
Computer Generation of General Size Linear Transform Libraries

Yevgen Voronenko, Frédéric de Mesmay, and Markus Püschel
Department of Electrical and Computer Engineering

Carnegie Mellon University Pittsburgh, PA, USA {yvoronen, fdemesma, pueschel}@ece.cmu.edu

Abstract

The development of high-performance libraries has be-
come extraordinarily difficult due to multiple processor
cores, vector instruction sets, and deep memory hierarchies.
Often, the library has to be reimplemented and reoptimized,
when a new platform is released. In this paper we show how
to automatically generate general input-size libraries for the
domain of linear transforms. The input to our generator is
a formal specification of the transform and the recursive
algorithms the library should use; the output is a library that
supports general input size, is vectorized and multithreaded,
provides an adaptation mechanism for the memory hierar-
chy, and has excellent performance, comparable to or better
than the best human-written libraries. Further, we show that
our library generator enables various customizations; one
example is the generation of Java libraries.

1. Introduction

The development of high performance numerical libraries
has become extraordinarily difficult due to deep memory
hierarchies, vector instruction sets, and multiple processor
cores. Compilers lack domain knowledge and hence cannot
optimize numerical code to the extent possible. Hence, it is
up to the programmer to perform all necessary optimizations,
a very time consuming task that often has to be repeated
whenever a new platform is released.

A tantalizing prospect is to automate the numerical library
development, which means letting the computer write the
software given only a short, high-level description of the
algorithms to be implemented as input. Some advances
have been made in this direction. For example, ATLAS [1]
generates the kernel code for matrix-matrix multiplication
(MMM) by searching over different blocking and unrolling
strategies. The kernel code multiplies matrices of fixed size
and is used inside a general size MMM routine. Similarly,
FFTW [2], a library for the discrete Fourier transform
(DFT) and related transforms, uses a program generator
[3] to obtain efficient base cases (called codelets) for small
fixed sizes (see Table 1(a)). Again, these codelets are used
in a hand-written general-size library infrastructure, whose
design is rather sophisticated: it supports various variants of
the DFT needed in the recursive computation, uses an initial-
ization routine for precomputation and runtime adaptation,
and provides multi-threading support.

Since codelets consist of straightline code, the codelet
generator [3] can use a directed acyclic graph (DAG)
representation to mechanically perform optimizations such
as constant folding and scheduling, and the generator is
restricted to small problem sizes.

The program generation problem for the DFT, and trans-
forms in general, becomes considerably harder if code for
the arbitrary (again fixed) input sizes, and hence the looped
code, has to be generated (see Table 1(b)). In this case, the
domain knowledge is needed to perform all the necessary
optimizations. Spiral [4] solves this problem for a large class
of transforms by using two domain-specific languages called
SPL and

P
-SPL and by using rewriting systems to perform

loop optimizations [5], vectorization [6], and parallelization
[7] at a high level of abstraction.

Spiral pushes the limits of automation, but one problem
is still unsolved: the computer generation of general input
size libraries (see Table 1(c)) for linear transforms. We
solve this problem in this paper to achieve, what one
may call “complete” automation in the domain of linear
transforms. More specifically, we show that given only a
high-level description of one or several transform algorithm,
we can generate a library that is optimized for the memory
hierarchy, vectorized, parallelized, and provides an optional
runtime adaptation mechanism. In other words, the generated
library could be FFTW-like or hardware vendor library-like.

It turns out that the main challenge in generating such
libraries is the identification of the set of recursive functions
needed. The reason is that the optimizations that can be
inlined in fixed-size code (Table 1(b)), now cross function
boundaries and hence create a set of transform variants that
need to be computed as subroutines. We derive these needed
subroutines automatically, including their exact signatures,
and derive which parameters are precomputed and which
are runtime parameters. The procedure is compatible with
the prior work on vectorization and parallelization, which
means it enables us to also generate vectorized and multi-
threaded libraries.

We implemented the complete library generator and used
it to generate libraries for a variety of transforms. In most
case the performance is competitive with and often is consid-
erably faster than the best existing (partially and fully hand-
written) libraries FFTW and Intel Integrated Performance
Primitives (IPP), if they support the same functionality. Fur-
ther, we demonstrate other benefits of our library generator
such as the computer generation of libraries with custom

(a) Fixed size, unrolled (b) Fixed size, looped (c) General size library, recursive

void dft_4(cpx *Y, cpx *X) {
cpx s, t, t2, t3;
t = (X[0] + X[2]);
t2 = (X[0] - X[2]);
t3 = (X[1] + X[3]);
s = _I_*(X[1] - X[3]);
Y[0] = (t + t3);
Y[2] = (t - t3);
Y[1] = (t2 + s);
Y[3] = (t2 - s);

}

void dft_4(cpx *Y, cpx *X) {
cpx T[4];
f o r(i n t i = 0; i <= 1; i++) {
cpx d1 = D[2*i], d2 = D[2*i+1];
T[2*i] = d1*(X[i] + X[i+2]);
T[2*i+1] = d2*(X[i] - X[i+2]);

}
f o r(i n t j = 0; j <= 1; j++) {
Y[j] = T[j] + T[j+2];
Y[2+j] = T[j] - T[j+2];

}
}

s t r u c t dft : public Env {
dft(i n t n); // constructor
void compute(cpx *Y, cpx *X);
i n t _rule, f, n;
char *_dat;
Env *ch1, *ch2;

};

void dft::compute(cpx *Y, cpx *X) {
ch2->compute(Y, X, n, f, n, f);
ch1->compute(Y, Y, n, f, n, n/f);

}

Table 1: Code types. Automatic general size library (c) generation is the goal of this paper.

source code size or Java libraries.
Organization of this paper. We provide the background

on transforms and a formal specification of the problem
solved in this paper in Section 2. We also illustrate the
problem in obtaining general size transform libraries: the
derivation of the set of recursive functions needed. We show
how to solve this problem using

P
-SPL and rewriting in

Section 3. The complete library generation is discussed in
detail in Section 4. The experiments and benchmarks are
shown in Section 5. Section 6 is our conclusion.

2. Motivation and Problem Statement

We provide the necessary background on linear transforms
and use the DFT as example to explain the main challenge in
obtaining a library for general input size: the identification
of the set of recursive functions needed to implement the
transform. Then we state the library generation problem
formally and discuss its relevance.

Background on linear transforms. A linear transform is
a matrix-vector product y = Mx, where x, y are the input
and output vectors, respectively, and M is the transform
matrix. For the DFT, M is the matrix

DFTn =
[
ωk�

n

]
0≤k,�<n

, ωn = e−2πi/n. (1)

Many fast Fourier transform algorithms (FFTs) exist, and
can be represented as factorizations of DFTn into products
of structured sparse matrices [8]. For example, the Cooley-
Tukey FFT is a divide-and-conquer algorithm that for n =
km can be written as

DFTn = (DFTk ⊗Im)Tn
m(Ik ⊗ DFTm)Ln

k . (2)

Here, In is the n×n identity matrix, Tn
m = diag0≤j<n(dj)

is a diagonal matrix, and Ln
k (with n = mk) is the

n × n stride permutation matrix defined by the underlying
permutation

�n
k : jm + i �→ ik + j, for 0 ≤ i < m, 0 ≤ j < k. (3)

In words, Ln
k transposes a k×m matrix stored in row-major

order, or equivalently, reads the input at stride k and writes
the output at stride 1.

