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Abstract
Program generators for high performance libraries are an appeal-
ing solution to the recurring problem of porting and optimizing
code with every new processor generation, but only few such gen-
erators exist to date. This is due to not only the difficulty of the
design, but also of the actual implementation, which often results
in an ad-hoc collection of standalone programs and scripts that are
hard to extend, maintain, or reuse. In this paper we ask whether
and which programming language concepts and features are needed
to enable a more systematic construction of such generators. The
systematic approach we advocate extrapolates from existing gen-
erators: a) describing the problem and algorithmic knowledge us-
ing one, or several, domain-specific languages (DSLs), b) express-
ing optimizations and choices as rewrite rules on DSL programs,
c) designing data structures that can be configured to control the
type of code that is generated and the data representation used, and
d) using autotuning to select the best-performing alternative. As a
case study, we implement a small, but representative subset of Spi-
ral in Scala using the Lightweight Modular Staging (LMS) frame-
work. The first main contribution of this paper is the realization of
c) using type classes to abstract over staging decisions, i.e. which
pieces of a computation are performed immediately and for which
pieces code is generated. Specifically, we abstract over different
complex data representations jointly with different code represen-
tations including generating loops versus unrolled code with scalar
replacement—a crucial and usually tedious performance transfor-
mation. The second main contribution is to provide full support for
a) and d) within the LMS framework: we extend LMS to support
translation between different DSLs and autotuning through search.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program synthesis, Program transformation; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features – Ab-
stract data types; D.3.4 [Programming Languages]: Processors –
Code generation, Optimization, Run-time environments

Keywords Synthesis, Abstraction over Staging, Selective Pre-
computation, Scalar Replacement, Data Representation

1. Introduction
The development of highest performance code on modern proces-
sors is extremely difficult due to deep memory hierarchies, vec-
tor instructions, multiple cores, and inherent limitations of com-
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pilers. The problem is particularly noticeable for library functions
of mathematical nature (e.g., BLAS, FFT, filters, Viterbi decoders)
that are performance-critical in areas such as multimedia process-
ing, computer vision, graphics, machine learning, or scientific com-
puting. Experience shows that a straightforward implementation of-
ten underperforms by one or two orders of magnitude compared to
highly tuned code. The latter is often highly specialized to a plat-
form which makes porting very costly (e.g., Intel’s IPP library in-
cludes different FFT code, likely written in assembly, for Pentium,
Core, Itanium, and Atom).

One appealing solution to the problem of optimizing and porting
libraries are program generators that automatically produce highest
performance libraries for a given platform from a high level de-
scription. When the platform is upgraded, the code is regenerated,
possibly after an extension of the generator if new features need
to be supported (e.g., longer vectors in the architecture as in AVX
versus SSE). Building such a generator is difficult, which is the
reason that only very few exist to date. The difficulty comes from
both the problem of designing an extensible approach to perform
all the optimizations the compiler is unable to do and the actual im-
plementation of the generator. The latter often results in an ad-hoc
collection of stand-alone programs or scripts. These get one par-
ticular job done but are hard to extend, reuse, or further develop,
which is a major impediment to progress.

We believe that a programming environment that provides suit-
able advanced programming concepts should offer a solution to this
problem. Hence, the motivating question for this paper is: Which
tools and features provided by programming languages and envi-
ronments can facilitate the development of generators for perfor-
mance libraries? First, we inspect existing generators to derive a
common, systematic approach. Then we show with a case study
how the components of this approach can be realized using high-
level language features and programming techniques.

Program generators for performance. A few program gen-
erators have been built for mathematical functionality with high-
est performance as objective. Examples include the FFTW codelet
generator (codegen) for small transforms [15], ATLAS [41], Eigen
[1], and Build to Order BLAS [4] for basic linear algebra func-
tions, Spiral for linear transforms [26], the OSKI kernel genera-
tor for sparse linear algebra [39], FLAME for linear algebra [16],
cvxgen for optimization problems [24], and FEniCS for finite el-
ement methods [2]. In most cases, the starting point is a descrip-
tion in a domain-specific language (DSL); where it is not (e.g.,
ATLAS, which only uses parameters) porting to new platform fea-
tures (e.g., vectorization) or functions is difficult. In many cases,
the DSL is used only to specify the input (e.g., in cvxgen, FEn-
iCS), in some cases to also represent the algorithm (e.g., Flame,
Spiral), and sometimes also to perform optimizations through DSL
rewriting (e.g., Spiral). Some generators use search over alterna-
tives to tune (e.g., ATLAS, OSKI) some do not (e.g., FFTW code-
gen, OSKI kernel generator). Several performance optimizations
are relevant for most domains (e.g., loop unrolling combined with
scalar replacement [5], precomputation, and specialization).



These generators have been implemented in a large variety of
environments. Some are built from scratch (e.g., ATLAS, cvx-
gen), others make use of a particular programming environment:
e.g., OCaml (FFTW codegen), Mathematica (parts of FLAME),
the computer algebra system GAP (Spiral). UFL in FEniCS is a
standalone languages. Eigen is a collection of C++ templates that
perform optimizations during preprocessing.

Systematic construction of program generators. Extrapolat-
ing from the commonalities of all these generators, we propose
the following systematic approach to construct program generator
implementations. Instantiating this approach in a problem domain
(such as the ones above) is an orthogonal research question.

• Describe problem and algorithmic knowledge through one or
multiple levels of DSLs. Program generators need to model
problems and algorithms at a high level of abstraction and may
need to optimize code at multiple intermediate abstraction lev-
els. For example, FFTW codegen’s input is a sum representa-
tion of FFTs but most optimizations are done on DAGs. Spiral
uses three internal DSLs and rewriting for loop optimizations
and parallelization. Successively lower-level DSLs are a natural
choice to express these various stages of program generation.
• Specify certain optimizations and algorithmic choices as rewrite

rules on DSL programs. DSLs can be used for high-level op-
timization through rewriting (e.g., parallelization in Spiral) but
rewrite rules can also be used to express algorithmic choices.
Doing so facilitates empirical search ("autotuning”), which in
many cases is required to achieve optimal performance.
• Design high-level data structures that can be parametrized to

generate multiple low-level representations. Often generated
libraries need to support multiple input/output data formats.
A common example is interleaved or split or C99 format for
complex vectors, meaning there will be one library function per
format. A generator should be able to abstract over this choice
of low-level data formats to ensure maximal compatibility [3].
• Rely on common infrastructure for recurring low-level trans-

formations. There are certain transformations common in high
performance code that are necessary but particularly unpleas-
ant to implement and maintain manually. Examples include a)
unrolling with scalar replacement, b) selective precomputation
during code production or initialization, and c) specialization
(e.g., to a partially known input). Since these transformations
are so common, they should be implemented in a portable way
using suitable language features.

