
Automatic Locality-Friendly Interface Extension
of Numerical Functions

Benjamin Hess Thomas Gross Markus Püschel
Department of Computer Science

ETH Zurich, Switzerland
hessbe@student.ethz.ch, {trg, pueschel}@inf.ethz.ch

Abstract
Raising the level of abstraction is a key concern of software engi-
neering, and libraries (either used directly or as a target of a pro-
gram generation system) are a successful technique to raise pro-
grammer productivity and to improve software quality. Unfortu-
nately successful libraries may contain functions that may not be
general enough. E.g., many numeric performance libraries contain
functions that work on one- or higher-dimensional arrays. A prob-
lem arises if a program wants to invoke such a function on a non-
contiguous subarray (e.g., in C the column of a matrix or a subarray
of an image). If the library developer did not foresee this scenario,
the client program must include explicit copy steps before and af-
ter the library function call, incurring a possibly high performance
penalty. A better solution would be an enhanced library function
that allows for the desired access pattern. Exposing the access pat-
tern allows the compiler to optimize for the intended usage sce-
nario(s). As we do not want the library developer to generate all
interesting versions manually, we present a tool that takes a library
function written in C and generates such a customized function for
typical accesses. We describe the approach, discuss limitations, and
report on the performance. As example access patterns we consider
those most common in numerical applications: permutations, strid-
ing and block striding, as well as scaling. We evaluate the tool on
various library functions including filters, scans, reductions, sort-
ing, FFTs and linear algebra operations. The automatically gener-
ated custom version is in most cases significantly faster than using
individual steps, offering gains that are typically in the range of
20–80%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code Generation, Compilers, Optimization;
D.2.2 [Design Tools and Techniques]: Software libraries, User in-
terfaces

Keywords Libraries, components, performance, interface exten-
sion, preprocessors, programming language features interaction,
software product lines

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Raising the level of abstraction is a key concern of software en-
gineering. Components and libraries offer a successful example: a
library hides low-level details and offers an abstraction to its users.
A library or component raises programmer productivity (the user
can focus on the level of abstraction defined by the library) and
improves software quality (assuming the interface is designed and
correctly implemented by experts). A good example are numeri-
cal performance libraries that can greatly improve the productivity
of application programmers. If most of the application runtime is
spent in functions provided by the library, a high level of perfor-
mance may be achieved without optimization effort.

Unfortunately, even successful libraries often contain functions
that are not general enough. Libraries are pre-implemented and
therefore they make assumptions on the data type, the data lay-
out, and the exact computation that is performed. If the applica-
tion requires a variant that is not supported, some driver code is
needed, which may decrease or completely annihilate the perfor-
mance gains offered by the library.

One typical example of this situation is a numerical library
function that assumes that the in- and output arrays are contiguous
in memory. Consider the simple finite impulse response (FIR) filter
in Fig. 1. If the client program needs to apply this filter to all the
even-indexed elements of an array x to produce the output array
y, an explicit copy operation is needed to pack the input data as
shown.

fir(double *in , double *out , int len)
for(int i = 0; i < len -1; i++)

out[i] = (in[i+1] + in[i])/2;

for(int i = 0; i < len; i++)
in1[i] = in[2*i];

fir(in1 , out , len)

Figure 1: Simple FIR filter and its use when applied to strided input
data (here: stride = 2).

The copy code that must be included in the program has many
undesirable consequences. First, there is extra work that must be
done. Second, the program suffers from poor locality and increased
cache misses (in the present case the performance may decrease
by 2–3x). Depending on the details of the context of the call to a
library function, such copy code may be required for different call
sites, increasing the size of the program.

If the library developer had foreseen this use, it would have
been possible to provide this support with a more general function,
e.g., by allowing for strided access as shown in Fig. 2. Note that

1 2014/5/31

f prime does not just move the copy into the function, but removes
it altogether and instead modifies the index expressions and hence
the array accesses. Now, the client program can perform the filter
with one call to fir prime. Allowing in addition for strided output
would require yet another code modification and extension of the
interface.

fir_prime(double *in, double *out ,
int len , int s)

for(int i = 0; i < len -1; i++)
out[i] = (in[(i+1)*s] + in[i*s])/2;

fir_prime(in, out , len , 2)

Figure 2: Simple FIR filter with support for strided access and its
use on strided data.

Some library functions provide extended interfaces, in partic-
ular those whose applications are well established. For example,
dgemm in BLAS [6] provides three additional parameter that allow
the multiplication of matrices within larger matrices, and FFTW [8]
provides an interface to support arbitrary block-strided data layout
for in- and output.

Contributions. In this paper we present a source-to-source
translation tool that can take a C function (such as Fig. 1) as input
and create variants (such as Fig. 2) automatically. The variants have
additional input parameters and can be viewed as generalizations
of the original function. Specifically, the tool has the following
abilities:

• It modifies functions (meaning interface and body) to provide
them with support for four common access patterns for arrays:
strided access (as above), block-strided access (e.g., subimages
in images), permuted accesses, and array scaling.

• The support for these patterns can be on the input arrays, the
output array, or both.

• The support for these patterns can be combined (e.g., strided
access plus scaling).

• If the C function includes vector code (i.e., intrinsics for SSE
instructions to access multiple data items with one instruction)
then this property is preserved and the function variants also use
intrinsics.

