
How To Write Fast Numerical Code:
A Small Introduction

Srinivas Chellappa, Franz Franchetti, and Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University

{schellap, franzf, pueschel}@ece.cmu.edu

Abstract. The complexity of modern computing platforms has made it ex-
tremely difficult to write numerical code that achieves the best possible perfor-
mance. Straightforward implementations based on algorithms that minimize the
operations count often fall short in performance by at least one order of magni-
tude. This tutorial introduces the reader to a set of general techniques to improve
the performance of numerical code, focusing on optimizations for the computer’s
memory hierarchy. Further, program generators are discussed as a way to re-
duce the implementation and optimization effort. Two running examples are used
to demonstrate these techniques: matrix-matrix multiplication and the discrete
Fourier transform.

1 Introduction

The growth in the performance of computing platforms in the past few decades has
followed a reliable pattern usually referred to as Moore’s Law. Moore observed in
1965 [1] that the number of transistors per chip roughly doubles every 18 months and
predicted—correctly—that this trend would continue. In parallel, due to the shrinking
size of transistors, CPU frequencies could be increased at roughly the same exponential
rate. This trend has been the big supporter for many performance demanding applica-
tions in scientific computing (such as climate modeling and other physics simulations),
consumer computing (such as audio, image, and video processing), and embedded com-
puting (such as control, communication, and signal processing). In fact, these domains
have a practically unlimited need for performance (for example, the ever growing need
for higher resolution videos), and it seems that the evolution of computers is well on
track to support these needs.

However, everything comes at a price, and in this case it is the increasing difficulty of
writing the fastest possible software. In this tutorial, we focus on numerical software.
By that we mean code that mainly consists of floating point computations.

The problem. To understand the problem we investigate Fig. 1, which considers various
Intel architectures from the first Pentium to the (at the time of this writing) latest Core2
Extreme. The x-axis shows the year of release. The y-axis, in log-scale, shows both the
CPU frequency (in MHz) and the single/double precision theoretical peak performance
(in Mflop/s = Mega FLoating point OPerations per Second) of the respective machines.

2

First we note, as explained above, the exponential increase in CPU frequency. This re-
sults in a “free” speedup for numerical software. In other words, legacy code written for
an obsolete predecessor will run faster without any extra programming effort. However,
the theoretical performance of computers has evolved at a faster pace due to increases in
the processors’ parallelism. This parallelism comes in several forms, including pipelin-
ing, superscalar processing, vector processing and multi-threading. Single-instruction
multiple-data (SIMD) vector instructions enable the execution of an operation on 2, 4,
or more data elements in parallel. The latest generations are also “multicore,” which
means 2, 4, or more processing cores1 exist on a single chip. Exploiting parallelism in
numerical software is not trivial, it requires implementation effort. Legacy code typ-
ically neither includes vector instructions, nor is it multi-threaded to take advantage
of multiple processor cores or multiple processors. Ideally, compilers would take care
of this problem by automatically vectorizing and parallelizing existing source code.
However, while much outstanding compiler research has attacked these problems (e.g.,
[2–4]), they are in general still unsolved. Experience shows that this is particularly true
for numerical problems. The reason is, for numerical problems, taking advantage of the
platform’s available parallelism often requires an algorithm structured differently than
the one that would be used in the corresponding sequential code. Compilers cannot
be made to change or restructure algorithms since doing so requires knowledge of the
algorithm domain.

Similar problems are caused by the computer’s memory hierarchy, independently of
the available parallelism. The fast processor speeds have made it increasingly difficult
to “feed all floating point execution units” at the necessary rate to keep them busy.
Moving data from and to memory has become the bottleneck. The memory hierarchy,
consisting of registers and multiple levels of cache, aims to address this problem, but can
only work if data is accessed in a suitable order. One cache miss may incur a penalty of
20–100s CPU cycles, a time in which 100 or more floating point operations could have
been performed. Again, compilers are inherently limited in optimizing for the memory
hierarchy since optimization may require algorithm restructuring or an entirely different
choice of algorithm to begin with.

Adding to these problems is the fact that CPU frequency scaling is approaching its end
due to limits to the chip’s possible power density (see Fig. 1): since 2004 it has hovered
around 3 GHz. This implies the end of automatic speedup; future performance gains
will be exclusively due to increasing parallelism.

In summary, two main problems can be identified from Fig. 1:

– Years of exponential increase in CPU frequency meant free speed-up for existing
software but also have caused and worsened the processor-memory bottleneck. This
means to achieve the highest possible performance, code has to be restructured and
tuned to the memory hierarchy.

1 At the time of this writing 8 cores per chip is the best commonly available multicore CPU
configuration.

3

free speedup

work required

Evolution of Intel Platforms

1 0

10 0

1 , 00 0

10 , 00 0

100 , 00 0

199 3 199 5 199 7 199 9 200 1 200 3 200 5 200 7

Y e a r

s i n g l e p r e c i s i o n

d o u b l e p r e c i s i o n

C P U f r e q u e n c y

F l o a t i n g p o i n t p e a k p e r f o r m a n c e [M f l o p / s]
C P U f r e q u e n c y [M H z]

P entium

P entium Pro

P entium II

P entium III

P entium 4

Core2
Duo

Core2
Extreme

data: ww w .sandpile.org

Fig. 1. The evolution of computing platform’s peak performance versus their CPU frequency
explains why high performance software development becomes increasingly harder.

– The times of free speed-up are over; future performance gains are due to parallelism
in various forms. This means, code has to be rewritten using vector instructions and
multiple threads and in addition has to be optimized for the memory hierarchy.

To quantify the problem we look at two representative examples, which are among
the most important numerical kernels used: the discrete Fourier transform (DFT) and
the matrix-matrix multiplication (MMM). The DFT is used across disciplines and is the
most important tool used in signal processing; MMM is the crucial kernel in most dense
linear algebra algorithms.

It is well-known that the complexity of the DFT for input size n is O(n log(n)) due
to the availability of fast Fourier transform algorithms (FFTs) [5]. Fig. 2 shows the
performance of four different FFT implementations on an Intel Core platform with four
cores. The x-axis is the input size n = 24, . . . , 218. The y-axis is the performance in
Gflop/s. For all implementations, the operations count is estimated as 5n log2(n), so the
numbers are proportional to inverse runtime. The bottom line shows the performance of
the implementation by Numerical Recipes [6] compiled with the best available compiler
(the Intel vendor compiler icc 10.1 in this case) and all optimizations enabled. The next
line (best scalar) shows the performance of the fastest standard C implementation for
the DFT and is roughly 5 times faster due to optimizations for the memory hierarchy.
The next line (best vector) shows the performance when vector instructions are used in
addition, for a further gain of a factor of 3. Finally, for large sizes, another factor of 2

4

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz

Performance [Gflop/s]

Memory hierarchy: 5x

Vector instructions: 3x

Multiple threads: 2x

Numerical Recipes

Best scalar code

Best vector code

Best vector and parallel code

Fig. 2. Performance of four single precision implementations of the discrete Fourier transform.
The operations count is roughly the same.

can be gained by writing multi-threaded code to use all processor cores. Note that all
four implementations have roughly the same operations count for a given size but the
performance difference is a factor of 12 for small sizes, and a factor of up to 30 for
large sizes. The uppermost three lines correspond to code generated by Spiral [7, 8]; a
roughly similar performance is achieved by FFTW [9–11].

Fig. 3 shows a similar plot for MMM (assuming square matrices), where the bottom line
corresponds to a standard, triple loop implementation. Here the performance difference
with respect to the best code can be as much as 160 times, including a factor of 5-20
solely due to optimizations for the memory hierarchy. All the implementations have
exactly the same floating point operations count of 2n3. The top two lines are from
Goto BLAS [12]; the best scalar code is generated using ATLAS [13].

To summarize the above discussion, the task of achieving the highest performance with
an implementation usually lies to a great extent with the programmer. For a given prob-
lem, he or she has to carefully consider different algorithms and possibly restructure
them to adapt to the given platform’s memory hierarchy and available parallelism. This
is very difficult, time-consuming, and requires interdisciplinary knowledge about al-
gorithms, software optimizations, and the hardware architecture. Further, the tuning
process is platform-dependent: an implementation optimized for one computer will not
necessarily be the fastest one on another, since performance depends on many microar-
chitectural features including but not restricted to the details of the memory hierarchy.
Consequently, to achieve highest performance, tuning has to be repeated with the re-
lease of each new platform. Since the times of a free speedup (due to frequency scal-
ing) are over, this retuning has become mandatory if any performance gains are desired.
Needless to say, the problem is not merely an academic one, but one that affects the
software industry as a whole.

5

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Extreme 3 GHz
Performance [Gflop/s]

Triple loop

Best scalar code

Best vector code

Best vector and parallel code

Multiple threads: 4x

Vector instructions: 2x
Memory hierarchy: 5-20x

matrix size

Fig. 3. Performance of four double precision implementations of matrix-matrix multiplication.
The operations count is exactly the same.

Automatic performance tuning. A number of research efforts have started to address
this problem in a new area called “automatic performance tuning” [14]. The general
idea is to at least partially automate the implementation and optimization procedure.
Two basic approaches have emerged so far in this area: adaptive libraries and source
code generators.

Examples of adaptive libraries include FFTW [10] for the discrete Fourier transform
and adaptive sorting libraries [15, 16]. In both cases, the libraries are highly optimized,
and beyond that, have degrees of freedom with regard to the chosen divide-and-conquer
strategy (both DFT and sorting are done recursively in these libraries). This strategy is
determined at runtime, on the given platform, using a search mechanism. This way, the
library can dynamically adapt to the computer’s memory hierarchy. Sparsity and OSKI
from the BeBOP group [17–20] is are other examples of such a libraries, used for sparse
linear algebra problems.

On the other hand, source code generators produce algorithm implementations from
scratch. They are used to generate either crucial components, or libraries in their en-
tirety. For instance, ATLAS (Automatically Tuned Linear Algebra Software) and its
predecessor PHiPAC [21, 18, 22] generate the kernel code for MMM and other basic
matrix routines. They do so by generating many different variants arising from differ-
ent choices of blocking, loop unrolling, and instruction ordering. These are all measured
and the fastest one is selected using search methods.

FFTW also uses a generator to produce small size DFT kernels [23]. Here, no search
is used, but many optimizations are performed before the actual code is output. Spiral
[7, 24] is a library generator for arbitrary sized linear transforms including the DFT,
filters, and others. Besides enumerating alternatives, and in contrast to other work, Spi-
ral uses an internal domain-specific mathematical language to optimize algorithms at
a high level of abstraction before source code is generated. This includes algorithm
restructuring for the memory hierarchy, vector instructions, and multi-threaded code

6

[24–26]. FLAME considers dense linear algebra algorithm and is in spirit similar to
Spiral. It represents algorithms in a structural form and shows how to systematically
derive alternatives and parallelize them [27–29].

Other automatic performance tuning efforts include [17] for sparse linear algebra and
[30] for tensor computations.

This new research is promising but much more work is needed to automate the im-
plementation and optimization of a large set of library functionality. We believe that
program generation techniques will prove crucial for this area of research.

Summary. We summarize the main points of this section:

– End of free-speedup for legacy code. CPU frequencies have hit the power wall and
stalled. Future performance gains in computers will be obtained by increasing par-
allelism. This means that code has to be rewritten to take advantage of the available
parallelism and performance.

– Minimizing operations count does not mean maximizing performance. Floating-
point operations are much cheaper than cache misses. Fastest performance requires
code that is adapted to the memory hierarchy, uses vector instructions and multiple
cores (if available). As a consequence, we have the following problem.

– The performance difference between a straightforward implementation and the best
possible can be a factor of 10, 20, or more. This is true even if the former is based
on an algorithm that is optimal in its (floating-point) operations count.

– It is very difficult to write the fastest possible code. The reason is that performance-
optimal code has to be carefully optimized for the platform’s memory hierarchy
and available parallelism. For numerical problems, compilers cannot perform these
optimizations, or can only perform them to a very limited extent.

– Performance is in general non-portable. The fastest code for one computer may
perform poorly on another.

– Overcoming these problems by automation is a challenge at the core of computer
science. To date this research area is still in its infancy. One crucial technique that
emerges in this research area is generative programming.

Goal of this tutorial. The goal of this tutorial is twofold. First, it provides the reader
with a small introduction to the performance optimization of numerical problems, fo-
cussing on optimizations for the computer’s memory hierarchy, i.e., the dark area in
Fig. 1 is not discussed. The computers considered in this tutorial are COTS (commer-
cial off-the-shelf) desktop computers with the latest microarchitectures such as Core2
Duo or the Pentium from Intel, the Opteron from AMD, and the PowerPC from Apple
and Motorola. We assume that the reader has the level of knowledge of a junior (third
year) student in computer science or engineering. This includes basic knowledge of
computer architecture, algorithms, matrix algebra, and solid C programming skills.

Second, we want to raise awareness and bring this topic closer to the program genera-
tion community. Generative programming is an active field of research (e.g., [31, 32]),

7

but has to date mostly focused on reducing the implementation effort in producing cor-
rect code. Numerical code and performance optimization have not been considered. In
contrast, in the area of automatic performance tuning, program generation has started to
emerge as one promising tool as briefly explained in this tutorial. However, much more
research is needed and any advances have high impact potential.

The tutorial is in part based on the course [33].

Organization. Section 2 provides some basic background information on algorithm
analysis, the MMM and the DFT, features of modern computer systems relevant to this
tutorial, and compilers and their correct usage. It also identifies data access patterns that
are necessary for obtaining high performance on modern computer systems. Section 3
first introduces the basics of benchmarking numerical code and then provides a general
high-level procedure for attacking the problem of performance optimization given an
existing program that has to be tuned for performance. This procedure reduces the prob-
lem to the optimization of performance-critical kernels, which is first studied in general
in Section 4 and then in Sections 5 and 6 using MMM and the DFT as examples. The
latter two sections also explain how program generators can be applied in this domain
using ATLAS (for MMM) and Spiral (for the DFT) as examples. We conclude with
Section 7.

Along with the explanations, we provide programming exercises to provide the reader
with hands-on experience.

2 Background

In this section we provide the necessary background for this tutorial. We briefly review
algorithm analysis, introduce MMM and the DFT, discuss the memory hierarchy of off-
the-shelf microarchitectures, and explain the use of compilers. The following standard
books provide more information on algorithms [34], MMM and linear algebra [35], the
DFT [5, 36], and computer architecture and systems [37, 38].

2.1 Cost Analysis Of Algorithms

The starting point for any implementation of a numerical problem is the choice of al-
gorithm. Before an actual implementation, algorithm analysis, based on the number of
operations performed, can give a rough estimate of the performance to be expected. We
discuss the floating point operations count and the degree of reuse.

Cost: asymptotic, exact, and measured. It is common in algorithm analysis to repre-
sent the asymptotic runtime of an algorithm in O-notation as O(f(n)), where n is the
input size and f , a function [34]. For numerical algorithms, f(n) is typically determined
from the number of floating point operations performed. The O-notation neglects con-
stants and lower order terms; for example, O(n3 + 100n2) = O(5n3). Hence it is only
suited to describe the performance trend but not the actual performance itself. Further,

8

it makes a statement only about the asymptotic behavior, i.e., the behavior as n goes to
infinity. Thus it is in principle possible that an O(n3) algorithm performs better than an
O(n2) algorithm for all practically relevant input sizes n.

A better form of analysis for numerical algorithms is to compute the exact number of
floating point operations, or at least the exact highest order term. However, this may be
difficult in practice. In this case, profiling tools can be used on an actual implementation
to determine the number of operations actually performed. The latter can also be used
to determine the computational bottleneck in a given implementation.

However, even if the exact number of operations of an algorithm and its implementation
is known, it is very difficult to determine the actual runtime. As an example consider
Fig. 3: all four implementations require exactly 2n3 operations, but the runtime differs
by up to two orders of magnitude.

Reuse: CPU bound vs. memory bound. Another useful measure of an algorithm is the
degree of reuse. The asymptotic reuse for an O(f(n)) algorithm is given by O(f(n)/n)
if n is the input size. Intuitively, the degree of reuse measures how often a given input
value is used in a computation during the algorithm. A high degree of reuse implies
that an algorithm may perform better (in terms of operations per second) on a computer
with memory hierarchy, since the number of computations dominates the number of
data transfers from memory to CPU. In this case we say that the algorithm is CPU
bound. A low degree of reuse implies that the number of data transfers from memory to
CPU is high compared to the number of operations and the performance (in operations
per second) may deteriorate: in this case we say that the algorithm is memory bound.

A CPU bound algorithm will run faster on a machines with a faster CPU. A memory
bound algorithm will run faster on a machine with a faster memory bus.

2.2 Matrix-Matrix Multiplication

Matrix-matrix multiplication (MMM) is arguably the most important numerical kernel
functionality. It is used in many linear algebra algorithms such as solving systems of
linear equations, matrix inversion, eigenvalue computations, and many others. We will
use MMM, and the DFT (Section 2.3) as examples to demonstrate optimizations for
performance.

Definition. Given a k × m matrix A = [ai,j] and an m × n matrix B = [bi,j], the
product C = AB is a k × n matrix with entries

ci,j =
m∑

k=1

ai,kbk,j .

For actual applications, usually C = C + AB is implemented instead of C = AB.

Complexity and analysis. Given two n × n matrices A,B, MMM computed as C =
C + AB by definition requires n3 multiplications and n3 additions for a total of 2n3 =

9

O(n3) floating point operations. Since the input data (the matrices) have size O(n2),
the reuse is given by O(n3/n2) = O(n).