Most important in this formalism is the tensor (or Kro-
necker) product ⊗ of matrices, defined as

A ⊗ B = [ak� · B]k,� , A = [ak�]k,�.

(2) is called a breakdown rule in Spiral [4] and the matrix
formalism is called signal processing language (SPL) [9]. It
is best understood by visualizing the nonzero pattern of the
matrices in (2), done here for k = m = 4. In the leftmost
sparse factor DFTk ⊗Im, all the 1st, 2nd, . . . , mth, entries
of the small diagonals constitute one DFTk, respectively.

DFTn DFTk ⊗Im T n
m Ik⊗DFTm Ln

k

stride k

stride 1
to= (4)

Recursive application of (2) for a two-power n = 2t yields
an O(n log(n)) algorithm, terminated by DFT2, which is
computed by definition:

DFT2 =
[

1 1
1 −1

]
. (5)

For other sizes, other FFT algorithms are needed.
Problem motivation: Recursive functions needed to

implement a transform. Implementing a recursive li-
brary based on (2) is seemingly straightforward with the
pseudo code shown in Implementation 1 that computes
y = DFTn x in four steps corresponding to the four factors
in (2) or (4) from right to left.

We observe that even this direct implementation is not
self-contained but needs the extra function dft_str that
reads and writes input at stride m. Further, Implementation 1
is far suboptimal since it makes four passes through the data.
A far better solution, Implementation 2, close to the one in
FFTW 2.x, merges the first two steps and the last two steps,
and precomputes the diagonal elements d(i).

Now additional two functions dft_str and
dft_scaled are needed and need to be implemented
as well. We call these functions recursion steps. Their
implementation may produce additional recursion steps. We
call the full set of required recursion steps the recursion
step closure.

Further, the recursion must eventually be terminated.
Hence the library needs base cases which are transforms of

DFTn = P�
k/2,2m

(
DFT2m ⊕ (

Ik/2−1 ⊗i C2m rDFT2m(i/k)
)) (

RDFT′
k ⊗Im

)
, k even,

∣
∣
∣
∣
RDFTn

RDFT′
n

∣
∣
∣
∣ = (P�

k/2,m ⊗ I2)
(∣

∣
∣
∣
RDFT2m

RDFT′
2m

∣
∣
∣
∣ ⊕

(
Ik/2−1 ⊗i D2m

∣
∣
∣
∣
rDFT2m(i/k)
rDFT2m(i/k)

∣
∣
∣
∣

))(∣
∣
∣
∣
RDFT′

k

RDFT′
k

∣
∣
∣
∣ ⊗ Im

)
, k even,

rDFT2n(u) = L2n
m (Ik ⊗i rDFT2m((i + u)/k)) (rDFT2k(u) ⊗ Im) ,

DCT-2n = P�
k/2,2m

(
DCT-22m K2m

2 ⊕
(
Ik/2−1 ⊗ N2m RDFT-3�

2m

))
Bn(Ln/2

k/2 ⊗ I2)(Im ⊗ RDFT′
k)Qm/2,k,

Table 2: Breakdown rules for a variety of transforms: complex DFT, DFT for real input (RDFT), and discrete cosine transforms (DCT)
of type 2. rDFT and RDFT′ are auxiliary transforms used in the computation. P, Q are permutation matrices, B, C, D, N are other
sparse matrices. The second rule is for two transforms simultaneously.

Implementation 1 (Direct from (2))

void dft(int n, cpx *y, cpx *x) {
int k = choose_factor(n);
int m = n/k;
cpx *t1 = Permute x with L(n,k);
// t2 = (I_k tensor DFT_m)*t1
for(int i=0; i<k; ++i)

dft(m, t2 + m*i, t1 + m*i);
// t3 = diag(d(j))*t2
for(int i=0; i<n; ++i)

t3[i] = d(i) * t2[i];
// y = (DFT_k tensor I_m)*t3, cannot call
// dft() recursively, need strided I/O
for(int i=0; i<m; ++i)

dft_str(k, m, y + i, t3 + i);
}
// to be implemented
void dft_str(int n, int str, cpx *Y, cpx *X);

Implementation 2 (FFTW 2.x-like implementation of (2))

void dft(int n, cpx *y, cpx *x) {
int k = choose_factor(n);
// t1 = (I_k tensor DFT_m)L(n,k)*x
for(int i=0; i < k; ++i)

dft_str(m, k, 1, t1 + m*i, x + m*i);
// y = (DFT_k tensor I_m) diag(d(j))
for(int i=0; i < m; ++i)

dft_scaled(k, m, precomp_d[i], y + i, t1 + i);
}

// to be implemented
void dft_str(int n, int istr, int ostr, cpx *y, cpx *x);
void dft_scaled(int n, int str, cpx *d, cpx *y, cpx *x);

small fixed sizes that are typically unrolled and must exist
for all the recursion steps.

FFTW 2.x implements the two recursion steps in Imple-
mentation 2 and the base cases are generated codelets for
sizes 2–16, 32, 64. dft_scaled is always assumed to be a
base case called twiddle codelet. The degrees of freedom in
recursively choosing k in (2) is used for platform adaptation
and fixed in a so-called plan during a precomputation step
that runs a search.

Implementation 2 is not yet vectorized or parallelized.
This, as one can imagine, can only increase the number of
required recursion steps. Indeed, in FFTW 3.2a, there are 4
types of codelets for scalar complex DFT, and an additional
15 types for the vectorized complex DFT for a total of
19 types. The need for these types, and the FFTW library
infrastructure in general, are identified and implemented
by hand—only the base cases (codelets, Table 1(a)) are

generated for each type and input size.
Now we can formulate the automatic library generation

problem considered in this paper.
Problem statement (Library generation for trans-

forms). Given: A set of transforms and associated break-
down rules. Generate: A vectorized, parallelized, adaptive,
library of high performance for the transforms. Tasks:

1) Find the recursion step closure, i.e., the minimal set of
needed recursion steps (functions), including their sig-
natures, based on the given rules, and derive breakdown
rules for these recursion steps.

2) Parallelize and vectorize the breakdown rules for each
recursion step if needed and generate the corresponding
recursive functions.

3) Generate the (vectorized if needed) base cases
(codelets) for all recursion steps for a set of small fixed
sizes. For best performance, a range of small sizes must
be implemented.

4) Combine the recursion steps and codelets into a gener-
ated library infrastructure, responsible for initialization,
precomputed data management, and the control of the
degrees of freedom in the recursion for adaptation.

Discussion. Why does one need a library generator if
some well-designed hand-written libraries like FFTW or
Intel’s IPP/MKL already exist? There are several reasons.

