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Automatic Generation of
Fast Discrete Signal Transforms

Sebastian Egner, Markus Püschel

Abstract— This paper presents an algorithm that derives
fast versions for a broad class of discrete signal transforms
symbolically. The class includes but is not limited to the
discrete Fourier and the discrete trigonometric transforms.
This is achieved by finding fast sparse matrix factorizations
for the matrix representations of these transforms. Unlike
previous methods, the algorithm is entirely automatic and
uses the defining matrix as its sole input. The sparse ma-
trix factorization algorithm consists of two steps: first, the
“symmetry” of the matrix is computed in the form of a
pair of group representations; second, the representations
are stepwise decomposed, giving rise to a sparse factoriza-
tion of the original transform matrix. We have successfully
demonstrated the method by computing automatically effi-
cient transforms in several important cases: for the DFT,
we obtain the Cooley/Tukey FFT; for a class of transforms
including the DCT, type II, the number of arithmetic op-
erations for our fast transforms is the same as for the best
known algorithms. Our approach provides new insights and
interpretations for the structure of the considered signal
transforms and why fast algorithms do exist. The sparse
matrix factorization algorithm is implemented within the
software package AREP.

Keywords— discrete Fourier transform, trigonometric
transforms, discrete cosine transform, fast algorithm, sym-
metry, group representations, monomial representations.

I. Introduction

FAST algorithms for discrete signal transforms have
been a major research topic in the last decades lead-

ing to a large number of publications. Because of their
wide-spread applications in digital signal processing, par-
ticular effort has been spent on the discrete Fourier trans-
form (DFT) and the different types of trigonometric trans-
forms, i.e., discrete cosine and sine transforms (DCTs and
DSTs), as classified by Wang, [1]. Important algorithms
for the DFT include the “fast Fourier transform” (FFT)
found by Cooley and Tukey (first discovered by Gauß, [2]),
[3], Rader’s algorithm for prime size, [4], Winograd’s algo-
rithms, [5], as well as [6], [7], [8]. An overview on FFT algo-
rithms can be found in [9] or [10]. Important algorithms for
the trigonometric transforms were found by Chen, Smith
and Fralick, [11], Wang, [12], Yip and Rao, [13], [14], Vet-
terli and Nussbaumer, [8], Lee, [15], Feig, [16], Chan and
Ho, [17], Steidl and Tasche, [18], and Feig and Winograd,
[19].

Most of the algorithms cited above are given as a factor-
ization of the respective transform matrix into a product of
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highly structured, sparse matrices. If an algorithm is given
in another way, e.g., by equations, it is possible to rewrite
the algorithm in the form of a sparse matrix product.

All of these algorithms have been found by insightful
manipulation of the entries of the transform matrices us-
ing algebraic relationships of these numbers. In some pa-
pers, these relationships have been referred to as “symme-
try”. Several questions remain unanswered. Is there a gen-
eral mathematical principle behind these algorithms, i.e.,
matrix factorizations? What is the appropriate definition
of symmetry that accounts for the existence of the algo-
rithms? Is it possible to automate the process of finding
algorithms? For the DFT, the first two questions have been
answered, as we will briefly discuss in the next subsection,
since it marks the starting point for our results.

In this paper we present the mathematical background
and the algorithm to automatically generate fast algo-
rithms, given as sparse matrix factorizations, for a large
class of discrete signal transforms using techniques from
group representation theory. In particular we present

• An appropriate definition of “symmetry” which catches
redundancy contained in the transform matrix and con-
nects it to group representations. Furthermore, the sym-
metry has an intuitive interpretation in terms of signal pro-
cessing. As we will see, this definition of symmetry gener-
alizes the well-known property of the DFT diagonalizing
the cyclic shift.
• An algorithm that (1) finds the symmetry of a matrix,
and (2) uses it to derive a sparse matrix factorization. The
algorithm has been implemented and can be used as a dis-
cover tool for fast transforms.
• The successful application of the factorization algorithm
to a large class of transforms. In many cases, the generated
fast transforms are similar to, or have the same arithmetic
cost (operations count), as the best known algorithms.

Taken together, we provide a unifying framework that
shows that a large class of the best-known fast algorithms
for different transforms are all special instances of the same
common principle. Thus, we shed new light on fast algo-
rithms, put them into a common context, and give insight
into their algebraic structure.

A. Signal Transforms and Group Representations

The use of finite groups and their representations is not
new in signal processing. The most important example
is the DFT and its connection to cyclic groups and their
regular representations. This connection has been used
to derive and explain the structure of the Cooley/Tukey
FFT, [20], [21]. Generalization to arbitrary groups, also
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known as Fourier analysis on groups, has lead to a rich
class of transforms, which, however, have found no signifi-
cant applications in signal processing, [22], [23], [24], [25].
An exception might be the recent paper [26], where non-
regular representations of so-called wreath-product groups
have been proposed for multi-resolution image processing.

The crucial step to capture in the group representation
framework a broader class of signal transforms, includ-
ing the cosine and sine transforms, is to leave the domain
of “regular” representations in favor of the larger class of
“monomial” representations. The idea has its roots in the
work of Minkwitz, [27], [28], and has been further devel-
oped by the authors in [29], [30], [31], [32], [33], which forms
the basis for this paper. We provide the tools to investigate
a given transform for group representation properties, and,
when appropriate, factorize the transform, thus obtaining
a fast algorithm.

B. Approach

The approach for generating a fast algorithm for a given
signal transform, which is given as a matrix M , consists
basically of two steps. In the first step, the “symmetry”
of M is computed. The “symmetry” is a pair of group
representations representing an invariance property of M
(cf. Section III). In the second step, the group representa-
tions are decomposed stepwise. This gives rise to factorized
decomposition matrices and determines a factorization of
M as a product of sparse matrices (cf. Section IV). The
factorization represents a fast algorithm for the transform
M . Intuitively speaking, the “symmetry” captures a large
part of the redundancy contained in M , and the decompo-
sition of the representations turns the redundancy into a
fast algorithm.

C. Organization of the Paper

In Section II we introduce our notation for representing
structured matrices and present the basic terms of group
representations that are necessary to understand our ap-
proach for obtaining matrix factorizations. We emphasize
the concepts and the methodology rather than explaining
the technical details. The notion of “symmetry” of a ma-
trix is defined in Section III and Section IV explains, how
a symmetry can be used to derive a matrix factorization.
In Section V we apply the matrix factorization algorithm
to the Fourier transform, cosine and sine transforms of dif-
ferent types, the Hartley transform and the Haar trans-
form. We compare the structure and arithmetic cost of
the algorithms that we derive to the structure and cost of
well-known algorithms from the literature. We conclude
the paper with a brief summary and an outlook for future
research in Section VI.