Asymptotically better MMM algorithms do exist. Strassen’s algorithm [39] requires
only O(nlog2 7) ≈ O(n2.808) operations. The actual crossover point (i.e., when it re-
quires less operations than the computation by definition) is at n = 655. However, the
more complicated structure of Strassen’s algorithm and its weaker numerical stability
reduce its applicability. The best-known algorithm for MMM is due to Coppersmith-
Winograd and requires O(n2.376) [40]. The large hidden constant and a complicated
structure have so far made this algorithm impractical for real applications.

Direct implementation. A direct implementation of MMM is the triple loop shown
below.

// MMM - direct implementation
for(i=0; i<m; i++)

for(j=0; j<p; j++)
for(k=0; k<n; k++)

c[i][j] += a[i][k] * b[k][j];

BLAS and LAPACK. BLAS (Basic Linear Algebra Subprogram) is a set of standard-
ized basic linear algebra operations, including MMM [41]. Implementations of BLAS
are provided by packages such as ATLAS and Goto BLAS. BLAS routines are used as
kernels in fundamental linear algebra algorithms such as linear equation solving, eigen-
value computations, singular value decompositions, LU/Cholesky/QR decompositions,
and others. Such higher level functions are implemented by the LAPACK (Linear Al-
gebra PACKage) library, [42] using MMM and other BLAS routines as kernels (see
Fig. 4). The idea behind this two-level design is to redesign and/or re-optimize the
BLAS implementations for new hardware architectures, while reusing LAPACK with-
out a need for modification. The performance improvements from the BLAS implemen-
tation then translate into performance gains for the LAPACK library. This design has
proven very successful until the release of multicore systems, which appears to require
a redesign of LAPACK.

LAPACK

BLAS

Static

Re-implemented or regenerated

for each platform

Fig. 4. LAPACK is implemented on top of BLAS.

Further reading.

– Linear algebra. General information about numerical linear algebra can be found in
[35, 38].

10

– BLAS. ATLAS provides an implementation of BLAS, as does Goto BLAS. Further
information on ATLAS is available in [13, 21, 43]. Details on Goto BLAS can be
found at [12, 44].

– Linear algebra libraries. LAPACK is described in [45, 42]. The distributed memory
extension ScaLAPCK is described in [46, 47]. An alternative approach is pursued
by PLAPACK [48, 49] and FLAME [28, 27, 50].

2.3 Discrete Fourier Transform

The discrete Fourier transform (DFT) is another numerical kernel of importance in a
wide range of disciplines. In particular, in the field of signal processing, the DFT is ar-
guably the most important tool used. Even though the DFT seems at first glance based
on linear algebra, it is in its nature fundamentally different from MMM. In particular,
it is never computed by definition–fast algorithms are always used, instead. The tech-
niques used by these fast algorithms are different from the techniques used to speed up
MMM.

Definition. The discrete Fourier transform (DFT) of an input vector x of length n is
defined as the matrix-vector product

y = DFTn x, DFTn = [ωk`
n]0≤k,`<n, ωn = e−2πi/n, i =

√−1.

In words, ωn is a primitive nth root of unity. In this tutorial we assume that n is a
two-power.

Complexity and analysis. Computing the DFT by definition requires O(n2) many op-
erations, and is never done in practice. There exists a number of fast algorithms, called
fast Fourier transforms (FFTs), that reduce the runtime to O(n log(n)) for all sizes n
[5]. For n = 2k, the FFTs used in practice require between 4n log2(n) + O(n) and
5n log2(n) + O(n) many operations. The best known FFT has a cost of 34

9 n log2 n +
O(n) [51]. The degree of reuse is hence O(log(n)), less than for MMM, which explains
the performance drop in Fig. 2 for large sizes when the working set is too large for the
L2 cache.

We defer a detailed introduction of FFTs to Section 6.

Direct implementation. In contrast to MMM, a straightforward implementation of the
DFT is not done by definition, but performed by a direct implementation of an FFT. One
example is the so-called iterative radix-2 FFT algorithm as implemented by Numerical
Recipes [6], whose performance was shown in Fig. 2. The corresponding code is shown
below.

#include <math.h>

#define SWAP(a,b) tempr=a;a=b;b=tempr
void four1(float *data, int *nn, int *isign)
{ /* altered for consistency with original FORTRAN.
/* Press, Flannery, Teukolsky, Vettering "Numerical

11

* Recipes in C" tuned up ; Code works only when *nn is

* a power of 2 */
int n, mmax, m, j, i;
double wtemp, wr, wpr, wpi, wi, theta, wpin;
double tempr, tempi, datar, datai,

data1r,data1i;
n = *nn * 2;
j = 0;
for(i = 0; i < n; i += 2)
{ if (j > i) { /* could use j>i+1 to help

* compiler analysis */
SWAP(data[j], data[i]);
SWAP(data[j + 1], data[i + 1]);

}
m = *nn;
while (m >= 2 && j >= m) {

j -= m;
m >>= 1;

}
j += m;

}
theta = 3.141592653589795 * .5;
if (*isign < 0)

theta = -theta;
wpin = 0; /* sin(+-PI) */
for(mmax = 2; n > mmax; mmax *= 2)
{ wpi = wpin;

wpin = sin(theta);
wpr = 1 - wpin * wpin - wpin * wpin;
/* cos(theta*2) */
theta *= .5;
wr = 1;
wi = 0;
for(m = 0; m < mmax; m += 2)
{ j = m + mmax;

tempr = (double) wr *(data1r = data[j]);
tempi = (double) wi *(data1i = data[j + 1]);
for(i = m; i < n - mmax * 2; i += mmax * 2)
{ /* mixed precision not significantly more

* accurate here; if removing double casts,

* tempr and tempi should be double */
tempr -= tempi;
tempi = (double) wr *data1i + (double) wi *data1r;
/* don’t expect compiler to analyze j > i+1 */
data1r = data[j + mmax * 2];
data1i = data[j + mmax * 2 + 1];
data[i] = (datar = data[i]) + tempr;
data[i + 1] = (datai = data[i + 1]) + tempi;
data[j] = datar - tempr;
data[j + 1] = datai - tempi;

12

tempr = (double) wr *data1r;
tempi = (double) wi *data1i;
j += mmax * 2;

}
tempr -= tempi;
tempi = (double) wr *data1i + (double) wi *data1r;
data[i] = (datar = data[i]) + tempr;
data[i + 1] = (datai = data[i + 1]) + tempi;
data[j] = datar - tempr;
data[j + 1] = datai - tempi;
wr = (wtemp = wr) * wpr - wi * wpi;
wi = wtemp * wpi + wi * wpr;

}
}

}

Further reading.

– FFT algorithms. [52, 36] give an overview of FFT algorithms. [5] uses the Kro-
necker product formalism to describe many different FFT algorithms, including
parallel and vector algorithms. [53] uses the Kronecker formalism to parallelize
and vectorize FFT algorithms.

– FFTW. FFTW can be downloaded at [11]. The latest version, FFTW3, is described
in [10]. The previous version FFTW2 is described in [9] and the codelet generator
genfft in [23].

– SPIRAL. Spiral is a program generation system for transforms. The core system
is described in [7] and on the web at [8]. Using Kronecker product manipulations,
SIMD vectorization is described in [54, 24], shared memory (SMP and multicore)
parallelization in [25], and message passing (MPI) in [55].

– Open source FFT libraries. FFTPACK [56] is a mixed-radix Fortran FFT library.
The GNU Scientific library (GSL) [57] contains a C port of FFTPACK. UHFFT
[58, 59] is an adaptive FFT library. Numerical Recipes [6] contains the radix-2
FFT implementation shown above. FFTE [60] provides a parallel FFT library for
distributed memory machines.

– Proprietary FFT libraries. The AMD Core Math Library (ACML) [61] is the vendor
library for AMD processors. Intel provides fast FFT implementations as a part of
their Math Kernel Library (MKL) [62] and Integrated Performance Primitives (IPP)
[63]. IBM’s IBM Engineering and Scientific Software Library (ESSL) [64] and the
parallel version (PESSL) contain FFT functions optimized for IBM machines. The
vDSP library contains FFT functions optimized for AltiVec. The libraries of the
Numerical Algorithms Group (NAG) [65] and the International Mathematical and
Statistical Library (IMSL) [66] also contain FFT functionality.

13

2.4 State-Of-The-Art Desktop and Laptop Computer Systems

Modern computers include several performance enhancing microarchitectural features
like cache systems, a memory hierarchy, virtual memory, and CPU features like vector
and parallel processing. While these features usually increase the achievable perfor-
mance, they also make the optimization process more complex. This section introduces
several microarchitectural features relevant to writing fast code. For further reading,
refer to [37, 38].

Memory hierarchy. Most computer systems use a memory hierarchy to bridge the
speed gap between the processor(s) and its connection to main memory. As shown in
Fig. 5, the highest levels of the memory hierarchy contain the fastest and the smallest
memory systems, and vice versa.

Registers

Hard Disk

Memory

L2 Cache

smaller

faster access

more expensive

~50,000 cycles ~50,000 cycles

L1 Cache

~300 cycles ~300 cycles

~1 - 2 cycles

~8 - 32 cycles

CPU

larger

slower

cheaper

Fig. 5. Memory hierarchy. Typical latencies for data transfers from the CPU to each of the levels
are shown. The numbers shown here are only an indication, and the actual numbers will depend
on the exact architecture under consideration.

A hierarchical memory enables the processor to take advantage of the memory local-
ity of computer programs. Optimizing numerical programs for the memory hierarchy
is one of the most fundamental approaches to producing fast code, and the subject of
this tutorial. Programs typically exhibit temporal and spatial memory locality. Temporal
locality means that a memory location that is referenced by a program will likely be ref-
erenced again in the near future. Spatial locality means that the likelihood of referencing
a memory location by a program is higher if a nearby location was recently referenced.
High performance computer software must be designed so that the hardware can easily
take advantage of locality. Thus, this tutorial focuses on writing fast code by designing
programs to exhibit maximal temporal and spatial localities.

Registers. Registers inside the processor are the highest level of the memory hierarchy.
Any value (address or data) that is involved in computation has to eventually be placed

14

into a register. Registers may be designed to hold only a specific type of value (special
purpose registers), or only floating point values (eg., double FP registers), vector values
(vector registers), or any value (general purpose registers). The number of registers in
a processor varies by architecture. A few examples are provided in Table 1. When an
active computation requires more values to be held than the register space will allow,
a register spill occurs, and the register contents are written to lower levels of memory
from which they will be reloaded again. Register spills are expensive. To avoid them
and speed up computation, a processor might make use of internal registers that are not
visible to the programmer. Many optimizations that work on other levels of the memory
hierarchy can typically also be extended to the register level.

Processor Integer Registers Double FP Registers

Core2 Extreme 16 16
Itanium 2 128 128
UltraSPARC T2 32 32
POWER6 32 32

Table 1. Sample scalar register space (per core) in various architectures. In addition to integer
and FP registers, the Core2 Extreme also has 16 multimedia registers.

Cache memory. Cache memory is a small, fast memory that resides between the main
memory and the processor. It reduces average memory access times by taking advan-
tage of spatial and temporal locality. When the processor initially requests data from a
memory location (called a cache miss), the cache fetches and stores the requested data
and data spatially close. Subsequent accesses, called hits, can be serviced by the cache
without needing to access main memory. A well designed cache system has a low miss
to hit ratio (also known as just the miss ratio or miss rate).

Level/Type Size Associativity

L1 Data (per core) 32 kB 8-way set associative
L1 Instruction (per core) 32 kB 8-way set associative
L2 Unified (common) 4 MB 8-way set associative

Table 2. Cache system example: Intel Core2 Duo, Merom Notebook processor.

Caches, as shown in Fig. 6 are divided into cache lines (also known as blocks) and sets.
Data is moved in and out of cache memory in chunks equal to the line size. Cache lines
exist to take advantage of spatial locality. Multiple levels of caches and separate data and
instruction caches may exist, as shown in Table 2. Caches may be direct mapped (every
main memory location is mapped to a specific cache location) or k-way set associative
(every main memory location can be mapped to precisely k possible cache locations).

15

Tag
Remaining bits 3bits 2bits 2bits

Memory Address

8 Sets
[0..7]

FloatsCache line
index

Cache line

4 Ways [0..3]

Se
t i

nd
ex

Fig. 6. 4-way set associative cache with cache line size of 4 single precision floats (4 bytes per
float) per line, and cache size of 128 floats (total cache size is 512 bytes). The figure also illus-
trates the parts of a memory address used to index into the cache. Since each data element under
consideration is 4 bytes long, the two least significant bits are irrelevant in this case. The number
of bits used to address into the cache line would be different for double precision floats.

In addition to misses caused due to data being brought in for the first time (compulsory
misses) and those due to cache capacity constraints (capacity misses), caches that are
not fully associative can incur conflict misses [67].

x
0

x
1

x
2

x
3

x
4 …

x
8

x
9

x
10

x
11

x
12 … x0 x1 x2 x3

Main memory

Cache

CPU request x2

Cache line size

= 4 floats

Fig. 7. Neighbor use and reuse: When the CPU requests x2, x0, x1, and x3 are also brought into
the cache since the cache line size holds 4 floats.

Since cache misses are typically expensive, writing fast code involves designing pro-
grams to have low miss rates. This is accomplished using two important guiding prin-
ciples, illustrated in Fig. 7 and described below:

16

– Reuse: Temporal locality. Once data is brought into the cache, the program should
reuse it as much as possible before it gets evicted. In other words, programs must
try to avoid scattering computations made on a particular data location throughout
the execution of the program. Otherwise, the same data (or data location) has to go
through several cycles of being brought into the cache and subsequently evicted,
which increases runtime.

– Neighbor use (using all data brought in): Spatial locality. Data is always brought
into the cache in chunks the size of a cache line. This is seen in Fig. 7, where
one data element x2 was requested, and three others are also brought in since they
belong to the same cache line. To take advantage of this, programs must be designed
to perform computations on neighboring data (physically close in memory) before
the line is evicted. This might involve reordering loops, for instance, to work on
data in small chunks.

These two principles work at multiple levels. For instance, code can be designed to use
and reuse all data within a single cache block, as well as within an entire cache level.
In fact, these principles hold throughout the memory hierarchy, and thus can be used
at various cache and memory levels. Depending on the computation being performed,
techniques that use these principles may not be trivial to design or implement.

In scientific or numerical computing, data typically consists of floating point numbers.
Therefore, it helps to view the cache organization, lines, and sets in terms of the number
of floating point numbers that can be held. For instance, the cache shown in Fig. 6 is a
512 byte, 4-way set associative cache with a line size of 16 bytes. There are a total of
32 lines (512 bytes / 16 bytes per line), and 8 sets (32 lines / 4 lines per set). If we note
that each cache line can hold 4 floats (16 bytes / 4 bytes per float), we can immediately
see that the cache can hold a total of 128 floats. This means that datasets larger than
128 floats will not fit in the cache. Also, if we make an initial access to 128 consecutive
floats, there will be a total of 32 cache misses and 96 cache hits (since 4 floats in a line
are loaded on each cache miss). This gives us a rough estimate of the runtime of such
a set of accesses, which is useful both in designing programs and in performing sanity
checks.

Cache analysis. We now consider three examples of accessing an array in various se-
quences, and analyze their effects on the cache.

Consider a simple direct mapped 16 byte data cache with two cache lines, each of size
8 bytes (two floats per line). Consider the following code sequence, in which the array
X is cache-aligned (that is, X[0] is always loaded into the beginning of the first cache
line) and accessed twice in consecutive order:

float X[8];
for(int j=0; j<2; j++)

for(int i=0; i<8; i++)
access(X[i]);

The top row on Fig. 8 shows the states of the cache after every two (out of the total of
sixteen) accesses for this example. To analyze the cache footprint and pattern of this
code sequence, we first observe that the size of the array (8 floats) exceeds the size of

17

line0 X0 m X1 h X0 X1 X4 m X5 h X4 X5 X0 m X1 h X0 X1 X4 m X5 h X4 X5

line1 X2 m X3 h X2 X3 X6 m X7 h X6 X7 X2 m X3 h X2 X3 X6 m X7 h

line0 X0 m X1 X4 m X5 X0 X1 m X4 X5 m X0 m X1 X4 m X5 X0 X1 m X4 X5 m

line1 X2 m X3 X6 m X7 X2 X3 m X6 X7 m X2 m X3 X6 m X7 X2 X3 m X6 X7 m

line0 X0 m X1 h X0 X1 X0 h X1 h X0 X1 X4 m X5 h X4 X5 X4 h X5 h X4 X5

line1 X2 m X3 h X2 X3 X2 h X3 h X2 X3 X6 m X7 h X6 X7 X6 h X7 h

Example 1: Sequential access

Example 2: Strided access

Example 3: Blocked access

Fig. 8. Cache access analysis: The state of the complete cache for each example is shown after
every two accesses, along with whether the two accesses resulted in hits or misses (shown by h
or m). The two requests just made are shown in black, while the remaining parts of the cache are
shown in gray. To save space, square brackets are not shown: X0 refers to X[0].

the cache (4 floats). We then observe that a total of 16 accesses are made to the array.
To calculate how many result in hits, and how many in misses, we observe the cache
access pattern of the code. The pattern is “0123456701234567” (only the indices of
X accessed are shown). We note that an access to any even index of X results in that
element and the subsequent element being loaded since they are in the same cache line.
Thus, accessing X[0] loads X[0] and X[1] into the cache. We can then compute the
hit/miss pattern to be: “MHMHMHMHMHMHMHMH”. So in all, there are 8 hits and
8 misses.