This tool can help a library designer to provide generalized ver-
sions of a function that otherwise would just exist in one version
that would need to cover all cases, and as a consequence either
would require glue code at the call site or not exploit the obvious
optimization opportunities that are implied by different access pat-
terns. We concentrate on the handling of different access patterns
as those have a significant influence on the performance of numeric
libraries. We explain the design and implementation of the tool and
discuss limitations. Finally, we show the effectiveness of the tool on
a collection of numeric functions. Specifically, we compare the per-
formance of the modified function to an equivalent implementation
using the original function with copies. In most cases the speed-up
is significant.

2. Supported access patterns
In this section we present the access patterns supported by our tool.
Each of these patterns occurs frequently in numerical applications
operating on arrays. Without special support by a chosen library
function, each pattern requires an explicit copy step or pass through
the data. Our tool removes this step by fusing it with the function
body, thus reducing work and potentially improving performance.
Note that this does not mean that the copy is performed inside the

for(int i = 0; i < size; i++) {
strided[i] = in[i*s];

}
f(strided , out , size);

Figure 3: Strided access of an array.

1 2 3 40 5 6 7

10 2 3 4 5 6 7

s b

Figure 4: Blockstride access pattern with b = 2 and s = 4.

for(int i = 0; i < size; i++) {
int bnum = i/bsize;
bstrided[i] = in[bnum*s + i%bsize];

}
f(bstrided , out , size);

Figure 5: Block strided access of an array.

functkion as explicit step, rather the first (or last) accesses to the
data arrays are modified (as for example in Fig. 2).

The four basic patterns are as follows. The term ”array” refers
to an input or output array of a library function.

• Strided access of an array (as in the introduction before);
• Block strided access of an array;
• Permuted access of an array;
• Scaling of all elements of an array either with a single value or

with an array of scaling values.

We briefly discuss these access patterns assuming as example a
function f(in, out, size) that computes the array out from
the array in, both of length size. Then we discuss the require-
ments that must be satisfied by a library function so that it can be
augmented to include the access patterns.

Strided access. As explained in the introduction, this pattern
occurs when in- or output data are not contiguous but spread with
a constant stride s. The logic of this pattern is shown in Fig. 3.

Examples include applying a function to the column of a matrix
in C (the stride will be the number of columns) or applying a filter
to the red channel in an RGB image (the stride will be three). Our
tool modifies the function to include the stride as parameter and
removes the need to copy by remapping the array accesses.

Block strided access. This access pattern generalizes the
strided access in that it allows the array to be spread as blocks
with constant block size b and stride s. An example is visualized
in Fig 4. For given b and s, b < s, the block number is given by
bi/bc and the position within the block by i mod b. The logic of
this pattern is shown in Fig. 5.

The most important usage scenario for this pattern is applying a
function to matrices within matrices, e.g., subimages of images.

Permuted access. Such an access is not directly to an array but
to a permuted version of it. The permutation is specified by an inte-
ger array of the same length. The logic of this access pattern, when
applied to our running example f(in, out, size) is shown in
Fig. 6.

An example where this might occur is a Fourier transform func-
tion that gets the input in a form that is bit-reversed or underwent

2 2014/5/31

for(int i = 0; i < size; i++) {
permuted[i] = in[permutation[i]];

}
f(permuted , out , size);

Figure 6: Permuted access to an array.

for(int i = 0; i < size; i++) {
in[i] *= scale;

}
f(in, out , size);

Figure 7: Scaling of an array with a fixed constant.

for(int i = 0; i < size; i++) {
in[i] *= scale[i];

}
f(in, out , size);

Figure 8: Scaling of an array with another array.

a perfect shuffle. Our tool will translate such a function into one
where the permutation array is passed as additional parameter and
transforms the code to avoid the explicit permutation in Fig. 6.

Scaling. Scaling adjusts the range of the input or output array
of a function. It is conceptually different from the previous patterns
in that it transforms the data and not the access pattern. Prescaling
scales the input before the function is applied. Postscaling adjusts
the output of the function. The scaling factors can be constant or
given by an array of the same length (vector scaling). The logic of
the two types of scalings is shown in Figs. 7 and 8 for the case of
prescaling.

As an example, scaling is often used in signal processing to
ensure that an array has norm (= energy) 1. If a library function
is applied to such an array, it makes sense to create a variant that
gets the scaling factors (a number or array) as additional parameters
and performs the scaling as part of the function.

Vector code. Optimized library functions often explicitly vec-
torize the code using intrinsics (e.g., for Intel’s SSE considered in
this paper). To preserve the performance benefits obtained this way,
it is important that the use of intrinsics is preserved when integrat-
ing the access pattern into a library function.

Limitations to ensure correctness. To allow the automatic
generation of variants of a function f that fuse the access pattern
with the body of f, several constraints must be fulfilled. We list the
most important constraints that are needed for the analysis. Later,
we discuss additional restrictions that are due to the implementation
of the tool.

Assignments with a pointer on the left hand side must be of
the form p = q + index where p and q are pointers of the same
type and index is an arbitrary expression with an integer type as a
result. For an occurring p such an assignment must occur exactly
once (SSA format) unless q = p in which cases the assignment is
allowed multiple times.

For the scaling transformation, the underlying memory block
of a pointer is either read or written, never both within a function.
Without this limitation, the tool cannot determine if an access is
already scaled because the accessed value could have been written
by a scaled value beforehand.

If recursion is used, the allocated memory blocks referred to by
parameters must stay the same throughout the recursion.

