing agithdcommunica-
tions. His research is often at the interface of signal gsicg and other fields.
He has published over 270 technical Journal and Confereapers, is the
co-editor of two books, holds five patents on image and videogssing, and
digital communications with the US Patent Office, and has givemerous
invited seminars at US and European Universities and Lataeatand several
plenary and invited talks at international Workshops andf€ences.

Dr. Moura served a¥ice-President for Publicationfor the IEEE Signal
Processing Societ{fSPS) and was a member of tBeard of Governor®f the
same Society (2000-2002). He was aléce-President for Publicationfer the
IEEE Sensors Counc{R000-2002). He is on thEditorial Board of the IEEE
Proceedings the IEEE Signal Processing Magazine, and the ACM Sensor
Networks Journal. He chaired the IEEE TAB Transactions Cotemi2002-
2003) that joins the about 80 Editors in Chief of the IEEE Bamtions. He
was theEditor in Chief for thelEEE Transactions in Signal Processi(it75-
1999) and interimEditor in Chief for the IEEE Signal Processing Letters
(December 2001-May 2002). He has been a member of several €athni
Committees of the SPS and has been on the program Technical Gemuofit
numerous IEEE Conferences. He was on HBEE Press Board1991-95).

Dr. Moura is aFellow of the IEEE and corresponding member of the
Academy of Sciences of Portug@ection of Sciences). He was awarded
the 2003 IEEE Signal Processing Society meritorious seraiward and
in 2000 the IEEE Millenium medal. He is affiliated with sevel&8lEE
societies, Sigma Xi, AMS, AAAS, IMS, and SIAM. Further degaibn
http://www.ece.cmu.edw/moura.

Jeremy R. Johnsonis Professor and Department
Head of Computer Science at Drexel University
with a joint appointment in Electrical and Computer
Engineering. He received a B.A. in Mathematics
from the University of Wisconsin-Madison in 1985,
a M.S. in Computer Science from the University
of Delaware in 1988, and a Ph.D. in Compute
Science from The Ohio State University in 1991,
Dr. Johnson is on the editorial board of the journal o <
Applicable Algebra in Engineering, Communication =R
and Computing and has served as a guest editor for

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION 41

Jianxin Xiong received his Ph.D. in Computer Sci-
ence in 2001 from University of lllinois at Urbana-
Champaign. He got his M.E and B.E in Com-
puter Science, in 1996 and 1992, respectively, both
from Tsinghua University, China. Presently he is
a Postdoctoral Research Associate at the Dept. of
Computer Science, University of lllinois at Urbana-
Champaign. From 2001 to 2002 he worked as a
Compiler Architect at StarCore Technology Center
(Agere Systems) in Atlanta. From 1996 to 1998, he
was a Lecturer at Tsinghua University. His research

the Journal of Symbolic Computation. His research interestisidle algebraic interests include parallel/distributed computing, progmging languages, com-

algorithms, computer algebra systems, problem solving emviemts, pro-
gramming languages and compilers, high performance computargware
generation, and automated performance tuning. More detilse found at
http://www.cs.drexel.edw/jjohnson.

David Padua is a professor of computer science
at the University of lllinois at Urbana- Champaign,
where he has been a faculty member since 1985.
lllinois, he has been Associate Director of the Cente
for Supercomputing Research and Development, &
member of Science Steering Committee of the Ce
ter for Simulation of Advanced Rockets, Vice-Chair
of the College of Engineering Executive Committee,

and a member of the Campus Research Board.
He has served as a program committee member,
program chair, or general chair for more than 40

conferences and workshops. He served on the editorial bofatde IEEE
Transactions of Parallel and Distributed Systems and aeraditchief of the
International Journal of Parallel Programming (IJPP). Hauisantly Steering
Committee Chair of ACM SIGPLAN's Principles and Practice ofrdfel

Programming and a member of the editorial boards of the Jourrhiallel
and Distributed Computing and IJPP. His areas of interestidieccompilers,
machine organization, and parallel computing. He has puddighore than
130 papers in those areas. He is a fellow of the IEEE.

piler techniques and software development tools.