While the first two points, DSLs and rewriting, are well-studied
topics and supported by existing tools, the latter two points have,
to our best knowledge, only been realized in ad-hoc ways. It is a
main contribution of this paper to demonstrate how all four points,
including the last two, can be achieved with the help of high-level
programming language features. To do so we utilize a case study
implemented in a specific environment, which we describe in more
detail in the following section. However, we emphasize that any
programming environment that offers the needed language features
can be used instead.

Language support for program generation. For already quite
some time, the programming languages community has proposed
multi-stage programming using quasi-quotation as a means to make
program generation more principled and tractable [34]. However,
most approaches remained a thin layer over syntactic composition
of program fragments and did not offer facilities beyond serving as
a type safe assembly language for program generation. We provide
a more detailed discussion of related work in Section 5.

The recently introduced LMS [28, 30] framework works at
a higher level than pure composition of code fragments; it is a
library-based staging approach that offers an extensible compiler

framework with a rich set of features, including transformations
on an intermediate representation and different code generators.
LMS has already been applied successfully to implement a range
of performance-oriented, high-level domain specific languages
(DSLs) in the Delite framework [7, 9, 32]; however, the require-
ments for generators of highest performance libraries go consider-
ably beyond the use of LMS to date. First and foremost, previous
LMS DSLs were designed to be user-facing, not as internal lan-
guages for program generators. Thus, no particular support for
parameterizing DSL programs over low-level generation choices
was available. While LMS has been equipped with program trans-
formation support within a single intermediate representation [31],
there was no support for translating between different DSLs. Fur-
thermore, LMS did not provide support for autotuning and had
only been used to generate moderately large pieces of code. Con-
sequently, generating code as large as several MB caused serious
performance problems which had to be addressed. Finally, while
LMS has always used types to denote staged expressions, program-
ming techniques that abstract over whether a certain expression is
staged had not been studied.

Contributions. In summary, this paper makes the following
contributions:

• We conduct a case study for the systematic construction of a
program generator in the sense outlined before: the implemen-
tation of a subset of Spiral and FFTW codegen inside Scala
with LMS. The subset covers the generation of fixed input size
C code for FFTs as explained in [12, 15, 27, 42]. It does not
cover transforms other than the FFT (Spiral covers more than
30), or the generation of vectorized or parallel code as explained
in [13, 14]. However, even though the latter extensions are sub-
stantial, they are all based on rewriting. Only the generation of
general input size libraries as described in [38] requires new
techniques and is subject of future research.
• In implementing this case study, we develop novel program-

ming techniques to address the challenges of parameterizing
data structures over code generation choices and implementing
transformations like unrolling with scalar replacement. Specif-
ically, we show that with LMS, the type class pattern [40] is a
natural fit to abstract over staging decisions, i.e., which pieces
of a computation are performed immediately and for which
pieces code is generated. More importantly, we show that this
mechanism can be applied to data structures to decide which
parts of a nested data structure are staged and which only exist
at code generation time. This enables us to use a single genera-
tor pipeline that abstracts over all required data layouts. A par-
ticular layout can be chosen by instantiating the pipeline with
the proper types. Coupled with selective staging of loops, this
directly leads to an arguably elegant and modular implementa-
tion of various loop unrolling and scalar replacement schemes.
• We pushed the LMS framework beyond what was done previ-

ously. Novel are in particular the translation between different
DSLs (which are not user-facing, but internal steps in the pro-
gram generation pipeline), empirical autotuning through search,
and performance optimizations inside the LMS framework to
support the generation of much larger programs.

The source code accompanying this paper is available at spiral.net.

2. Background
We provide necessary background on Spiral and on the LMS frame-
work [28, 30] in Scala.

2.1 Spiral
Spiral is a library generator for linear transforms such as the dis-
crete Fourier transform (DFT). The version we consider here gener-

http://www.spiral.net
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Figure 1. FFT (1) dataflow (right to left) for n = 16 = 4× 4. The
inputs to two DFT4s are emphasized.
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Figure 2. The version of Spiral considered in this paper.

ates unvectorized single-threaded DFT code for arbitrary but fixed
input sizes as explained in [12, 27, 42].

Discrete Fourier transform. The DFT multiplies a given com-
plex input vector x of length n by the fixed n × n DFT matrix to
produce the complex output vector y. Formally,

y = DFTn x, where DFTn = [ωk`
n ]0≤k,`≤n

and ωn = exp−2π
√
−1/n.

Fast Fourier transforms (FFTs). Divide-and-conquer FFTs
(the algorithm knowledge) in Spiral are represented as rules that
decompose DFTn into a product of structured sparse matrices that
include smaller DFTs. For example, the Cooley-Tukey FFT is given
by

DFTn → (DFTk ⊗Im)Tn
m(Ik⊗DFTm)Ln

k , n = km, (1)

where In is the identity matrix, Ln
k is a certain permutation matrix,

Tn
m is the diagonal matrix of twiddle factors, and

A⊗B = [ak,`B]0≤k,`<n for A = [ak,`]0≤k,`<n .

This formalism, called SPL, is a DSL that captures the data flow
of computation. For example, (1) for n = 16 = 4 × 4 is shown
in Fig. 1; each gray block is a DFT4 that is again computed
recursively using (1).

Other FFT rules in our prototype include the prime factor FFT
(n = km, gcd(k,m) = 1), and the Rader FFT (n is prime):

DFTn → V −1
k,m(DFTk ⊗Im)(Ik ⊗DFTm)Vk,m, (2)

DFTn →W−1
n (I1 ⊕DFTp−1)En(I1 ⊕DFTp−1)Wn. (3)

Here, V, W are certain permutation matrices, En is diagonal, and
⊕ is the block-diagonal composition. Recursive application of FFT
rules (1)–(3) yields algorithms for a given DFTn and there are
many choices in this recursion. All FFTs are terminated with the
base rule DFT2 → F2 = [ 1 1

1 −1 ].
Loop merging. Fig. 1 suggests a recursive computation in four

steps: permutation, followed by a loop over smaller FFTs, fol-
lowed by scaling, followed by another loop over smaller FFTs. This
causes four passes over the data, which is inefficient. A better so-
lution fuses the permutation and scaling steps with the subsequent

loops. The permutation then becomes a readdressing in the loop.
This merging problem becomes more difficult upon recursion. For
example, if all rules (1)–(3) are applied (e.g., for n = pq, q prime
and q − 1 = rs) one may encounter the SPL fragment

(Ip ⊗ (I1 ⊕ (Ir ⊗DFTs)Lrs
r )Wq)Vp,q.