Each of these conditions can be detected by our tool for a
suitable error message in case of failure.

3. Generalizing library functions
Given a library function f and a specific access pattern (e.g., a
vector scaling or a strided access) for an input or output array, our
tool generates a generalized variant f prime. This variant has a
widened interface (so a scaling vector or stride can be specified)
and an accordingly modified function body. To do this, our tool
must understand how f operates on input and output parameters.
This information is kept in a dependence graph that shows how
source and destination operands are modified. We first explain this
graph and then show how it is used to perform the various source
code transformations. We will focus on the striding access and
discuss the others more briefly as they are mostly analogous.

3.1 Dependence graph
The transformations need the total offset and the origin of access to
the array affected by the access pattern. To provide this information,
a dependence graph for the input function f is created. The nodes
of the graph represent the pointers and integer variables used in the
function. The edges between the nodes represent statements that
create a dependence between these. Fig. 9 shows the graph for a
simple function f.

void f(double* src , double* dst , int size) {
double* p = src + size;
int half = size / 2;
dst[half] = p[size /2];

}

half dstdst[half]

size

int half = size / 2

p

p[size / 2]

double* p = src + size

src
double* p = src + size

Figure 9: Dependence graph.

More formally, the graph is defined as follows:

1. There is a node for every pointer, formal parameter, or integer
variable.

2. Pointer assignments of the form p2 = p1 + index create a
dependence edge from p1 to p2.

3. Assignments of integer variables of the form i = <expr> cre-
ate a dependence edge from every integer variable in <expr> to
i; accordingly i+= <expr> creates in addition a dependence
of i on itself as does i++.

4. Usages of integer variables or formal parameters in array ac-
cesses of the the form a[<expr>] create a dependence edge
from every variable in <expr> to a.

The edges are annotated by the expression(s) that tie the variables
(pointers, formals, arrays) together. Special nodes represent loops.
The dependence graph for f captures just enough information for
the tool to operate (e.g., floating variables are ignored) and poses
implicit limitation on the type of code that can be processed (e.g.,
casting a float to an integer, which is then used in an array access,
is not allowed).

3 2014/5/31

3.2 Transforming the body
Given a function f and its dependence graph, the body of the
function is transformed according to the kind of access code that
is to be included. We explain these transformations for each access
pattern.

3.2.1 Striding
The striding transformation moves the relevant elements by a strid-
ing factor apart. The striding transformation does not modify any
data, but only indices; namely it multiplies the total offset of an
access by the striding factor. The detailed steps are:

1. The first step is checking the dependences. A dependence of ar-
rays arises from an assignment p2 = p + offset, from which
can be concluded that the offset of p2 must be offset bigger
than the offset of p. This offset must then be multiplied with the
striding factor, resulting in p2 = p + offset * stride.

2. After the dependences are handled, every relevant array sub-
script (or dereference) is modified. The index of an access is
again multiplied with the striding factor, e.g., p2[index] is re-
placed with p2[index * stride].

3. Our tool can also transform C that was vectorized with intrin-
sics. Our implementation considers the SSE instruction set with
either 2-way doubles or 4-way floats. Vectorized code poses an
additional challenge as the most commonly used load/store in-
trinsics load multiple elements that are consecutive in memory.
Thus the striding of the elements forces a switch to single slot
load/store intrinsics:

(a) The index of an access is again multiplied with the striding
factor. The resulting address points to the first element to
load.

(b) If packed load/store intrinsics are used, they are split up into
either 2 (double) or 4 (float) single slot loads. These use the
address from the previous step. For each single slot load-
/store intrinsic, the address is adjusted by the striding fac-
tor to get the subsequent element. For example the intrinsic
load x1 = mm load ps(src + x + y * width) has an
offset of x + y*width. This call is transformed into four
single slot loads with shuffling, as shown in Fig. 7. Intrinsic
stores are handled analogously.

(c) After loading the single elements, shuffle intrinsics combine
the single elements into one SSE register.

Pseudo code for the entire striding transformation (showing for
SSE 2-way double precision only) is shown in Fig. 11.

3.2.2 Blockstriding
The blockstriding transformation is a more general case of the
striding transformation and can handle arbitrary block sizes (see
Fig. 4). For a given striding factor s and a block size b < s, the
position of a specific element in the blockstrided data structure
can be calculated from the given position of the element in the
consecutive data layout. If the original index of an element is i,
the blockstrided position i2 of the same element can be calculated
as

i2 = b i
s
c︸︷︷︸

block number

∗b+ i mod b︸ ︷︷ ︸
position inside block

(1)

The block size and the striding factor are added to the parameter
list to use in the formula (1).

Handling of vectorized code is more complicated than in
the striding transformation. In the striding transformation, every
packed load or store must be replaced with its single slot counter-

a_0 = _mm_load_ss(src + stride *
(x + y * width + 0));

a_1 = _mm_load_ss(src + stride *
(x + y * width + 1));

a_2 = _mm_load_ss(src + stride *
(x + y * width + 2));

a_3 = _mm_load_ss(src + stride *
(x + y * width + 3));

a_0 = _mm_shuffle_ps(a_0 , a_1 , 0);
// shuffle a_0 and a_1 together

a_2 = _mm_shuffle_ps(a_2 , a_3 , 0);
// shuffle a_2 and a_3 together

a_0 = _mm_shuffle_ps(a_0 , a_2 , 136);
// shuffle a_0 and a_2 together

x1 = a_0;

Figure 10: Example of striding transformation of x1 =
mm load ps(src + x + y * width);.

part, because only one element at the time is loaded. The blockstrid-
ing transformation can differentiate three different cases instead of
always switching to single slot intrinsics (Table 1).