We now look at another code sequence that again accesses the same array twice (similar
to the last example), albeit with a stride of 2:

float X[8];
for(int j=0; j<2; j++)
{ for(int i=0; i<7; i+=2)

access(X[i]);
for(int i=1; i<8; i+=2)
access(X[i]);

}

The middle row on Fig. 8 shows the corresponding cache states for this example. The
access pattern here is “0246135702461357”. A similar analysis shows us that the miss
ratio is even worse: every single access in this pattern results in a miss (with a total of
16 misses and 0 hits). This example illustrates an important point: strided accesses gen-
erally result in poor cache efficiency, since they effectively “make the cache smaller.”

18

Finally, let us consider a third code sequence that again accesses the same array twice:

float X[8];
for(i=0; i<2; i++)

for(k=0; k<2; k++)
for(j=0; j<4; j++)

access(X[j+(i*4]);

The bottom row on Fig. 8 shows the corresponding cache states for this example. The
access pattern here is “0123012345674567”. Counting the hits and misses, (“MHMH-
HHHHMHMHHHHH”), we observe that there are 12 hits and 4 misses. We also note
that if this rearrangement is legal, it is a cache optimized version of the original code
sequence. In fact, this rearrangement is an example of both of the previously mentioned
principles behind optimizing for the memory hierarchy: reuse and neighbor use. Un-
like the first example, the “0123” block is reused here before being evicted. Unlike the
second example, every time an even-indexed element is accessed, the succeeding odd-
indexed element which is a part of the same cache line is also immediately accessed.
Thus, analyzing the cache can help us estimate and improve the cache performance of
a program.

CPU features. Modern microprocessors also contain other performance enhancing fea-
tures. Most processors contain pipelined superscalar out-of-order cores with multiple
execution units. Pipelining is a form of parallelism where different parts of the proces-
sor work simultaneously on different components of different instructions. Superscalar
cores can retire more than one instruction per processor clock cycle. Out-of-order pro-
cessing cores can detect instruction dependencies and reschedule the instruction se-
quence for performance. The programmer has to be cognizant of these features in order
to be able to optimize for a particular architecture.

Most such aggressive cores also contain multiple execution units (for instance, floating
point units) for increased performance. This means that a processor might be able to, for
instance, simultaneously retire one floating point add instruction every cycle, and one
floating point multiplication instruction every other cycle. It is up to the programmer
and the compiler to keep the processor’s execution units adequately busy (primarily via
instruction scheduling and memory locality) in order to achieve maximum performance.

The theoretical rate at which a processor can perform floating point operations is know
as the processor’s theoretical peak performance. This is measured in flop/s (FLoating
point OPerations per Second). For instance, a processor running at 1 GHz that can retire
one addition every cycle, and one multiplication every other cycle has a theoretical
peak of 1.5 Gflop/s. The theoretical peak of a Core2 Extreme processor operating under
various modes is shown in Table 3.

In practice, cache misses, pipeline stalls due to dependencies, branches, branch mispre-
dictions, and the fact that meaningful programs contain instructions other than floating
point instructions, do not allow a processor to perform at its theoretical peak perfor-
mance. Further, the achievable performance also depends on the inherent limitations
of the algorithm, such as reuse. For example, MMM, with a reuse degree of O(n) can

19

1 core 2 cores 4 cores

x87 double 6 12 24
SSE2 double 12 24 48
x87 float 6 12 24
SSE float 24 48 96

Table 3. Core2 Extreme: Peak performance (in Gflop/s) for a 3 GHz Core2 Extreme processor in
various operation modes.

achieve close to the peak performance of 48 Gflop/s (as seen in Fig. 3), whereas the
DFT with a reuse degree of O(log(n)) reaches only about 50% (as seen in Fig. 2).

In summary, knowing a processor’s theoretical peak and an algorithm’s degree of reuse
gives us a rough estimate of the extent to which a program could potentially be im-
proved.

Modern processors also contain two major explicit forms of parallelism: vector process-
ing and multicore processing, which are important for writing fast code, but beyond the
scope of this tutorial.

Further reading.

– General computer architecture. [37, 38].

– CPU/architecture specific. [68, 69].

2.5 Using Compilers

To produce fast code it is not sufficient to write and optimize source code–the program-
mer must also ensure that the code that is written gets compiled into an efficient binary
executable. This involves the careful selection and use of compiler flags, use of lan-
guage extensions, and monitoring and analyzing the compiler’s output. Furthermore,
in some situations, it is best to let the compiler know of all the degrees of freedom it
has, so it can optimize well. In other situations, it is best to direct the compiler to do
exactly what is required. This section goes over the compile process, what to keep in
mind before, while, and after compiling, and some of the common pitfalls related to the
compiling process.

Variable declaration: memory allocation. Understanding how C handles the alloca-
tion of space for variables is beneficial. C assigns variables to different storage class
specifiers by default, based on where in the source code they appear. The default stor-
age class for a variable can be overridden by preceding a variable declaration with the
desired storage class specifier.

Variables that are shared among source files use the extern storage class. Global
variables belong to the static storage class, and typically exist in static memory

20

(as do extern variables), which means that they exist as long as the program executes.
Local variables belong to the auto (automatic) storage class, which means that they
are allocated on the stack automatically upon entering the local block within which they
are defined, and destroyed upon exit. The register storage class requests that the
compiler allocates space for the variable directly in the CPU registers. These are useful
to eliminate load/store latencies on heavily used variables. Keep in mind that depending
on the compiler being used, care should be taken to initialize variables before usage.

Variable declaration: qualifiers. Most compilers provide further means to specify
variable attributes through qualifiers. A const qualifier specifies that a variable’s value
will never change. A volatile qualifier is used to refer to variables whose values
might be influenced by sources external to the compiler’s knowledge. Operations in-
volving volatile variables will not be optimized by the compiler, in order to preserve
correctness. A restrict qualifier is especially useful to writing fast code, since it
tells the compiler that a certain memory address will be restricted to access via the
specified pointer. This allows for effective compiler optimization.

Finally, memory alignment can also be specified by qualifiers. Such
qualifiers are specific to the compiler being used. For instance,
attribute ((aligned(128))) requests a variable to be aligned at the

specified 128-byte memory boundary. Such requests allow variables to be aligned to
cache line boundaries or virtual memory pages as desired. Similar qualifiers can be
used to tell the compiler that the address pointed to by a pointer is memory aligned.

Dynamic memory allocation. Dynamic memory allocation, using malloc for exam-
ple, involves allocating memory in the heap, and returning a pointer to the allocated
memory. If alignment is of importance, many libraries provide a memalign function
(the Intel equivalent is mm malloc) to allocate memory aligned to a specified bound-
ary. The alternative is to allocate more memory than required, and to then check and
shift the returned pointer adequately to achieve the required alignment.

Inline assembly and intrinsics. Sometimes, it is best to write assembly code to ac-
cess powerful features of the machine which may not be available via C. Assembly
can be included as a part of any program in C using inline assembly. However, inline
assembly use must be minimized as it might interfere with compiler optimizations. Ar-
chitecture vendors typically provide C language extensions to allow programmers to
access special machine instructions. These extensions, called intrinsics, are similar to
function calls that allow the programmer to avoid writing inline assembly. Importantly,
intrinsics allow the compiler to understand what data and/or control the programmer is
manipulating, thus allowing for better optimization. As an example, Intel’s MMX and
SSE extensions to the x86 ISA can be accessed via C intrinsics provided by Intel.

Compiler flags. Most compilers are highly configurable via a plethora of command line
options and flags. In fact, finding the right set of compiler options that yield optimal
performance is non-trivial. However, there are some basic ideas to keep in mind while
using a compiler, as listed below. Note that these ideas apply to most compilers.

21

– C standards. A compiler can be set to follow a certain C standard such as C99.
Certain qualifiers and libraries might need specific C standards to work. By switch-
ing to a newer standard, the programmer can typically communicate more to the
compiler, thus enabling it to work better.

– Architecture specifications. Most compilers will compile and optimize by default
for a basic ISA standard to maximize compatibility. Machine and architecture spe-
cific optimizations may not be performed as a result. For instance, a compiler
on an AMD Athlon processor may compile to the x86 standard by default, and
not perform Athlon-specific optimizations. Instructing the compiler to compile for
the correct target architecture may result in considerable performance gains. Addi-
tional flags may be required for these optimizations. For example, gcc requires the
“-sse” flag to include vector instructions.

– Optimization levels. Most compilers usually define several optimization levels that
can be selected. Determining the optimization level that yields maximum perfor-
mance is a black art usually done by trial and error. A more aggressive optimization
level doesn’t necessarily yield better performance. Optimization levels are usually
a shortcut to turn on or off a large set of compiler flags (discussed next).

– Specialized compiler options. Compilers typically perform numerous optimiza-
tions, many which can be selectively turned on or off and configured through com-
mand line flags. Loop unrolling, function inlining, instruction scheduling, and other
loop optimizations are only some of the available configurable optimizations. Usu-
ally, finding the right optimization level is sufficient, but sometimes, inspection of
assembly code provides insights that can be used to fine-tune compiler optimiza-
tions.

Compiler output. The output of the compiler is usually an executable binary. As men-
tioned earlier, the compiler can also be used to produce various intermediate stages,
including the preprocessed source, assembly code, and the object code. Sometimes, it
is important and useful to visually inspect the assembly code to better understand both
the performance of an executable and the behavior of the compiler.

Compilers also output warnings, which can be controlled through compiler flags. Some-
times, a seemingly innocuous warning might provide excellent insights into the source
of a bug, which makes these warnings a significant debugging tool.

Optimization reports are an important part of the compiler output that must be in-
spected. For instance, a vectorizing compiler will inform the programmer of whether
it was able to successfully vectorize or not. A failure to vectorize a program that was
expected to be vectorized is a reason for examining the program carefully, and modify-
ing or annotating the code as appropriate.

In conclusion, it is important for programmers to be knowledgeable about the compiler
that they use in order to be able to use the compiler efficiently, and to ensure that poor
compiler usage does not diminish the results of code designed for high performance.

22

Further reading.

– Gnu compiler collection (gcc). [70].

– Intel compiler. [71].

2.6 Exercises

1. Direct implementations. Implement, execute, and verify:

– a direct implementation of MMM (code snippet given in Section 2.2),

– the Numerical Recipes code for the DFT as given in [6],

This code will also be used in the exercises of later sections.

2. Determining hardware information. In this exercise, you will determine the rel-
evant hardware configuration of your computer. You will use this information in
later exercises.

Determine the following information about your computer:

– CPU type and clock speed

– For each cache: size, associativity, and cache line size

– Size of main memory

– System bus speed

Here are a few tips on how to determine this information:

– Look in the computer’s manual.

– Look in the CPU manufacturer’s manual.

– To obtain CPU information in Linux, execute cat /proc/cpuinfo.

– To obtain cache information in Linux, search for lines with the
word “cache” in the kernel ring buffer. You can do so by typing:
dmesg | grep ’ˆCPU.*cache’ on most systems.

3. Loop optimization for the cache. Consider a 2-way set associative cache with
a cache size of 32KB, a cache line size of 32B, and a FIFO (First In, First Out)
replacement policy (this means if one of the two candidate cache lines has to be
replaced, it will be the one that was first brought into the cache). Consider two
single-precision floating point arrays (single precision float = 4B), A and B with n
elements, where n is much larger than the cache and is a multiple of the cache size.
Further, assume that A and B are both fully cache-aligned, i.e., A[0] and B[0] map
to the first position in the first cache line.

Now consider the following pseudocode snippet:

23

for(i from 0 to n-1)
A[i] = A[i] + B[f(i)]

where f(i) is an index mapping function that reads B at a stride of 8. (If for exam-
ple, B was 16 elements long, then reading it at stride 8 would result in this access
pattern: f(i) = 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15).

Assume an empty cache for each part of this exercise.

(a) (Disregard the code snippet for this part) What is the expected number of cache
misses incurred by streaming once completely through array A alone in se-
quential order, given the cache parameters above?

(b) (Disregard the code snippet for this part) What is the expected number of cache
misses incurred by streaming once completely through array B alone at stride
of 8 given the cache parameters above?

(c) How many cache misses is the given pseudocode snippet expected to incur?
(Assume, for simplicity, that index variables are not cached).

(d) Rewrite the code (without changing the semantics, i.e., overall computation) to
reduce the number of cache misses as much as possible. (Assume, for simplic-
ity, that index variables are not cached).

3 Performance Optimization: The Basics

In this section we will review the basic steps required to assess the performance of
a given implementation, also known as “benchmarking.” We focus on runtime bench-
marking as the most important case. (Other examples of benchmarking includes assess-
ing the usage of memory or other resources.)

For a given program, the basic procedure consists of three steps:

1. finding the hotspots (hotspots are the most frequently executed code regions),

2. timing the hotspots, and

3. analyzing the measured runtimes.

It is essential to find the parts of the program that perform the bulk of the computation
and restrict further investigation to these hotspots. Optimizing other parts of the pro-
gram will have little to no effect on the overall runtime. In order to obtain a meaningful
runtime measurement, one has to build a test environment for each hotspot that exer-
cises and measures it in the correct way. Finally, one has to assess the measured data and
relate it to the cost analysis of the respective hotspot. This way one can make efficiency
statements and target the correct (inefficient) hotspot for further optimization.

24

3.1 Finding The Hotspots

The first step in benchmarking is to find the parts of the program where most time is
spent. Most development platforms contain a profiling tool. For instance, the devel-
opment environment available on the GNU/Linux platform contains the GNU gprof
profiler. On Windows platforms, the Intel VTune tool [72] that plugs into Microsoft’s
Visual Studio [73] can be used to profile applications.

If no profiling tool is available, obtain first-order profiling information can be obtained
by inserting statements throughout the program that print out the current system time.
In this case, less is more, as inserting too many time points may have side effects on the
measured program.

Example: GNU tool chain. We provide a small example of using the GNU tool chain
to profile a sample program.

Consider the following program:

#include <stdio.h>

float function1()
{ int i; float retval=0;
for(i=1; i<1000000; i++)

retval += (1/i);
return(retval);

}

float function2()
{ int i; float retval=0;
for(i=1; i<10000000; i++)

retval += (1/(i+1));
return(retval);

}

void function3() { return; }

int main()
{ int i;
printf("Result: %.2f\n", function1());
printf("Result: %.2f\n", function2());
if (1==2) function3();
return(0);

}

Our final objective is to optimize this program. In order to do so, we first need to find
where the program spends most of its execution time, using gprof.

As specified in the gprof manual [74], three steps are involved in profiling using
gprof:

1. Compile and link with profiling enabled:

25

gcc -O0 -lm -g -pg -o ourProgram ourProgram.c

The resulting executable is instrumented. This means that in addition to executing
your program, it will also write out profiling data when executed. (Note: We use
the -O0 flag to prevent the compiler from inlining our functions and performing
other optimizing transforms that might make it difficult for us to make sense of the
profile output. For profiling to provide us with meaningful information, we would
need to compile at the level of optimization that we intend to finally use, with the
understanding that mapping the profiler’s output back to the source code in this
case might involve some effort.)

2. Execute the program to generate the profile data file

./ourProgram

The program executes and writes the profile data to gmon.out.

3. Run gprof on the profile data file to analyze the profile data

gprof ourProgram gmon.out > profile.txt

The analysis is now contained in profile.txt. This file shows you how many times
each function was executed, and how much time was spent in each function, and plenty
of other detail. For our example program, we obtain:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
92.68 0.38 0.38 1 380.00 380.00 function2
7.32 0.41 0.03 1 30.00 30.00 function1

We can see that most of the program runtime was spent in executing function2, with
relatively little spent on function1. This tells us that it is most important to optimize
the runtime of function2.

Further down in profile.txt, we see that gprof also tells us if the time taken by
a function was spent inside the function or inside other function calls made by the
function. Note that gprof can take several other arguments to produce different kinds
of profiling analyses for the executable, including the number of times a certain line in
the source code was executed.

3.2 Timing a Hotspot

Once the hotspots have been found, we need to measure their runtime for further anal-
ysis. Each hotspot must be timed separately with an appropriate timing routine. The
general idea is the following:

1. Read the current time (start time) from the appropriate time source.

2. Execute the kernel/hotspot. Iterate an adequate number of times to obtain a mean-
ingful value off the time source.

26

3. Read the current time (end time) from the appropriate time source.

4. Execution time of the kernel/hotspot =
End time− Start time
Number of iterations

.

We first discuss time sources, and reading the time from them; then we explain how to
write a timing routine to get meaningful results.

Time functions. Depending on the system one is using, a variety of time sources to
“get the current time” may be available:

– Most Unix systems define gettimeofday() to portably query the current time (as
defined in IEEE Std 1003.1).

– ANSI C defines ctime() and clock() as portable ways of obtaining the current
time.

– On Intel processors, the rdtsc instruction reads the time stamp counter which
allows near-cycle accurate timing. On PowerPC processors, the mfspr instruction
reads the time-base register.

Generally, portable time functions have much less precision than cycle-counter-based
methods. The pros and cons of various timing methods are listed below:

Timer type Advantages Disadvantages

Wall clock; Unix:
gettimeofday()

Simple to use, highly portable Low resolution, does not account
for background tasks

System timer; Unix:
time command

Gives wall clock, user-cpu, and
system-cpu times

Relatively low resolution

Hardware timestamp
counter (discussed
below)

High resolution, most precise and
accurate

Does not account for background
system load (effectively, wall
clock time), best for kernels with
short runtimes; non-portable

We give a simplified example of a timing macro based on rdtsc (a hardware times-
tamp counter) for a 32-bit Intel processor to be used with Microsoft VisualStudio:

typedef union
{ __int64 int64;
struct {__int32 lo, hi;} int32;

} tsc_counter;

#define RDTSC(cpu_c) \
{ __asm rdtsc \
__asm mov (cpu_c).int32.lo,eax \
__asm mov (cpu_c).int32.hi,edx \

}

27

The corresponding code sequence in GNU C looks slightly different:

typedef union
{ unsigned long long int64;
struct {unsigned int lo, hi;} int32;

} tsc_counter;

#define RDTSC(cpu_c) \
__asm__ __volatile__ ("rdtsc" : \
"=a" ((cpu_c).int32.lo), \
"=d"((cpu_c).int32.hi))

Timing routine. A timing routine calls the function that is to be timed without execut-
ing the original program. The objective is to isolate the kernel and measure the runtime
of the kernel with the least disturbance and highest accuracy possible. A timing routine
consists of the following steps:

– Initialize kernel-related data structures.