II. Mathematical Background

In this section we present the basic notation of matrices
and group representations we are going to use. For further
information on representation theory we refer the reader to
introductory books such as [34].

A. Matrices

We use the following notation to represent matrices.
[σ, n] is the (n × n)-permutation matrix corresponding to
the permutation σ which is given in cycle notation, e.g.,
σ = (1, 2, 3)(4, 6) means σ(1) = 2, σ(2) = 3, σ(3) =
1, σ(4) = 6, σ(5) = 5, σ(6) = 4 with corresponding (6 × 6)-
matrix

[(1, 2, 3)(4, 6), 6] =













0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0













.

Note that it is necessary to supply the size n of a permu-
tation matrix in [σ, n], since fixed points are omitted in
cycle notation (i.e., there is a difference between [(1, 2), 2]
and [(1, 2), 3]). We prefer cycle notation because one can
read off the order and the fixed points of a permuta-
tion immediately. With 1n we denote the identity ma-
trix of size n, diag(L) is a diagonal matrix with the list
L on the diagonal. A monomial matrix (sometimes called
scaled permutation matrix) has exactly one non-zero en-
try in every row and column and is represented as [σ,L] =
[σ, length(L)] · diag(L), e.g.,

[(1, 2, 3), (−1, 1, 2)] =

[

0 1 0
0 0 2

−1 0 0

]

,

i.e., the list L scales the columns of the matrix. The oper-
ator ⊗ denotes the Kronecker (or tensor) product of ma-
trices, and ⊕ denotes the direct sum,

A⊕B =

[

A 0
0 B

]

,

where 0 is an all-zero matrix of appropriate size.

Rα =

[

cos(α) sin(α)
− sin(α) cos(α)

]

is the rotation matrix for angle α and

DFTn = [ωkℓ
n | k, ℓ = 0..n− 1],

where ωn = e2πj/n, denotes the discrete Fourier transform
of size n.

B. Groups and Representations

In this paper, essentially only two types of groups will
appear. The cyclic group of size n, written as Zn =
{1, x, . . . , xn−1} or, by generators and relations, as Zn =
〈x | xn = 1〉 and the dihedral group of size 2n denoted
by D2n = {1, x, . . . , xn−1, y, yx, . . . , yxn−1} = 〈x, y | xn =
y2 = 1, y−1xy = x−1〉.

A representation of a group G (over C) is a homomor-
phism

φ : G→ GLn(C)

of G into the group GLn(C) of invertible (n× n)-matrices
over the complex numbers C. n is called the degree of φ.
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Dealing with representations is nothing but dealing with
groups of matrices. If φ is a representation of G then φ(G)
is a matrix group, and, vice-versa, every matrix group can
be viewed as a representation of itself. If A ∈ GLn(C),
then φA : g 7→ A−1 ·φ(g) ·A is called the conjugate of φ by
A. The representations φ and φA are called equivalent. If
φ and ψ are representations of G, then the representation
φ ⊕ ψ : g 7→ φ(g) ⊕ ψ(g) is called the direct sum of φ
and ψ. The direct sum of n representations φ1, . . . , φn is
defined analogously. The representation φ is irreducible, if
it cannot be conjugated to be a direct sum.

Theorem 1 (Maschke) Every representation φ (over C)
of a group G can be decomposed into a direct sum of irre-
ducible representations by conjugation with a suitable ma-
trix A,

φA = ρ1 ⊕ . . .⊕ ρk.

The ρi are uniquely determined up to equivalence and up
to a permutation of ρ1, . . . , ρk.

In other words, Theorem 1 tells us, how far a finite group
of matrices can be simultaneously block diagonalized. The
matrix A in Theorem 1 is not uniquely determined and is
called a decomposition matrix for φ.
φ is called a permutation representation, if all images

φ(g) are permutation matrices, φ is called a monomial rep-
resentation, if all images φ(g) are monomial matrices. Ev-
ery permutation representation is also a monomial repre-
sentation.

The following example states the interpretation of the
DFT in terms of representation theory.

Example 1 It is a known fact that DFTn maps the cyclic
shift (and all its powers) in the time-domain into a phase
change in the frequency-domain. In our notation,

[(1, 2, . . . , n), n] · DFTn = DFTn ·diag(1, ωn, . . . , ω
n−1
n ).

In terms of representation theory, DFTn decomposes the
permutation representation φ : x 7→ [(1, 2, . . . , n), n] of the
cyclic group G = Zn = 〈x | xn = 1〉 into the direct sum
φDFTn = ρ1⊕ . . .⊕ρn where the irreducible representations
are ρk = x 7→ ωk−1

n .

III. Symmetry of a Matrix

The notion of symmetry has a two-fold purpose. First,
it catches the redundancy contained in the matrix M ; sec-
ond, it establishes the connection to representation theory,
which enables the application of algebraic methods to fac-
torize M , as sketched in Section IV.

We consider an arbitrary rectangular matrixM ∈ Cm×n.
A symmetry of M is a pair (φ1, φ2) of representations of
the same group G satisfying

φ1(g) ·M = M · φ2(g), for all g ∈ G.

We call G a symmetry group of M . We will use a shorthand

notation and write φ1
M−→ φ2.

A symmetry (φ1, φ2) has a very natural interpretation in
terms of signal processing, if M is a discrete signal trans-
form that we multiply from the left:

For all g ∈ G, a multiplication with φ2(g) in the time-
domain corresponds to a multiplication with φ1(g) in the
frequency-domain.

With the general definition above, however, every matrix
has arbitrary many symmetries. If, for example, M is an
invertible (n × n)-matrix and φ is any representation of
degree n of a group G, then M has the symmetry (φ, φM ).
Thus, in order to catch the redundancy contained in M ,
we will consider several “types” of symmetry arising from
restrictions on the representations φ1, φ2:

1. Mon-irred symmetry: φ1 is monomial, φ2 is a direct sum
of irreducible representations. If φ1 is even a permutation
representation then we will also speak of perm-irred sym-
metry.
2. Mon-mon symmetry: φ1 and φ2 are monomial. If φ1

and φ2 both are even permutation representations then we
will also speak of perm-perm symmetry.

In words, the matrix M has a mon-mon symmetry if
there are non-trivial monomial matrices L,R such that
L ·M = M ·R. Correspondingly, the matrix M has a mon-
irred symmetry if M is a decomposition matrix for a mono-
mial representation φ. The rationale for considering the
types of symmetry above will become clear in Section IV.
Of course, one could also consider an irred-mon symmetry
where φ2 is monomial and φ1 is decomposed. Since trans-
position of a matrix with irred-mon symmetry yields a ma-
trix with mon-irred symmetry, we will restrict to the latter
symmetry type. Finding symmetry of the types above is
a difficult combinatorial problem and a main topic of [29],
[32]. In fact, even computing the perm-perm symmetry
has a complexity that is not lower than testing graphs iso-
morphism, which is known to be hard [35]. However, for
matrices originating from signal transformations it is often
practical to compute the symmetry because they contain
many different entries which reduces the search space.