First, these libraries often need to be updated, if there are
significant platform changes. A generator reduces the effort
considerably.

Second, using a library generator we can generate libraries
for other transforms, including the discrete cosine and sine
transforms, FIR filters, and wavelets. Table 2 shows several
transforms and examples of their breakdown rules. Note the
general complexity and that several of them require auxiliary
transforms (e.g., rDFT) and their rules to be implemented.
We generate and evaluate the associated libraries in Sec-
tion 5.

Third, it is not clear whether (2) is always the best way to
compute the DFT. Indeed, later we will show a DFT library
generated from the FFT shown in Table 2, which improves
performance over the one based on (2).

Fourth, adding additional breakdown rules for the same
transform can considerable increase the number of recursion

steps due to the merging of permutations similar as in
Implementation 2. The resulting complexity is difficult to
manage manually.

Fifth, our automatic framework enables the generation
of custom libraries without performance loss. For example,
a light-weight library for two-power sizes only or custom
interfaces such as a DFT followed by scaling. Further, by
changing the backend we can generate libraries in a different
target language such as Java.

Lastly, with this paper we show that for an entire domain
of numerical algorithms (namely transforms) every major
implementation task can be automated starting only from a
specification of the problem and its algorithms. The key is
a properly designed domain-specific framework that is used
to perform all major tasks at a high level of abstraction
including the generation of alternative algorithms, adaptation
and optimization for the memory hierarchy, parallelization,
vectorization, and finally, the creation of general size adap-
tive libraries (this paper).

3. Identifying Recursion Steps: P-SPL

Our solution to the automatic library generation problem
relies on the domain-specific language

P
-SPL as internal

algorithm representation. SPL, the matrix formalism used in
(2) and Table 2, is not expressive enough.

P
-SPL was intro-

duced in [5] to automate loop merging for transforms; here
it is the key to automatically derive the set of recursion steps
needed to implement a transform and to perform the other
necessary optimizations. We start with a brief introduction
of

P
-SPL and explain how it is used to mechanically derive

the recursion steps in Implementation 2.
P

-SPL is similar to SPL in that it represents structured
matrix factorizations in a declarative form, but it introduces
loops, index mapping functions (such as strides), and explicit
I/O. The loops are captured by an iterative matrix sum
operator

∑
. Read (load) and write (store) operations are

represented by gather matrices G(f) and scatter matrices
S(f), respectively, both parametrized by index functions
f . Similarly, permutation matrices and diagonal matrices
are parametrized by the underlying permutations and scalar
functions, respectively. We now explain

P
-SPL in detail.

Functions.
P

-SPL uses functions with one input and one
output, which can be composed in the usual way, e.g., f ◦g.
A function f with domain A and range B is written as

fA→B : i �→ f(i), i ∈ A, f(i) ∈ B.

The domain is always an integer interval In = {0 . . . n−1},
the range may be IN or the real or complex numbers R, C.
For convenience, we abbreviate fn→N = f In→IN , or omit
the domain and range, where it is clear from the context.
Permutations are bijective functions written as fn = fn→n.

Our running example uses the stride permutation in (3)

and the stride function defined as

hn→N
b,s : In → IN ; i �→ b + is. (6)

Parametrized matrices.
P

-SPL contains four types of
matrices parametrized by functions: G(fn→N), S(fn→N),
perm(fn) and diag

(
fn→C

)
. They are defined below. Let

en
k ∈ C

n×1 be the column basis vector with the 1 in
k-th position and 0 elsewhere, and (·)� denote matrix
transposition, then

G(fn→N) :=
[
eN
f(0) | eN

f(1) | · · · | eN
f(n−1)

]�
,

perm(fn) := G(f) =
[
en
f(0) | en

f(1) | · · · | en
f(n−1)

]�
,

S(fn→N) := G(f)� =
[
eN
f(0) | eN

f(1) | · · · | eN
f(n−1)

]
,

diag
(
fn→C

)
:= diag

(
f(0), . . . , f(n − 1)

)
.

From the definition it follows that

y = G(f) · x ⇔ yi = xf(i),

y = S(f) · x ⇔ yf(i) = xi, yj =

{
xi if j = f(i)
0 else

.

The above explains their interpretation as code, given in
Table 3(a).

Regular and iterative matrix sum. Using the constructs
defined above we can convert the ⊗ in SPL into a summa-
tion. This is done as follows, assuming that A is n × n:

Ik ⊗ A =
[

A
.. .

A

]
=

[
A

]
+ · · · +

[

A

]
(7)

= S0 AG0 + · · · + Sk−1 AGk−1 =
k−1∑

j=0

Sj AGj .

In this equation, Gj = G(hnj,1) and Sj = G�
j . For example,

G0 = G(h0,1) =
[

1
. . .

1

]
,

and S0 = S(h0,1) = G(h0,1)�. Intuitively, the conversion to
P

-SPL makes the loop structure explicit. In each iteration
j, G(·) and S(·) specify how to read and write a portion of
the in- and output, respectively, to be processed by A.

We always require that the sum as in (7) does not require
actual additions; hence, the sum encodes a loop in which
all iterations are independent and each iteration produces a
unique part of the final output vector. The code for y =
(
∑n−1

j=0 Mj)x is shown in Table 3(b).
The conversion from SPL to

P
-SPL, the merging of itera-

tive algorithm steps, and their simplification is accomplished
using the rewrite rules shown in Table 4 [5] . We consider
(2) as example and show—crucial for this paper—how the
recursion steps in Implementation 2 become explicit.

Cooley-Tukey FFT example. We start with (2) and first

(a) Parametrized matrices

Code(G(fn→N), y, x) → for(j=0..n-1) y[j] = x[f(j)];

Code(S(fn→N), y, x) → for(j=0..n-1) y[f(j)] = x[j];

Code(perm(pn→n), y, x) → for(j=0..n-1) y[j] = x[p(j)];

Code(diag
`
fn→C

´
, y, x) → for(j=0..n-1) y[j] = f(j)*x[j];

(b) Matrix sums

Code(M1 + M2, y, x) → Code(M1, y, x); Code(M2, y, x);

Code
“Pk−1

j=0 Mj , y, x
”
→ for(j=0..k-1) Code(Mj , y, x);

Table 3: Translating
P

-SPL constructs to code; x and y denote the input and output vectors.