– Initialize kernel input data.

– Call kernel a few times to put microarchitectural components into steady state.

– Read current time.

– Call kernel multiple times to obtain an adequately precise value from the timing
source used.

– Read current time.

– Divide the time difference by the number of kernel calls.

To obtain more stable timing results, one often has to run multiple timings and take the
average or minimum value.

We give an example timing routine for an MMM function computing C = C + AB,
assuming all matrices are square N ×N . The RDTSC macro is defined above.

double time_MMM(int N, double *A, double *B, double *C)
{ // init C

for(i=0; i<N; i++)
C[i] = 0.0;

// put microarchitecture in steady state
MMM(A,B,C);

// time
RDTSC(t0);
for(int i=0; i<TIMING_REPETITIONS; i++)
MMM(A,B,C);

RDTSC(t1);

// compute runtime in cycles

28

return (double)((t1.int64-t0.int64)/TIMING_REPETITIONS);
}

Known problems. The following problems may occur when timing numerical kernels:

– Too few iterations of the function to be timed are executed between the two time
stamp readings, and the resulting timing is inaccurate due to poor timer resolution.

– Too many iterations are executed between the two time stamp readings, and the
resulting timing is affected by system events.

– The machine is under load and the load has side effects on the measured program.

– Multiple timing jobs are executed concurrently, and they interfere with one another.

– Data alignment of input and output triggers cache problems.

– Virtual-to-physical memory translation makes timing irreproducible.

– The time stamp counter overflows and either triggers an interrupt or produces a
meaningless value.

– Reading the timestamp counters requires hundred(s) of cycles, which itself affects
the timing.

– The linking order of object files changes locality of static constants and this pro-
duces cache interference.

– The machine was not rebooted in a long time and the operating system state causes
problems.

– The control flow in the numerical kernel being timed is data-dependent and the test
data is not representative.

– The kernel is in-place (e.g., the input is a vector x and the output is written back
to x), and the norm of the output is larger than the norm of the input. Repetitive
application of the kernel leads to an exponential growth of the norm and finally
triggers floating-point exceptions which interfere with the timing.

– The transform is timed with a zero vector, and the operating system is “smart,” and
responds to a request for a large zero-vector dynamic memory allocation by return-
ing a special zero-valued copy-on-write virtual memory page. Read accesses to this
“page” would be much faster than accesses to a page that is actually allocated, since
this page is a special one maintained by the operating system for efficiency.

One needs to be very careful when timing numerical kernels to rule out these problems.
Getting highly accurate, reproducible, stable timing results for the full range of problem
sizes is often nontrivial. Note that small problem sizes may suffer from timer resolution
issues, while large problem sizes with longer runtimes may suffer from the effects of
intervening processes.

29

3.3 Analyzing the Measured Runtime

We now know how to calculate the theoretical peak performance and the memory band-
width for our target platform, and how to obtain the operations count and the runtime
for our numerical kernel. The next step is to use these to conduct a performance analysis
that answers two questions:

– What is the limiting resource, i.e., is the kernel CPU-bound or memory-bound?
This provides an idea of the various optimization methods that can be used.

– How efficient is the implementation with respect to the limiting resource? This
shows the potential performance increase we can expect through optimization.

Normalization. To assess the runtime behavior of a kernel as function of the problem
size, the runtime (or inverse runtime) has to be normalized with the asymptotic or exact
operations count. For instance, FFT performance is usually reported in pseudo Mflop/s.
This value is computed as 5n log2(n)/runtime for DFTn; 5n log2(n) is the operations
count of the radix-2 FFT. For MMM, the situation is easier, since all currently relevant
implementations have the exact operations count 2n3.

Let us now take a look at at Fig. 2. The Numerical Recipes FFT program achieves al-
most the same pseudo Mflop/s value, independently of the problem size. This means
that all problem sizes run approximately at the same level of (in)efficiency. In contrast,
the best code shows a wide variation of performance, generally at a much higher pseudo
Mflop/s level. In particular, the performance ramps up to 25 Gflop/s and then drops dra-
matically. This means, the DFT becomes more and more efficient with larger problems,
but only up to a certain size. Analysis shows that the breakdown occurs once the whole
working set of the computation does not fit into the L2 cache any more and the prob-
lem switches from being CPU-bound to memory-bound, since the DFT’s reuse is only
O(log(n)).

In contrast, Fig. 3 shows that MMM maintains the performance even for out-of-cache
sizes. This is possible since MMM has a reuse of O(n), higher than the DFT.

Fig. 2 shows that performance plots for high-performance implementations can feature
unanticipated characteristics. That is especially true if the kernel changes behavior, for
instance, if it slowly changes from being CPU-bound to memory-bound as the kernel
size is varied.

Relative performance. Absolute performance only tells a part of the story. Comparing
the measured performance to the theoretical peak performance shows how efficient the
implementation is. A low efficiency for an algorithm with sufficiently high reuse means
there is room for optimization.

We continue examining our examples from Fig. 2 and Fig. 3, with the target machine
being a Core2 Extreme at 3 GHz.

In Fig. 2, Numerical Recipes is a single-core single-precision x87 implementation and
thus the corresponding peak performance is 6 Gflop/s (see Table 3). As Numerical
Recipes reaches around 1 pseudo Gflop/s it runs at about 16% of the peak. Note that if

30

SSE (4-way vector) instructions and all four cores are used, the peak performance goes
up by a factor of 16. (see Table 3). The best scalar code achieves around 4 Gflop/s or
about 60% of the x87 peak. The fastest overall code uses SSE and 4 cores and reaches
up to 25 Gflop/s or 25% of the quad-core SSE peak.

In Fig. 2, the overall fastest code reaches and sustains about 42 Gflop/s or about 85% of
the quad-core SSE2 peak. This is much higher than the DFT and also due to the higher
degree of reuse in MMM compared to the DFT.

3.4 Exercises

1. Performance analysis. In this exercise, you will measure and analyze the perfor-
mance of the naive implementations of MMM and the DFT from Exercise 1 in
Section 2. The steps you will need to follow to complete this exercise are given
below. For this exercise, use the hardware configuration of your computer as you
determined in Exercise 2 on page 22.

(a) Determine your computer’s theoretical peak performance. The theoretical peak
performance is the number of floating point operations that can be done in a
second. This is found by determining the CPU clock speed, and examining the
microarchitecture to look at the throughput of floating point operations. For
instance, a CPU running at 900 MHz that can retire 2 floating point opera-
tions per cycle, has a theoretical peak performance of 1800 Mflop/s. If the type
of instructions that the CPU can retire at the same rate includes FMA (fused
multiply add) instructions, the theoretical peak would be 3600 Mflop/s (2 mul-
tiplies and 2 adds per cycle = 4 operations per cycle). For this exercise, do not
consider vector operations.

(b) Measure runtimes. Use your implementations of the MMM and DFT as com-
pleted in Exercise 1 on page 22. Use the techniques described in Section 3.2
to measure the runtimes of your implementations using at least two different
timers.

(c) Determine performance and interpret results.

– Performance: The performance of your implementation is its number of
floating point operations per unit time, measured in flop/s. For the DFT,
the number of operations should be assumed 5n log(n).

– Percentage peak performance: This is simply the percentage of theoretical
peak performance. For instance, if your measured code runs at 1.2 Gflop/s
on a machine with a peak performance of 3.6 Gflop/s, this implies that
your implementation achieves 33.3% of peak performance.

2. Micro-benchmarks: mathematical functions. We assume a Pentium compatible
machine. Determine the runtime (in cycles) of the following computations (x, y are
doubles) as accurately as possible:

31

– y = x

– y = 7.12x

– y = x + 7.12

– y = sin(x), x ∈ {0.0, 0.2, 4.1, 170.32}
– y = log(x), x ∈ {0.001, 1.00001, 10.65, 2762.32}
– y = exp(x), x ∈ {−1.234e− 17, 0.101, 3.72, 1.234e25}

There are a total of 15 runtimes. Explain the results. The benchmark setup should
be as follows:

(a) Allocate two vector doubles x[N] and y[N] and initialize all x[i] to be one
of the values from above.

(b) Use

for(i=0; i<N; i++)
y[i] = f(x[i]);

to compute y[i] = f(x[i]) , with f() being one of the functions above
and time this for loop.

(c) Choose N such that all data easily fits into L1 cache but there are enough iter-
ations to obtain a reasonable amount of work.

(d) Use the x86 time stamp counter via the interface provided by rdtsc.h, as
listed in Section 3.2.

To accurately measure these very short computations, use the following guidelines:

– Only time the actual work, leave everything else (initializations, timing related
computations, etc.) outside the timing loop.

– Use the C preprocessor to produce a parameterized implementation to easily
check different parameters.

– You may have to run your for(N) loop multiple times to obtain reasonable
timing accuracy.

– You may have to take the minimum across multiple such measurements to ob-
tain stable results. Thus, you might end up with three nested loops.

– You must put microarchitectural components into steady state before the exper-
iment: variables where you store the timing results, the timed routine and the
data vectors should all be loaded into the L1 cache, since cache misses might
result in inaccurate timing results.

– Alignment of your data vectors on cache line sizes or page sizes can influence
the runtime significantly.

32

– The use of CPUID to serialize the CPU before reading the RDTSC as explained
in the Intel manual produces a considerable amount of overhead and may be
omitted for this exercise.

4 Optimization for the Memory Hierarchy

In this section we describe methods for optimizations targeted at the memory hierarchy
of a state-of-the-art computer system. We divide the discussion into four sections:

– Performance-conscious programming.

– Optimizations for cache.

– Optimizations for the registers and CPU.

– Parameter-based performance tuning.

We first overview the general concepts, and then apply them to MMM and the DFT
later.

4.1 Performance-Conscious Programming

Before we discuss specific optimizations, we need to ensure that our code does not
yield poor performance because it violates certain procedures fundamental to writing
fast code. Such procedures are discussed in this section. It is important to note that
programming for high performance may go to some extent against standard software
engineering principles. This is justified if performance is critical.

Language: C. For high performance implementations, C is a good choice, as long as
one is careful with the language features used (see below). The next typical choice for
high-performance numerical code is Fortran, which tends to be more cumbersome to
use than C when dynamic memory and dynamic data structures are used.

Object-oriented programming (C++) must be avoided for performance-critical parts
since using object oriented features such as operator overloading and late binding incurs
significant performance overhead. Languages that are not compiled to native machine
code (like Java) should also be avoided.

Arrays. Whenever possible, one-dimensional arrays of scalar variables should be used.
If the size of the object is not known at compile time, accessing an element in a higher-
dimensional array requires multiple pointer dereferencing operations, as in this case
double **a behaves differently from double a[10][15]. Hence, higher dimen-
sional objects should be linearized: an m× n matrix should be represented by a vector
of length mn, with the matrix element (i, j) mapped to the vector element in + j.

Records. Accessing struct elements may introduce additional index computation. It
may also prevent compiler optimization, as a struct is a derived data type. Hence,

33

complicated struct and union data types should be avoided. Multiple arrays should
be favored over one array with struct entries. For example, to represent vectors of
complex numbers, vectors of real numbers of twice the size should be used, with the
real and imaginary parts appearing as pairs along the vector.

Dynamic data structures. Dynamically generated data structures like linked lists and
trees must be avoided if the algorithm using them can be implemented on array struc-
tures instead. Heap storage must be allocated in large chunks, as opposed to separate
allocations for each object.

Control flow. Unpredictable conditional branches are computationally expensive on
machines with long pipelines. Hence, while loops and loops with complicated ter-
mination conditions must be avoided. for loops with loop counters and loop bounds
known at compile-time must be used whenever possible. switch, ?:, and if state-
ments must be avoided in hot spots and inner loops, as they may be translated into con-
ditional branches. For small, repetitive tasks, macros are a better choice than functions.
Macros are expanded before compilation while the compiler must perform analysis on
inline functions.

4.2 Cache Optimization

For lower levels in the memory hierarchy (L1, L2, L3 data cache, TLB = translation
lookaside buffer) the overarching optimization goal is to reuse data as much as possible
once brought in. The architecture of a set-associative cache (Fig. 6) suggests three major
optimization methods that target different hardware restrictions.

– Blocking: working on data in chunks that fit into the respective cache level, to
overcome restrictions due to cache capacity,

– Loop merging: merging consecutive loops that sweep through data into one loop
to reuse data in the cache and hence make the best use of the restricted memory
bandwidth, and,

– Buffering: copying data into contiguous temporary buffers to overcome conflict
cache misses due to cache associativity.

The actual optimization process applies one or more of these ideas to some of the levels
of the memory hierarchy. It is not always a good idea to apply all methods to all levels,
as code complexity may increase dramatically.

Finally, the correct parameters for blocking and/or buffering on the targeted computer
system have to be found. A good approach is to write the program parameterized, i.e.,
collect all parameters as named constants. Then it is easy to try different parameter set-
tings by hand or using a script to find the variant that achieves the highest performance.

Blocking. The basic idea of blocking is to perform the computation in “blocks” that
operate on a subset of the input data to achieve memory locality. This can be achieved
in different ways. For example, loops in loop nests, like the triple loop MMM in Sec-
tion 2.2 may be split and swapped (a transformation called tiling) so that the working set

34

of the inner loops fits into the targeted memory hierarchy level, whereas the outer loop
jumps from block to block. Another way to achieve blocking is to choose a recursive al-
gorithm to start with. Recursive algorithms naturally divide a large problem into smaller
problems that typically operate on subsets of the data. If designed and parameterized
well, at some level all sub-problems fit into the targeted memory level and blocking is
achieved implicitly. An example of such an algorithm is the recursive Cooley-Tukey
FFT introduced later in in (3).

Loop merging. Numerical algorithms often have multiple stages. Each stage accesses
the whole data set before the next stage can start, which produces multiple sweeps
through the working set. If the working set does not fit into the cache this can dramati-
cally reduce performance.

In some algorithms the dependencies do not require that all operations of a previous
stage are completed before any operation in a later stage can be started. If this is the
case, loops can be merged and the number of passes through the working set can be
reduced. This optimization is essential for implementing high-performance DFT func-
tions.

Buffering. When working on multi-dimensional data like matrices, logically close ele-
ments can be far from each other in linearized memory. For instance, matrix elements
in one column are stored at a distance equal to the number of columns of that ma-
trix. Cache associativity and cache line size get into conflict if one wants to hold, for
instance, a small rectangular section of such a matrix in cache, leading to cache thrash-
ing. This means the elements accessed by the kernel are mapped to the same cache
locations and hence are moved in and out during computation.

One simple solution is to copy the desired block into a contiguous temporary buffer.
That incurs a one-time cost but alleviates cache thrashing. This optimization is often
called buffering.

4.3 CPU and Register Level Optimization

Optimization for the highest level in the memory hierarchy, the registers, is to some
extent similar to optimizations for the cache. However it also needs to take into account
microarchitectural properties of the target CPU. Current high-end CPUs are superscalar,
out-of-order, deeply pipelined, feature complicated branch prediction units, and many
other performance enhancing technologies. From a high-level point of view, one can
summarize the optimization goals for a modern CPU as follows. An efficient C program
should:

– have inner loops with adequately large loop bodies,

– have many independent operations inside an inner loop body,

– use automatic variables whenever possible,

– reuse loaded data elements to the extent possible,

35

– avoid math library function calls inside an inner loop if possible.

Some of these goals might conflict with others, or are constrained by machine parame-
ters. The following methods help us achieve the stated goals:

– Blocking

– Unrolling and scheduling

– Scalar replacement

– Precomputation of constants

We now discuss these methods in detail.

Blocking. Register-level blocking partitions the data into chunks on which the compu-
tation can be performed within the register set. Only initial loads and final stores but no
register spilling is required. Sometimes a small amount of spilling can be tolerated. We
show the blocking of a single loop as example. Consider the example code below.

for(i=0; i<8; i++)
{ y[2*i] = x[2*i] + x[2*i+1];

y[2*i+1] = x[2*i] - x[2*i+1];
}

We block the i loop, obtaining the following code.

for(i1=0; i1<4; i1++)
for(i2=0; i2<2; i2++)
{ y[4*i1+2*i2] = x[4*i1+2*i2] + x[4*i1+2*i2+1];
y[4*i1+2*i2+1] = x[4*i1+2*i2] - x[4*i1+2*i2+1];

}

On many machines registers are only addressable by name but not indirectly via other
registers (holding loop counters). In this case, once the data fits into registers, either
loop unrolling or software pipelining with register rotation (as supported by Itanium) is
required to actually take advantage of register-blocked computation.