The challenge here is to fuse all three permutations into the inner-
most loop and to simplify the resulting index expression. In Spi-
ral, this is solved using the DSL Σ-SPL and rewriting [12]. Σ-SPL
makes loops and index functions explicit. As a simple example, we
consider the fragment (I4 ⊗DFT4)L16

4 occurring in Fig. 1. First,
it is translated into Σ-SPL, then the permutation is fused into the
loop, then the resulting composed index function is simplified. All
steps are done by rewriting using rules provided to Spiral:(

3∑
j=0

S(h4j,1)DFT4G(h4j,1)

)
perm(`164 ) (4)

→
3∑

j=0

S(h4j,1)DFT4G(`164 ◦ h4j,1) (5)

→
3∑

j=0

S(h4j,1)DFT4G(hj,4). (6)

G(.) and S(.) are called gather and scatter and are containers
for symbolic index functions that can be manipulated. The sum
represents a possible loop, and the loop body is a DFT4 yet to
be further expanded.

Generator. The entire generator is shown in Fig. 2 for some
example size (n = 252). One of many possible algorithms is
generated in SPL, translated to and then optimized in Σ-SPL as
explained above, and then translated into a C intermediate language
using partial unrolling (namely every DFT below a certain size
B encountered in the recursion; we use B = 16) that represents
the computation DAG. On this DAG, various standard and DFT-
specific simplifications are done as explained in [15] (e.g., algebraic
simplification, constant normalization and propagation); finally the
code is unparsed into C. The entire process is wrapped into a
search loop that measures runtime and finds the best recursion
using dynamic programming.

2.2 Scala and Lightweight Modular Staging
Multi-stage programming (MSP, or staging for short) as established
by Taha and Sheard [34] aims to simplify program generator de-
velopment by expressing the program generator and parts of the
generated code in a single program, using the same syntax. Tradi-
tional MSP languages like MetaOCaml [8] implement staging by
providing syntactic quasi-quotation brackets to explicitly delay the
evaluation of (i.e., stage) chosen program expressions.

Contrary to dedicated MSP languages, LMS uses only types to
distinguish the computational stages. Expressions of type Rep[T]
in the first stage yield computations of type T in the second stage.
Expressions of a plain type T in the first stage will be evaluated and
become constants in the generated code. The standard Scala type
system propagates information about which expressions are staged
and thus performs a semi-automatic local binding-time analysis
(BTA). Thus, LMS provides some of the benefits of automatic
partial evaluation [18] and of manual staging.

Example: Data and traversal abstractions. Consider a Scala
implementation of a high-level vector data structure backed by an
array:
class Vector[T](val data: Array[T]) {
def foreach(f: T => Unit): Unit = {
var i = 0; while (i < data.length) { f(data(i)); i += 1 }

}}



Given this definition, we can traverse a vector using its foreach
method; for example to print its elements:
vector foreach { i => println(i) }

While convenient, the vector abstraction has non-negligible ab-
straction overhead (e.g., closure allocation and interference with
JVM inlining). To obtain high performance code, we would like
to turn this implementation into a code generator, that, when en-
countering a foreach invocation, will emit a while loop instead. Us-
ing LMS, we only need to change the method argument and return
types, and the type of the backing array, by adding the Rep type
constructor to stage selected parts of the computation:
class Vector[T](val data: Rep[Array[T]]) {
def foreach(f: Rep[T] => Rep[Unit]): Rep[Unit] = {
var i = 0; while (i < data.length) { f(data(i)); i+=1 }}}

The LMS framework provides overloaded variants of many opera-
tions (e.g. array access data(i)) that lift those operations to work
on Rep types, i.e., staged expressions rather than actual data. This
allows us to leave the method body unchanged.

It is important to note the difference between types Rep[A=>B]
(a staged function object) and Rep[A]=>Rep[B] (a function on staged
values). For example, using the latter in the definition of foreach,
ensures that the function parameter is always evaluated and un-
folded at staging time.

In addition to the LMS framework, we use the Scala-Virtualized
compiler [29], which redefines several core language features as
method calls and thus makes them overloadable as well. For exam-
ple, the code
var i = 0; while (i < n) { i = i + 1 }

will be desugared as follows:
val i = __newVar(0); __while(i < n, { __assign(i, i + 1) })

The LMS framework provides methods __newVar, __assign, __while,
overloaded to work on staged expressions with Rep types.

The LMS extensible graph IR. Another key difference be-
tween LMS and earlier staging approaches is that LMS does not
directly generate code in source form but provides instead an ex-
tensible intermediate representation (IR). The overall structure is
that of a “sea of nodes” dependency graph [10]. For details we re-
fer to [28, 30, 32]; a short recap is provided next.

The framework provides two IR class hierarchies. Expressions
are restricted to be atomic and extend Exp[T]:
abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

Composite IR nodes extend Def[T]. Custom nodes typically are
composite. They refer to other IR nodes only via symbols. There
is also a class Block[T] to define nested blocks.

As a small example, we present a definition of staged arithmetic
on doubles (taken from [30]). We first define a pure interface in trait
Arith by extending the LMS trait Base, which defines Rep[T] as an
abstract type constructor.
trait Arith extends Base {
def infix_+(x: Rep[Double], y: Rep[Double]): Rep[Double]
def infix_-(x: Rep[Double], y: Rep[Double]): Rep[Double]

}

We continue by adding an implementation component ArithExp,
which defines concrete Def[Double] subclasses for plus and minus
operations.
trait ArithExp extends BaseExp with Arith {
case class Plus(x: Exp[Double], y: Exp[Double])
extends Def[Double]

case class Minus(x: Exp[Double], y: Exp[Double])
extends Def[Double]

def infix_+(x: Exp[Double], y: Exp[Double]) = Plus(x,y)
def infix_-(x: Exp[Double], y: Exp[Double]) = Minus(x,y) }

Trait BaseExp defines Rep[T]=Exp[T], whereas Rep[T] was left ab-
stract in trait Base.

Taking a closer look at ArithExp reveals that the expected return
type of infix_+ is Exp[Double] but the result value Plus(x,y) is of
type Def[Double]. This conversion is performed implicitly by LMS
using toAtom:
implicit def toAtom[T](d: Def[T]): Exp[T] = reflectPure(d)

The method reflectPure maintains the correct evaluation order by
binding the argument d to a fresh symbol (on the fly conversion to
administrative normal form (ANF)).
def reflectPure[T](d: Def[T]): Sym[T]
def reifyBlock[T](b: =>Exp[T]): Block[T]

The counterpart reifyBlock (note the by-name argument) collects
performed statements into a block object. Additional reflect meth-
ods exist to mark IR nodes with various kinds of side effects (see
[32] for details).