SPL to
P

-SPL conversion

A ⊗ Ik → ∑k−1
j=0 S(hj,k)AG(hj,k) (8)

Ik ⊗ A → ∑k−1
j=0 S(hmj,1)AG(hmj,1) (9)

Ln
k → perm(�n

k) (10)

Index mapping function simplification

�mk
m ◦ hk→mk

kj,1 → hk→mk
j,m (11)

(
�mk
m

)−1 → �mk
k (12)

hN→N ′
b′,s′ ◦ hn→N

b,s → hn→N ′
b′+s′b,s′s (13)

Loop merging
(∑

j Aj

)
M → (∑

j AjM
)
, M ∈ {G,diag} (14)

M
(∑

j Aj

) → (∑
j MAj

)
, M ∈ {S,diag} (15)

G(f)G(g) → G(g ◦ f) (16)

S(f) S(g) → S(f ◦ g) (17)

G(f) perm(g) → G(g ◦ f) (18)

perm(f) S(g) → S(f−1 ◦ g) (19)

G(f) diag
(
d
) → diag

(
d ◦ f

)
G(f) (20)

diag
(
d
)
S(f) → S(f) diag

(
d ◦ f

)
(21)

Table 4:
P

-SPL rewrite rules.

rewrite (Ik ⊗ DFTm)Ln
k using (9) and (10):

(
k−1∑

j=0

S(hjm,1)DFTm G(hjm,1)

)

perm(�n
k),

then merge the permutation using rules (14) and (18),
(

k−1∑

j=0

S(hjm,1)DFTm G(�n
k ◦ hjm,1)

)

,

and finally simplify the index function using rule (11) to get
(

k−1∑

j=0

S(hjm,1)DFTm G(hj,k)

)

. (22)

The above formula represents a loop over DFTs of strided
input data and corresponds to the first loop of Implementa-
tion 2.

Now we rewrite (DFTk ⊗Im) diag
(
f
)

using rules (8),

(14), and (20) into
(

m−1∑

j=0

S(hj,m)DFTk diag
(
f ◦ hj,k

)
G(hj,m)

)

, (23)

which is a loop over scaled DFTs on strided input and
equivalent to the second loop in Implementation 2.

Identifying recursion steps. Expressions (22) and
(23) directly identify the recursion steps in Implementa-
tion 2, namely dft_str ↔ S(hjm,1)DFTm G(hj,k) and
dft_scaled ↔ S(hj,m)DFTk diag

(
f ◦ hj,k

)
G(hj,m).

To find the recursion steps automatically, we introduce a
“function tag” into

P
-SPL that identifies those parts of a

formula that are to be implemented as separate functions
and use rewriting rules that propagate these tags. We denote
the tag with a brace. The rewriting is straightforward and
looks (sketched) as follows in our example:

DFT︸ ︷︷ ︸
= (DFT︸ ︷︷ ︸⊗I) diag (I ⊗ DFT︸ ︷︷ ︸)L (24)

=
(∑

S(h)DFT︸ ︷︷ ︸diag G(h)
) (∑

S(h)DFT︸ ︷︷ ︸G(h)
)

=
(∑

S(h)DFT diag G(h)
︸ ︷︷ ︸

) (∑
S(h)DFTG(h)
︸ ︷︷ ︸

)

(25)

In essence, the rewriting proceeds as before, but in the
final step the function tags are expanded to include adjacent
gather, scatter, and diagonal matrices.

Our motivating example shows only the first step. The
procedure needs to be repeated separately for each recur-
sion step until closure is reached, if possible. Further, the
recursion steps have to be parallelized and vectorized, and
implemented, together with the base cases and the library
infrastructure. The details are discussed in the remaining
paper.

4. Library Generation

In this section we explain the library generation process.
As before, we use the DFT and breakdown rule (2) as
running example and also include the necessary base case
rule (5).

The main steps of the procedure are shown in Figure 1.
The input to the library generator is a set of transforms and

Compute
recursion step

closure

Breakdown rules Transforms

Parametrize +
Implement

New rsteps?

Generate base cases

Hot/cold partition

Generate code

Optimized library

yes

no

Figure 1: Library generation. Input: transforms and breakdown
rules. Output: optimized library.

breakdown rules. The output is an optimized library. Below,
we will explain each step in detail, after introducing some
terminology.

A recursion step is a transform, usually surrounded by
scatter and gather constructs; examples are (22) and (23).
A recursion step (after parametrization, explained later)
specifies the signature of the associated recursive function.
For example, (22) defines dft_str in Implementation 2.
Further, we refer to a recursion step expanded using a
breakdown rule and rewritten as explained in Section 3 as a
P

-SPL implementation of a recursion step. For example,
(25) is a

P
-SPL implementation of the recursion step

DFTn; indeed, it can be converted into the DFT code
Implementation 2.

Compute recursion step closure. The purpose of this
step is to iteratively determine the set of recursion steps
(i.e., distinct recursive functions) needed to implement the
transforms and their breakdown rules.

The Parametrize and Implement block takes as input rules
and recursion steps (note that the initial transform is a
recursion step). First, the recursion steps are parametrized.
This means expressions of free parameters in the recursion
step (for example the loop indices, the degrees of freedom
with the breakdown rules, etc.) are replaced by the smallest
set of independent parameters. These will become function
arguments in the associated function definition. We denote
all free parameters with ui. Besides the generated name,
which contains no semantic information, each parameter has
a type (e.g. integer, real number, etc.), which is automati-
cally assigned during the parametrization. Parametrization
involves three steps: 1) replace every expression with free
variables by a new parameter of the same type, 2) de-
termine the equality constraints on the parameters, and 3)
find the smallest set of necessary parameters based on the

constraints.
After parametrization, the recursion step is implemented.

This means it is expanded using a breakdown rule and
rewritten as explained in Section 3. Besides obtaining a

P
-

SPL implementation, this step also identifies new recursion
steps arising as children.

The New rsteps? block decides whether the current set of
parametrized recursion steps contains new elements. If not,
the set is the recursion step closure. If yes, the feedback
loop iterates on the new recursion steps.

The procedure and further details are best explained using
our running example DFTn and (2) as input.

DFTn has one parameter n = u1 with no constraints, so
DFTu1 is a new recursion step. We expand DFTu1 using
the given rule (2) and rewrite it as explained in Section 3.
The result is the implementation (25), which is composed
of (22) and (23).

The implementation identifies two new recursion steps,
which we have to parametrize. For completeness, we include
the domains and ranges of the index mapping functions,
which we omitted before. We start with the right recursion
step in (25). First, we replace expressions with free variables
by fresh parameters:

S(hk→n
jk,1)DFTk G(hk→n

j,m) → S(hu1→u2
u3,1)DFTu4 G(hu5→u6

u7,u8
)

Note that the constants, such as 1, survive parametrization.
The result above is not yet a valid

P
-SPL formula, since

the matrix dimensions do not necessarily match. Hence,
we determine next the parameter constraints that make the
formula valid. In

P
-SPL one needs to check matrix products

and function compositions. In the example, only the matrix
product has to be valid, which means

u1 = u4, u4 = u5.

The constraints partition the parameters into groups of
interrelated parameters. In each group, the constraints form a
system of equations. In the cases we encountered the system
was either 1) linear, and thus the number of independent
parameters is equal to the rank of the system, or 2) non-
linear with a single equation, and thus only one independent
parameter is needed. Due to the trivial nature of these
constraints, in all libraries that we generated, including the
example above, the rank of linear systems was always one.
To proceed in this case, one of the parameters is assumed
to be known, and the system is solved for the rest of the
parameters. The solution is then substituted into the

P
-SPL

formula. In the above example, we assume u1 to be known.
Solving the trivial linear system gives u4 = u5 = u1, which
yields the final result:

S(hu1→u2
u3,1)DFTu1 G(hu1→u6

u7,u8
). (26)

Next, we consider the second recursion step in (25). The
diagonal matrix it includes contains a special marker pre(·)

that tells the system that elements of the diagonal are to be
precomputed. Therefore it makes sense to abstract away the
particular generating function of the diagonal. We do this by
allowing parameters to also be functions denoted as before,
i.e., uA→B .