Example 2 Example 1 shows that the DFTn has the sym-
metry group G = Zn = 〈x | xn = 1〉 with symmetry
(φ1, φ2):

φ1 : x 7→ [(1, 2, . . . , n), n],
φ2 : x 7→ diag(1, ωn, . . . , ω

n−1
n ).

Note, that (φ1, φ2) is a mon-irred symmetry (even a perm-
irred symmetry) as well as a mon-mon symmetry.

IV. Matrix Factorization

Now we explain how to factorize a given matrixM, which
has an arbitrary symmetry (φ1, φ2). First, the representa-
tions φ1, φ2 are decomposed with matrices A1, A2, respec-
tively. This gives rise to two decomposed representations
ρ1 = φA1

1 , ρ2 = φA2

2 . Second, the matrix D = A−1
1 ·M ·A2 is

computed to obtain the commutative diagram in Figure 1.
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φ1

A1

��

M
// φ2

A2

��
ρ1

D
// ρ2

Fig. 1. Factorization of the matrix M with symmetry (φ1, φ2)

Altogether, we obtain the factorization

M = A1 ·D ·A−1
2 . (1)

From representation theory we know that D is a sparse ma-
trix (cf. [31], Theorem 1.48, iv), but the question of sparsity
remains regarding the matrices A1 and A2. The factor-
ization in (1) is useful only if the decomposition matrices
A1 and A2 can themselves be determined as a product of
sparse matrices. This is possible for monomial representa-
tions (with certain restrictions on the symmetry group G),
as has been developed in the thesis research [31], [33], and
justifies the consideration of the two types of symmetry
described in Section III:

1. Mon-mon symmetry: A1 and A2 are decomposition ma-
trices of monomial representations.
2. Mon-irred symmetry: A1 is a decomposition matrix of
a monomial representation, A2 is the identity, since φ2 is
already decomposed.

In fact, we will slightly relax the definition of mon-irred
symmetry and allow A2 to be any permutation matrix,
which means that φ2 is a permuted direct sum of irre-
ducible representations. The factorization of a decompo-
sition matrix for a monomial representation φ arises from
an algorithm that stepwise decomposes φ along a chain of
normal subgroups using recursion formulas for the decom-
position matrices, [33]. The recursion formula essentially
determines the structure of the matrix factorizations that
we will present in Section V.

The algorithm for factorizing a matrix with symmetry
follows Figure 1 and reads as follows.

Algorithm 1 Given a matrix M to be factorized into a
product of sparse matrices.

1. Determine a suitable symmetry (φ1, φ2) of M .
2. Decompose φ1 and φ2 stepwise, and obtain (factorized)
decomposition matrices A1, A2.
3. Compute the sparse matrix D = A−1

1 ·M ·A2.

Result: M = A1 · D · A−1
2 is a factorization of M into

a product of sparse matrices. This is a fast algorithm for
evaluating the linear transformation x 7→M · x.

Algorithm 1 is implemented in the library AREP, [36], a
GAP share package for symbolic computation with group
representations and structured matrices. GAP, [37], is a
computer algebra system for symbolic computation with

groups. AREP has been created as part of the thesis re-
search [29], [30].

In then appendix we provide an overview of Step 1 and
Step 2. A comprehensive treatment including the mathe-
matical background and all technical details can be found
in [32], [33], [31], [29]. In the following we will concen-
trate on how the combinatorial search in Step 1 and the
algebraic decomposition of Step 2 can be combined to au-
tomatically generate fast signal transforms. In particular,
we are interested in answering the following questions:

• To which transforms is our approach applicable?
• What are the symmetry properties found?
• How do our generated algorithms compare to algorithms
known from literature?

First, we start with two brief initial examples applying
Algorithm 1 to the DFT and a circulant matrix. A more
detailed version of Example 4 can be found in the appendix.

Example 3 Let M = DFT4. M has the mon-irred
resp. perm-irred symmetry

φ1 : x 7→ [(1, 2, 3, 4), 4],
φ2 : x 7→ diag(1, ω4, ω

2
4 , ω

3
4).

(cf. Example 2). φ2 is already decomposed, hence A2 = 14.
Decomposing φ1 stepwise yields the decomposition matrix

A1 =
(DFT2 ⊗12) · diag(1, 1, 1, ω4) · (12 ⊗ DFT2) · [(2, 3), 4].

We compute D = A−1
1 · M · A2 = 14 and get the Coo-

ley/Tukey factorization M = A1.

Example 4 Consider the circulant (4 × 4)-matrix

M =







1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1






.

M has the mon-mon (even perm-perm) symmetry

φ1 : x 7→ [(1, 2, 3, 4), 4],
φ2 : x 7→ [(1, 2, 3, 4), 4].

Decomposing φ1 and φ2 into a direct sum of irreducible
representations yields the decomposition matrices

A1 = A2 = DFT4 =
(DFT2 ⊗12) · diag(1, 1, 1, ω4) · (12 ⊗ DFT2) · [(2, 3), 4].

We compute D = A−1
1 ·M ·A2 = diag(a, b, c, d) with complex

numbers a, b, c, d (whose actual values are not important
here) and obtain the well-known factorization of the cyclic
convolution

M = DFT4 ·D · DFT−1
4 .

(We detail Step 1 and Step 2 in the appendix.)
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V. Examples

In this section we apply Algorithm 1 to a number of sig-
nal transforms. The following factorizations have been gen-
erated from the respective transform entirely automatically
using the GAP share package AREP, [36], [37], which con-
tains an implementation of Algorithm 1. Even the LaTeX-
expressions displayed below have been generated verbatim
as they are.

We show the symmetry of the considered transforms,
state the number of arithmetic operation needed by our
derived fast algorithms, and compare them to algorithms
known from literature. We want to emphasize that the
symmetries themselves are of interest since the fast algo-
rithms that we derive owe their existence to the symmetry
in the same way as the Cooley/Tukey FFT owes its exis-
tence to the fact that the DFT diagonalizes the cyclic shift.
The algebraic structure of the fast algorithms found is due
to the recursion formula for decomposing monomial repre-
sentations (done in Step 2 of Algorithm 1), which is subject
of Theorem 2 in the Appendix.