3. Implementing the Spiral Prototype Using LMS
In this section we explain the implementation of the generator,
as outlined in Section 2.1, in the LMS framework. The section is
organized according to the approach presented in Section 1; all of
the steps are relevant for the chosen subset of Spiral. The running
example will be DFT4 decomposed using (1):

DFT4 → (DFT2⊗I2)T 4
2 (I2 ⊗DFT2)L4

2 (7)

3.1 Algorithmic Knowledge as Multiple Levels of DSLs
Spiral requires three DSLs: SPL, Σ-SPL, and an internal represen-
tation of C (C-IR); see Fig. 2. We focus on SPL.

DSL representation. The DSL SPL is defined inside Scala in
two steps. First, basic matrices such as Tn

m, Ln
k , or DFT2 are

defined as regular Scala classes:
abstract class SPL
case class T(n: Int, m: Int) extends SPL
case class DFT(n: Int) extends SPL
case class F2() extends SPL
case class I(n: Int) extends SPL
case class L(n: Int, k: Int) extends SPL

Then, matrix operations like product (composition) or ⊗ are de-
fined using LMS. The common practice in LMS is to first provide
the language interface in terms of abstract methods that operate on
(staged) Rep types:
trait SPL_Base extends Base {
implicit def SPLtoRep(i: SPL): Rep[SPL]
def infix_tensor (x: Rep[SPL], y: Rep[SPL]): Rep[SPL]
def infix_compose(x: Rep[SPL], y: Rep[SPL]): Rep[SPL] }

The method SPLtoRep defines an implicit lifting of SPL operands
to Rep[SPL] expressions, and the methods infix_tensor as well as
infix_compose define the corresponding operations. Similar to the
example in Section 2, we continue with the concrete implementa-
tion in terms of the LMS expression hierarchy.
trait SPL_Exp extends SPL_Base with BaseExp {
implicit def SPLtoRep(i: SPL) = Const(i)
case class Tensor (x:Exp[SPL], y:Exp[SPL]) extends Def[SPL]
case class Compose(x:Exp[SPL], y:Exp[SPL]) extends Def[SPL]
def infix_tensor (x:Exp[SPL], y:Exp[SPL]) = Tensor (x, y)
def infix_compose (x:Exp[SPL], y:Exp[SPL]) = Compose(x, y) }

SPLtoRep instructs the compiler to convert objects of type SPL to
their staged version, whenever a compose or tensor operation is
applied.

Decomposition and search. As explained in Section 2.1, FFTs
are expressed as decomposition rules in SPL. We represent such a
rule (e.g., (1)), using Scala’s first-class pattern matching expression
called partial function. The type in our case is
type Rule = PartialFunction[SPL,Rep[SPL]]
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Figure 3. SPL IR representation of a staged DFT4 decomposition

SPL exp. S Pseudo code for y = Sx Function

AnBn
<code: t = Bx>
<code: y = At>

fcomp

In ⊗An

for (i=0; i<m; i++)
<code: y[i*n:1:i*n+n-1] =
A(x[i*n:1:i*n+n-1])>

fItensorA

An ⊗ In
for (i=0; i<n; i++)
<code: y[i:n:i+m*n-n] =
A(x[i:n:i+m*n-n])>

fAtensorI

F2
y[0] = x[0] + x[1];
y[1] = x[0] - x[1];

fF2

Table 1. SPL to code mapping and name of the emitted functions.

where SPL and Rep[SPL] are the types of the lefthand side and right-
hand side of a rule like (1), respectively. The complete definition of
(1) takes the following form. Note how the partial function captures
the condition of applicability.
val DFT_CT: Rule = {
case DFT(n) if n > 2 && !isPrimeInt(n) =>
val (m,k) = factorize(n)
(DFT(k) tensor I(m)) compose T(n,m)
compose (I(k) tensor DFT(m)) compose L(n,k)

}

In the same fashion we represent a base rule to terminate the
algorithm:
val DFT_Base: Rule =
case DFT(2) => F2()

Partial functions provide a method isDefinedAt that matches an
input against the pattern inside the function and returns true if the
match succeeds. Hence, we obtain a list of all rules applicable to
DFT4 as follows:
val allRules = List(DFT_CT, DFT_Base, ...........)
val applicableRules = allRules filter (_.isDefinedAt(DFT(4)))

Partial functions also include an applymethod that returns the result
of the body of the function. Using this method, all algorithms for a
DFTn can easily be generated. In practice, we utilize a feedback
driven dynamic programming search to explore only a subspace
of all possible decompositions. In our running example, there is
only one algorithm shown in Fig. 3. The circles refer to the Compose
class, the ⊗ to the Tensor class; all the leaves are subclasses of SPL.
This representation can now be transformed using rewriting (see
Section 3.2 later), or unparsed into the target language.

Translation. Since we need to further manipulate the gener-
ated algorithm, we do not unparse directly to target code. Rather
we define a denotational interpretation of the DSL, which maps ev-
ery node of the IR graph to its “meaning”: a Scala function that
performs the corresponding matrix-vector multiplication. The in-
and output types are arrays of complex numbers. This function can
immediately be used to execute the program when prototyping or
debugging. In the next section we will derive translations to lower-
level DSLs from the interpretation. Examples of these functions are

shown in Table 1. Conceptually, they correspond to the templates
used in the original SPL compiler [42].

To implement this mapping in Scala, we define an abstract
method transform in the base class SPL:
abstract class SPL {
def transform(in: Array[Complex]): Array[Complex] }

and provide implementations for each concrete subclass (e.g., map-
ping F2 to fF2).
case class F2() extends SPL {
override def transform(in: Array[Complex]) = {
val out = new Array[Complex](2)
out(0) = in(0) + in(1)
out(1) = in(0) - in(1)
out }}

The definition of complex numbers is straightforward.
case class Complex(_re: Double, _im: Double) {
def plus(x: Complex, y: Complex)
= Complex(x._re + y._re, x._im + y._im)

def minus(x: Complex, y: Complex)
= Complex(x._re - y._re, x._im - y._im) }

In addition to the SPL operands, we need to translate the tensor
and compose operations. We provide suitable functions for each
individual case, for example
def I_tensor_A(I_n: Int, A: (Array[Complex]=>Array[Complex]))
= { in: Array[Complex] =>

in.grouped(in.size/I_n) flatMap (part => A(part)) }

To obtain an interpretation of a given SPL program, we traverse the
SPL IR graph (e.g., Fig. 3) in dependency order, call for every node
the appropriately parameterized function:
def translate(e: Exp[SPL]) = e match {
case Def(Tensor(Const(I(n)), Const(a: SPL))) =>
I_tensor_A(n, a.transform)
.....