These cases depend on the alignment of the parameters, the
block size and the striding factor. The parameters are aligned if
the address is divisible by 16, block size and striding factor are
aligned if they are divisible by either 2 or 4, depending on the
used data type. If the parameters, block size and striding factor
are aligned, packed aligned load/store intrinsics can be used. In
the second case, the block size is aligned but not the start of a
block and therefore unaligned packed load/store intrinsics must be
used. If the block size is unaligned, unaligned packet load/store
intrinsics are used until there are not enough elements left in the
current block. The remaining elements and elements from the next
block are loaded with single slot intrinsics. These cases can only be
checked at runtime and therefore the transformation inserts a check
at the beginning of the function and branches to the corresponding
code block. This branching enables the use of higher performing
code if the alignment conditions are fulfilled.

The most important application of the block striding transfor-
mation is the access of subimages in images. If the larger image
(of size height by width) is represented as array a, the function
may use throughout an indexing style like a[i+width*j]. In that
case, the subimage can be accessed in the same style as a[i+b*j]
with a suitable adjustment of the ranges of i and j. We refer to this
special case as a 2d optimized blockstriding transformation and the
tool attempts to use induction variables (i.e., the value is computed
by a simple affine expression of the loop counters) to step through
both the image and the subimage. More details can found in the
report [12].

3.2.3 Permuting
The steps of the permuting transformation are similar to the steps
of the striding transformation. Instead of multiplying the index
with the striding factor, the index is used to access the permutation
array permuted. To access this array, the total offset is needed;
therefore additional variables are added to track the offset of every
variable: For every assignment of a pointer (p1 = p + offset)
an additional offset variable p1 offset is inserted. To calculate
the offset of p1, the tool calculates int p1 offset = p offset
+ offset. With those additional variables, the tool can easily
determine the total offset of an access of any pointer and use it
to get the permuted index.

An access to p1 has an implicit offset included from its ori-
gin. As the permutation vector stores the indices of the elements

4 2014/5/31

/ / i n s e r t o f f s e t v a r i a b l e s
f o r a s s i g n m e n t (p2 = p1 + o f f s e t) i n a l l a s s i g n m e n t s :

i f p1 i s p a r a m e t e r and f u n c t i o n i s n o t r e c u r s i v e :
i n s e r t p 2 o f f s e t = o f f s e t b e f o r e a s s i g n m e n t

e l s e :
i n s e r t p 2 o f f s e t = p 1 o f f s e t + o f f s e t b e f o r e a s s i g n m e n t

/ / a d j u s t r e c u r s i v e c a l l s
i f f u n c t i o n has r e c u r s i v e c a l l s :

add o f f s e t p a r a m e t e r s f o r a l l a f f e c t e d v e c t o r s
f o r f u n c t i o n c a l l f (. . . , p + o f f s e t , . . .) i n a l l r e c u r s i v e f u n c t i o n c a l l s :

i f p i n a f f e c t e d p a r a m e t e r s :
/ / pas s o f f s e t t h r o u g h newly added o f f s e t parame te r o f v e c t o r parame te r p
change c a l l t o f (. . . , o r i g i n (p) , . . . , p o f f s e t + o f f s e t) ;

/ / r e p l a c e a l l s c a l a r a c c e s s e s
f o r a c c e s s (p [i]) i n a l l r e a d a c c e s s e s :

i f o r i g i n (p) i n a f f e c t e d p a r a m e t e r s :
r e p l a c e p [i] w i th o r i g i n (p) [(p o f f s e t + i) ∗ s t r i d e]

/ / r e p l a c e s s e do ub l e p r e c i s i o n packed l o a d s
f o r f u n c t i o n c a l l s s e l o a d (p + o f f s e t) i n a l l s s e double p r e c i s i o n packed l o a d s :

i f p i n a f f e c t e d p a r a m e t e r s :
i n s e r t i n t t m p i n d e x = p o f f s e t + o f f s e t ; b e f o r e l o a d s t a t e m e n t
i n s e r t a 0 = mm loadh pd (a 0 , o r i g i n (p) + t m p i n d e x + (s t r i d e ∗ 1)) ; b e f o r e l o a d s t a t e m e n t
i n s e r t a 0 = mm load l pd (a 0 , o r i g i n (p) + t m p i n d e x + (s t r i d e ∗ 0)) ; b e f o r e l o a d s t a t e m e n t
r e p l a c e s s e l o a d (p + o f f s e t) w i th a 0

/ / r e p l a c e s s e do ub l e p r e c i s i o n packed s t o r e s
f o r f u n c t i o n c a l l s s e s t o r e (p + o f f s e t , s s e v a l u e) i n a l l s s e double p r e c i s i o n packed s t o r e s :

i f p i n a f f e c t e d p a r a m e t e r s :
i n s e r t m m 1 2 8 d t m p v a l u e = s s e v a l u e ; b e f o r e s t o r e s t a t e m e n t
i n s e r t i n t t m p i n d e x = (p o f f s e t + o f f s e t) ∗ s t r i d e ; b e f o r e s t o r e s t a t e m e n t
f o r n = 0 t o 1 :

i n s e r t m m s t o r e s d (o r i g i n (p) + t m p i n d e x + (s t r i d e ∗ n) , t m p v a l u e) ; b e f o r e s t o r e s t a t e m e n t
i n s e r t t m p v a l u e = m m s h u f f l e p d (tmp va lue , tmp va lue , 1) ; b e f o r e s t o r e s t a t e m e n t

d e l e t e s t o r e s t a t e m e n t

Figure 11: Pseudocode for the striding transformation including the handling of 2-way double SSE vectorized code.