First, we want to say some words about how AREP

deals with structured matrices. AREP does symbolic com-
putation with matrices which means it stores and ma-
nipulates expressions representing matrices rather than
the matrices themselves. An expression is something like
(DFT4 ⊗124) ⊕ 117 which can be stored and manipulated
more efficiently than the large matrix it represents. Of
course, an expression can always be converted into a real
matrix if desired. While building the structured matrices
shown below (in particular in Step 2 of Algorithm 1) AREP

simplifies according to specified rules. E.g., monomial or
permutation matrices are extracted from Kronecker prod-
ucts or direct sums and multiplied if they are adjacent. In
addition, occurring sparse matrices are converted into per-
muted direct sums or Kronecker products, if possible, to
obtain a concise representation. As an example consider
the sparse matrix

M =













1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 1 0 0 −1 0
1 0 0 0 0 −1













.

M can be permuted to be a direct sum of DFT2’s:

[(2, 3, 5, 4, 6), 6] · (DFT2 ⊕DFT2 ⊕DFT2) · [(2, 6, 4, 5, 3), 6],

or, even more concisely,

[(2, 3, 5, 4, 6), 6] · (13 ⊗ DFT2) · [(2, 6, 4, 5, 3), 6].

Note that it is an easy task to convert this expression into
the original matrix above. In the same way, all permuta-
tions in the following expressions (apart from the first or
the last one) can be removed leaving a product of sparse
matrices each of which can be computed in-place. AREP

also recognizes scrambled rotation matrices and makes this
property explicit. E.g., a matrix of the form

R =

[

− sin(α) cos(α)
cos(α) sin(α)

]

would be transformed into the expression

[(1, 2), 2] · Rα .

Every matrix expression represents an algorithm for per-
forming a matrix-vector multiplication. The number of
multiplications and additions/subtractions required by this
algorithm can easily be determined. E.g., the matrices

DFT2, 12 ⊗ DFT2, 12 ⊕ DFT2,
1
2 · DFT2,

require 2 additions, 4 additions, 2 additions, 2 multiplica-
tions and 2 additions, respectively. Multiplications with -1
are not counted. Rotation matrices Rα, and scalar multi-
ples thereof, are thought of being realized with 3 multiplica-
tions and 3 additions according to the known factorization

[

x y
−y x

]

=

[

1 1 0
0 −1 1

]

·
[

x− y 0 0
0 y 0
0 0 x+ y

]

·
[

1 0
1 1
0 1

]

.

The definitions of the transforms considered follow [38].
A matrix M representing a transform is always applied
from the left, x 7→ M · x. The runtime for generating the
algorithms, i.e., matrix factorizations, was in all cases less
than 40 seconds CPU time on a Pentium II, 233 MHz with
128 MB RAM, running Linux 2.0.36.

A. DFT: Cooley/Tukey

Algorithm 1 finds the Cooley/Tukey factorization of
DFTn as illustrated in Example 3 for n = 4.

B. Cyclic Convolution

Algorithm 1 finds the factorization of an (n × n) circu-
lant matrix into two DFTn’s as illustrated for n = 4 in
Example 4. This represents a cyclic convolution.

C. DFT: Rader

The Rader FFT, [4], computes a DFTp of prime size p
using two DFTs of size p−1. We apply Algorithm 1 to the
case n = 5 and find the perm-perm symmetry

φ1 : x 7→ [(2, 3, 5, 4), 4],
φ2 : x 7→ [(2, 4, 5, 3), 4]

with cyclic symmetry group Z4 = 〈x | x4 = 1〉. In other
words, the permutation (2, 3, 5, 4) in the time-domain cor-
responds to the permutation (2, 4, 5, 3) in the frequency-
domain. The symmetry leads to the Rader factorization

DFT5 = [(4, 5), 5]·
(11 ⊕ ((DFT2 ⊗12) · diag(1, 1, 1, ω4) · (12 ⊗ DFT2)))·
[(1, 4)(2, 5, 3), (a, b, c, 1, 1)] · (13 ⊕

[

1 4
1−1

]

) · [(1, 4)(2, 3, 5), 5]·
(11 ⊕ 1

4 · (12 ⊗ DFT2) · diag(1, 1, 1,−ω4) · (DFT2 ⊗12))·
[(3, 4, 5), 5].

The first two lines contain the matrix A1 (essentially a
DFT4), the last two lines the matrix A−1

2 (essentially an
inverse DFT4), and the middle line contains the matrix
D from Algorithm 1. (a, b, c are complex constants whose
actual value has been omitted for the sake of clarity.)
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D. DCT, type II and III

The discrete cosine transform of type III, DCT(III), is
defined as the matrix

DCT(III)
n =

[
√

2
n · aℓ · cos

(

(2k+1)ℓπ
2n

)

| k, ℓ = 0..n− 1
]

,

where ak = 1/
√

2 for k = 0 and ak = 1 elsewhere.

DCT(II) is the transpose of DCT(III). We compute a perm-

irred symmetry for DCT
(III)
8 with dihedral symmetry group

G = D16 = 〈x, y | x8 = y2 = 1, y−1xy = x−1〉 and repre-
sentations

φ1 : x 7→ [(1, 3, 5, 7, 8, 6, 4, 2), 8], y 7→ [(2, 3)(4, 5)(6, 7), 8]
φ2 : x 7→M1, y 7→M2,

where, using ck = cos(kπ/8) and sk = sin(kπ/8),

M1 =



















c0 0 0 0 0 0 0 0
0 c2 0 0 0 0 0 s2
0 0 c4 0 0 0 s4 0
0 0 0 c6 0 s6 0 0
0 0 0 0 c8 0 0 0
0 0 0 s10 0 c10 0 0
0 0 s12 0 0 0 c12 0
0 s14 0 0 0 0 0 c14



















,

M2 =



















c0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 s1
0 0 c2 0 0 0 s2 0
0 0 0 c3 0 s3 0 0
0 0 0 0 s4 0 0 0
0 0 0 s5 0 c5 0 0
0 0 s6 0 0 0 c6 0
0 s7 0 0 0 0 0 c7



















.

Since DCT(III) ·x is equivalent to xT · DCT(II) we get the
following interpretation for the DCT(II). Permuting with
(1, 3, 5, 7, 8, 6, 4, 2) or (2, 3)(4, 5)(6, 7) in the time-domain
corresponds to multiplication with M1 or M2, respectively,
in the frequency-domain.

The symmetry leads to the following factorization of

DCT
(III)
8 , which already has been derived by Minkwitz us-

ing a preliminary version of Algorithm 1 as sketched in [27],
[28]. By symbolic transposition (the order of the product
is reversed and each factor transposed using mathemat-

ical properties) we get a factorization of DCT
(II)
8 which

essentially corresponds to the first algorithm, found by
Chen, Smith and Fralick, [11], which directly computes the

DCT(II) without using the DFT.