Unrolling and scheduling. Unrolling produces larger basic blocks. That allows the
compiler to apply strength reduction to simplify expressions. It decreases the number
of conditional branches thus decreasing potential branch mispredictions and condition
evaluations. Further it increases the number of operations in the basic block and allows
the compiler to better utilize the register file. However, too much unrolling may increase
the code size too much and overflow the instruction cache. The following code is the
code above with unrolled inner loop i2.

for(i1=0; i1<4; i1++)
{ y[4*i1] = x[4*i1] + x[4*i1+1];

y[4*i1+1] = x[4*i1] - x[4*i1+1];
y[4*i1+2] = x[4*i1+2] + x[4*i1+3];
y[4*i1+3] = x[4*i1+2] - x[4*i1+3];

}

36

Unrolling exposes an opportunity to perform instruction scheduling. With unrolled
code, it becomes easy to determine data dependencies between instructions. Issuing an
instruction right after a preceding instruction that it is dependent upon will lead to the
CPU pipeline being stalled until the former instruction completes. Instruction schedul-
ing is the process of rearranging code to include independent instructions in between
two dependent instructions to minimize pipeline stalls.

Scheduling large basic blocks with complicated dependencies may be too challenging
for the compiler. In this case source scheduling may help. Source scheduling is the
(legal) reordering of statements in the unrolled basic block. Different scheduling algo-
rithms apply different rules, aiming at, e.g., minimizing distance between producer and
consumer (which may potentially not be too short), and/or minimizing the number of
live variables for each statement in the basic block. It is sometimes better to source
schedule basic blocks and turn off aggressive scheduling by the compiler.

The number of registers, quality of the C compiler, and size of the instruction cache
limit the amount of unrolling, that increases performance. Experiments show that on
current machines, roughly 1,000 operations are the limit. Note, that unrolling always
increases the size of the loop body, but not necessarily the instruction-level parallelism.
Depending on the algorithm, more complicated loop transformations may be required.
One example is the MMM, discussed later.

Scalar replacement. In C compilers, pointer analysis is complicated, and using even
the simplest pointer constructs can prevent “obvious” optimizations. This observation
extends to arrays with known sizes. It is very important to replace arrays that are fully
inside the scope of an innermost loop by one automatic, scalar variable per array ele-
ment. This can be done as the array access pattern does not depend on any loop variable
and will help compiler optimization tremendously. As an example, consider the follow-
ing code:

double t[2];
for(i=0; i<8; i++)
{ t[0] = x[2*i] + x[2*i+1];

t[1] = x[2*i] - x[2*i+1];
y[2*i] = t[0] * D[2*i];
y[2*i+1] = t[0] * D[2*i];

}

Scalarizing t will result in code that the compiler can better optimize:

double t0, t1;
for(i=0; i<8; i++)
{ t0 = x[2*i] + x[2*i+1];

t1 = x[2*i] - x[2*i+1];
y[2*i] = t0 * D[2*i];
y[2*i+1] = t1 * D[2*i];

}

37

The difference is that t0 and t1 are automatic variables and can be held in registers
whereas the array t will most likely be allocated in memory, and loaded and stored
from memory for each operation.

If an input value x[i] or precomputed data D[i] is reused it makes sense to first
copy the value into an automatic variable (xi or Di, respectively), and then reuse the
automatic variable.

double t0, t1, x0, x1, D0;
for(i=0; i<8; i++)
{ x0 = x[2*i];

x1 = x[2*i+1];
D0 = D[2*i];
t0 = x0 + x1;
t1 = x0 - x1;
y[2*i] = t0 * D0;
y[2*i+1] = t1 * D0;

}

If the value of y[i] is used as source in operations like y[i] += t0, one should use
scalar replacement for y[i].

Precomputation of constants. In a CPU-bound kernel, all constants that are known
ahead of time should be precompute at compile time or initialization time and stored in
a data array. At execution time, the kernel simply loads the precomputed data instead
of needing to invoke math library functions. Consider the following example.

for(i=0; i<8; i++)
y[i] = x[i] * sin(M_PI * i / 8);

The program contains an function call to the math library in the inner loop. Calling
sin() can cost multiple thousands of cycles on modern CPUs. However, all the con-
stants are known before entering the kernel and thus can be precomputed.

static double D[8];
void init()
{ for(int i=0; i<8; i++)

D[i] = sin(M_PI * i / 8);
}

...
// in the kernel
for(i=0; i<8; i++)

y[i] = x[i] * D[i];

The initialization function needs to be called only once. If the kernel is used over and
over again, precomputation results in enormous savings. If the kernel is used only once,
chances are that performance does not matter.

38

4.4 Parameter-Based Performance Tuning and Program Generation

Many of the optimizations for the memory hierarchy discussed above have inherent
degrees of freedom such as the block size for blocking or the degree of unrolling the
code. While it may be possible to derive a reasonable estimation of these parameters,
the complexity of modern microarchitecture makes an exact prediction impossible. In
fact, often the best value may come as a surprise to the programmer. As a consequence,
it makes sense to perform an empirical search to find those parameters. This means
creating the variants, ideally through a set of scripts, through parameterized coding (for
instance, defining all parameters as C preprocessor constants in a separate header file),
or through other program generation techniques, and measuring their performance to
find the best choice. Since the result may depend on the target platform, the search
should be repeated for each new platform.

This parameter-based performance optimization is one of the techniques used in recent
research on automatic performance tuning [14].

However, parameter based tuning is inherently not extensible in the sense that new
forms of code or algorithm restructuring cannot be incorporated easily. Examples could
be transformations for various forms of parallelism. A better solution than parameter-
based tuning may be properly designed domain-specific languages used in tandem with
rewriting systems. We will see the difference between these two approaches later in
Section 5.4 and 6.6 where we discuss program generation for MMM and the DFT.

5 MMM

In this section, we optimize matrix-matrix multiplication (MMM) for the memory hi-
erarchy. We explain the optimizations implemented by the ATLAS [13], and organize
the steps as in Section 4. ATLAS is a program generator for MMM and other BLAS
routines and also performs other optimizations not discussed here. It is introduced in
Section 5.4.

Our presentation closely follows the one in Yotov et al. [75], which presents a model-
based version of ATLAS.

For the rest of this section, we will assume the dimensions of the input matrices A and B
to be N ×K and K ×M respectively, which implies an N ×M output matrix C. For
simplicity, we will further assume that various optimization parameters are perfectly
divisible by these dimensions whenever such a division is necessary. The computation
considered is C = C + AB.

Naive Implementation. Matrix-matrix multiplication (MMM), as defined in Sec-
tion 2.2, is naively implemented using the triple loop shown below. We use 2D array
notation (for instance, C[i][j]) to keep the code more readable. However, in an im-
plementation where the matrix sizes are not known at compile time, one should resort
to a linearized representation of C, A, and B (see Section 4.1).

39

// K, M, N are compile-time constants
double C[N][M], A[N][K], B[K][M];
// Assume C is initialized to zero
for(i=0; i<N; i++)

for(j=0; j<M; j++)
{ for(k=0; k<K; k++)

C[i][j] += A[i][k] * B[k][j];
}

The C language stores two-dimensional arrays in row-major order. Therefore, a cache
miss to a (memory aligned) matrix element causes that element and adjacent elements in
the same row being loaded into one cache line of the cache (see Fig. 7). Thus, accessing
a large matrix by rows is cache efficient, while accessing it by columns is not.

N

K

A

kk

ii K

M

B

kk
N

M

C

ii

=x

jj

Fig. 9. Data access pattern for the naive MMM.

Fig. 9 illustrates the data access pattern of the naive implementation. From this figure,
we see the output locality of the computation: all accesses to each element in C are
consecutive, and C is completed element by element, row by row. However, unless all
input and output arrays fit into the cache, the naive implementation has poor locality
with respect to A and B.

We analyze the naive implementation by counting the number of cache misses. We
assume a cache line size of 64 bytes, or 8 (double precision) floating point values, and
that N is large with respect to the cache size. To compute the first entry in C, we need
to access the entire first row of A and the entire first column of B. Accessing a row of
A results in N/8 misses (one for each group of 8) due to the row-major storage order,
while accessing a column of B results in a full N misses, yielding a total of (9/8)N
misses for the first entry in C.

To analyze the computation of the second entry of C, we first observe that the parts of A
and B that will be accessed first are not in the cache. That is, since N is much larger than
the cache, the first few elements of the first row of A were in cache but were eventually
overwritten. Similarly, the first elements of the second column of B were already in
cache (each element shared a cache line with its neighbor in the first column) but also
have been overwritten. This is illustrated in Fig. 10, which shows in gray the parts of A
and B that are in cache after the first entry of C is computed. Consequently, the number
of misses involved in computing the second entry (and every subsequent entry of C),
produces also (9/8)N misses. Therefore, the total number of misses generated by this

40

cache line length

N

K

A

K

M

B

N

M

C

=x

1. column
1. row

Fig. 10. The state of the cache at the end of computation of the first element of C (small black
square) is shown. Areas of the input matrices marked in gray are cache resident at this point. The
next element of C to be computed is shown as small white square.

algorithm (for the N2 entries in C) is (9/8)N3. In summary, there is no reuse and no
neighbor use, a problem resolved to the extent possible by the optimizations in the next
sections.

5.1 Cache Optimization

Blocking. One of the most important optimizations for MMM (and linear algebra prob-
lems in general) is blocking, as introduced in Section 4.2. Blocking involves performing
the addition and multiplication operations on blocks of the original matrix, instead of
individual elements. The idea is to increase locality by restricting the computation at
any point to work on small chunks that fit entirely into the cache. We will also see
that blocking essentially increases reuse and neighbor use, the concepts previously pre-
sented in Section 2.4.

The compiler loop transformation that implements blocking is known as tiling [76,
13, 75]. Blocking or tiling the MMM for each level of the memory hierarchy involves
adding three more nested loops to the basic triple loop implementation. The code for
the MMM blocked for one memory level with block size NB follows.

// MMM loop nest (j, i, k)
for(i=0; i<N; i+=NB)

for(j=0; j<M; j+=NB)
for(k=0; k<K; k+=NB)

// mini-MMM loop nest (i0, j0, k0)
for(i0=i; i0<(i + NB); i0++)

for(j0=j; j0<(j + NB); j0++)
for(k0=k; k0<(k + NB); k0++)

C[i0][j0] += A[i0][k0] + B[k0][j0];

Fig. 11 shows the data access pattern of blocking for the cache. The three additional
innermost loops cause each matrix to be divided into blocks of size NB ×NB . Notice
the similarity in the access pattern to the naive implementation, except at the block level
instead of at the element level.

41

NB

A B C

=x

NB

Fig. 11. Blocking for the cache: mini-MMMs.

We now analyze this version of the MMM to determine the impact on the number of
cache misses. We assume that the block size is larger than the cache line size, and for
now that several blocks can fit into the cache. This implies that accessing a block results
only in N2

B/8 misses, regardless of the access sequence.

Computing the first block of C requires the first block row of A, and the first block
column of B. This results in (N2

B/8 + N2
B/8)(N/NB) cache misses. Similar to the

reasoning used in the analysis of the naive version, computing each block of C results
in the same amount of misses, and therefore, the total number of misses generated by
this algorithm (for the (N/NB)2 blocks in C) is N3/(4NB), which is significantly less
than the (9/8)N3 misses in the naive version.

We call the smaller blocks operations mini-MMMs, following [75]. NB is an optimiza-
tion parameter that must be chosen such that the working set of the mini-MMM fits
entirely into the cache. A simple translation of our assumption that blocks from the two
input and output matrices (our working set) fit into a fully associative cache is expressed
by the following equation: 3N2

B ≤ Cs, where Cs is the cache size. ATLAS determines
NB by searching and trying different arbitrary values and picking the one that results
in the best performance.

In contrast, [75] use a model based approach, and chooses NB based directly on cache
parameters. Their careful examination of the data access pattern of the blocked MMM
reveals that the working set at a finer granularity consists only of a single element in
C (since each element in C is reused completely by the innermost k0 loop before it
moves on to the next element), a single row of A (since a row is fully reused before
the program moves on to the next row), and the entire B. Therefore, the following
relationship needs to hold: N2

B + NB + 1 ≤ Cs. Thus, a good choice for NB is the
largest value that satisfies this inequality.

Blocking for MMM works because it increases cache reuse and neighbor use, our guid-
ing principles discussed in Section 2. Cache reuse is increased because once a block is
brought into the cache, it is used several times before being overwritten. Neighbor use
is increased for the input matrix B, since all elements in the cache line are used before
eviction.

Typically, MMM is blocked for the L1 cache but blocking for the L2 cache may be
superior in certain cases [75].

42

An additional optimization that can be done for the cache is to exchange the i and the j
loops, depending upon the relative sizes of the A and B matrices.

Loop merging. Loop merging is not applicable to the MMM.

Buffering. Buffering (also known as copying) for MMM is applicable for large sizes.
The basic idea behind buffering is to copy tiles of the input and output matrices into
sequential order in memory to minimize cache conflict misses (and TLB misses if the
matrices span multiple pages), inside each mini-MMM. The following code illustrates
buffering. The matrix B is fully buffered at the beginning since it is accessed in full
during each iteration of the outermost i loop. Vertical panels of A are used during each
iteration of j, and are buffered just before the j loop begins. Finally, in some cases,
it might be beneficial to copy a single tile of C before the k loop, since a single tile
is reused by each iteration of the k loop. Note that the benefits of buffering have to
outweigh the costs, which might not hold true for very small or very large matrices.

// Buffer full B here
for(i=0; i<M; i+=NB)
// Buffer a panel of A here
for(j=0; j<N; j+=NB)

// Copy a block (tile) of C here
for(k=0; k<K; k+=NB)

// mini-MMM loop nest as before (i0, j0, k0)
...

5.2 CPU and Register Level Optimization

We now look at optimizing the MMM for the CPU. We continue with our MMM exam-
ple from the previous section.

Blocking. Blocking for the registers looks similar to blocking for the cache. Another
set of nested triple loops is added. The resulting code is shown below:

// MMM loop nest (j, i, k)
for(i=0; i<N; i+=NB)
for(j=0; j<M; j+=NB)

for(k=0; k<K; k+=NB)
// mini-MMM loop nest (i0, j0, k0)
for(i0=i; i0<(i + NB); i0+=MU)
for(j0=j; j0<(j + NB); j0+=NU)

for(k0=k; k0<(k + NB); k0+=KU)
// micro-MMM loop nest (j00, i00)
for(k00=k0; k00<=(k0 + KU); k00++)
for(j00=j0; j00<=(j0 + NU); j00++)

for(i00=i0; i00<=(i0 + MU); i00++)
C[i00][j00]+=A[i00][k00]*B[k00][j00];

Note that the innermost loop nest now has the loop order kij; this is explained later.
As Fig. 12 shows, each mini-MMM is now computed by blocking it into a sequence

43

NB

A B C

=x

NB NB NB

k

kMU

NU

Fig. 12. mini-MMMs and micro-MMMs (from [75]).

of micro-MMMs. Each micro-MMM multiplies an MU × 1 block of A by a 1 × NU

block of B, with the output being a MU × NU block of C. At this level of blocking,
we have a degree of freedom in choosing MU and NU (The KU parameter controls the
degree of unrolling, and is discussed soon). These parameters must be chosen so that a
micro-MMM fits into register space (thus avoiding register spills).

ATLAS searches over arbitrary values for these parameters to choose the ones that
result in the fastest code. In [75], with a reasoning that is similar to the one used in
choosing NB in the previous section, selects these parameters based on the inequality
MU + NU + (MU ×NU) ≤ NR, where NR is the number of data (integer or floating
point) registers. This equality is then further refined.

Locality is not the only objective of blocking for register space. Note that in the code
above, the micro-MMM have a loop order of kij. While this reduces output locality, it
also provides better instruction level parallelism (all the MUNU addition/multiplication
pairs are independent) when combined with loop unrolling discussed next.

Unrolling and scheduling. Loop unrolling and scheduling, as discussed in Section 4.3,
can be used to further optimize MMM. We unroll the two innermost loops to get
MU × NU additions and multiplications. Note that these instructions are of the form
C+ = AB. As mentioned in [21], such an instruction will not execute well on machines
without a fused multiply-add unit, since the addition is dependent on the multiplication,
and will cause a pipeline stall until the multiplication is completed. Thus, it may be
beneficial to separate the addition and the multiplication operations here, and schedule
them with unrelated intervening instructions to minimize pipeline stalls.

The k00 loop can also be unrolled completely to reduce loop overhead. KU controls the
degree of unrolling, and is chosen so that the fully unrolled loop body (of the k0 loop)
still fits into the L1 instruction cache.

Scalar replacement. When the innermost loops are unrolled, each array element ap-
pears multiple times in the unrolled code. For the reasons discussed earlier in Sec-
tion 4.3, replacing array references by scalar variables in unrolled code enables com-
piler optimizations to work better. As the MMM has a good reuse ratio, references to
input arrays are also replaced by first copying the value to automatic variables and then
reusing the automatic variable.

44

Precomputation of constants. Since the MMM does not have constants that can be
precomputed, this optimization does not apply.

5.3 Parameter-Based Performance Tuning

The above discussion identifies several parameters that can be used for tuning. ATLAS
performs this tuning automatically by generating the variants and selecting the fastest
using a search procedure.

Blocking for cache. NB is the main optimization parameter used to control the block
size of the mini-MMMs. If several levels of blocking are desired, additional blocking
parameters arise.

Blocking for registers. When blocking for the registers, MU , and NU are the main
tunable parameters, and must be chosen such that the micro-MMM does not produce
register spills. KU specifies the degree of unrolling and should be chosen as large as
possible without overflowing the instruction cache.

Besides that, several other parameters can be identified for performance tuning and
platform adaptation [21, 75].

5.4 Program Generation for MMM: ATLAS

The parameters shown in the previous section are only a small subset of all the parame-
ters that can be used to tune the MMM. In theory, searching over the space of all tunable
parameters will lead to the fastest code. Obviously, such a search would take an imprac-
tical amount of time to complete due to the vast search space. The best approach in this
scenario is to prune the search space in a reasonable way and to automate the search
over the remaining space. This in essence is the approach followed by ATLAS [21],
which is briefly discussed in this section. In terms of the language previously used in
this tutorial, ATLAS generates a mini-MMM with the highest performance, which is
then used as a kernel in a generic MMM function.