}

The pattern extractor Def is provided by LMS and will look up
the right-hand side definition of an expression in the dependency
graph. The result of invoking translate on the topmost node in the
SPL IR yields the desired DFT computation as a Scala function
of type Array[Complex]=>Array[Complex]. In the running DFT4

example, the generated call graph takes the following form:

fcomp(fcomp(fcomp(fAtensorI(fF2, fI), fT), fItensorA(fI, fF2)), fL) (8)

In summary, at this stage we have already constructed an internal
DSL, which can be used within the native environment of Scala.

Translation to another DSL. Running an internal DSL in a
library fashion is convenient for debugging and testing. However,
for the generator we need to be able to translate one DSL into
another DSL, to rewrite on the DSL, and to unparse the DSL into
a chosen target language. Next, we show how to translate SPL into
another DSL: an internal representation of a subset of C, called
C-IR, for further optimization. We omit the step through Σ-SPL
shown in Fig. 2 due to space limitations, but the technique used for
translation is analogous.

To translate to C-IR, only a very minor change is required: the
parameters of the class Complex are annotated with Rep for staging:
case class Complex(_re: CIR.Rep[Double], _im: CIR.Rep[Double])

Note that since we are now working with multiple DSLs, we need
to specify which language we are referring to by using SPL.Rep
or CIR.Rep. In unambiguous cases we omit the prefix and leave
it to Scala’s scoping mechanism. Invoking translate as defined
above now yields a function that returns an IR representation of the
computation, instead of the actual computation result. Enveloping
the generated function within a wrapper as shown below yields the
C-IR representation depicted in Fig. 4.
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Figure 4. C-IR representation of a staged DFT4 decomposition
for complex input.

def wrapper(f: Array[Complex]=>Array[Complex], dft_size: Int)
(in: Rep[Array[Double]], out: Rep[Array[Double]]) = {

val scalarized = new Array[Complex](dft_size)
for (i <- 0 until dft_size)
scalarized(i) = Complex(in(i*2),in(i*2+1))

val res = f(scalarized)
for (i <- 0 until dft_size) {
out(i*2) = res(i)._re
out(i*2+1) = res(i)._im

}}

This wrapper transforms a staged double array into another staged
array by calling the created function f within the snippet. Note
that the implementation commits to a specific encoding of com-
plex arrays into double arrays (as shown: interleaved format). We
will abstract over the choice of representation in Section 3.3.2. The
wrapper also commits to a specific code style, namely unrolling
with scalar replacement; abstraction over this choice is also ex-
plained later. The white boxes in Fig. 4 correspond to the reads of
and writes to the staged array; the other boxes are arithmetic oper-
ations on staged doubles. Note how any abstraction overhead in the
function callgraph is gone due to unrolling and only the operations
on the staged variables _re and _im remain. Unparsing to actual C
code is now straightforward.

3.2 Optimization through DSL Rewriting
Most domain-specific optimizations in Spiral are done by rewrit-
ing DSL expressions. In case of our prototype this occurs on two
levels (Fig. 2): Σ-SPL and C-IR. LMS provides rewriting support
through its transformer infrastructure [28]. Combined with the pat-
tern matching support of Scala, the rewrite rule used in (5), for
example, takes the following form:
override def transformStm(stm: Stm):Exp[Any]= stm.rhs match {
case Compose(Const(g: Gather), Const(lperm: L)) =>
Gather(compose(l(lperm.k,lperm.m),g.f))

case _ => super.transformStm(stm)
}

The same infrastructure is used to optimize the C-IR graph. For ex-
ample, the simplification of multiplications by 0 or 1 and constant
folding are implemented as follows:
override def transformStm(stm: Stm):Exp[Any]= stm.rhs match {
case NumericTimes(a, b) => (this(a), this(b)) match {
case (Const(p), Const(q)) => Const(p * q)

case (_, Const(0)) | (Const(0), _) => Const(0)
case (e, Const(1)) | (Const(1), e) => e
case (e1, e2) => e1 * e2

}
case _ => super.transformStm(stm) }

The operation this(a),this(b) applies the enclosing transformer
object to the arguments a,b of the multiplication statement. The
optimizations implemented in our prototype include common sub-
expression elimination, constant normalization, DAG transposition
and others from [15].

Scala provides additional pattern matching flexibility with cus-
tom extractor objects. Any object that defines a method unapply can
be used as a pattern in a match expression. An example were we
use this are binary rewrite rules over longer sequences of expres-
sions. Consider for example a putative simplification rule H(m) ◦
H(n)→ H(m+n). We would like to apply this rule to a sequence
of ◦ operations, such that for example A ◦H(m) ◦H(n) ◦ B be-
comes A ◦H(m+ n) ◦ B. This can be achieved in two steps. We
use type IM as a shortcut for Rep[SPL]. First, we define a custom
extractor object:
object First {
def unapply(x: IM): Option[(IM, IM=>IM)] = x match {
case Def(Compose(a,b)) => Some((a, (a1 => a1 compose b))))
case _ => Some((x, x1 => x1)) }}

Matching First against A ◦ B will extract (A,w) where w is a
function that replaces A, i.e., w(C) = C ◦ B. Matching against
just A will return (A, id).

In the second step, we define a “smart” constructor for the ◦
operation Compose that uses First to generalize the binary rewrite:
def infix_compose(x: IM, y: IM): IM = (x,y) match {
case (Const(H(m)), First(Const(H(n)), wrap)) =>
wrap(H(m+n))

case (Def(Compose(a,b)),c) =>
a compose (b compose c)

case _ =>
Compose(x,y)

}

If the rewrite is not directly applicable, another case is tried that
will canonicalize (A ◦B) ◦C to A ◦ (B ◦C). Only if that fails, an
IR node Compose(a,b) is created. Finally, a transformer needs to be
created that invokes the smart constructor:
override def transformStm(stm: Stm):Exp[Any]= stm.rhs match {
case Compose(x,y) => this(x) compose this(y)
case _ => super.transformStm(stm)}

In our generator we use this feature to implement most of the Σ-
SPL rewrites including those sketched in (5) and (6).

3.3 Abstracting Over Data Representations and Code Style
In this section we discuss techniques to abstract over data layouts
that go hand in hand with performance transformations such as
selective precomputation, unrolling with scalar replacement, and
specialization. The key insight is to abstract over staging decisions:
we will be able to generate data structures or code patterns where
different pieces are evaluated at generation time or computed by
the generated code, depending on particular type instantiations.