With this extension the parametrization follows the same
steps as in the previous example, and the final result is

S(hu1→u2
u3,u4

)DFTu1 diag
(
pre(u7

u1→C)
)
G(hu1→u9

u10,u11
). (27)

Now we repeat the procedure with the two new recursion
steps (26) and (27) to obtain their implementations. We only
discuss (26) in detail.

We expand (26) using (2). Note that in (2), there is one
degree of freedom, the value of k, which will become an
additional parameter that we will denote with f1. Inserting
(2) into (26) yields

S(hu1→u2
u3,1)(DFTf1︸ ︷︷ ︸

⊗Iu1/f1) diag
(
pre(du1→C

u1/f1
)
)

· (If1 ⊗ DFTu1/f1︸ ︷︷ ︸
)Lu1

f1
G(hu1→u6

u7,u8
). (29)

The potential new recursion steps (DFTs) are marked but
are not yet finalized, as we have seen in (24)–(25). Next,
P

-SPL conversion and further rewriting is performed using
the rewrite rules from Table 4. The final result is given in
(28) in Table 5.

The result looks complicated due to the high level of
detail, but it is a completely specified

P
-SPL implemen-

tation of (26) using the Cooley-Tukey rule (2). Before we
can generate code for the implementation in (26), the full
recursion closure must be constructed.

A similar procedure is used to implement (27). The result
is not shown.

After parametrization, the new recursion steps in (28)
(Table 5) take the form

S(hu1→u2
u3,1)DFTu1 G(hu1→u6

u7,u8
)

S(hu1→u2
u3,u4

)DFTu1 diag
(
pre(u7

u1→C)
)
G(hu1→u9

u10,u11
)

Inspection shows that these are equal to (26) and (27).
Therefore, no new recursion steps are needed to implement
(26).

Similarly, (27) spawns as recursion steps itself and a
specialized variant, which itself produces no new recursion
steps.

The overall result is a recursion step closure with four
recursion steps. The associated call graph is shown in Fig. 2.
For readability, we dropped the unknown parameters and
replaced them by “*”. The first three recursion steps in
Fig. 2 correspond to the dft, dft_str, and dft_scaled
functions in Implementation 2. The fourth recursion step
is a special case of the third, with one parameter of the
first stride function h equal to 1. This information is useful,
because it can lead to better performance due to reduced
index computation.

1: DFT∗

2: S(h∗→∗
∗,1)DFT∗ G(h∗→∗

∗,∗)

3: S(h∗→∗
∗,∗)DFT∗ diag

(
pre(∗∗→C)

)
G(h∗→∗

∗,∗)

4: S(h∗→∗
∗,1)DFT∗ diag

(
pre(∗∗→C)

)
G(h∗→∗

∗,∗)

Figure 2: Graphical representation of the recursion step closure.

After the full closure is constructed, code can be generated
for the obtained recursive

P
-SPL implementations like (28).

This is done by applying rules from Table 3 and replacing the
curly braces by calls to other recursion steps. For example,
(28) becomes
cpx *T = (cpx*) malloc(s i z e o f(cpx) * u1);
f o r(i n t j=0; j < f1; ++j) {
RS2(T, X, u1/f1, u1, u1*j/f1, u6, u8*j + u7, u8*f1);

}
f o r(i n t i=0; i < (u_1/f_1); ++i) {
TFunc_Int_Cpx *F = new Func1(u1, u1/f1, f1, u1, i, u1/f1);
RS3(Y, T, f1, u2, i + u3, u1/f1, F, u1, i, u1/f1);

}
free(T);

Above RS2 and RS3 are the 2nd and 3rd recursion steps
from Fig. 2. This code is not yet final, because as explained
later, in order to handle precomputation, it must be separated
into an initialization and computation phase. In addition, a
generator function from integers to complex numbers for
the diagonal matrix in RS3 is created on the fly, saved in
F, and passed into RS2. In many languages (C, Fortran in
particular) this is not directly supported.

Generate base cases. The
P

-SPL implementations of the
recursion steps obtained in the previous step are for general
input size, such as u1 in (28). To terminate the recursion at
runtime, fixed size implementations, i.e. the recursion base
cases are needed. Due to their fixed size, the base cases can
be implemented as fully unrolled code, which reduces the
overhead associated with loops and recursive calls. Ideally,
the base cases should be available for a range of small sizes
to maximally reduce the overheads. In FFTW, the base cases
are called codelets.

This step can be automated as follows. We assume the list
of desired sizes (e.g., 2–16) to be known in advance. This
is currently a configuration setting.

For each obtained general size recursion step and each
fixed size transform, the following steps are performed. The
fixed size transform is matched against the transform in the
recursion step to determine the parameters (including but
not limited to the size). These are then inserted into the
recursion step to obtain a fixed size recursion step. Code

S(hu1→u2
u3,1)DFTu1 G(hu1→u6

u7,u8
)

︸ ︷︷ ︸
−−→

u1/f1−1∑

i=0

S(hf1→u2
u3+i,u1/f1

)DFTf1 diag
(
pre(Ωu1

u1/f1
◦ hf1→u1

i,u1/f1
)
)
G(hf1→u1

i,u1/f1
)

︸ ︷︷ ︸

·
f1−1∑

j=0

S(hu1/f1→u1

u1j/f1,1)DFTu1/f1 G(hu1/f1→u6
u7+u8j,u8f1

)
︸ ︷︷ ︸

(28)

Table 5: Implementation of recursion step (26) using (2).

can be generated for the resulting
P

-SPL formula using the
rules from Table 3 and applying the code optimizations from
the standard Spiral system [4]. The end result is a recursion
free

P
-SPL implementation and code.

As an example, consider (26) and DFT2. Matching yields
u1 = 2. Inserting 2 for u1 in (26) there is only one possible
P

-SPL implementation based on DFT2 =
[

1 1
1 −1

]
:

S(h2→u2
u3,1)

[
1 1
1 −1

]
G(h2→u6

u7,u8
). (30)

Note that even though this
P

-SPL formula is recursion free,
it is still parametrized. After applying the rules from Table 3
and standard compiler optimizations (loop unrolling, array
scalarization, copy propagation, and strength reduction) Spi-
ral obtains the code

cpx s1, s2;
s1 = X1[u_7];
s2 = X1[u_7 + u_8];
Y1[u_3] = (s1 + s2);
Y1[1 + u_3] = (s1 - s2);

Hot/cold partitioning of parameters. The goal of this
step is to determine which parameters of a recursion step
should be precomputed during an initialization step and
which become function parameters. This initialization step
has to be performed at runtime, once per transform size, and
the cost of initialization is amortized over multiple uses of
the same transform size.