Detect

Hardware

Parameters

ATLAS

Search Engine
NR

MulAdd
L*

L1Size

xFetch
MulAdd
Latency

NB
MU, NU, KU

Mflop/s

ATLAS MMM

Code Generator

MiniMMM

Source

Compile

Execute

Measure

Fig. 13. Architecture of ATLAS (from [75]).

45

Fig. 13 shows the architecture of ATLAS. When ATLAS is first installed on a platform,
it runs a set of micro-benchmarks to determine a set of hardware parameters, including
the L1 cache size and the number of registers NR. These parameters are then used to
prune the originally unbounded search space to a finite one. ATLAS then proceeds by
searching the space of possible mini-MMMs using a feedback loop. In this feedback
loop, a search engine decides on the parameters that specify a mini-MMM, the corre-
sponding code is generated, its performance evaluated, and the next set of parameters
is tried.

Since the search space is too large, ATLAS uses an orthogonal line search to find
the optimal values for the set of parameters it searches over. Given a function y =
f(x1, x2, . . . , xn) to optimize, orthogonal line search determines an approximation by
solving a sequence of n 1-dimensional optimization problems, where each problem cor-
responds to one of the n parameters. When optimizing for xi, the set of optimal values
already found for x1 . . . xi−1 are used, and reference values are used for the remaining
parameters xi+1 . . . xn. ATLAS provides the parameter sequence, and ranges and ref-
erence values for each of the parameters, using a combination of built-in defaults and
the determined microarchitectural parameters.

It has been shown that a suitably designed model, based on a detailed understanding
of the microarchitecture, can replace the search in ATLAS to find the best parameters
deterministically [75].

Discussion. ATLAS has been very successful in generating very fast MMM code for
many architectures and has been widely used. In fact, ATLAS, and its predecessor
PHiPAC [22], were the first efforts on automatic performance tuning in the area of nu-
merical computing; as such, it raised awareness to the increasing difficulty of deciding
on coding choices and achieving high performance in general on machines with deep
memory hierarchies. As we have seen, in this case, using program generation is crucial
to efficiently evaluate the many possible choices of parameters.

However, since ATLAS is based on (properly chosen) parameters it is not clear how to
extend its approach to novel architectural paradigms such as vector instructions, multi-
core processing, or others. To date, these are not supported by ATLAS. We argue that
the reason is the lack of an internal domain-specific language that can express all the
necessary transformations at a higher abstraction level, which also enables the inclusion
of new transformations. This is the approach taken by Spiral, a program generator for
the domain of linear transforms discussed later in Section 6.6.

5.5 Exercises

1. Mini-MMM. The goal of this exercise is to implement a fast mini-MMM to multi-
ply two square NB ×NB matrices (NB is a parameter), which is then used within
an MMM.

(a) Based on definition. Use your naive implementation of the MMM as mini-
MMM (code from Exercise 1 in Section 2.

46

(b) Register blocking. Block into micro MMMs with MU = NU = 2, KU = 1.
The inner triple loop must have the kij order. Manually unroll the innermost
i and j loops and schedule your code to perform alternating additions and
multiplications (one operation per line of code). Perform scalar replacement
on this unrolled code manually.

(c) Unrolling. Unroll the innermost k loop by a factor of 2 and 4 (KU = 2, 4,
which doubles and quadruples the loop body) and again do scalar replacement.
Assume that 4 divides NB .

(d) Performance plot, search for best block size. Determine the L1 data cache size
C (in doubles, i.e., 8B units) of your computer. Measure the performance (in
Mflop/s) of your four codes for all NB with 16 ≤ NB ≤ min(80,

√
C) with

4 dividing NB . Create a plot with the x-axis showing NB , and y-axis showing
performance. The plot should contain 4 lines: one line for each of the programs
(MMM by definition, register blocking, and unrolling by a factor of 2 and 4).
Discuss the plot, including answers to the following questions: which NB and
which code yields the maximum performance? What is the percentage of peak
performance in this case?

(e) Loop order. Does it improve if in the best code so far you switch the outermost
loop order from ijk to jik? Create a plot to show the answer.

(f) Blocking for L2 cache. Consider now your L2 cache instead. What is its size
(in doubles)? Can you improve the performance of your fastest code so far by
further increasing the block size NB to block for L2 cache instead? Answer
through an appropriate experiment and performance plot.

2. MMM.

(a) Implement an MMM for multiplying two square N × N matrices assuming
NB divides N , blocked into NB×NB blocks. Use your best mini-MMM code
from Exercise 1.

(b) Create a performance plot comparing this implementation and the implementa-
tion based on definition above for an interesting range of N (up to sizes where
the matrices do not fit into the L2 cache). Plot the size N on the x-axis, against
the performance (in Mflop/s or Gflop/s) on the y-axis.

(c) Analyze and discuss the plot.

6 DFT

In this section we describe the design and implementation of a high-performance func-
tion to compute the FFT. The approach we must take is different from the one taken to
optimize the MMM in Section 5: we do not start with a naive implementation that is
transformed into an optimized form, but design the code from scratch. This is due to

47

the more complex structure of the available FFT algorithms. Note that, in contrast to
MMM, an implementation based on the definition of the DFT is not competitive.

The first main problem is the choice of a suitable FFT algorithm, since many differ-
ent variants are available that differ vastly in structure. It makes no sense to start with
the wrong FFT algorithm and optimize the implementation step by step. In particular,
when targeting a machine with a memory hierarchy, starting the optimization with the
iterative radix-2 FFT used in Numerical Recipes (Section 2.3) is suboptimal since it re-
quires log2(input size) many sweeps through the input data, which results in poor cache
locality. Further, no unrolled and optimized basic block is used for optimal register per-
formance.

In our discussion below we design a recursive radix-4 FFT implementation. Generaliza-
tion to a mixed-radix recursive implementation is relatively straightforward in concept,
but technically complex. The optimization steps taken follow to a large extent the de-
sign of FFTW 2.x [9]. FFTW uses a program generator in addition, to automatically
implement optimized unrolled basic blocks [23].

In all our DFT code examples the (complex) data is assumed to be stored in interleaved
complex double-precision arrays (alternating real and imaginary parts of the vector el-
ements). We pass around pointers of type double, and two neighboring double ele-
ments are one complex number. All strides are relative to complex numbers.

6.1 Background

In this section we provide background on the DFT and FFTs. We explain these algo-
rithms using the Kronecker product formalism. We start with restating the DFT defini-
tion from Section 2.3. For code readability we denote the size of the input vector with
N . As usual, matrices are written as A = [ak,`], where ak,` are the matrix elements. An
index range for k, ` may be given in the subscript.

Definition. The discrete Fourier transform (DFT) of a complex input vector x of length
N is defined as the matrix-vector product

y = DFTN x, DFTN = [ωk`
N]0≤k,`<N , ωN = e−2πi/N .

Kronecker product formalism. We describe fast algorithms for the DFT using the
Kronecker product formalism [5]. There are several reasons for using this formalism:
First, the representation is visual and index free and hence readable by humans. Second,
it is easy to translate algorithms expressed this way directly into code, as we shall
see later. Third, in this representation, algorithm variants are easily obtained by both
inserting recursions into each other and manipulating algorithms to match them to a
specific hardware architecture. For instance, the algorithms can be mapped to vector
and multicore architectures this way [26, 25].

These are also the reasons why the program generator Spiral (explained in Section 6.6)
uses this formalism as its internal domain-specific language.

48

We define In as the n×n identity matrix. The tensor (or Kronecker) product of matrices
is defined as

A⊗B = [ak,`B]k,` with A = [ak,`]k,` .

In particular,

In ⊗A =

A
A

. . .
A

is block-diagonal. We also introduce the iterative direct sum

n−1⊕

i=0

Ai =

A0

A1

. . .
An−1

 ,

which generalizes In ⊗A.

We visualize I4 ⊗A below; the four As are shown with different shades of gray.

I4 ⊗A =

A

A

A

A

(1)

Now we look at the tensor product A⊗ In. This matrix also contains n blocks of A, but
they are spread out and interleaved at stride n. This is best understood by visualization:
the equivalent of (1) is

A⊗ I4 = (2)

where we assume that A is 4 × 4. All elements with the same shade of gray taken
together constitute one A, so the matrix again contains four As. The pattern shows that
multiplying (2) to an input vector x is equivalent to multiplying A to four subvectors of
x, extracted at stride 4, and writing the result into the same locations.

The stride permutation matrix Lmn
m permutes an input vector x of length mn as

in + j 7→ jm + i, 0 ≤ i < m, 0 ≤ j < n.

If x is viewed as an n × m matrix, stored in row-major order, then Lmn
m performs a

transposition of this matrix.

49

Recursive FFT. Using the above formalism, the well-known Cooley-Tukey FFT in its
recursive form can be written as a factorization of the DFTN matrix into a product of
sparse matrices. That is, for N = mn,

DFTmn = (DFTm⊗In)Dm,n(Im ⊗DFTn)Lmn
m . (3)

Here Dm,n is the diagonal “twiddle” matrix defined as

Dm,n =
m−1⊕

j=0

diag(ω0
mn, ω1

mn, . . . , ωn−1
mn)j . (4)

Equation (3) computes a DFT of size mn in four steps. First, the input vector is per-
muted by Lmn

m . Second, m DFTs of size n are computed recursively on segments of the
vector. Third, the vector is scaled element wise by Dm,n. Lastly, n DFTs of size m are
computed recursively at stride m.

The recursively called smaller DFTs are computed similarly until the base case n = 2
is reached, which is computed by definition using an addition and a subtraction:

DFT2 =
[
1 1
1 −1

]
. (5)

In summary, (3) and (5) are sufficient to compute DFTs of arbitrary two-power sizes.
To compute DFTs of other sizes, other FFT algorithms are required [5].

Algorithms and formulas. There is a degree of freedom in applying (3) to recursively
compute a DFT, namely in factoring the given DFT input size N . For instance one can
factor 8 → 2× 4 → 2× (2× 2) using two recursive applications of (3). The complete
FFT algorithm for this factorization could then be written as the following formula:

DFT8 = (DFT2⊗I4)D8,4

(
I2 ⊗ (DFT2⊗I2)D4,2(I2 ⊗DFT2)L4

2

)
L8

2. (6)

Direct implementation. A straightforward implementation of (3) can be easily ob-
tained since the occurring matrix formulas have a direct interpretation in terms of code
as shown in Table 4. The implementation of (3) would hence have four steps corre-
sponding to the four factors in (3).

Observe in Table 4 that the multiplication of a vector by a tensor product containing
an identity matrix can be computed using loops. The working set for each of the m
iterations of y = (Im ⊗ An)x (see (1)) is a contiguous block of size n and the base
address is increased by n between iterations. In contrast, the working sets of size m of
the n iterations of y = (Am ⊗ In)x (see (2)) are interleaved, leading to stride n within
one iteration and a unit stride base update across iterations.

Cost analysis. Computing the DFT using (3) requires, independent of the recursion
strategy, n log2(n) + O(n) complex additions and 1

2n log2(n) + O(n) complex multi-
plications.

The exact number of real operations depends on the chosen factorizations of n and is at
most 5n log2(n) + O(n).

50

formula code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)

y = (Im ⊗An)x
for(i=0;i<m;i++)

y[i*n:1:i*n+n-1] =
A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for(i=0;i<m;i++)

y[i:n:i+m-1] =
A(x[i:n:i+m-1]);

y =
(⊕m−1

i=0 Ai
n

)
x
for(i=0;i<m;i++)

y[i*n:1:i*n+n-1] =
A(i, x[i*n:1:i*n+n-1]);

y = Dm,nx
for(i=0;i<m*n;i++)

y[i] = Dmn[i]*x[i];

y = Lmn
m x

for(i=0;i<m;i++)
for(j=0;j<n;j++)

y[i+m*j]=x[n*i+j];

Table 4. Translating formulas to code. x denotes the input and y the output vector. The subscript
of A and B specifies the size of the (square) matrix. We use Matlab-like notation: x[b:s:e]
denotes the subvector of x starting at b, ending at e and extracted at stride s.

Iterative FFTs. The original FFT by Cooley and Tukey [77] was not the recursive algo-
rithm (3), but an iterative equivalent and for N = 2n. It can be obtained by expanding
the DFT recursively always using the factorization N = 2 ·N/2, and then rearranging
the parentheses and fusing adjacent permutations. The result is the iterative FFT

DFTN =

(
k∏

i=1

(I2i−1 ⊗DFT2⊗IN/2i)D′
N,i

)
RN , (7)

where the D′
N,i are diagonal matrices and RN is the bit-reversal permutation [5]. Nu-

merical Recipes implements a variant of (7), shown in Section 2.3.

6.2 Cache Optimization

In this section we derive the recursive skeleton and the kernel specification for our DFT
implementation.

Blocking. Blocking a DFT algorithm is done by choosing the recursive Cooley-Tukey
FFT algorithm (3) as starting point instead of the iterative FFT used by the Numerical
Recipes code in Section 2.3. The block size is the chosen radix m in (3), which is a

51

degree of freedom. We assume a radix-4 implementation with N = 4n, i.e., we factor
N = 4 · 4n−1. The corresponding recursion is

DFT4n = (DFT4⊗I4n−1)D4,4n−1(I4 ⊗DFT4n−1)L4n

4 . (8)

We visualize (8) below for n = 2. We see four stages, corresponding to the four factors
in the matrix factorization.

DFT4⊗I4 D4,4 I4⊗DFT4 L16
4

DFT16 =
stride 4

to

stride 1

(9)

For n > 1 our implementation will recursively apply (8) to the terms DFT4n−1 in the
right side of (8). The terms DFT4 are recursion leaves and not implemented using (8).
We will discuss their implementation in Section 6.3.

This recursion is right-expanded—the first stage gets recursively expanded while the
second stage uses radix-4 kernels. Right-expanded recursive implementations have su-
perior data locality as only a small amount of temporary storage is needed and the
second stage can be implemented in-place.

Loop merging. A naive implementation of (8) leads to a recursive function with four
stages (corresponding to the four matrix factors) and thus four sweeps through the data.
However, the stride permutation L4n

4 is just a data reordering and thus is a candidate for
loop merging. Similarly, the twiddle factor matrix D4,4n−1 is a diagonal matrix and can
be merged with the subsequent stage.

We now sketch the derivation of a recursive implementation of (8). We partition (8) into
two expressions as

DFT4n =
(

(DFT4⊗I4n−1)D4,4n−1

)
·
(

(I4 ⊗DFT4n−1)L4n

4

)
, (10)

which become two stages (instead of four) in the recursive function

void DFT(int N, double *Y, double *X);

that implements (8).

For n = 2 we visualize the merging of the stride permutation with the adjacent tensor
product, DFT4⊗I4, in (11) below. The merging of the diagonal D4,4 with the adjacent

52

tensor product I4 ⊗DFT4 cannot easily be visualized.

DFT4⊗I4 D4,4 (I4⊗DFT4)L
16
4

DFT16 = (11)

The first stage of (10), y = (I4 ⊗ DFT4n−1)L4n

4 x, is handled as follows. According
to Table 4, the tensor product I4 ⊗ DFT4n−1 alone is translated into a loop with 4
iterations. The same is true for (I4 ⊗ DFT4n−1)L4n

4 ; only, as (11) shows, the input
is now read at stride 4 but the output is still written at stride 1. This means that the
corresponding DFT function needs to have the stride as an additional parameter and
has to be implemented out-of-place, i.e., x and y need to be different memory regions.
Hence it is of the form

void DFT_rec(int N, int n, double *Y, double *X, int s)

We pass n together with N to avoid computing the logarithm.

Now the function DFT above just becomes a special case of DFT_rec and can hence
be implemented using a C macro (log4(), computes n from 4n):

#define DFT(N, Y, X) DFT_rec(N, log4(N), Y, X, 1)

For N = 4, we reach the leaf of the recursion and call a base case kernel function.

void DFT4_base(double *Y, double *X, int s);

The second stage, y = (DFT4⊗I4n−1)D4,4n−1x, first scales the input by a diagonal
matrix and then sweeps with a DFT4 kernel over it, applied at a stride. More precisely,
DFT4 operates on xj , xj+4n−1 , xj+2·4n−1 , and xj+3·4n−1 , where j is the loop iteration
number.

Again, we merge these two steps, this time by replacing the DFT4s in DFT4⊗I4n−1 by
DFT4 Dj , where Dj is a 4×4 diagonal matrix containing the proper diagonal elements
from D4,4n−1 . Inspection shows that Dj (as a function of the problem size 4n) is given
by

Dj = diag(ω0
4n , ωj

4n , ω2j
4n , ω3j

4n), 0 ≤ j < 4n−1. (12)

Hence, the function implementing y = (DFT4 Dj)x also needs a stride as parameter,
and j to compute the elements of Dj . Also, it can be in-place since it reads from and
writes to the same locations of input and output vector. Hence it takes the form:

void DFT4_twiddle(double *Y, int s, int n, int j);

The final recursive function is given below. There are some address multiplications by
2, required to implement arrays of complex numbers as arrays (of twice the size) of real
numbers.