We will make use of the type class design pattern [25, 40],
which decouples data objects from generic dispatch and thus com-
bines naturally with a staged programming model. As an example
that we use later, we define a variant of Scala’s standard Numeric
type class that enables abstraction over different numeric types in-
cluding double, float, and complex:
trait NType[T] {
def plus (x: T, y: T): T
def minus(x: T, y: T): T }

It is easy to define an instance for numeric operations on doubles:



implicit object doubleNT extends NType[Double] {
def plus (x: Double, y: Double) = x + y
def minus(x: Double, y: Double) = x - y }

As an example of using the generic types, we extend our earlier
definition of complex numbers to abstract over the component type:
case class Complex[T:NType](_re: T, _im: T) {
def num = implicitly[NType[T]]
def +(that: Complex) =
Complex(num.plus(_re, that._re), num.plus(_im, that._im))

def -(that: Complex) = ... }

We use Scala’s implicitly operation to access the type class in-
stance that implements the actual plus and minus operations. Type
classes in Scala are implemented as implicit method parameters.
Thus, the above class definition could equivalently be written as
case class Complex[T](_re: T, _im: T)(implicit num: NType[T])

Now that we have defined complex numbers, we can turn them into
numeric objects as well:
implicit def complexNT[T:NType] extends NType[Complex[T]] {
def plus(x: Complex[T], y: Complex[T]) = x + y
def minus(x: Complex[T], y: Complex[T]) = x - y }

To make the generation of C-IR as flexible as possible, we employ
type classes to abstract over the choice of numeric types. In our
context this means changing the signatures of our transform meth-
ods on SPL objects to the following format:
def transform[T:NType](in: Array[T]): Array[T] = ...

3.3.1 Selective Precomputation
Precomputation is naturally supported by a staging framework such
as LMS. Fine grain control over which parts should be precom-
puted is possible by using Rep types in suitable places. In many
cases it is desirable to abstract over this decision, which is done us-
ing type classes as explained next. Afterwards we show as example
the selective precomputation of the twiddle factors (the constants
in Tn

m) in (1).
Selective staging. To abstract over the staging decision in addi-

tion to abstracting over the numeric data type as explained above,
we define NType instances for each numeric type. For example, for
doubles it becomes
implicit object doubleRepNT extends NType[Rep[Double]] {
def plus(x: Rep[Double], y: Rep[Double]) = x + y
def minus(x: Rep[Double], y: Rep[Double]) = x - y }

Using this mechanism, we can turn staging on or off by providing
the corresponding type when calling the transform function. For
example, we can now invoke the same definition of transform with
any of the following types:
Array[Double] Array[Complex[Double]]
Array[Rep[Double]] Array[Complex[Rep[Double]]]

The same mechanism enables further powerful abstractions that
are explained below. In particular, the abstraction over the choice
between interleaved and split complex format and over the choice
between scalar replacement and array computations.

Precomputation. Precomputation is a classic performance op-
timization. An example in the context of the FFT are the constant
twiddle factors required during the Cooley-Tukey FFT (1). Those
numbers require expensive sin and cos operations. It usually pays
off to precompute those numbers and inline them as constants in
the code or store them in a table. For very large sizes, when the
FFT becomes memory-bound, a computation on the fly may be
preferrable. Using selective staging we can abstract over this deci-
sion by simply instantiating the twiddle computation with a suitable
type. The generic computation for one twiddle factor is
case class E[T:NType](val n : Int, val k : Int) {
def re(p: T): T = cos(2.0 * math.Pi * p * k, n)
def im(p: T): T = sin(2.0 * math.Pi * p * k, n) * -1.0 }

Instantiating with Double or Rep[Double] controls the precomputa-
tion. The latter needs staged sin and cos implementations.

3.3.2 Abstraction over Data Representations
One of the cumbersome programming tasks in the creation of a
program generator is support for different data layouts. In our case
of FFTs, this would be different ways of storing complex numbers,
including as interleaved, split, and C99 complex arrays. In this
section, we explain how to abstract over this choice.

So far we have been using plain arrays to hold input, interme-
diate, and output data. To abstract over the data representation, we
first define a new, abstract collection class Vector with an interface
similar to arrays:
abstract class Vector[AR[_], ER[_], T] {
def apply(i: AR[Int]): ER[T]
def create(size: AR[Int]): Vector[AR, ER, T]
def update(i: AR[Int], y: ER[T])

}

In contrast to arrays, however, Vector is parametric in two type con-
structors: AR and ER. The type constructor AR (short for AccessRep)
wraps the indices that are used to access elements, and ER (short for
ElemRep) wraps the type of elements. Instantiating either or both
of these type constructors as Rep or NoRep (with NoRep[T]=T) will
yield a data structure with different aspects staged. Moreover, ER
can be instantiated to Complex to explicitly model vectors of com-
plex numbers.

We also want to implement subclasses of Vector that abstract
not only over the data layout but also over the choice of staging
the internal storage or not (this is equivalent to scalarization of
arrays discussed later). To do this we introduce another abstraction
of arrays, which is less general, and only wraps a single type
constructor AR around all operations:
trait ArrayOps[AR[_], T] {
def alloc(s: AR[Int]): AR[Array[T]]
def apply(x: AR[Array[T]], i: AR[Int]): AR[T]
def update(x: AR[Array[T]], i: AR[Int], y: AR[T])

}

Instances of ArrayOps will be used as type class arguments by
Vector subclasses to abstract over plain and staged internal arrays
(i.e., AR=Rep or NoRep).

Finally we have all constructs to represent a variety of different
data layouts. We demonstrate with split complex (real and imagi-
nary parts in separate arrays) and C99 complex arrays:
class SplitComplexVector[AR[_], T:NType](size: AR[Int])
(implicit aops: ArrayOps[AR, T])
extends Vector[AR, Complex, AR[T]] {
val dataRe: AR[Array[T]] = aops.alloc(size)
val dataIm: AR[Array[T]] = aops.alloc(size)
def create(size: AR[Int]) = new SplitComplexVector(size)
def apply(i: AR[Int]): Complex[AR[T]] =
new Complex(_re = aops.apply(dataRe, i),

_im = aops.apply(dataIm, i))
def update(i: AR[Int], y: Complex[AR[T]]) = {
aops.update(dataRe,i,y._re)
aops.update(dataIm,i,y._im)

}}
class C99Vector[AR[_],T:NType](s: AR[Int])
(implicit aops: ArrayOps[AR, Complex[T]])
extends Vector[AR, AR, Complex[T]] {
val data = aops.alloc(s)
def create(size: AR[Int]) = new C99Vector[AR,T](size)
def apply(i: AR[Int]): AR[Complex[T]] = aops.apply(data,i)
def update(i: AR[Int], y: AR[Complex[T]])
= aops.update(data,i,y)

}



The split complex implementation abstracts over staging via the
type constructor parameter AR and contains elements of type
Complex[AR[T]]. Thus, it extends Vector[AR,Complex,AR[T]]. An im-
plementation of interleaved storage using a single array would use
the same type. In contrast, the variant that implements arrays of
C99 complex numbers specifies its element type as AR[Complex[T]]
and therefore extends Vector[AR,AR,Complex[T]] The vector classes
manage either one or two backing arrays using the operations of the
aops type class instance, which is passed as an implicit constructor
parameter. The accessor methods apply and update map element
from the internal data arrays to an external interface and vice versa.
In the split complex case, the external representation is always a
staging-time Complex object.