As we explained earlier, the diagonal elements of Tn
m

inside the Cooley-Tukey FFT (2) are usually precomputed.
Similarly, a few other parameters might need to be precom-
puted. For example, those that are needed for the diagonal
elements such as n and m in Tn

m, and parameters that capture
degrees of freedom in the recursion strategy such as f1 in
(29) and their dependent parameters.

Automatic partitioning of the parameter set is important,
because it can be rather large, even in the simplest cases. For
example, in Fig. 2, even though there is only one parameter
(DFT size) for the recursion step 1, there is a total of 21 other
parameters across the recursion steps 2–4. These parameters
are not seen by the user, because these recursion steps are
only internally invoked by the algorithm. For larger libraries,
the number of recursion steps is typically around a dozen
(e.g., see Table 6 later) and the total number of parameters
across all recursion steps is in the hundreds.

To better understand how this works, we give an example
of calling Intel MKL using the DFTI interface to compute
a complex 1-dimensional DFT of size 32:

RS 1

RS 2 RS 3 RS 4

u1

u1

u2u3

u6 u2

u3

u4 u9 u10 u11 u7u7

u8 u1 u1

u2 u3

u6

u8 u9

u10

Figure 3: Parameter flow graph corresponding to the closure in
Fig. 2 after hot/cold partitioning. The nodes denote parameters,
the edges denote parameter dependencies. Black nodes are “cold”,
white nodes are “none”, gray square nodes are “hot”, and gray
octagon nodes are “reinit” parameters.

DFTI_DESCRIPTOR *d;
DftiCreateDescriptor(&d, DFTI_SINGLE, DFTI_COMPLEX, 1, 32);
...
DftiComputeForward(d, X, Y);

Above, DftiCreateDescriptor is an initialization
function which precomputes the necessary constants. The
parameters include the precision (DFTI_SINGLE), the data
type (DFTI_COMPLEX), and the size (here: 32). A similar
initialization function exists in FFTW.

We call parameters for the initialization cold, and param-
eters provided later hot. Changing a cold parameter incurs
the overhead of reinitialization, while a hot parameter can be
changed with no cost. The goal of the hot/cold partitioning
is to determine which parameters are cold and which are hot
for each recursion step. The procedure is explained next.

First, a parameter flow graph is constructed with shows
the dependencies between the parameters. If one recursion
step invokes another one, we create edges between the
caller parameters and the corresponding callee parameters
computed from them. For example, the partitioned parameter
flow graph that corresponds to the closure in Fig. 2 is shown
in Fig. 3. The partitioning algorithm initializes each node
either to the “none” state (which means that no decision has
been made), or to the “cold” state if it is a degree of freedom,
or affects the applicability of any breakdown rules for the
recursion steps (e.g., transform size), or appears inside the
pre(·) marker.

Next, two iterative dataflow analysis (IDA) [10] phases

are applied. The first phase is a backward IDA that marks
all mandatory cold parameters, by applying one simple rule.
Namely, for each dependence edge p → q, if q is marked
“cold,” then p is marked as “cold.”

The second phase is a forward IDA that marks all manda-
tory hot parameters, and if a parameter must be cold and hot
at the same time, puts it in a special “reinit” state, explained
below. The forward IDA applies the following three rules:

1) If parameter p is marked “none,” and depends on a loop
index, mark p “hot”.

2) If parameter p is marked “cold,” and depends on a loop
index, mark p “reinit”.

3) For each dependence edge p → q, if p is marked “hot,”
and q is marked “none”, then mark q as “hot”.

An example of a “reinit” parameter is u7 in recursion step 3
from (27). It is the generator function for the diagonal
elements. It depends on the loop index and at the same time
appears inside the precompute marker. The “reinit” status
means that the caller of recursion step 3 must create several
copies of its descriptor with different values of u7. The
number of copies will be finite and equal to the number
of iterations of the loop from which the recursion step is
invoked.

Finally, when the second IDA phase is complete, we can
mark all unmarked parameters (i.e., those in “none” state)
as either hot or cold depending on the default policy.

Generate code. This step is responsible for generating the
final library. For each recursion step several implementations
generated in the previous steps must be put together to form
a single function, and also the descriptor must be created.

The MKL/DFTI or FFTW descriptor mentioned above
is an example of a higher order function. Namely, the
descriptor takes an integer and returns a function (computing
the DFT), from complex vectors to complex vectors.

Clearly, many target languages, including C and C++, do
not directly support higher-order functions, and we eliminate
them using the process known as closure conversion1 or
lambda lifting [11], [12]. As the result, the descriptor system
used in Intel IPP and FFTW naturally arises. It is widely
known that in object-oriented languages closures can be
naturally expressed with objects and vice versa, which makes
C++ a good choice for a target language. This conversion is
also discussed in detail in [12], [13]. In our library generator,
we create a class for each recursion step; the class attributes
are the cold and reinit parameters of the recursion step.

For example, RS 2 becomes the following class:
s t r u c t RS2 : pub l i c TimeableEnv {

char *_dat; /* precomputed data mem area */
AutoFreeEnvList _garbage; /* allocated memory tracker */
EnvList child1, child2; /* initizalized callees */
i n t _rule, f1, u1, u2, u6, u8; /* parameters */

1. “Closure” here refers to the standard computer science term that
describes a function together with an environment (a set of variable
bindings) that must be used for its evaluation. The recursion step closure,
in contrast, is a mathematical set closure.

RS2();
RS2(i n t u1, i n t u2, i n t u6, i n t u8); /* constructor */
v i r t u a l ˜RS2();
void compute(cpx *Y1, cpx *X1, i n t u3, i n t u7);

};

Since its cold and reinit parameters are supplied in the
constructor, it can initialize the cold and reinit parameter
of its callees (in our case itself and RS3) by calling their
constructors, and saving the result in child1 and child2.
The actual computation is performed by the compute
class method, which takes hot parameters as arguments, and
already has cold and reinit parameters readily available. For
RS2, for instance, the compute method is synthesized from
the implementations of (28) and (30). The final result is
shown below:
void RS2::compute(cpx *Y1, cpx *X1, i n t u3, i n t u7){

i f (_rule == 1) {
cpx s1, s2;
s1 = X1[u_7];
s2 = X1[u_7 + u_8];
Y1[u_3] = (s1 + s2);
Y1[1 + u_3] = (s1 - s2);

}
e l s e i f (_rule == 2) {
cpx *T;
T = (cpx *) malloc(s i z e o f(cpx) * u1);
f o r(i n t i = 0; i < f1; i++) {
(RS2* child2[0])->compute(T, X1, u1*i/f1, u8*i+u7);

}
f o r(i n t j = 0; j < (u1/f1); j++) {
(RS3* child1[j])->compute(Y1, T, j+u3, j);

}
free(T);

}
}

All of the precomputed data, cold parameters, degrees of
freedom and the _rule variable, which controls the dis-
patch, are initialized in the class constructors, which is not
shown. The degrees of freedom and the dispatch variable
are good candidates for autotuning, which is supported by
the generated libraries. As we previously mentioned, the
generator function for the diagonal is created on the fly
and passed into RS3. This is another example of a higher
order function, which needs to be converted into an object,
similarly to the way recursion steps are.