53

// recursive radix-4 DFT implementation

// compute the exponent
#include <math.h>
#define log4(N) (int)(log(N)/log(4))

// top-level call to DFT function
#define DFT(N, Y, X) DFT_rec(N, log4(N), Y, X, 1)

// DFT kernels
void DFT4_base(double *Y, double *X, int s);
void DFT4_twiddle(double *Y, int s, int N, int j);

// recursive radix-4 DFT function
// N: problem size
// Y: output vector
// X: input vector
// s: stride to access X
void DFT_rec(int N, int n, double *Y, double *X, int s)
{ int j;

if (N==4)
// Y = DFT_4 X
DFT4_base(Y, X, s);

else {
// Y = (I_4 x DFT_N/4)(LˆN_4) X
for(j=0; j<4; j++)

DFT_rec(N/4, n-1, Y+(2*(N/4)*j), X+2*j*s, s*4);
// Y = (DFT_4 x I_{N/4})(D_N,4) Y
for(j=0; j<N/4; j++)

DFT4_twiddle(Y+2*j, N/4, n, j);
}

}

Buffering. The kernel DFT4_twiddle accesses both input and output in a stride. For
large sizes N = 4n, this stride is a large two-power, which means that all elements
accessed by the kernel are mapped to the same set in the cache (see Fig. 6). If the cache
does not have sufficient associativity, cache thrashing occurs. Namely, each iteration
of the DFT4 twiddle loop has to load 4 cache lines and all these cache lines get
evicted before the next iteration of the DFT4 twiddle loop can use the already loaded
remaining cache lines.

Buffering alleviates these problems to a certain degree. An initial and final copy op-
eration introduce overheads, but all intermediate steps are done on contiguous data,
preventing cache thrashing.

As an example, buffering is performed on the second loop of the preceding code, lead-
ing to the following code. We assume a cache line size of LS complex numbers (= 4
doubles). (If LS is larger than the radix size, one needs special cases for some recur-

54

sion steps.) To implement buffering, we first split the j loop into N/(2*LS)× LS
iterations. We add copying to the body of the outer tiled j1 loop. Our copy operation
handles cache lines and thus data for multiple DFTs. In particular, we copy 4 sets of
LS consecutive complex elements (4 cache lines) into a local buffer. The inner tiled j2
loop performs LS DFTs on the local contiguous buffer. The large, performance degrad-
ing complex stride 4n−1 in the original j loop gets replaced by a small complex stride
LS in the j2 loop at the cost of two copy operations that copy whole cache lines. The
threshold parameter th controls the sizes for which the second loop gets buffered.

// cache line size = 2 complex numbers (16 bytes)
define LS 2

// recursive radix-4 DFT function with buffering
// N: problem size
// Y: output vector
// X: input vector
// s: stride to access X
// th: threshold size to stop buffering
void DFT_buf_rec(int N, int n, double *Y, double *X, int s, int th)
{ int i, j, j1, j2, k;
// local buffer
double buf[8*LS];

if (N==4)
// Y = DFT_4 X
DFT4_base(Y, X, s);

else
{ // Y = (I_4 x DFT_{N/4})(LˆN_4) X

if (N > th)
for(j=0; j<4; j++)
DFT_buf_rec(N/4, n-1, Y+(2*(N/4)*j), X+2*j*s, s*4, th);

else
for(j=0; j<4; j++)
DFT_rec(N/4, n-1, Y+(2*(N/4)*j), X+2*j*s, s*4);

// Y = (DFT_4 x I_{N/4})(D_{N,4}) Y, buffered for LS
// j loop tiled by LS
for(j1=0; j1<N/(4*LS); j1++)
{ // copy 4 chunks of 2*LS double to local buffer

for(i=0; i<4; i++)
for(k=0; k<2*LS; k++)

buf[2*LS*i+k] = Y[(2*LS*j1)+(2*(N/4)*i)+k];

// perform LS DFT4 on contiguous data
// buf = (DFT4 Dj x I_LS) buf
for(j2=0; j2<LS; j2++)
DFT4_twiddle(buf+2*j2, LS, n, j1*LS+j2);

// copy 4 chunks of 2*LS double to output
for(i=0; i<4; i++)

55

for(k=0; k<2*LS; k++)
Y[(2*LS*j1)+(2*(N/4)*i)+k] = buf[2*LS*i+k];

}
}

}

One can perform a similar buffering operation on the input X for the call to DFT rec,
as X is accessed at a large stride. This buffering must take place as special case for
N = 16 in DFT rec and requires a third variant of the recursive function DFT rec.

6.3 CPU and Register Level Optimization

This section describes the design and implementation of optimized DFT base cases (ker-
nels). We again restrict the discussion to the recursive radix-4 FFT algorithm. Exten-
sions to mixed-radix implementations requires different kernel sizes, all implemented
following the ideas presented in this section. High-performance implementations may
use kernels of up to size 64 [23, 78].

Blocking. We apply (3) to the DFT4:

DFT4 = (DFT2⊗I2)D4,2(I2 ⊗DFT2)L4
2. (13)

As (13) is a recursive formula, an implementation based on (13) is automatically
blocked.

Unrolling and scheduling. We implement (13) according to the rules summarized in
Table 4. We aim at implementing recursion leafs. Thus the code needs to be unrolled.
Due to the recursive nature of (13), kernels derived from (13) are automatically reason-
ably scheduled.

For DFT kernels, larger unrolled kernels lead to slightly less operations, as more twid-
dle factors are known at optimization time and one can take better advantage of trivial
complex multiplications. However, larger kernels do not increase the available instruc-
tion level parallelism as much as in MMM, since the DFT data flow is more complicated
and imposes stronger constraints on the operation ordering.

Scalar replacement. We next apply scalar replacement as described in Section 4.3.
Every element in the input array X is only referenced twice, and every location of the
output array Y is written once. Hence, we only replace the temporary array t by scalar
variables, but do not replace accesses to X and Y. Experiments suggest that this strategy
is sufficient for obtaining maximum performance. This leads to the following code for
DFT4_base. From the discussion in Section 6.2 we know that this function loads at
complex stride s from *X and writes at unit stride to *Y. We obtain the following code:

// DFT4 implementation
void DFT4_base(double *Y, double *X, int s)
{ double t0, t1, t2, t3, t4, t5, t6, t7;
t0 = (X[0] + X[4*s]);

56

t1 = (X[2*s] + X[6*s]);
t2 = (X[1] + X[4*s+1]);
t3 = (X[2*s+1] + X[6*s+1]);
t4 = (X[0] - X[4*s]);
t5 = (X[2*s+1] - X[6*s+1]);
t6 = (X[1] - X[4*s+1]);
t7 = (X[2*s] - X[6*s]);
Y[0] = (t0 + t1);
Y[1] = (t2 + t3);
Y[4] = (t0 - t1);
Y[5] = (t2 - t3);
Y[2] = (t4 - t5);
Y[3] = (t6 + t7);
Y[6] = (t4 + t5);
Y[7] = (t6 - t7);

}

Precomputation of constants. The kernel DFT4_twiddle computes y =
(DFT4 Dj)x, which contains multiplication with the complex diagonal Dj as defined
in (12). The entries of Dj are complex roots of unity (twiddle factors) that depend on
the recursion level and the loop counter j. Computing the actual entries of Dj requires
evaluations of sin kπ

N and cos kπ
N for suitable values of k and N , which requires expen-

sive calls to the math library. Hence these numbers should be precomputed.

We introduce an initialization function init_DFT that precomputes all diagonals re-
quired for size N and stores pointers to the tables (one table for each recursion level) in
the global variable double **DN, as shown below.

#define PI 3.14159265358979323846
// twiddle table, initialized by init_DFT(N)
double **DN;

void init_DFT(int N)
{ int i, j, k, size_Dj = 16, n_max = log4(N);
DN = malloc(sizeof(double*)*(n_max-1));

for (j=1; j<n_max; j++, size_Dj*=4)
{ double *Dj = DN[j-1] = malloc(2*sizeof(double)*size_Dj);

for (k=0; k<size_Dj/4; k++)
for (i=0; i<4; i++)
{ *(Dj++) = cos(2*PI*i*k/size_Dj);

*(Dj++) = sin(2*PI*i*k/size_Dj);
}

}
}

The function DFT4_twiddle is shown below.

// C macro for complex multiplication
#define CMPLX_MULT(cr, ci, a, b, idx, s) \

57

{ double ar, ai, br, bi; \
ar = a[2*s*idx]; ai = a[2*s*idx+1]; \
br = b[2*idx]; bi = b[2*idx+1]; \
cr = ar*br - ai*bi; \
ci = ar*bi + ai*br; \

}

// DFT4*D_j implementation
void DFT4_twiddle(double *Y, int s, int n, int j)
{ double t0, t1, t2, t3, t4, t5, t6, t7,

X0, X1, X2, X3, X4, X5, X6, X7;
double *Dj;

// complex multiplications from D_N
Dj = DN[n-2]+8*j;
CMPLX_MULT(X0, X1, Y, Dj, 0, s);
CMPLX_MULT(X2, X3, Y, Dj, 1, s);
CMPLX_MULT(X4, X5, Y, Dj, 2, s);
CMPLX_MULT(X6, X7, Y, Dj, 3, s);

// operations from DFT4
t0 = (X0 + X4);
t1 = (X2 + X6);
t2 = (X1 + X5);
t3 = (X3 + X7);
t4 = (X0 - X4);
t5 = (X3 - X7);
t6 = (X1 - X5);
t7 = (X2 - X6);
Y[0] = (t0 + t1);
Y[1] = (t2 + t3);
Y[4*s] = (t0 - t1);
Y[4*s+1] = (t2 - t3);
Y[2*s] = (t4 - t5);
Y[2*s+1] = (t6 + t7);
Y[6*s] = (t4 + t5);
Y[6*s+1] = (t6 - t7);

}

6.4 Performance Evaluation

We now evaluate the performance of the recursive radix-4 FFT derived in this section
and compare it to the Numerical Recipes and the sequential, scalar (single core, x87)
version of FFTW 3.1.2. All implementations are run on a single core of a 2.66 GHz In-
tel Core2 Duo, with a theoretical scalar peak performance of 5.32 Gflop/s. We compile
all implementation with the Intel C++ compiler 10.0 with options “/O3 /QxT” to obtain
maximum optimization. The radix-4 implementation was copied directly from the code

58

listings above. The Numerical Recipes FFT implementation is in single-precision and
inplace while both our radix-4 FFT and FFTW are double-precision and out-of-place.
This gives a slight performance advantage to the Numerical Recipes FFT implementa-
tion.

Fig. 14 shows the performance results for the three FFT implementations. We see that
Numerical Recipes reaches about 1 Gflop/s and drops sharply to 160 Mflop/s when
the memory footprint for the problems is too large for the L2 cache. The radix-4 FFT
implementation we derived in this tutorial reaches about 2 Gflop/s for problem sizes that
fit into the L2 cache. For larger sizes the performance drops down to about 1 Gflop/s.
FFTW 3.1.2 in sequential scalar mode shows the upper bound for practically achievable
performance when using x87 instructions and a single core. FFTW reaches about 2.5–3
Gflop/s for cache-resident sizes and 1.6 Gflop/s for out-of-cache sizes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 4 6 8 10 12 14 16 18 20 22 24

log2(input size)

Recursive Radix-4 FFT

(double-precision, out-of-place)

Numerical Recipes Radix-2 FFT

(single-precision, inplace)

FFTW 3.1.2

(double-precision, out-of-place)

DFT on 2.66 GHz Core2 Duo (32-bit Windows XP, Single Core, x87)
performance [Gflop/s]

Fig. 14. Performance results for three FFT implementations on a 2.66 GHz Intel Core2 Duo. All
implementations are sequential and scalar (single core, x87). Higher is better.

Analysis of the above data can be summarized as follows.

– The recursive radix-4 FFT is twice as fast as Numerical Recipes for in-cache sizes
and about 6 times faster for out-of-cache sizes.

– The radix-4 FFT implementation reaches more than two thirds of the performance
of scalar FFTW. The performance difference is mainly due to FFTW’s larger basic
block sizes (codelets), its ability to choose different radices at different recursion
steps, and a few additional loop optimizations.

59

– There is still a lot of room for further improvement using Intel’s SSE instructions
and both cores (see Fig. 2).

In addition, our experiments show that buffering does not produce any performance
gain in this case, since the cache associativity on the Core2 architecture is 8, which is
large enough for a radix-4 kernel.

6.5 Parameter-Based Performance Tuning

We now discuss the parameters in our DFT implementation that can be tuned to the
memory hierarchy.

Base case sizes. The most important parameter tuning is the selection of base cases. To
allow for multiple base cases DFT_base and DFT_twiddle, the program structure
must become more complex, as a data structure describing the recursion and containing
function pointers to the appropriate kernels replaces the two parameters N and n in
DFT_rec. The resulting program would be very similar to FFTW 2.x.

After this infrastructural change the system can apply any function DFT_twiddle in
the second stage of the recursion and any function DFT_base as recursion leaf. The
tuning process needs to find for each recursion step the right kernel size. FFTW uses
both a cost estimation and runtime experiments based on dynamic programming to find
good parameter choices [10]. Showing the full implementation is beyond the scope of
this tutorial.

Threshold for buffering. The second parameter decides the sizes for which buffering
should be applied. This depends on the cache size of the target machine, as buffering
only becomes beneficial for problem sizes that are not resident in the L2 cache.

Buffer size. Finally, we need to set the buffer size based on the cache line size of the
target machine to prevent cache thrashing. The cache line size can be either looked up
or found experimentally.

6.6 Program Generation for DFT: Spiral

Spiral [7] is a program generator for linear transforms. It can generate optimized fixed-
size and variable-size code for the DFT, the Walsh-Hadamard transform (WHT), the
discrete cosine and sine transforms, finite impulse response (FIR) filters, the discrete
wavelet transform, and others. Spiral builds on the Kronecker product framework for the
DFT, described in Section 6.1, but extends it to the whole domain of linear transforms.
Further, Spiral automates the optimization process outlined in Sections 6.2–6.5 as well
as many other optimizations including various forms of parallelization [54, 26, 79, 80].
The fastest FFT implementation shown in Fig. 2 is generated using Spiral.

In contrast to ATLAS, Spiral is not based on searching a parameterized space, but on a
domain-specific language (DSL) that enables the enumeration and systematic optimiza-
tion of algorithms. More specifically, there are two key ideas underlying Spiral:

60

1. Mathematical, structural, declarative DSL. Spiral uses a DSL to describe algo-
rithms. The DSL is called SPL [81] and is directly derived from the transform
domain: it is precisely (an extension of) the Kronecker formalism described in
Section 6.1. The language describes only the structure of algorithms and is hence
declarative. This property enables structural algorithm optimizations including par-
allelization that is not practical to perform on C code.

2. Optimization through rewriting. Spiral uses rewriting systems [82] for both the gen-
eration of alternative algorithms and the structural optimization of algorithms at a
high level of abstraction. The rewriting rules for the former are divide-and-conquer
algorithms specified as in (3) and for the latter, they are known matrix identities.

Architecture. The input to Spiral is a formally specified transform (for instance,
DFT384); the output is a highly optimized C program implementing the transform.
These highly optimized programs may use language extensions or software libraries to
access special machine features like multiple cores or SIMD vector instructions. We
show the architecture of Spiral in Fig. 15 and discuss it below.

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
e

a
rc

h

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

Evaluation

Level

Fig. 15. The architecture of Spiral (from [7]).

– Algorithm level. This stage is responsible for generating and optimizing algorithms
for the specified transforms.

• Formula generation. A transform like DFT384 is considered to be a non-
terminal. Spiral uses breakdown rules to describe recursive algorithms for lin-
ear transforms. For example, (3) and (7) are breakdown rules expressing larger
DFTs in terms of smaller DFTs. Base cases terminate the recursion. For in-
stance, (5) is the DFT base rule.

61

A rewriting system recursively applies breakdown rules to the specified trans-
form to produce alternative algorithms represented as SPL expressions, also
called formulas.

• Formula optimization. Formulas are structurally optimized, also using a rewrit-
ing system. Loop fusion is performed using rewriting rules which essentially
perform the same reasoning and restructuring as described in Section 6.2. The
loop fusion by rewriting requires the extension of SPL to a more powerful
language called Σ-SPL [24]. Further, rewriting is used for various forms of
parallelization including the efficient mapping to multiple processor cores or
SIMD vector instructions. The next section will provide more details on this
topic.

– Implementation level. Spiral contains a special-purpose compiler that translates for-
mulas into code. The compiler is based on (an extension of) Table 4. Moreover, it
performs all kernel-level optimizations described in Section 6.3. Depending upon
an unrolling threshold, subformulas smaller than the threshold are treated as ker-
nels, while larger formulas are implemented using loops.

– Evaluation level. This stage is responsible for compiling and measuring the runtime
of the generated code.

– Search. The measured runtime guides Spiral in picking a new candidate formula
by changing the breakdown of the non-terminal. The feedback loop is guided by a
search strategy, usually a form of dynamic programming. The main purpose of the
search is adaptation to the platform’s memory hierarchy.

Structural optimization through rewriting. A core component of Spiral’s optimiza-
tion process is the structural optimization of formulas using a rewriting system. As
briefly discussed above, two major optimization goals are achieved through rewriting:
1) loop merging [24], and 2) the mapping of algorithms to parallel architectures like
multicore CPUs or SIMD vector extensions [54, 26]. Loop merging is beyond the scope
of this tutorial as it requires the introduction of a new language, Σ-SPL. Thus, we only
briefly discuss the mapping to parallel architectures.

Analysis of the access pattern of tensor products shows that certain tensor products can
be mapped very well to some architectures but only poorly to others. As example, in (3)
the construct

Im ⊗DFTn (14)

has a perfect structure for m-way parallel machines with either shared or distributed
memory. However, implementing it with SIMD vector instructions introduces consid-
erable overhead [54]. Similarly, the construct

DFTm⊗In (15)

has a perfect structure for n-way vector SIMD architectures. However, implementing
it on shared memory machines leads to false sharing, while on distributed memory
machines tiny messages would be required, which degrades performance.