Alignment

Parameters Block Size Striding Factor

X X X packed aligned intrinsics are preserved
X/ - X - packed aligned intrinsics are converted to packed unaligned

intrinsics
- - - packed intrinsics are converted to unaligned intrinsics or split up

into single slot intrinsics for the remaining elements in a block

Table 1: Different cases for SSE intrinsics handling in the blockstriding transformation.

in the parameter, which has a zero offset, the implicit offset of
p1 must be removed to access the correct permuted element.
Therefore, the pointer p1 is replaced with its origin resulting in
origin[permuted[p1 offset + value]].

3.2.4 Scaling
There are two types of scaling: prescaling and postscaling. Prescal-
ing applies when data is read from an array, postscaling when data
gets written to an array. The steps for a prescaling transformation
are:

1. First, the tool creates a list of affected arrays using the depen-
dence graph to check the dependences of the to-scale parame-
ters and collects the dependent pointers. In addition, new vari-
ables are inserted to track the total offset when a pointer is as-
signed.

2. With the list of affected arrays, the tool first modifies the normal
array subscripts (pointer dereferences are equivalent to array
subscripts).
• For a scalar scaling an access p[i] is replaced with p[i]
* scaling factor

• For a vector scaling the tool needs to calculate the total
offset of the access and use it as an index for the scal-
ing vector: an access p[index] is replaced with p[index]
* scale[index + offset of p]. The index of the scale
vector index + offset of p is the total offset of the ac-
cess to p and is calculated with the additional offset vari-
ables.

3. After all array subscripts are transformed, the tool checks if the
function uses any SSE intrinsics. The changes to the vectorized

5 2014/5/31

code are more complicated as there are several different ways
to load an SSE register.

(a) The first step is to isolate the load intrinsics and assign the
result to a temporary variable tmp.

(b) For vector scaling, two or four new scaling factors are
loaded into an SSE register before the scaling operation
can be executed. The index used to access the scaling vector
must be the total offset used in the load intrinsic.

(c) Then, the multiplication of the temporary variable tmp with
the scaling factor is done.

(d) If the load intrinsic does not load a full packed SSE register,
the transformation must preserve the unloaded values in
the registers to stay the same as before the multiplication.
Therefore, shuffling intrinsics are needed to get the unscaled
original values back into the final SSE register.

(e) Lastly, the scaled SSE variable is inserted where the original
load intrinsic was placed.

4. Finally, any recursive call is modified to add the additional
scaling parameter.

The postscaling transformation is similar. Instead of modifying
read accesses, write accesses are modified. An assignment p[i]
= value is transformed into p[i] = value * scale for a scalar
scaling or p[i] = value * scale[i] for vector scaling. Vector-
ized code is handled the same way.

3.3 Widening the interface
The dependence graph provides the original formal parameters. De-
pending on the access transformation, additional parameters are
needed (the scalar or a vector for scaling, striding and block in-
formation for (block)strided accesses, and a permutation vector for
permutations). These parameters are added to the list of formal pa-
rameters. A user of the library variant must then provide these pa-
rameters at call sites to employ the generalized library function.

3.4 Combinations
Most transformations can be applied in any sequence to a given
function that obeys the limitations in Section 2. The only limitation
relates to the 2d optimized blockstriding transformation as it re-
quires that index computations have the format i + j*width. The
permuting transformation destroys this indexing style by replacing
the index with an access to the permutation array and therefore a 2d
optimized blockstriding cannot be applied after a permuting trans-
formation has been applied.

The transformations do not commute, hence different orders of
transformations produce different resulting functions. Some order-
ings influence the performance, others affect the added parameters
of the following transformations. The most important implications
are described next.

Scaling. The scaling transformation is the only transformation
that does not affect any subsequent transformation. Scaling adds
one floating point multiplication to every access and does not mod-
ify the index computations. However, the transformation is affected
by previous transformations if vector scaling is used as it uses the
index of a possibly modified access for accessing the scaling vector.

Striding. After a striding transformation, the indices are mul-
tiplied with the striding factor and therefore the size of a vector
is also multiplied by the same factor. Subsequent transformations
are affected as they are dependent on the used index. For example,
a permutation vector must be strided if the permuting transforma-
tion is applied after the striding transformation. Furthermore, vec-
tor code may be split up into single slot accesses, resulting in an
increase in the number of access operations. The subsequent trans-

formations also operate on the increased access count and introduce
a bigger overhead than would be necessary if these transformations
were applied before the striding transformation.

Permuting. Similar to the striding transformation, subsequent
transformations operate on the permuted index and therefore use
the permutation too. After the transformation, the indexing format
is permuted[i], where i is the previously used index. This format
is not compatible with the 2d blockstriding transformation, which
therefore cannot occur after the permutation transformation.