Generalizing the generating functions. To accommodate the
new generalized data structures, we have to slightly extend the
interface of the transform method that emit the staged C-IR:
case class F2() extends SPL {
override def transform[AR[_],ER[_],T:NType]

(in: Vector[AR,ER,T]) = {
val out = in.create(2)
out(0) = in(0) + in(1)
out(1) = in(0) - in(1)
out

}}

Calling this generalized F2 function with the input
val in = new SplitComplexVector[Rep, Double](2)

will be resolved as
transform[Rep,Complex,Double](in: Vector[Rep,Complex,Double])

In other words, the internal storage type will be Rep[Array[Double]].
Therefore, array operations will appear in the resulting C-IR graph.
The complex class, which is mainly used to enable more concise
code, does not occur in the staged IR, therefore not causing any
overhead.

In addition to the staged array data representations, we can also
create a scalarized version:
val in = new SplitComplexVector[NoRep,Rep[Double]](2)

In this version, the array becomes a regular Scala array that contains
staged values (Array[Rep[Double]]). The resulting C-IR graph does
not contain any of the array or complex operations performed at
staging time.

3.3.3 Unrolling and Scalar Replacement
We explain how to abstract over the code style.

Looped code. Beside variables and their operations, also con-
trol structures such as loops, conditionals and functions can be
staged, as briefly shown already in section 2.2. For the I_tensor_A
function introduced in section 3.1, extended by the abstractions in-
troduced in 3.3.2, looped code can be implemented as follows:
def I_tensor_A[AR[_], ER[_], T:NType](size: Int, n: Int,

A: Vector[AR,ER,T] => Vector[AR,ER,T]) = {
in: Vector[AR,ER,T] =>
val out = in.create(size)
val n_staged: Rep[Int] = n
val frag: Rep[Int] = size/n
for (i <- 0 until n_staged) {
val tmp = in.create(frag)
for(j <- 0 until frag) tmp(j) = in(i*n+j)
val t = A(tmp)
for(j <- 0 until frag) out(i*n+j) = t(j)

}
out }

Note that the variables n_staged and frag are annotated with a Rep
type, therefore causing the for loop expression to be staged.

Scalarization. In mathematical high performance code, un-
rolling and scalar replacement in static single assigment (SSA)

form is a standard optimization. It explicitly copies array elements
that are reused into temporary variables and removes false depen-
dencies; this way, the compiler is able to rule out memory alias-
ing and thus to perform better register allocation and instruction
scheduling. Scalarization and SSA form come very naturally with
LMS as already shown in Fig. 4. By moving the data from a staged
array into a Scala container-object containing single staged vari-
ables, scalarization effectively takes place. For every operation re-
sult gained from this variables, LMS creates a new variable, thus
producing SSA form. Using the constructs from Section 3.3.2,
scalarization is done by simply moving data between containers:
val staged_array: SplitComplexVector[Rep,Double]
val scalarized=new SplitComplexVector[NoRep,Rep[Double]](size)
for (i <- until size) scalarized(i) = staged_array(i)
for (j <- until size) SomeComputation(scalarized(j))
for (i <- until size) staged_array(i) = scalarized(i)

The value size is a non-staged integer. Next, we combine scalariza-
tion with unrolling.

Unrolling. To perform partial unrolling to enable scalarization,
we just need to combine the concepts we have seen so far. In
particular we scalarize at the beginning of the code fragment we
want to unroll, replacing the staged loops with regular Scala loops.
def I_tensor_A[AR[_],ER[_],T:NType](size: Int, n:Int,

A: Vector[AR,ER,T] => Vector[AR,ER,T]) = {
in: Vector[AR,ER,T] =>
val in_scalar = new SplitComplexVector[NoRep,ER[T]](size)
val out = in.create(size)
val frag = size/n
for (i <- 0 until size) in_scalar(i) = in(i) //scalarize
for (i <- 0 until n) { //start unrolling
val tmp = in.create(frag)
for(j <- 0 until frag) tmp(j) = in(i*n+j)
val t = A(tmp)
for(j <- 0 until frag) out(i*n+j) = t(j)

} //end of unrolling
out }

Instead of manually implementing scalarization for each loop, we
can also introduce higher level methods to perform this conversion.

3.3.4 Specialization
Specialization is another important performance optimization and
an ability that can distinguish library generators from manually
written libraries. In the case of FFT, relevant opportunities for spe-
cialization include the presence of symmetry in the input (e.g., the
second half is a mirrored version of the first half) or fixing certain
inputs (e.g., all imaginary parts are zero). In both cases operations
can be reduced. In LMS and our prototype, many specialization
cases can be expressed by function composition, where the inner,
more general function is wrapped into an outer one that replaces
parts of the generic input to make specialization patterns explicit.
To illustrate, we assume a function f on complex arrays.
val f: Array[Complex] => Array[Complex] = ...

If we want to specialize f to an input whose first element is known
to be 1.0, a specialized version f_spec with the same signature
can be obtained as follows (in.copy hides the assignment from the
caller):
val f: Array[Complex] => Array[Complex] = ...
val f_spec = { in: Array[Complex] =>
val in_spec = in.copy()
in_spec(0) = Complex(1.0, 0.0)
f(in_spec)}

This pattern is detected at the C-IR optimization level and will re-
sult in the elimination of each multiplication with the real part, and
each addition and subtraction with the imaginary part. Further dead
code removal and opportunities for other simplifications may apply.
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Figure 5. Our generated code versus FFTW 3.3.2

In general, in a specialization the IR graph will be pruned, leading
to a simplified version of the initial graph with less operations and
thus better performance. In our prototype, the specialization cases
mentioned above are supported for scalarized code. This is also the
case in FFTW codegen [15].
4. Experimental Results
We compare the performance of the code generated by our Spiral
prototype (Fig. 2) against the performance of the carefully hand-
written and hand-optimized FFTW 3.3.3 (only the base cases in
FFTW are (pre)generated), known to be one of the fastest libraries
available. We keep the evaluation brief since the main contribution
of this paper is in the demonstration of how to use program lan-
guage features to build generators.