62

Using algebraic identities [53] one can change the structure of formulas. For instance,
the identity

DFTm⊗In = Lmn
m (In ⊗DFTm)Lmn

n (16)

replaces a vector formula by a parallel formula and introduces two stride permutations.

Spiral uses a rewriting system to perform formula manipulations like (16), using a tag-
ging mechanism to steer the manipulation toward the final formula optimized for a
certain architecture. Spiral’s rewriting system consists of three main components.

– Tags encode target architecture types and parameters. They contain high-level in-
formation about the target architecture. For instance, Spiral uses the tags “vec(ν)”
for SIMD vector extensions (ν encodes the vector length of the architecture) and
“smp(p, µ)” for shared memory (p is the number of processors and µ the length of
cache lines).

– Base cases describe formula constructs that are guaranteed to be mapped efficiently
to the target hardware. Spiral uses special operator variants to encode base cases.
For instance, a p-way parallel base case is denoted by the tagged operator “⊗‖”;
An is any n× n matrix expression.

– Rewriting rules encode formula manipulation identities, but in addition “know” the
target machine and thus deduce the “right” parameters for identities with degrees
of freedom. For instance, the identity (16) is translated into the rewriting rule

Am ⊗ In︸ ︷︷ ︸
smp(p,µ)

→ Lmn
m︸︷︷︸

smp(p,µ)

(
Ip ⊗‖ (In/p ⊗Am)

)
Lmn

n︸︷︷︸
smp(p,µ)

.

This rule has the additional knowledge of the target system’s processor count, and
utilizes this knowledge when applying the helper identity

Imn = Im ⊗ In.

The stride permutations Lmn
m and Lmn

n will be handled by further rewriting.

For every type of parallelism, these three components are added to Spiral to enable the
corresponding structural optimization. In addition, every class of target machines may
require a small extension of the SPL compiler to translate tagged operators into target
code. For instance, “⊗‖” will be translated into OpenMP parallel for loops, when Spiral
generates shared memory code using OpenMP.

Discussion. Spiral fully automates the process of optimizing linear transforms for a
large class of state-of-the-art architectures. The code it generates is competitive with
expertly hand-tuned implementations and often outperforms these. The key is Spiral’s
domain-specific, declarative, mathematical language to describe algorithms. Spiral’s al-
gorithm (breakdown rule) database contains the algorithmic knowledge of more than a
hundred journal papers on transform algorithms. Spiral’s rewriting system is the key to
structural optimization and parallelization of algorithms. With this approach it is possi-
ble to re-target Spiral to new parallel platforms. So far Spiral successfully generated (at
least prototypical) fast implementations for SIMD vector extensions, multicore CPUs,

63

cluster computers, graphics processors (GPUs), and the Cell BE processor. In addition,
Spiral generates hardware designs for field-programmable gate arrays (FPGAs), and
hardware-software partitioned implementations.

While Spiral focuses on transforms, the basic principles underlying it may be applicable
to other numerical problem domains.

6.7 Exercises

1. WHT: Operations count. The Walsh-Hadamard transform (WHT) is related to the
DFT but has a simpler structure and simpler algorithms. The WHT is defined only
for 2-power input sizes N = 2n, as given by the matrix

WHT2n = DFT2⊗DFT2⊗ . . .⊗DFT2︸ ︷︷ ︸
n factors

,

where DFT2 is as defined in (5).

(a) How many entries of the WHT are zeros and why? Determine the number
of additions and the number of multiplications required when computing the
WHT by definition.

(b) The WHT of an input vector can be computed iteratively or recursively using
the following formulas:

WHT2n =
n−1∏

i=0

(I2n−i−1 ⊗DFT2⊗I2i) (iterative) (17)

WHT2n = (DFT2⊗I2n−1)(I2 ⊗WHT2n−1) (recursive) (18)

(c) Determine the exact operations counts (again, additions and multiplications
separately) of both algorithms. Also determine the degree of reuse as defined
in Section 2.1.

2. WHT: Implementation.

(a) Implement a recursive implementation of the WHT based on (18).

(b) Implement the triple loop (iterative) version of the WHT using (17). Create a
performance plot (size versus Mflop/s) for sizes 21–220 comparing the iterative
and the recursive versions. Discuss the plot.

(c) Create unrolled WHTs of sizes 4 and 8 based on the recursive WHT algorithm.
(The number of operations should match the cost computed in Exercise 1c on
page 63).

(d) Now implement recursive radix-4 and radix-8 implementations of the WHT
based on the formulas

WHT2n = (WHT4⊗I2n−2)(I4 ⊗WHT2n−2) (radix-4)
WHT2n = (WHT8⊗I2n−3)(I8 ⊗WHT2n−3) (radix-8)

64

In these implementations, the left hand side WHT (of size 4 or 8) should be
your unrolled kernel (which then has to handle input data at a stride) called in
a loop; the right hand side is a recursive call (also called in a loop). Further, in
both implementations, you may need one step with a different radix to handle
all input sizes.

Measure the performance of both implementations, again for sizes 21–220 and
add it to the previous plot (four lines total).

(e) Try to further improve the code or perform other interesting experiments. For
example, what happens if one considers more general algorithms based on

WHT2n = (WHT2i ⊗I2n−i)(I2i ⊗WHT2n−i)

The unrolled code could be the WHT on the left hand side of the above equa-
tion. Alternatively, one could run a search to find the best radix in each step
independently.

7 Conclusions

Writing fast libraries for numerical problems is difficult and requires a thorough under-
standing of the interaction between algorithms, software, and microarchitecture. Look-
ing ahead, the situation is likely to get worse due to the recent shift to parallelism in
mainstream computing, triggered by the end of frequency scaling. We hope this guide
conveys the problem, its origin, and a set of basic methods to write fast numerical code.

However, problems also open research opportunities. In this case the problem is the
need to automate high performance library development, a difficult challenge that, in
its nature, is at the core of computer science. To date this problem has been attacked
mostly by the scientific computing and compiler community, and the list of successes is
still short. We believe that other areas of computer science need to get involved, includ-
ing programming languages, and in particular domain-specific languages, generative
programming, symbolic computation, and optimization and machine learning. For re-
searchers in these areas, we hope that this tutorial can serve as an entry point to the
problem and the existing work on automatic performance tuning.

Acknowledgement

This work was supported by DARPA through the DOI grant NBCH1050009 and the
ARO grant W911NF0710416, by NSF through awards 0325687 and 0702386, and by
an Intel grant.

65

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Readings in computer
architecture (2000) 56–59

2. Meadows, L., Nakamoto, S., Schuster, V.: A vectorizing, software pipelining compiler for
LIW and superscalar architecture. In: Proceedings of Risc. (1992)

3. Group, S.S.C.: SUIF: A parallelizing & optimizing research compiler. Technical Report
CSL-TR-94-620, Computer Systems Laboratory, Stanford University (May 1994)

4. Franke, B., O’Boyle, M.F.P.: A complete compiler approach to auto-parallelizing C programs
for multi-DSP systems. IEEE Trans. Parallel Distrib. Syst. 16(3) (2005) 234–245

5. Van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM (1992)
6. Press, W.H., Flannery, B.P., A., T.S., T., V.W.: Numerical Recipes in C: The Art of Scientific

Computing. 2nd edn. Cambridge University Press (1992)
7. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W., Xiong, J.,

Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proc. of the IEEE 93(2) (2005) 232–275 Special issue
on Program Generation, Optimization, and Adaptation.

8. Website: Spiral (1998) http://www.spiral.net.
9. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In:

Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP). Volume 3.
(1998) 1381–1384

10. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the
IEEE 93(2) (2005) 216–231 Special issue on Program Generation, Optimization, and Adap-
tation.

11. Website: FFTW http://www.fftw.org.
12. Goto, K., van de Geijn, R.: On reducing TLB misses in matrix multiplication, FLAME work-

ing note 9. Technical Report TR-2002-55, The University of Texas at Austin, Department of
Computer Sciences (Nov. 2002)

13. Whaley, R.C., Dongarra, J.: Automatically Tuned Linear Algebra Software (ATLAS). In:
Proc. Supercomputing. (1998)

14. Moura, J.M.F., Püschel, M., Padua, D., Dongarra, J.: Scanning the issue: Special issue on
program generation, optimization, and platform adaptation. Proceedings of the IEEE, special
issue on Program Generation, Optimization, and Adaptation 93(2) (2005) 211–215

15. Bida, E., Toledo, S.: An automatically-tuned sorting library. Software: Practice and Experi-
ence 37(11) (2007) 1161–1192

16. Li, X., Garzar, M.J., Padua, D.: A dynamically tuned sorting library. In: Proc. International
Symposium on Code Generation and Optimization (CGO). (2004) 111–124

17. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix kernels.
Int’l J. High Performance Computing Applications 18(1) (2004) 135–158

18. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Whaley, C., Yelick,
K.: Self adapting linear algebra algorithms and software. Proceedings of the IEEE 93(2)
(2005) 293–312 Special issue on Program Generation, Optimization, and Adaptation.

19. Website: BeBOP http://bebop.cs.berkeley.edu/.
20. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse

matrix kernels. In: Proceedings of SciDAC 2005. Journal of Physics: Conference Series, San
Francisco, CA, USA, Institute of Physics Publishing (June 2005)

21. Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimization of software and the
ATLAS project. Parallel Computing 27(1-2) (2001) 3–35

22. Bilmes, J., Asanović, K., whye Chin, C., Demmel, J.: Optimizing matrix multiply using
PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In: Proceedings of
International Conference on Supercomputing (ICS). (1997)

66

23. Frigo, M.: A fast Fourier transform compiler. In: Proc. Programming Language Design and
Implementation (PLDI). (1999) 169–180

24. Franchetti, F., Voronenko, Y., Püschel, M.: Formal loop merging for signal transforms. In:
Proc. Programming Language Design and Implementation (PLDI). (2005) 315–326

25. Franchetti, F., Voronenko, Y., Püschel, M.: FFT program generation for shared memory:
SMP and multicore. In: Proc. Supercomputing. (2006)

26. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization of signal
transforms. In: Proc. High Performance Computing for Computational Science (VECPAR).
(2006)

27. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Orti, E., van de Geijn, R.: The science
of deriving dense linear algebra algorithms. ACM TOMS 31(1) (2005) 1–26

28. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: Formal linear
algebra methods environment. ACM TOMS 27(4) (2001) 422–455

29. Quintana-Orti, G., Quintana-Orti, E.S., van de Geijn, R., Van Zee, F.G., Chan, E.: Program-
ming algorithms-by-blocks for matrix computations on multithreaded architectures, submit-
ted for publication

30. Baumgartner, G., Auer, A., Bernholdt, D.E., Bibireata, A., Choppella, V., Cociorva, D., Gao,
X., Harrison, R.J., Hirata, S., Krishanmoorthy, S., Krishnan, S., Lam, C.C., Lu, Q., Nooi-
jen, M., Pitzer, R.M., Ramanujam, J., Sadayappan, P., Sibiryakov, A.: Synthesis of high-
performance parallel programs for a class of ab initio quantum chemistry models. Proceed-
ings of the IEEE 93(2) (2005) 276–292 Special issue on Program Generation, Optimization,
and Adaptation.

31. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

32. Lämmel, R., Saraiva, J., Visser, J., eds.: Generative and Transformational Techniques in
Software Engineering, International Summer School, GTTSE 2005, Braga, Portugal, July
4-8, 2005. Revised Papers. In Lämmel, R., Saraiva, J., Visser, J., eds.: GTTSE. Volume 4143
of Lecture Notes in Computer Science., Springer (2006)

33. Püschel, M.: How to write fast code. http://www.ece.cmu.edu/˜pueschel/
teaching/18-645-CMU-spring08/course.html (2008) Course 18-645, Electri-
cal and Computer Engineering, Carnegie Mellon University.

34. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT
Press, Cambridge, MA, USA (2001)

35. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA (1997)

36. Tolimieri, R., An, M., Lu, C.: Algorithms for discrete Fourier transforms and convolution.
2nd edn. Springer (1997)

37. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach. Morgan
Kaufmann (May 2002)

38. Bryant, R.E., O’Hallaron, D.R.: Computer Systems: A Programmer’s Perspective. Prentice
Hall (2003)

39. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 14(3) (1969)
354–356

40. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation 9 (1990) 251–280

41. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M.,
Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated
set of Basic Linear Algebra Subprograms (BLAS). ACM Transactions on Mathematical
Software 28(2) (2002) 135–151

67

42. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. 3rd
edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)

43. Website: ATLAS http://math-atlas.sourceforge.net/.
44. Website: Goto BLAS http://www.tacc.utexas.edu/general/staff/goto/.
45. Website: LAPACK http://www.netlib.org/lapack/.
46. Website: ScaLAPACK http://www.netlib.org/scalapack/.
47. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,

Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA (1997)

48. Website: PLAPACK http://www.cs.utexas.edu/users/plapack/.
49. Chtchelkanova, A., Gunnels, J., Morrow, G., Overfelt, J., van de Geijn, R.: Parallel im-

plementation of BLAS: General techniques for level 3 BLAS. Concurrency: Practice and
Experience 9(9) (1997) 837–857

50. Website: FLAME http://www.cs.utexas.edu/users/flame/.
51. Johnson, S.G., Frigo, M.: A modified split-radix FFT with fewer arithmetic operations. IEEE

Trans. Signal Processing 55(1) (2007) 111–119
52. Nussbaumer, H.J.: Fast Fourier Transformation and Convolution Algorithms. 2nd edn.

Springer (1982)
53. Johnson, J.R., Johnson, R.W., Rodriguez, D., Tolimieri, R.: A methodology for designing,

modifying, and implementing FFT algorithms on various architectures. Circuits Systems
Signal Processing 9(4) (1990) 449–500

54. Franchetti, F., Püschel, M.: Short vector code generation for the discrete Fourier transform.
In: Proc. IEEE Int’l Parallel and Distributed Processing Symposium (IPDPS). (2003) 58–67

55. Bonelli, A., Franchetti, F., Lorenz, J., Püschel, M., Ueberhuber, C.W.: Automatic perfor-
mance optimization of the discrete Fourier transform on distributed memory computers.
In: Proc. International Symposium on Parallel and Distributed Processing and Applications
(ISPA). (2006)

56. Website: FFTPACK http://www.netlib.org/fftpack/.
57. GNU: GSL http://www.gnu.org/software/gsl/.
58. Mirković, D., Johnsson, S.L.: Automatic performance tuning in the UHFFT library. In:

Proc. Int’l Conf. Computational Science (ICCS). Volume 2073 of LNCS., Springer (2001)
71–80

59. Website: UHFFT http://www2.cs.uh.edu/˜mirkovic/fft/parfft.htm.
60. Website: FFTE http://www.ffte.jp.
61. Website: ACML http://developer.amd.com/acml.jsp.
62. Website: Intel MKL http://www.intel.com/cd/software/products/

asmo-na/eng/307757.htm.
63. Website: Intel IPP http://www.intel.com/cd/software/products/

asmo-na/eng/perflib/ipp/302910.htm.
64. Website: IBM ESSL and PESSL http://www-03.ibm.com/systems/p/

software/essl.html.
65. Website: NAG http://www.nag.com/.
66. Website: IMSL http://www.vni.com/products/imsl/.
67. Hill, M.D., Smith, A.J.: Evaluating associativity in CPU caches. IEEE Trans. Comput.

38(12) (1989) 1612–1630
68. Intel Corporation: Intel 64 and IA-32 Architectures Optimization Reference Manual. (2007)

http://www.intel.com/products/processor/manuals/index.htm.
69. Advanced Micro Devices (AMD) Inc.: Software Optimization Guide for AMD Athlon 64

and AMD Optero Processors. (2005) http://developer.amd.com/devguides.
jsp.

68

70. GNU: Gcc:optimization options http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.
71. Intel: Quick-reference guide to optimization with intel compilers version 10.x http://

cache-www.intel.com/cd/00/00/22/23/222300_222300.pdf.
72. Intel: Intel VTune
73. Microsoft: Microsoft Visual Studio
74. GNU: Gnu gprof manual http://www.gnu.org/software/binutils/manual/

gprof-2.9.1/html_mono/gprof.html.
75. Yotov, K., Li, X., Ren, G., Garzaran, M., Padua, D., Pingali, K., Stodghill, P.: A comparison

of empirical and model-driven optimization. Proceedings of the IEEE 93(2) (2005) Special
issue on Program Generation, Optimization, and Adaptation.

76. Wolfe, M.: Iteration space tiling for memory hierarchies. In: SIAM Conference on Parallel
Processing for Scientific Computing. (1987)

77. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier
series. Math. of Computation 19 (1965) 297–301

78. Püschel, M., Singer, B., Xiong, J., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., John-
son, R.W.: SPIRAL: A generator for platform-adapted libraries of signal processing algo-
rithms. Int’l Journal of High Performance Computing Applications 18(1) (2004) 21–45

79. D’Alberto, P., Milder, P.A., Sandryhaila, A., Franchetti, F., Hoe, J.C., Moura, J.M.F., Püschel,
M., Johnson, J.: Generating FPGA accelerated DFT libraries. In: IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). (2007)

80. Milder, P.A., Franchetti, F., Hoe, J.C., Püschel, M.: Formal datapath representation and
manipulation for implementing DSP transforms. In: Design Automation Conference (DAC).
(2008)

81. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A language and compiler for DSP
algorithms. In: Proc. Programming Language Design and Implementation (PLDI). (2001)
298–308

82. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Automated Reasoning. Vol-
ume 1. Elsevier (2001) 535–610