DCT
(III)
8 =

[(1, 2, 6, 8)(3, 7, 5, 4), 8]·
(12 ⊗ ((12 ⊗ DFT2) · [(2, 3), 4] · (DFT2 ⊕12))) ·
[(2, 7, 6, 8, 5, 4, 3), 8] · (14 ⊕ 1√

2
· DFT2 ⊕12)·

[(5, 6), 8] · ((DFT2 ⊗13) ⊕ 12) · [(2, 8, 3, 7, 4), 8]·
1
2 · ( 1√

2
· 12 ⊕ R 13

8
π ⊕R 17

16
π ⊕R 11

16
π)·

[(2, 5)(4, 7)(6, 8), 8],

(13 mults, 29 adds),

and, by transposition,

DCT
(II)
8 =

[(2, 5)(4, 7)(6, 8), 8]·
1
2 · ( 1√

2
· 12 ⊕ R 3

8
π ⊕R 15

16
π ⊕R 21

16
π)·

[(2, 4, 7, 3, 8), 8] · ((DFT2 ⊗13) ⊕ 12) · [(5, 6), 8]·
(14 ⊕ 1√

2
· DFT2 ⊕12) · [(2, 3, 4, 5, 8, 6, 7), 8]·

(12 ⊗ ((DFT2 ⊕12) · [(2, 3), 4] · (12 ⊗ DFT2)))·
[(1, 8, 6, 2)(3, 4, 5, 7), 8],

(13 mults, 29 adds).

Looking at the factorization of DCT
(III)
8 , the first four

lines give the matrix A1 from Algorithm 1, the last line
contains the permutation matrix A−1

2 (which makes the
block structure of M1 and M2 explicit), and the fifth line
gives the matrix D.

The algorithms for DCT
(III)
8 and DCT

(II)
8 have the same

arithmetic cost as the best known algorithms, [11], [12],
[8], [15], [39], [17], [18], [19]. Note that those who use
only 12 multiplications do not normalize the first row of

the DCT
(II)
8 , which saves one multiplication. The only al-

gorithm that claims 11 multiplications, [40], considers a

scaled version of the DCT(II) matrix,

DCT(II)′
n =

√
2 ·
√

n
2 · DCT(II)

n .

Multiplying by scalars conserves the perm-irred symmetry
(it just changes the matrix D in Algorithm 1) and AREP

also finds a factorization with 11 multiplications,

DCT(II)′
8 =

[(2, 5)(4, 7)(6, 8), 8]·
(12 ⊕

√
2 · R 3

8
π ⊕

√
2 · R 15

16
π ⊕

√
2 · R 21

16
π)·

[(2, 4, 7, 3, 8), 8] · ((DFT2 ⊗13) ⊕ 12) · [(5, 6), 8]·
(14 ⊕ 1√

2
· DFT2 ⊕12) · [(2, 3, 4, 5, 8, 6, 7), 8]·

(12 ⊗ ((DFT2 ⊕12) · [(2, 3), 4] · (12 ⊗ DFT2)))·
[(1, 8, 6, 2)(3, 4, 5, 7), 8],

(11 mults, 29 adds).

We want to mention that the DCT(III) (and hence the

DCT(II)) also has a mon-mon symmetry. E.g., for the case
n = 8 the symmetry group is the direct product Z2×Z8. In
fact, this symmetry has been used by Feig and Winograd
to derive a fast DCT(II) algorithm, [19], and a lower bound
for the number of non-rational multiplications necessary
for computing the DCT(II) (for n = 8 the optimal number

is 11, where the first row of the DCT(II) is unscaled). They
essentially follow Algorithm 1 with the difference that φ1

and φ2 are only decomposed over the rational numbers Q

(which yields a coarser decomposition of φ1 and φ2) using
rational matrices A1 and A2. All non-rational multiplica-
tions then are concentrated in the block diagonal matrix
D. AREP currently is only capable to decompose represen-
tations over C.
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E. DCT, type IV

The discrete cosine transform of type IV, DCT(IV), is
defined as the matrix

DCT(IV)
n =

[
√

2
n · cos

(

(2k+1)(2ℓ+1)π
4n

)

| k, ℓ = 0..n− 1
]

.

We compute a mon-irred symmetry for DCT
(IV)
8 with di-

hedral symmetry group G = D32 = 〈x, y | x16 = y2 =
1, y−1xy = x−1〉 and representations

φ1 : x 7→ [(1, 3, 5, 7, 8, 6, 4, 2), (1, 1, 1, 1, 1, 1, 1,−1)],
y 7→ [(2, 3)(4, 5)(6, 7), (1, 1, 1, 1, 1, 1, 1,−1)],

φ2 : x 7→M1, y 7→M2,

i.e., compared to the perm-irred symmetry of the DCT
(III)
8 ,

the last column of the images of φ1(x) and φ1(y) are mul-
tiplied by -1 which also leads to a larger group. Using
ck = cos(kπ/16), sk = sin(kπ/16), the matrices M1,M2

are given by

M1 =



















c2 0 0 0 0 0 0 s2
0 c6 0 0 0 0 s6 0
0 0 c10 0 0 s10 0 0
0 0 0 c14 s14 0 0 0
0 0 0 s18 c18 0 0 0
0 0 s22 0 0 c22 0 0
0 s26 0 0 0 0 c26 0
s30 0 0 0 0 0 0 c30



















,

M2 =



















c1 0 0 0 0 0 0 s1
0 c3 0 0 0 0 s3 0
0 0 c5 0 0 s5 0 0
0 0 0 c7 s7 0 0 0
0 0 0 s9 c9 0 0 0
0 0 s11 0 0 c11 0 0
0 s13 0 0 0 0 c13 0
s15 0 0 0 0 0 0 c15



















.

The symmetry leads to the following factorization of

DCT
(IV)
8 . Since DCT(IV) is symmetric, transposition leads

to another factorization of DCT
(IV)
8 which is very close to

the fast algorithm given by Wang, [12].

DCT
(IV)
8 =

[(1, 2, 8)(3, 6, 5), (1,−1, 1, 1, 1,−1, 1, 1)]·
(12 ⊗ ((12 ⊕ 1√

2
· DFT2) · [(3, 4), 4] · (DFT2 ⊗12)))·

[(1, 3)(2, 4)(5, 7)(6, 8), 8] · (14 ⊕ R 15
8

π ⊕R 11
8

π)·
(DFT2 ⊗14) · [(3, 5, 7)(4, 6, 8), 8]·
1
2 · (R 31

32
π ⊕R 19

32
π ⊕R 27

32
π ⊕R 23

32
π)·

[(1, 8, 5, 6, 3, 2)(4, 7), 8],

(20 mults, 38 adds).

The first four lines correspond to the decomposition ma-
trix A1 of φ1 in Algorithm 1, the fifth line to D, and the
last line contains the permutation matrix A−1

2 , the inverse
of which permutes φ2 to be a direct sum.

An algorithm with two additions less can be found in
[17].

