Fast Automatic Generation of DSP Algorithms

Markus Piischel!, Bryan Singer?, Manuela Veloso?, and José M.F. Moura!

! Carnegie Mellon University, Pittsburgh
Department of Electrical and Computer Engineering
{moura,pueschel}@ece.cmu.edu
2 Department of Computer Science
{bsinger,veloso}@cs.cmu.edu

Abstract. SPIRAL is a generator of optimized, platform-adapted li-
braries for digital signal processing algorithms. SPIRAL’s strategy trans-
lates the implementation task into a search in an expanded space of al-
ternatives. These result from the many degrees of freedom in the DSP
algorithm itself and in the various coding choices. This paper describes
the framework to represent and generate efficiently these alternatives:
the formula generator module in SPIRAL. We also address the search
module that works in tandem with the formula generator in a feedback
loop to find optimal implementations. These modules are implemented
using the computer algebra system GAP/AREP.

1 Introduction

SPIRAL, [1], is a system that generates libraries for digital signal processing
(DSP) algorithms. The libraries are generated at installation time and they are
optimized with respect to the given computing platform. When the system is
upgraded or replaced, SPIRAL can regenerate and thus readapt the implemen-
tations. SPIRAL currently focuses on DSP transforms including the discrete
trigonometric transforms, the discrete Fourier transform, and several others.
Other approaches to similar problems include for DSP transforms [2] and for
other linear algebra algorithms [3-6].

SPIRAL generates a platform-adapted implementation by searching in a large
space of alternatives. This space combines the many degrees of freedom associ-
ated with the transform and the coding options.

The architecture of SPIRAL is displayed in Figure 1. The DSP transform
specified by the user is input to a formula generator block that generates one out
of many possible formulas. These formulas are all in a sense equivalent: barring
numerical errors, they all compute the given transform. In addition, they all have
basically the same number of floating point operations. What distinguishes them
is the data flow pattern during computation, which causes a wide range of actual
runtimes. The output of the formula generator is a formula given as a program
in a SPIRAL proprietary language called SPL (signal processing language). The
SPL program is input to the SPIRAL-specific formula translator block that
compiles it into a C or Fortran program [7]. This program, in turn, is compiled

by a standard C or Fortran compiler. The runtime of the resulting code is then
fed back through a search module. The search module controls the generation of
the next formulas to be tested using search and learning techniques (Section 4).
Iteration of this loop yields a platform-adapted implementation.

This paper focuses on the formula generator and its interplay with the search
module. It explains the underlying mathematical framework (Section 2) and its
implementation (Section 3) using the computer algebra system GAP/AREP [3§].

DSP Transform/Algorithm

{

Algorithms in

. . Formula
uniform algebraic
. Generator
notation \U,
blmfolfnnzgtgtz%sc Formula D Intelligent
y P Translator A search
compiler \U{
Benchmarking Performance
tools Evaluation

!

Platform-adapted Implementation
Fig. 1. The architecture of SPIRAL.

2 DSP Transforms and Algorithms

In this section we introduce the framework used by SPIRAL to describe linear
DSP (digital signal processing) transforms and their fast algorithms. A similar
approach has been used in [9] for the special case of FFT algorithms. We start
with an introductory example.

2.1 Example: DFT, Size 4

The DFT (discrete Fourier transform) of size 4 is given by the following matrix
DFT,4, which is then factored as a product of sparse structured matrices.

1 1 1 1 10 1 0 1000 1 10 0 1000

DFT, — 1 ¢4-1 —| _|101 0 1 0100 1-10 0 0010
4= 11-1 1-1|—]10-1 0 0010 0 01 1 0100

1 -2 -1 4 01 0-1 000 0 01-1 0001

This factorization is an example of a fast algorithm for DFTy. Using the Kro-
necker (or tensor) product of matrices, ®, and introducing symbols Lj for the
permutation matrix (right-most matrix), and T4 = diag(1, 1,1,), the algorithm
can be written in the very concise form

DFT, = (DFT,®1,) - T4 (I, @ DFT,) - L4 (1)

The last expression is an instantiation of the celebrated Cooley-Tukey algo-
rithm [10], also referred to as the fast Fourier transform (FFT).