Parallel and vector code. We generate a vectorized
and/or parallelized library following the same steps in Fig. 1.
The difference is that now additional

P
-SPL rewriting rules,

responsible for vectorization and parallelization, are used
during the Descend step. These rules are cognizant of a
few architecture parameters (e.g., vector length, number of
processors, and cache line size) introduced as tags. The
procedure, operating on SPL expressions, is described in
[6], [7]. To make it interoperate with the library generation,
we ported it to

P
-SPL. We omit further details due to

lack of space and refer the reader to [14], but mention
that the number of recursion step increases compared to the
generation of standard scalar libraries.

Table 6 shows the number of recursion steps in a sample
of few generated libraries. All libraries use recursion steps

number of recursion steps

Transform scalar vectorized vectorized + parallelized

DFT 4 / 3 4 / 7 8 / 8
RDFT 4 / 6 10 / 10 12 / 10
WHT 4 / 3 6 / 4 7 / 4
DCT-2 5 / 9 11 / 13 13 / 13
2D DCT-2 10 / 14 12 / 13 14 / 13
FIR Filter 4 / 4 4 / 5 4 / 4

Table 6: Number of recursion steps m/n in our generated libraries.
m is the number of steps with loops; n is the number without loops
and a close approximation of the number of base cases (codelets)
needed for each small input size.

that may include loops, unlike in the running example we
used. This ensures best performance and enables paral-
lelization. However, it increases the number of recursion
steps, since for each recursion step with loop there is a
corresponding unlooped recursion step (the loop body). The
base case can be generated for either variant, but generating
a base case for the looped recursion step tends to lead to
better performance.

In Table 6, the scalar DFT library uses the Cooley-Tukey
FFT breakdown rule (2), to match our running example.
Vectorized DFT libraries use the different breakdown rule
shown in Table 2.

5. Experiments

Platform. Due to limited space, here we report the
performance data on only one platform, however, extensive
experimental data can be found in [14].

Our benchmark platform is has two dual core 3 GHz Intel
Xeon 5160 processors (server version of Core 2 Duo) with
4 MB of shared L2 cache per processor, running Linux in
64-bit mode. The generated C++ libraries were compiled
using the Intel C/C++ Compiler 10.1, and the generated
Java libraries were compiled and run using the Sun JDK
1.6.0. Vectorized code was emitted using intrinsics, and
threading is implemented with OpenMP pragmas. For some
reason, using OpenMP parallel for constructs led to
the noticeable performance degradation, so we emulated
them using barriers.

We compared against FFTW 3.2 alpha 2 and Intel IPP 5.3.
FFTW was compiled with pthreads, and not with OpenMP,
since this resulted in some performance degradation.

Generated libraries. We generated libraries for the six
transforms shown in Table 6 using the breakdown rules
shown in Table 2 and also others. The generated libraries
were run in double precision (2-way vectorization) and
allowed to use up to 4 threads. For the complex DFT, we
benchmarked sizes 22–220, which spans all types of cache
residency, including non-L2 resident sizes (≥ 216). These
larger sizes, require extra memory hierarchy optimization

(loop interchange, loop distribution, data copying to elimi-
nate large striding, and online twiddle factor computation)
as explained in [2]. We implemented these optimization
as “meta” breakdown rules that operate on loops instead
of transforms, and extra details are available in [14]. For
other transforms we benchmarked 2-powers sizes up to
216 = 65536, i.e., the sizes that are L2 resident, because the
extra optimizations, did not yet work with these transforms.

Because all of the considered transform algorithms are
numerically stable, the accuracy of the generated libraries is
roughly the same as the accuracy of FFTW and IPP.

We use pseudo-GFlops to show performance, which is
standard for transforms. The complex DFT operations count
is assumed to be 5n log2 n; for k-tap length-n FIR filter it is
assumed to be (2k − 1)n; and for the other, real transforms
it is assumed to be 2.5n log2 n.

Search. As far as we know, Intel IPP does not use search.
FFTW uses runtime performance adaptation by searching for
the best recursion strategy. The generated library provides a
way to select the recursion strategy by exposing the available
degrees of freedom. We have manually implemented a
generic dynamic programming search mechanism that can
be inserted into each of our generated libraries to find the
best recursion strategy, similarly to FFTW.

Scalar code. We benchmarked three scalar libraries: for
the complex DFT generated from breakdown rule (2) and
for the real DFT (RDFT) and the DCT of type 2 from the
breakdown rules in Table 2. We benchmarked against FFTW
only, since it is not possible to turn off vectorization in IPP.
The results are shown in Fig. 4.

For the real and complex DFT the performance of small
sizes (up to 64) is faster than FFTW, and starting at 128,
it is the same as FFTW. Both libraries have base cases for
sizes up to 64, and the recursion starts at 128. We conjecture
that the generated library is faster for small sizes, because
it also uses base cases for a plain DFT recursion step (1
in Fig. 2), while FFTW reuses the base cases for strided
DFTs (2 in Fig. 2), which degrades performance due to
unnecessary index computation.

For larger sizes, the performance is identical. This is not
entirely surprising, since both libraries use the same FFT
algorithm and similar optimizations.

For DCT-2 the generated library is considerably faster
because we generate a library from a general radix DCT-
2 algorithm given in Table 2. Implementing such a library
manually would require a considerable effort, and since the
DCT-2 is less commonly used, it was not done in FFTW
and it is translated into a DFT instead.

Vector and parallel code. Next, we benchmarked the
generated parallelized and vectorized libraries. Only com-
plex DFT was able to utilize all 4 cores (starting at size
65536). We only show one line per library. For complex DFT
it shows the best performance between 1, 2 and 4 threads,
and for other transforms between 1 and 2 threads. For all

0

2

4

6

4 16 64 256 1k 4k 16k 64k

Generated library, scalar code

FFTW 3.2a, scalar code

input size

Complex DFT
Performance [Gflop/s]

0

2

4

6

4 16 64 256 1k 4k 16k 64k

Generated library, scalar code

FFTW 3.2a, scalar code

input size

Real DFT
Performance [Gflop/s]

0

1

2

3

4

5

4 16 64 256 1k 4k 16k 64k

Generated library, scalar code

FFTW 3.2a, scalar code

input size

DCT-2
Performance [Gflop/s]

Figure 4: Generated scalar libraries versus scalar FFTW.