Franz Franchetti received the Dipl.-Ing. (M.Sc.)
degree and the Ph.D. degree in Technical Mathe-
matics from the Vienna University of Technology
in 2000 and 2003, respectively. He is a recipient of
the Schroedinger fellowship awarded by the Austrian
Science Fund. Dr. Franchetti is currently a post-
doctoral associate with the Dept. of Electrical and
Computer Engineering at Carnegie Mellon Univer-
sity. His research focuses on the development of high
performance DSP algorithms.

Aca Gactic received his Dipl.-Ing. degree in Elec-
trical Engineering from the University of Novi Sad,
Serbia in 1997 and his M.Sc. degree also in Elec-
trical Engineering from the University of Pittsburgh,
Pennsylvania in 2000. He is currently pursuing his
Ph.D. degree in Electrical and Computer Engineer-
ing at Carnegie Mellon University working on au-
tomatic generation and implementation of digital
signal processing algorithms.

His research interests include representation and
implementation of algorithms for signal and image

) _ processing, automatic performance tuning for DSP kernefsasenetworks,
Manuela M. Veloso is Professor of Computer Sci- multi-agent control systems, and applications of game thédryGagi¢ is a
ence at Carnegie Mellon University. She earned hettudent member of the IEEE.

Ph.D. in Computer Science from Carnegie Mellon
in 1992. She also received a B.S. in Electrical
Engineering in 1980 and an M.Sc. in Electrical and
Computer Engineering in 1984 from the Instituto
Superior Ecnico in Lisbon. —
Professor Veloso researches in the area of artii
ficial intelligence with focus on planning, control j'
learning, and execution for single and multirobot

teams. Her algorithms address uncertain, dynamicér »

and adversarial environments. Prof. Veloso has developaahsteof robot
soccer agents, which have been RoboCup world championsatdiraes.
She investigates learning approaches to a variety of dopmablems, in
particular the performance optimization of algorithm impleta¢éions, and
plan recognition in complex data sets. Professor Veloso i€low of the
American Association of Artificial Intelligence. She is Videresident of
the RoboCup International Federation. She was awarded dn Ci&eer
Award in 1995 and the Allen Newell Medal for Excellence in Bash in
1997. Professor Veloso is Program Co-Chair of 2005 Nati@uaiference on
Artificial Intelligence and the Program Chair of the 2007ehmational Joint
Conference on Artificial Intelligence.

Bryan W. Singer was born in Indiana in 1974. He studied compute

engineering as an undergraduate at Purdue University. 01,20e earned
a Ph.D. in computer science from Carnegie Mellon Universiig research
interests include machine learning and automatic performantdag.

Yevgen Voronenkoreceived a B.S. degree in Com-
puter Science from Drexel University in 2003. He
is currently a Ph.D. student of Electrical and Com-
puter Engineering at Carnegie Mellon University.
His research interests include software engineering,
programming languages, and compiler design.

Kang Chen received his M.S. in Computer Science
from Drexel University. While in school he worked
on the SPIRAL project and did an M.S. thesis on
“A Prototypical Self-Optimizing Package for Parallel
Implementation of Fast Signal Transforms.” He is
currently employed as a Software Design Engineer
by STMicroelectronics and is working on embedded
systems for video processing.

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTAKTION, AND ADAPTATION

Robert W. Johnsonis Professor Emeritus of Com-
puter Science at St. Cloud State University and is
founder and President of Qwarry Inc. a company
devoted to providing hardware/software solutions
in math-intensive DSP applications. He is also a
co-founder and former chief scientific officer of
MathStar, Inc. a fabless semiconductor manufacturer
of DSP devices. Dr. Johnson received his A.B. from
Columbia College in 1962, his M.S. from The City
College of New York in 1965, and his Ph.D. in
mathematics from The City University of New York
in 1969. His recent research has centered on the applicat@iostract algebra
to the design and implementation of DSP algorithms. Dr. Johismnbeen
the principal or co-principal investigator for numerous DARresearch and
development grants over the last two decades.

Nicholas Rizzoloreceived his Bachelors of Science
and Masters of Science degrees in Computer Science
from the University of Illinois at Urbana-Champaign
(UIUC) in 2002 and 2004 respectively. He is cur-
rently a Ph.D. student at UIUC where his research
interests include machine learning, programming
languages, and compilers.

42