Blockstriding. The blockstriding transformation is a more gen-
eral case of the striding transformation. Therefore, all of the im-
plications of striding apply also to the blockstriding transforma-
tion. The subsequently added parameters are blockstrided instead
of strided. Further, the vectorized accesses are split into single slot
accesses and the number of access operations is increased accord-
ingly.

Reasonable combinations. If a specific sequence of transfor-
mations is useful or not depends on the requirements on the in-
put or output data. However, two or more consecutive transforma-
tions of the same type can often be combined into one transforma-
tion resulting in a better performing function. Consecutive scaling,
striding or permuting transformations can be easily combined into
one transformation. If two consecutive 2D blockstriding transfor-
mations are applied, the first transformation has no effect on the
function at all because the second transformation replaces the pa-
rameter that was added by the first transformation.

3.5 Implementation restrictions
The C language offers a variety of syntactic elements and control
statements. As the tool is implemented in Python, and we do not
know of an industrial-strength C frontend in Python, the tool han-
dles only a (generous) subset of the C language. Note that these
restrictions apply only to the library functions that are processed
by the tool and do not apply to the application program that uses it.
The allowed subset of C is sketched next.

Function declaration. The function that the transformation
should be applied to must conform to the following:

• The return value can be void, double or float.
• Data types of arguments can be either a pointer or a scalar.

Pointers represent input or output data and can have double or
float as pointee type. Scalar arguments that store the length
of a vector must be of int or size t type; the remaining
arguments can be of any scalar data type.

Global and local variables. The limitations on these the same
as the limitations on the functions arguments. Additionally mm128
and mm128d data types are allowed to enable vectorized code.

Function body. Allowed are only a few constructs: for loops
with one iteration variable, if/else constructs, variable decla-
rations and assignments. The latter are only restricted when the
left hand side is any kind of pointer as is described in Section 2.
structs and switch statements are not supported

Pointers. Due to the nature of the transformations, the most
restrictions concern pointers:

• Pointer parameters do not alias;
• Pointers must only point to scalar data types (double, float

or int) ;
• Pointers are not modified from outside the function;
• Pointers do not leave the function through a function call;
• Allowed operations on pointers are addition, subtraction, deref-

erence and array subscript.

6 2014/5/31

SSE. The usage of the streaming SIMD extensions are allowed
by using intrinsic functions. Only the load/store intrinsics and the
SIMD data types are restricted. The data types for packed float
mm128 and packed double mm128d are allowed. Furthermore, the

most common load and store intrinsics are supported including
packed and single slot, aligned and unaligned.

Macros/Defines. The usage of macros or defines are not al-
lowed, as they are not fully expanded by the preprocessor of
the parsing library. The only exception are the shuffle macros
MM SHUFFLE and MM SHUFFLE2.

4. Evaluation
Our tool generalizes a given library function to support a chosen ac-
cess pattern from Section 2. The main goal is that the generalized
function (e.g., the one in Fig. 2) then performs faster than the orig-
inal function surrounded by the extra code needed for the access
pattern (e.g., as shown in Fig. 1).

Experimental setup. To validate success we apply our tool to
the collection of 13 legacy numerical library functions that im-
plement well-known functions including filters, scans, reductions,
sorting, FFTs, and linear algebra operations, as shown in Table 2.
We implemented the first 8 ourselves, the remaining 5 are Spiral-
generated from [1, 15]. Access patterns not supported or not appli-
cable are shown in the last column. The constraints for reduction
exist because there is only one output value; for mergesort because
it is inplace. 2d blockstriding refers to the optimization of induction
variables discussed at the end of Section 3.2.2. Vectorized func-
tions, which include SSE instrincs, have the prefix sse.

As input sizes we choose 4002n, 1 ≤ n ≤ 10, for 1d inputs,
and 400n, 1 ≤ n ≤ 10, for 2d inputs (i.e., one dimension of the
square matrices in filter and sse mvm).

The platform is an AMD Phenom II X4 Deneb, 3.4 GHz with 8
GiB DDR3 1333MHz, running Windows 7. We used the Intel com-
piler icc 12.0.0.104 with flags /O3 /arch:SSE2 /fp:fast=2 /qipo fas
/Oa /Ow /Ob2 /Oi /Ot /fast /xHost.

For each function we applied each allowed pattern to the input,
the output (not shown), and both. In each case we ran each of the
10 sizes 10 times to compute a total of 100 speedups. These are
displayed as box plot that shows median and the range from first
to third quartile. The whiskers show the lowest and highest datum
with 1.5× of the first and third quartile, respectively. The crosses
show all outliers.

For the parameters of the access patterns we choose stride 8 for
striding and in addition a block size of 32 for block striding. The
permutations for permuting where chosen randomly, as where the
factors for scaling (between 0 and 1).

Results. The results are shown in Fig. 12. Every row is a trans-
formation: for the left column it was applied to the input, for the
right column to in- and output. The x-axis shows the functions to
which the transformation could be applied, the y-axis the speedup.
A speedup > 1 is an improvement and higher is better. The me-
dian in each case is written inside the plot; black numbers signify
speedups, red numbers signify slowdowns.

A first glance at Fig. 12 confirms that out tool provides speedups
in the majority of cases; however a few also experience a significant
slowdown. Explaining the various speedups is difficult, so we focus
on a few cases where we found a plausible explanation.