0

4

8

12

4 16 64 256 1k 4k 16k 64k 256k 1024k

Spiral

Intel IPP 5.3

FFTW 3.2a

input size

Complex DFT, double precision, up to 4 threads
Performance [Gflop/s]

0

2

4

6

8

10

4 16 64 256 1k 4k 16k 64k

Generated library

Intel IPP 5.3

FFTW 3.2a

input size

Real DFT, double precision, up to 2 threads
Performance [Gflop/s]

0

1

2

3

4

4 16 64 256 1k 4k 16k 64k

Generated library

FFTW 3.2a

input size

WHT, double precision, up to 2 threads
Performance [Gflop/s]

0

2

4

6

8

4 16 64 256 1k 4k 16k 64k

Generated library

Intel IPP 5.3

FFTW 3.2a

input size

DCT-2, double precision, up to 2 threads
Performance [Gflop/s]

0

4

8

12

Generated library

Intel IPP 5.3

FFTW 3.2a

input size

2D DCT-2, single precision, up to 2 threads
Performance [Gflop/s]

0

4

8

12

16
Generated, single

Intel IPP, double
filter length

8-tap FIR filter, up to 2 threads
Performance [Gflop/s]

Intel IPP, single
Generated, double

Figure 5: Performance of generated C++ vectorized (2-way for double precision, 4-way for single precision) and threaded libraries.

transforms the generated libraries start to benefit from using
2 threads as early as at sizes 1024 or 2048.

For the complex DFT, instead of the Cooley-Tukey FFT
(2) we use the different FFT based on the RDFT from
Table 2. It provides better performance for vector code,
and provides another motivation for the use of a library
generator.

For the DHT and DCTs, FFTW does not implement a
native recursive algorithm with merged steps, but imple-
ments a conversion to the RDFT. The conversion works
by preprocessing the input and postprocessing the output
of the RDFT. The pre/post-processing are extra passes that
result in performance degradation. Judging by the graphs
IPP probably uses a similar conversion.

Finally, we note that the library generation required be-
tween 10 and 60 minutes in all cases.

Generator customization. One of the big advantages
of library generation is the flexibility that it provides by
enabling the generation of different custom libraries. This

flexibility is not available in fixed hand-written libraries.
Here we present just two examples out of many possibilities.

First, we retargeted the generator to produce native Java
code. There is no support for vector instructions in Java, and
we did not port the threading backend to Java threads, so
only scalar code was produced. We show the performance of
a few generated Java libraries in Fig. 6. Less effort is spent
on Java numeric libraries and thus fewer optimized libraries
exist that implement linear transforms. We found only one
optimized implementations: open-source JTransforms [15]
library for DFTs and DCTs, which provides one- and multi-
dimensional DFTs, RDFTs, and DCTs. We did not find an
optimized FIR filter Java library, so we benchmarked against
the naive double-loop implementation.

Second, as an example of the qualitative customization,
we show in Fig. 7 the tradeoff between the code size and
performance. The different lines in the plot are obtained
by changing the number of generated base case sizes for
each recursion step type. The absolute numbers from Fig. 7

0

2

4

4 16 64 256 1k 4k 16k 64k

Generated library (Java)

JTransforms 1.2

input size

Complex DFT
Performance [Gflop/s]

0

1

2

3

4

4 16 64 256 1k 4k 16k 64k

Generated library (Java)

JTransforms 1.2

input size

DCT-2
Performance [Gflop/s]

0

1

2

3

4

Generated library (Java)

filter length

8-tap FIR filter
Performance [Gflop/s]

Naive

Figure 6: Performance of generated scalar Java libraries.

0

2

4

6

4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

1.1 KLOC

Complex DFT, double precision (no vectorization)
Performance [Gflop/s]

1.3 KLOC

1.9 KLOC

3.3 KLOC

13 KLOC

input size

Figure 7: Code size / performance trade-off in scalar C++ libraries.

should not be directly compared to size-optimized human-
written code, because the code size is still rather suboptimal
and can be further reduced (e.g., by reducing the size of
the recursion step closure). The relative reduction, however,
manifests the customizability of the generator and is orthog-
onal to the other size optimizations which are possible.

6. Conclusions

Automating high performance library development is a
problem at the core of computer science. In this paper
we have shown that for an entire domain of structurally
complex algorithms, complete high performance libraries
can be generated automatically directly from the mathe-
matical algorithm specification (Table 2), arguably a first
in any domain. The key is a properly designed domain-
specific language (

P
-SPL in our case) that makes it possible

to perform all the difficult tasks (derivation of the library
infrastructure including functions needed, parallelization,
vectorization, loop optimizations, and others) at a high level
of abstraction using rewriting and other techniques. Using
these techniques, two seemingly conflicting goals can be
achieved: complete automation and performance competi-
tiveness with the best human-written code.

Note that Table 2 contains only a few of the available
recursive algorithms, so more work is needed to find out
which ones yield the fastest libraries. Another major goal is
to extend this work to other domains.

Acknowledgments

This work was supported by NSF through the awards
0325687 and 0702386, by DARPA through the DOI grant
NBCH1050009, and the ARO grant W911NF0710416, and
by a grant from Intel.

References

[1] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated empirical op-
timization of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1–2, pp. 3–35, 2001.

[2] M. Frigo and S. G. Johnson, “The design and implementation
of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–
231, 2005, special issue on ”Program Generation, Optimization, and
Adaptation”.

[3] M. Frigo, “A fast Fourier transform compiler,” in Proc. ACM PLDI,
1999, pp. 169–180.

[4] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for
DSP transforms,” Proceedings of the IEEE, vol. 93, no. 2, pp. 232–
275, 2005, special issue on ”Program Generation, Optimization, and
Adaptation”.

[5] F. Franchetti, Y. Voronenko, and M. Püschel, “Loop merging for
signal transforms,” in Proc. ACM PLDI, 2005, pp. 315–326.

[6] ——, “A rewriting system for the vectorization of signal transforms,”
in High Performance Computing for Computational Science (VEC-
PAR), ser. Lecture Notes in Computer Science, vol. 4395. Springer,
2006, pp. 363–377.

[7] ——, “FFT program generation for shared memory: SMP and mul-
ticore,” in Proc. Supercomputing, 2006.

[8] C. Van Loan, Computational Framework of the Fast Fourier Trans-
form. SIAM, 1992.

[9] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language
and compiler for DSP algorithms,” in Proc. ACM PLDI, 2001, pp.
298–308.

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools, 2nd ed. Addison-Wesley, 2006.

[11] T. Johnsson, “Lambda lifting: transforming programs to recursive
equations,” in Proc. Conf. on Functional Programming Languages
and Computer Architecture. Springer-Verlag, 1985, pp. 190–203.

[12] N. Glew, “Object closure conversion,” Electronic Notes in Theoretical
Computer Science, vol. 26, 1999.

[13] O. Kiselyov, “A USENET article that discusses implementation of
objects as functions (closures) in a non-pure and pure functional
languages,” online: http://okmij.org/ftp/Scheme/oop-in-fp.txt.

[14] Y. Voronenko, “Library generation for linear transforms,” Ph.D.
dissertation, Electrical and Computer Engineering, Carnegie Mellon
University, 2008.

[15] P. Wendykier, “JTransforms 1.2,” April 2008, http://piotr.wendykier.
googlepages.com/jtransforms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200050004400460073002000740068006100740020006d006100740063006800200074006800650020002200530075006700670065007300740065006400220020002000730065007400740069006e0067007300200066006f00720020005000440046002000530070006500630069006600690063006100740069006f006e00200034002e00300031>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