F. DST, type II and III

The discrete sine transform of type III, DST(III), is de-
fined as the matrix

DST(III)
n =

[
√

2
n · ak · sin

(

(2k+1)(ℓ+1)π
2n

)

| k, ℓ = 0..n− 1
]

,

where ak = 1/
√

2 for k = 0 and ak = 1 elsewhere.

DST(II) is the transpose of DST(III). We compute a perm-

irred symmetry for DST
(III)
8 with dihedral symmetry group

G = D16 = 〈x, y | x8 = y2 = 1, y−1xy = x−1〉 and repre-
sentations

φ1 : x 7→ [(1, 3, 5, 7, 8, 6, 4, 2), (−1, 1, 1, 1, 1, 1, 1,−1)],
y 7→ [(2, 3)(4, 5)(6, 7), (−1, 1, 1, 1, 1, 1, 1,−1)],

φ2 : x 7→M1, y 7→M2,

i.e., compared to the perm-irred symmetry of the DCT
(III)
8 ,

the first and last column of the images of φ1(x) and φ1(y)
are multiplied by -1. The matrices M1 and M2 (not given
due to lack of space) have entries 6= 0 only at positions
(i, j) with i+ j = 8, i, j = 1..8.

The symmetry leads to a factorization of DST
(III)
8 , and

hence to a factorization of DST
(II)
8 , which requires 13 ad-

ditions and 29 multiplications.
Since DCT(II), DCT(III), DST(II) and DST(III) all have

the same arithmetic cost (because type II and III are trans-
posed and [17], Section 4.2), the algorithms found by AREP

are among the best known algorithms.

G. DST, type IV

The discrete sine transform of type IV, DST(IV), is de-
fined as the matrix

DST(IV)
n =

[
√

2
n · sin

(

(2k+1)(2ℓ+1)π
4n

)

| k, ℓ = 0..n− 1
]

.

We compute a mon-irred symmetry for DCT
(IV)
8 with di-

hedral symmetry group G = D32 = 〈x, y | x16 = y2 =
1, y−1xy = x−1〉 and representations

φ1 : x 7→ [(1, 3, 5, 7, 8, 6, 4, 2), (−1, 1, 1, 1, 1, 1, 1, 1)],
y 7→ [(2, 3)(4, 5)(6, 7), (−1, 1, 1, 1, 1, 1, 1, 1)],

φ2 : x 7→M1, y 7→M2,

i.e., the difference to the perm-irred symmetry of the

DCT
(III)
8 lies only in the first column of the images be-

ing multiplied by −1. The matrices M1 and M2 (not given
due to lack of space) have entries 6= only on the diagonal
and opposite diagonal.

The symmetry leads to a factorization of DST
(IV)
8 , which

requires 20 multiplications and 38 additions. As for the
DCT(IV), this is two additions more as in the best known
algorithm, [17].

H. DCT and DST, type I

Although the transforms DCT(I) and DST(I) do not have
a mon-irred symmetry, they do possess a mon-mon sym-
metry which can be used for their factorization. However,
the algorithms obtained this way are not as good as those
from [17].
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I. Hartley transform

The discrete Hartley transform DHTn is defined as the
matrix

DHTn =
[

cos
(

2kℓπ
n

)

+ sin
(

2kℓπ
n

)

| k, ℓ = 0..n− 1
]

.

Note that we omitted the normalization factor 1/
√
n in the

definition to obtain a fair comparison to known algorithms.
The DHT8 has a perm-irred symmetry with dihedral sym-
metry group G = D16 = 〈x, y | x8 = y2 = 1, y−1xy = x−1〉
and representations

φ1 : x 7→ [(1, 2, 3, 4, 5, 6, 7, 8), 8], y 7→ [(2, 8)(3, 7)(4, 6), 8]
φ2 : x 7→M1, y 7→ [(2, 8)(3, 7)(4, 6), 8].

The only nonzero entries of matrix M1 are at (i, j) where
i+ j = 9. The symmetry yields the following factorization.

DHT8 =

[(1, 8)(2, 4)(3, 5, 7, 6), 8]·
(12 ⊗ ((12 ⊗ DFT2) · [(2, 3), 4] · (DFT2 ⊕12)))·
[(2, 7, 6, 8, 5, 4, 3), 8] · (14 ⊕− 1√

2
· DFT2 ⊕12)·

((DFT2 ⊗13) ⊕ 12)·
[(2, 5, 3, 6, 4)(7, 8), (1,−1,−

√
2,−

√
2,
√

2,
√

2, 1, 1)]·
(16 ⊕−DFT2) · [(2, 5, 8, 7, 3, 4), 8],

(6 mults, 22 adds).

Closer investigation shows that two of the
√

2 could be
canceled against the 1/

√
2 yielding 4 multiplications less.

The best algorithm for the DHT8 with respect to arith-
metic operations seems to be the split-radix algorithm
given in Sorensen et.al., [41], and also needs 2 multipli-
cations and 22 additions.

J. Haar transform

The Haar transform HT2k is defined recursively by:

HT2 =

[

1 1

1 − 1

]

, HT2k+1 =

[

HT2k ⊗ [1 1]
2k/2 · 12k ⊗ [1 −1]

]

,

for k ≥ 1. The transpose of the Haar transform has a
perm-irred symmetry. The symmetry group is an iterated
wreath product, [26]. For k = 3 we obtain the following
factorization.

HT8 =

[(3, 4)(5, 7)(6, 8), ( 1
8 ,− 1

8 ,
1

4
√

2
, 1

4
√

2
, 1

4 ,
1
4 ,

1
4 ,

1
4 )]·

(DFT2 ⊕16) · [(2, 5, 3)(4, 6), 8]·
(12 ⊗ ((DFT2 ⊕12) · [(2, 3), 4] · (12 ⊗ DFT2)))·
[(1, 5)(2, 6)(3, 7)(4, 8), 8],

(8 mults, 14 adds).

The first line contains the matrix D from Algorithm 1
and the other lines the matrix A1 (we decomposed the
transpose of HT(8) and transposed the result). The num-
ber of operations coincides with the best known algorithm,
[42].

K. Wreath Product Transform

In a recent paper, [26], decomposition matrices for
permutation representations of certain groups, which are
called iterated wreath products, have been proposed for
image processing. By construction, these transforms pos-
sess symmetry in our definition. Thus, we readily obtain
the following factorization of the (16 × 16) transform W16

given in [26], p. 117 (where it is called A; we want to note
that this transform has an error in column 15, where the
last −i should read i). For brevity, we denote j = ω4.