Striding: For in-striding the typical speed-up is 15–20%; only
contrast suffers a severe slowdown. For in/out-striding mergesort
performs poorly because operating inplace on strided data has poor
spatial locality throughout the computation. On the other hand the
small, highly optimized functions implementing FFTs and MVM
benefit more since the extra copy steps incur a comparatively high
penalty; the same observation holds for the other transformations.

Blockstriding: This transformation has the most cases of signif-
icant slowdown (2 for in and 4 for in/out). A possible explanation is
that in these cases the index expression in (1) is expensive relative
to the actual computation (as is the case for filter). We also applied
the optimized version discussed in 3.2.2 which is applicable to fil-
ter, contrast, and sse contrast; the speedup is then about 2x in all
three cases [12].

Permuting: For each plot there is only one case of signifi-
cant slowdown; we do not have a good explanation. The speedups
range from insignificant to about a 100%; the scan for in/out even
achieves 150%.

Vector scaling: Here our method performs best with no relevant
slowdowns.The speedups range from insignificant to 85%.

As the transformations preserve the use of SSE instrinsics (as
discussed earlier), the baseline for functions with the prefix “sse”
includes also SSE intrinsics. The results shown in Fig 12 for these
functions indicate that the tool is very useful for these optimized
functions and preserves the developer’s insights and effort.

5. Related Work
We identified three directions of related work that we discuss in this
section.

Libraries that support access patterns. The problem of as-
sumptions in performance libraries that mismatch the patterns
needed in applications is well-known and has been addressed in
some popular libraries. For example, in linear algebra the entire
BLAS specification is designed to match the access patterns in the
higher level routines of LAPACK [2]. This explains extra param-
eters in gemm (matrix multiplication) and gemv (matrix-vector)
multiplication that allow block-strided access (which is equivalent
to allowing matrices within larger matrices). Recently it was ob-
served that the gemm interface is not sufficient when multiplying
matrices in higher-dimensional tensors [11].

In the recursive library FFTW, any (multi-dimensional) strided
access pattern is supported [8]. This is convenient for users but nec-
essary to support the recursion (which produces FFTs at increasing
strides). Moreover, FFTW fuses scaling steps into base case FFTs,
called twiddle codelets, for locality [7]. Other fusions of context
(e.g., to support real FFTs) lead to a total of more than 10 variants
for every input size. The variants needed have been determined by
the developers. To generate libraries like FFTW automatically, [16]
shows how to discover these in Spiral [14, 15] automatically from
a mathematical specification and generates the associated code.
However, the code is not produced by modifying a standard ver-
sion as done here but directly from a mathematical description.

Compiler optimizations. Existing compilers do not perform
the kind of optimizations targeted by our tool. If the compiler
is able to inline a library function f then loop fusion (or loop
jamming) might be able to merge the copy loop with a loop inside
f. However, most C compilers inline only some standard or math
library functions that are recognized by name [9] and do not inline
recursive functions, which are handled by our approach. And while
loop fusion merges adjacent loops, it requires that there are no flow-
, anti-, or output dependences that connect the variables of the first
loop with those of the second [10]. But copy code to adjust the
context inserts exactly these kinds of dependences and the analysis
for these is often not available for C programs. Furthermore, many
library functions are complex and may not offer a simple loop to
fuse with. And if the library function contains vector code with
intrinsics, the copy loop and the loops in the body of the library
function may have different trip counts.

An automatic optimization of code that follows the pattern
“copy-library call-copy” (and that would be done by a compiler’s
optimizer) is possible but difficult in practice. An optimizer must
ensure that the array set up by the copy step is used only by the

7 2014/5/31

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0

dft
10

48
57

6

dft
51

2
filt

er

re
c_

re
du

ce

re
du

ce sc
an

fft
fw

d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

0.70 1.06 1.23 1.12 1.22 0.91 0.94 1.13 1.18 1.22 1.50 1.42

Speedup factor
Strided access: input

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0

dft
10

48
57

6

dft
51

2
filt

er

re
c_

mer
ge

so
rt

sc
an

fft
fw

d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

3

4

0.85 1.31 1.39 0.66 1.27 1.17 0.48 1.15 1.40 3.11 1.43

Speedup factor
Strided access: in- and output

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0

dft
10

48
57

6

dft
51

2
filt

er

re
c_

re
du

ce

re
du

ce sc
an

fft
fw

d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

3

0.62 1.70 1.84 1.21 1.13 0.62 1.04 1.44 1.15 1.54 1.79 0.97

Speedup factor
Blockstrided access: input

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0

dft
10

48
57

6

dft
51

2
filt

er

re
c_

mer
ge

so
rt

sc
an

fft
fw

d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

3

0.83 2.09 2.66 1.05 0.77 0.56 0.62 1.71 1.98 2.55 0.96

Speedup factor
Blockstrided access: in- and output

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0

dft
10

48
57

6

dft
51

2
filt

er

re
c_

re
du

ce

re
du

ce sc
an

fft
fw

d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

3

4

5

6

7

0.77 1.42 1.23 0.93 1.10 2.01 1.18 1.76 1.85 1.22 1.14 2.16

Speedup factor
Permuted access: input

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0

dft
10

48
57

6

dft
51

2
filt

er

re
c_

mer
ge

so
rt

sc
an

fft
fw

d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

3

4

5

6

7

1.00 1.92 1.53 0.73 1.10 1.74 0.96 2.49 1.45 1.22 2.18

Speedup factor
Permuted access: in- and output

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0

dft
10

48
57

6

dft
51

2
filt

er

re
c_

re
du

ce

re
du

ce sc
an

fft
fw

d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

3

1.08 1.31 1.03 0.97 1.13 1.04 1.30 1.27 1.51 1.06 1.55 1.86

Speedup factor
Vector scaled access: input

co
nt

ra
st

sse
_c

on
tra

st

dc
t4

0
filt

er
fft

fw
d

sse
_ff

tfw
d

sse
_m

vm
0

1

2

3

1.28 1.71 1.07 1.24 1.20 1.74 1.85

Speedup factor
Vector scaled access: in- and output

Figure 12: Benchmarks with the four types (rows) of transformations, applied to input only (left column) or to in- and output (right column).