Experimental setup. The experiments were performed on an
Intel i7-2620M with Ubuntu 11.10, using icc 13.0 with flags -O3 -
no-simd -no-vec -xHost. The timing is the minimum of ten repeated
warm cache measurements with the TSC hardware performance
counter. The code considered for both FFTW and our prototype
is scalar code (no SSE/AVX vectorization) without threading and
with in- and output in interleaved format. FFTW was used with its
search enabled. The prototype uses a dynamic programming search
and unrolls once the recursion reaches a transform of size ≤ 32.
The entire code generation time was less then an hour.

Discussion. Fig. 5 shows the pseudo performance using the
pseudo-flop count of 5n log2(n) on increasing two power input
sizes. The plot demonstrates that our prototype yields performance
comparable to the one of FFTW. The development of the generator
took about 15 man months by two people with no prior experience
of Spiral, Scala, or staging.

5. Related Work
There is a considerable body of work on individual program gener-
ators (as surveyed in Section 1), but systematic work on implemen-
tation methodologies for high-performance program generation is
far less widespread.

The original FFTW codelet generator [15] was implemented in
OCaml, whose functional programming features such as pattern
matching are a good fit for symbolic manipulation. However, a key
element of the FFTW simplifier is to provide a tree-like interface
to an internal DAG representation. This is achieved by a monadic
front-end layer, which also eliminates common subexpressions us-
ing memoization. As a consequence, the simplifier needs to be writ-
ten in explicit monadic style, which adds some notational overhead.

Lisp and Scheme have for a long time supported variants of
quote/unquote to compose program fragments (quasi-quotation).
Racket [35] is a modern dialect with powerful macro facilities.
However it is not clear whether sophisticated abstractions (e.g.
over data layout) can be as easily achieved without a strong static
type system (type classes, etc). In a statically typed setting, lan-

guage support for quasi-quotation was introduced by MetaML [34]
and MetaOCaml [8]. Much of the research around these multi-
stage languages focuses on extended static guarantees, such as
well-scoping and well-typing of generated code. The core abstrac-
tion remains an essentially syntactic expansion facility: Composed
code fragments cannot be inspected or further transformed. Thus,
MetaOCaml encourages a purely generative approach which rules
out multiple levels of DSLs. MetaOCaml has been used to develop
the FFT codelets needed by FFTW [21, 22] but most of the work is
performed by tailor-made front-end layers that implement custom
abstract interpretations, not the staging facilities themselves. Cohen
et. al. [11] demonstrate how a range of loop transformations can
be implemented in a purely generative setting, but they also note
the limitations, namely when it comes to composing sequences of
transformations.

On the opposite end of the spectrum, there are purely trans-
formational systems. Examples are language workbenches such as
JetBrains MPS [17] or Spoofax [20] and rewriting engines such
as Stratego/XT [6]. While these systems make it easy to compose
and layer transformations, it takes additional steps to execute ar-
bitrary code during a transformation. For example, using numeric
libraries, or storing pieces of intermediate code in a hash table is
not as straightforward as in a purely generative approach.

We believe that successful environments will most likely not be
found at the extremes of the spectrum but will offer well-chosen
compromises. LMS in particular provides safety assurances for
common uses, but also offers an extensible IR with transformation
and rewriting support. LMS is a core component of the Delite DSL
framework [7, 23, 32], which has been used to implement high-
performance DSLs such as OptiML [33].

Limited forms of program generation can be achieved using
C++ expression templates [36]. Examples are libraries such as
Blitz++ [37], POOMA[19] or Eigen [1], which implement vary-
ing degrees of optimizations. However, expressing transformations
in the template language can be awkward, and there is no support
for non-local transforms that operate across different template ex-
pressions or calling library functions at generation time.

Finally, the original Spiral [26] system was implemented inside
the computer algebra system GAP for group theory and abstract al-
gebra. GAP offers a rich set of transform-relevant functionality but
not much beyond. Most of the required features (DSLs, rewriting,
transformations) where thus implemented by extending the envi-
ronment and without particular language support.

6. Conclusions
Traditionally, the community that aims for highest performance
code with detailed architectural- and microarchitectural-cognizant
optimizations and the community that builds programming lan-
guages and tools are somewhat separated. In the last decade, the
difficulty of optimization has led the former to slowly start using
DSLs and program generation; however, the implementations usu-
ally don’t leverage advanced programming techniques and envi-
ronments. The main goal of this paper was to show that using the
proper techniques, such generators can be constructed in a more
principled, systematic way with results that are easier to maintain
and extend.

In our case study, a small Spiral prototype implemented in Scala
using LMS, we demonstrated how to solve several key challenges
involved in building generators within a staging framework. Of par-
ticular interest are the translation between multiple levels of DSLs,
and the abstraction over data representations and different perfor-
mance code styles with configurable types. This includes unrolling
with scalar replacement, a widespread necessary but ugly transfor-
mation. The downside is the increased level of expertise required by
the programmer to understand and properly use the advanced con-



cepts. For the case study, which was started without prior Scala ex-
perience, this meant several reimplementations yielding more and
more concise code and eventually the solutions presented in this
paper. However, for an artifact as complex as a program generator,
we believe this is a price worth paying.

Scala with LMS was one of many choices in consideration at
the start of the project. Besides the obvious benefits of having the
expertise of the co-authors available by choosing Scala with LMS,
also other considerations drove the decision. In particular, expe-
rience with Spiral has shown that frequently auxiliary functional-
ity is needed in building a generator; thus, the interoperability of
Scala with Java, and thus access to existing Java libraries was a
major advantage. In the case study, for example, we used JTrans-
forms to verify generated code and to precompute En in (3) and
many more libraries such as the Apache Math Commons, the Scala
Language-Integrated Connection Kit, ScalaTest, Scalaz trees and
Bridj. For this reason, we did not consider tool chains that provide
external DSLs. We benefited from other language features in Scala;
for example, we used the object-oriented paradigm to structure our
implementation and to represent our DSLs, and we used the func-
tional paradigm to express the mathematical algorithms that derive
the generated code. For rewriting we benefited from the support for
pattern matching and extractors. Finally, we also took into consid-
eration the long term support of all environments in consideration,
a relevant issue for long running projects such as Spiral.
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