W16 =

[(1, 14, 7)(2, 15, 8)(3, 16, 5)(4, 13, 6)(9, 11)(10, 12), 16]·
(12 ⊗ ((12 ⊗ ((DFT2 ⊗12) · diag(1, 1, 1, j) · (12 ⊗ DFT2)))·
[(2, 5)(4, 7), 8] · (DFT2 ⊕16)))·
[(3, 13, 11, 15, 7, 5, 9)(4, 14, 12, 16, 8, 6, 10),

(1, 1, 1, j, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)]·
((DFT2 ⊗12) ⊕ 112) · [(5, 14, 8, 13, 6, 16)(7, 15)(9, 10, 12),

(1, j,−1,−j,−j,−1,−1,−j,−1, 1, 1,−1, j,−1,−1, j)]

(11 mults by j, 24 adds).

VI. Conclusion and Future Research

We have presented an entirely automatic method for
symbolically deriving fast algorithms for an important class
of discrete linear signal transforms. This class includes
the DFT, DCT, DST, Hartley, and Haar transform. In
most cases, the derived algorithms were among the best
ones known. The approach is based on the definition
of “symmetry” of a transform as a pair of group rep-
resentations, which operate in the time-domain and the
frequency-domain, respectively, leaving the transform in-
variant. More precisely, the considered transform matrices
can be factorized because they are decomposition matrices
of monomial group representations.

The results of this paper open at least the following two
research questions:

1. How do symmetry and signal processing properties of a
transform relate to each other?
2. Is it possible to extend the approach described to derive
a larger class of fast signal transforms?

AREP includes an interface to SPL. SPL is a domain spe-
cific language and compiler for (1) representing a fast signal
transform given as a matrix expression like the ones gen-
erated by AREP, and (2) translate it into an efficient, e.g.,
FORTRAN program for computing the transform. SPL
is under development within [43]. The interface between
AREP and SPL allows the automatic implementation of all
algorithms derived by AREP.
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Appendix

In the following we will give an overview on Step 1 and 2
of Algorithm 1. For a comprehensive treatment including
all technical details we have to refer the reader to [32],
[33], [31], [30], [29], [27], which also provide the necessary
prerequisites from representation theory of finite groups.
Of particular interest might be the recursion formula for
Step 2, given in Theorem 2, which gives the explanation
for the algebraic structure of the fast transforms found in
Section V.

A. Algorithm 1, Step 1

In Step 1 of Algorithm 1 the mon-mon or mon-irred sym-
metry of the matrix M has to be computed. The two types
require different approaches.

For the mon-mon symmetry we are interested in the
group G of all pairs (L,R) of monomial matrices such that
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LM = MR. (The representations φ1, φ2 of Section III are
the projections (L,R) 7→ L and (L,R) 7→ R.) However,
this general definition may lead to an infinite G. There-
fore we artificially restrict L and R to contain k-th roots
of unity: Let MonMonk(M) denote the group of all pairs
of monomial matrices (L,R) such that LM = MR and all
entries in L and R are k-th roots of unity.

To construct MonMonk(M) we replace each entry Mij

by the (k × k)-matrix M ′ = [Mijω
r+s
k | r, s] where ωk de-

notes a fixed primitive k-th root of unity. This encoding
of M turns monomial operations on M (with k-th roots of
unity) into permutations operations on the larger matrix
M ′. The parameter k is chosen dependent on the entries
of M . The encoding has first been described in [44] for the
special case of finite fields. It reduces MonMonk to the well
known problem of constructing all pairs (L,R) of permu-
tations such that LM ′ = M ′R for a given matrix M ′ (the
perm-perm symmetry of M ′). The most efficient methods
to solve the latter problem are partition-based backtracking
methods that systematically try all permutations, remov-
ing entire branches quickly. This is described by J. Leon in
[44] who also distributes a very efficient C-program to com-
pute the symmetry. Moreover, [29] describes a program in
GAP to compute MonMonk and it is proven in [31], [30]
that MonMonk can indeed be computed the way we have
claimed.

Now we turn to the other important type of symme-
try, the mon-irred symmetry. Here we are interested in
all monomial matrices L such that R = MLM−1 is per-
muted block-diagonal for invertible M . Formally, “per-
muted block-diagonal” means that there is a permutation
π such that R = π−1 diag(R1, . . . , Rm)π for smaller ma-
trices R1, . . . , Rm. As a quantitative measure for block-
diagonality we define the conjugated block structure (cbs)
of a matrix A as the partition cbs(A) = {1, . . . , n}/ ∼∗

where ∼∗ is the reflexive-symmetric-transitive closure of
the relation ∼ defined by i ∼ j ⇔ Aij 6= 0. The partitions
are partially ordered by the refinement.

There are two approaches to the mon-irred symmetry.
The first one essentially enumerates all monomial matrices
L and collects them into groups according to the block
structures cbs(MLM−1) they give rise to. The result is a
list of pairs (G, p) such that G is the group of all monomial
matrices L such that cbs(MLM−1) ≤ p and p is the join
of all cbs(MLM−1). Each of the groups G qualifies as a
mon-irred symmetry, it only has to be tested if the matrices
R = MLM−1 form a representation of G that is a direct
sum of irreducible representations.

The second approach to the mon-irred symmetry essen-
tially enumerates all partitions p and constructs the group
G of all matrices L such that cbs(MLM−1) is a refinement
of p. The result is the same list of pairs (G, p) as before.
The main difference to the first method is that one can re-
strict the enumeration of partitions to the cases that will
be most useful for the decomposition of the signal trans-
form, namely those with many small blocks. This is much
faster than running through all monomial matrices. For the
details on the methods and on a number of important im-

provements see [29], [32]. All of the mon-irred symmetries
used for the examples in this article are found in a few sec-
onds on a standard workstation using our implementation
in GAP for the library AREP.

B. Algorithm 1, Step 2

Step 2 of Algorithm 1 requires to decompose a given
monomial representation φ of a groupG into a direct sum of
irreducible representations. In addition, the corresponding
decomposition matrix has to be computed as a product of
structured sparse matrices.

First we need to introduce the notion of a transitive
monomial representation. Let n = deg φ and denote by
ei the i-th canonical base vector (i-th entry = 1, = 0 else).
Then φ is called transitive, if for all i, j there is a g ∈ G
such that (the monomial matrix) φ(g) maps ei to a multiple
of ej .