8 2014/5/31

Function Description DataType Invalid/Not applicable Transformations

filter Generic 2d convolution with a kernel of size 3x3 float -
contrast Normalizes the range of values in an image double -
sse contrast Vectorized version of contrast double -
sse mvm Vectorized matrix-vector multiplication float -
rec mergesort Recursive 2-way mergesort withO(n) extra storage for merg-

ing.
double scaling, in- and out-(block)striding

reduce Sum reduction of all elements double postscaling, out-(block)striding
rec reduce Divide-and-conquer sum reduction double postscaling, out-(block)blockstriding
scan Calculates the prefix sum of a vector double postscaling, poststriding, out-

(block)striding
dft512 Fast Fourier transform (FFT) for 512 elements generated by

Spiral
double postscaling, 2d blockstriding

dft1048576 FFT for 220 elements generated by Spiral double postscaling, 2d blockstriding
fftfwd Real FFT for 128 elements generated by Spiral double 2d blockstriding
sse fftfwd Vectorized real FFT for 128 elements generated by Spiral double 2d blockstriding
dct40 Discrete cosine transform for 40 elements generated by Spiral double 2d blockstriding

Table 2: List of the functions used for performance evaluation.

library call that immediately follows. A conservative analysis may
fail (even for single-threaded programs) if programmers re-use ar-
ray temporaries. The tool presented here shifts the responsibilty to
ensure the absence of aliasing to the developer and, in return, frees
the developer from modifying the library code by hand.

Software product lines. Our work can also be phrased in the
language of software product lines (SPLs) [4] in that our tool
adds features to a base implementation to create variants. The set
of all these variants is an SPL. In software engineering, several
approaches are known to create SPLs including feature and aspect
oriented programming or components or frameworks [3, 5, 13].
However, in that work, the software considered is usually more
complex, the features are preimplemented, higher level languages
are used, and the goal is not performance.

6. Concluding remarks
We described a tool that can extend a numerical C library function
to allow for more general access patterns. Even though the tool
is quite simple and has constraints on the input it can process, it
proved to be able to process many typical functions including more
complex ones such as vectorized matrix multiplication or highly
optimized FFTs. In most cases, the functions generated by this tool
provide substantial performance benefits compared to a standard
function with added glue code. It would be interesting to consider
a larger set of common access patterns to explore the limitations of
our approach. Finally, although the tool is limited to C, the same
design could be applied to other languages, e.g., those that provide
additional meta information about structures (e.g., the dimensions
of an array), which could be leveraged to reduce the number of
additional parameters.

Finally, our results are also a feedback to library developers. It
is important to understand the context and patterns employed by
clients. It almost always does pay off to support the most common
usage setups, and a tool as discussed here provides a simple way to
generalize library functions.

References
[1] Spiral website. http://spiral.net/codegenerator.html.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia,
PA, 3rd edition, 1999. ISBN 0-89871-447-8 (paperback).

[3] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-
Oriented Software Product Lines: Concepts and Implemen-
tation. Springer, 2013.

[4] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley Professional, 3rd edition,
2001.

[5] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley Profes-
sional, 2000.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S.
Duff. A set of level 3 basic linear algebra subpro-
grams. ACM Trans. Math. Softw., 16(1):1–17, 1990.
http://www.netlib.org/blas/blasqr.pdf.

[7] M. Frigo. A fast Fourier transform compiler. In Programming
Languages, Design and Implementation (PLDI), pages 169–
180, 1999.

[8] M. Frigo and S. G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[9] Intel. Intel C++ Compiler XE 13.1 User and Reference Guide.
Santa Clara, CA, 2013. Document number: 323273-131US.

[10] S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, 1997.

[11] E. D. Napoli, D. Fabregat-Traver, G. Quintana-Orti,
and P. Bientinesi. Towards an efficient use of the
BLAS library for multilinear tensor contractions.
http://arxiv.org/pdf/1307.2100.pdf, 2013.

[12] Not-shown. Not shown due to anonymous review process.
Technical report, 2013.

[13] D. L. Parnas. Designing software for ease of extension and
contraction. In Proc. International Conference on Software
Engineering (ICSE), pages 264–277, 1978.

[14] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code

9 2014/5/31

generation for DSP transforms. Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and
Adaptation”, 93(2):232– 275, 2005.

[15] M. Püschel, F. Franchetti, and Y. Voronenko. Encyclopedia of
Parallel Computing, chapter Spiral. Springer, 2011.

[16] Y. Voronenko, F. de Mesmay, and M. Püschel. Computer
generation of general size linear transform libraries. In Code
Generation and Optimization (CGO), pages 102–113, 2009.

10 2014/5/31