The key construct for the decomposition algorithm is the
induction of representations. In short, induction constructs
a representation of G from a representation of a subgroup
of G. More precisely, let H ≤ G be a subgroup with rep-
resentation λ and let T = (t1, . . . , tk) be a transversal (i.e.,
a system of representatives of the right cosets of H in G).
Then

(φ ↑T G)(g) = [φ̇(tigt
−1
j ) | i, j = 1 . . . k],

where φ̇(x) = φ(x) for x ∈ H and the all-zero matrix else,
is called the induction of φ to G with transversal T . Note
that (φ ↑T G)(g) is a block-permuted matrix, i.e., for all
i = 1 . . . k there is exactly one j with tigt

−1
j ∈ H. If λ has

degree one then the induction is monomial.
Finally, recall that a group G is called solvable if there

is a sequence Ni ≤ G, i = 1 . . . r, of subgroups, such that

{1} = N1 ≤ N2 ≤ · · · ≤ Nr = G

and Ni is normal of prime index in Ni+1 for i = 1 . . . r− 1.
Now we can formulate a coarse version of the recursive

decomposition algorithm. The algorithm essentially conju-
gates a monomial representation to be an induction, which
is decomposed along a chain of normal subgroups using a
recursion formula for decomposition matrices. For a com-
plete version of this algorithm, including the underlying
theorems, we refer the reader to [33].

Algorithm 2 Given is a monomial representation φ of a
solvable group G. φ shall be decomposed, i.e.,

φA = ρ1 ⊕ . . .⊕ ρm,

where all ρi are irreducible and A is a product of structured
sparse matrices.
Case 1: φ is not transitive.
1. Decompose φ with a permutation P into a direct sum of
transitive representations, φP = φ1 ⊕ . . .⊕ φℓ.
2. Recurse with φi, i = 1 . . . ℓ, to obtain decomposition ma-
trices Bi.
A = P · (B1 ⊕ . . .⊕Bℓ) is a decomposition matrix for φ.
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Case 2: φ is transitive.
1. Decompose φ with a diagonal matrix D into an induc-
tion λ ↑T G, where λ has degree 1.
2. Recurse with λ ↑T G to obtain a decomposition matrix
B.
A = D ·B is a decomposition matrix for φ.
Case 3: φ = λ ↑T G, λ is a representation of H ≤ G, and
it exists a normal subgroup H ≤ N ≤ G of prime index p
in G.
1. Decompose φ with a monomial matrix M into a double
induction φM = (λ ↑T1

N) ↑T2
G.

2. Recurse with λ ↑T1
N to obtain a decomposition matrix

B.
M ·A is a decomposition matrix for φ, where A is given by
Theorem 2.
Case 4: φ = λ ↑T G, λ is a representation of H ≤ G, and
it exists a normal subgroup H 6≤ N ≤ G of prime index p
in G.
We omit this step.

Note that at least one of the cases always applies, since
G is solvable. We omitted Case 4 since it did not play a role
for the examples considered in this paper. The recursion
formula for Case 3 is given in Theorem 2. The reader might
only want to look at the actual formula for A, omitting the
technical details. Obviously, all factors are sparse. For
the special case G = Zn = 〈x | xn = 1〉 and φ1 : x 7→
[(1, 2, . . . , n), n], the permutation P vanishes, d = 0, and
the formula reduces exactly to the Cooley/Tukey FFT.

Theorem 2 Let N ≤ G be a normal subgroup of prime
index p with transversal T = (t0, t1, . . . , t(p−1)). Assume
φ is a representation of N of degree n with decomposition
matrix B such that φB =

⊕k
i=1 ρi, where ρ1, . . . , ρj are

exactly those among the ρi which have an extension ρi to
G. Denote by d = deg(ρ1) + . . .+ deg(ρj) the entire degree
of the extensible ρi and set ρ = ρ1 ⊕ . . . ⊕ ρj. Then exists
a permutation matrix P such that

A = (1p⊗B) ·P ·
(((

⊕

t∈T

ρ(t)

)

(DFTp ⊗1d)

)

⊕ 1p(n−d)

)

is a decomposition matrix of φ ↑T G.

C. Example 4 in Detail

We work out Steps 1 and Step 2 for Example 4 in greater
detail.

Step 1: We choose to compute the mon-mon symme-
try of M . Since the matrix M is real, we only consider
MonMon2(M). The algorithm first constructs the matrix

M ′ =



















1 −1 2 −2 3 −3 4 −4
−1 1 −2 2 −3 3 −4 4

4 −4 1 −1 2 −2 3 −3
−4 4 −1 1 −2 2 −3 3

3 −3 4 −4 1 −1 2 −2
−3 3 −4 4 −1 1 −2 2

2 −2 3 −3 4 −4 1 −1
−2 2 −3 3 −4 4 −1 1



















.

Any {−1, 0, 1}-monomial operation on M (permuting
and/or negating rows or columns) is a permutation opera-
tion on M ′. For example, negating the first column of M
can be expressed as the exchange of the first two columns
of M ′. Now we compute all pairs (L′, R′) of permutations
such that L′M ′ = M ′R′ by recursive search. Assume L′

maps row one to itself. Then R′ must map column one to
itself as well, . . . . Assume L′ maps row one to row two,
then, . . . , etc. As the result we find that L′ = R′ (which is
obvious since the diagonal values of M ′ are different from
the rest so they can only be exchanged with each other)
and

L′ ∈ 〈(1, 3, 5, 7)(2, 4, 6, 8), (1, 2)(3, 4)(5, 6)(7, 8)〉.

Translating the permutations on M ′ back into monomial
operations on M , we see that the first permutation is just
[(1, 2, 3, 4), 4] and the second is a scalar multiplication with
−1, which we discard since it does not carry any infor-
mation about M . Hence, we have found the representa-
tions φ1 = φ2 : x 7→ [(1, 2, 3, 4), 4] of the cyclic group
G = {1, x, x2, x3} as the mon-mon symmetry of M .

Step 2: The remaining task is to decompose the rep-
resentations φ1 = φ2 using Algorithm 2. Obviously, φ1

is transitive and we apply Case 2 to find φ1 = 1E ↑T G,
where 1E is the trivial representation, 1 7→ 1, of the trivial
subgroup E = {1} ≤ G, and T is the list (1, x, x2, x3) of
elements of G. The matrix D is the identity. Next we ap-
ply Case 3 using the subgroup H = {1, x2} ≤ G and find
(1E ↑T G)[(2,3),4] = (1E ↑T1

H) ↑T2
G with T1 = (1, x2)

and T2 = (1, x). Now we apply Theorem 2. The matrix
B = DFT2 decomposes (1E ↑T1

H) : x2 7→ [(1, 2), 2] into
ρ1 : x2 7→ 1, ρ2 : x2 7→ −1. Both representations can be
extended to G through ρ1 : x 7→ 1, and ρ2 : x 7→ j, re-
spectively. In the recursion formula for A, the permutation
P vanishes, and evaluating ρ = ρ1 ⊕ ρ2 at the transversal
T2 = (1, x) yields the twiddle factors diag(1, 1, 1, j). The
parameter d equals zero, and we obtain the Cooley/Tukey
formula for DFT4:

A = (DFT2 ⊗12) · diag(1, 1, 1, j) · (12 ⊗ DFT2) · [(2, 3), 4].