2.2 Transforms, Rules, Ruletrees, and Formulas

Transforms: A (linear) DSP transform is a multiplication of a vector z (the
sampled signal) by a certain (n x n)-matrix M (the transform), x — M - z.
The transform is denoted by a symbol having the size n of the transform as
a subscript. Fixing the parameter “size” determines a special instance of the
transform, e.g., DFT4 denotes a DFT of size 4. For arbitrary size n, the DFT is
defined by

DFT, = [wk* | k, £ = 0..n — 1],

where w,, = €2™7/" denotes an nth root of unity. In general, a transform can have
other determining parameters rather than just the size. Transforms of interest
include the discrete cosine transforms (DCT) of type II and type IV,

DCTM = [cos (£ 4+ 1/2)kn/n) |k, =0...n—1], and
DCTY) = [cos ((k +1/2)(¢ +1/2)x/n) |k, =0...n—1],

which are used in the current JPEG and MPEG standards, [11], respectively
(given here in an unscaled version). Further examples with different areas of
application are the other types of discrete cosine and sine transforms (DCTs
and DSTs, type I — IV), the Walsh-Hadamard transform (WHT), the discrete
Hartley transform (DHT), the Haar transform, the Zak transform, the Gabor
transform, and the discrete wavelet transforms.

Breakdown Rules: All of the transforms mentioned above can be evaluated
using O(nlogn) arithmetic operations (compared to O(n?) operations required
by a straightforward implementation). These algorithms are based on sparse
structured factorizations of the transform matrix. For example, the Cooley-
Tukey FFT is based on the factorization

DFT, = (DFT, ®1) - T, -(I, @ DFT,) - L7, (2)

where n = r - s, L' is the stride permutation matrix, and T is the twiddle
matrix, which is diagonal (see [12] for details). We call an equation like (2) a
breakdown rule, or simply rule. A breakdown rule

— is an equation that factors a transform into a product of sparse structured
matrices;

— may contain (possibly different) transforms of (usually) smaller size;

— the applicability of the rule depends on the parameters (e.g., size) of the
transform.

Examples of breakdown rules for DCT™ and DCT!Y) are

II v
pCT(V = P, - (DCTY)) & DT

pcT™) = 5, .DCTW . D,

)- P (I,/o@DFTy) - P/, and

where P, P!, P/ are permutation matrices, S,, is bidiagonal, and D,, is a diag-
onal matrix (see [13] for details).

A transform usually has several different rules. Rules for the DFT that we
can capture from fast algorithms as they are given in literature, include the
Cooley-Tukey rule (n = r - s composite), Rader’s rule (n prime), Good-Thomas
rule (n =r-s, ged(r, s) = 1), and several others (see [12]).

Besides breakdown rules, SPIRAL includes also rules for base cases, such as

DFT, = [, _y],
which shows that a DFTy can be computed with 2 additions/subtractions.

Formulas and Ruletrees: A formula is a mathematical expression that
represents a sparse structured factorization of a matrix of fixed size. A formula
is composed of mathematical operators (like -, @, ®), basic constructs (permu-
tation, diagonal, plain matrix), symbolically represented matrices (like I for an
identity matrix of size 5), and transforms with fixed parameters. An example is

(DFT, @ diag(1,7)) - (16 o[} ;1*]) . (3)

We call a formula fully expanded if it does not contain any transforms.

Expanding a transform M of a given size using one of the applicable rules
creates a formula, which (possibly) contains transforms of smaller size. These,
in turn, can be expanded further using the same or different rules. After all
transforms have been expanded, we obtain a formula that represents in a unique
way a fast algorithm for M. Since the formula is uniquely determined by the
rules applied in the different stages, we can represent a formula, and hence an
algorithm, by a tree in which each node is labeled with a transform (of size) and
the rule applied to it. A node has as many children as the rule contains smaller
transforms (e.g., the Cooley-Tukey rule (2) gives rise to binary trees). We call
such a tree a ruletree. The ruletree is fully expanded, if all its leaves are base
cases. Thus, within our framework,

fully expanded ruletree = fully expanded formula = algorithm.
An example for a fully expanded ruletree for a DCT gv) is given in Figure 2
(we omitted the rules for the base cases). The rules’ identifiers used are not of
significance.

rule 1 - pcrlY
rule 2 DST™" DCT{V «———rule 3
rule 3 DC‘TEJ” pCTY) DCTYY

DCT{Y) DCTYY

Fig. 2. A ruletree for DCT!Y)| size 8

2.3 The Formula Space

Applying different rules in different ways when expanding a transform gives rise
to a surprisingly large number of mathematically equivalent formulas. Applying
only the Cooley-Tukey rule (2) to a DFT of size n = 2* gives rise to ©(5 /k3/?)
many different formulas. This large number arises from the degree of freedom in
splitting 2% into 2 factors. Using different rules and combinations thereof leads
to exponential growth (in n) in the number of formulas. As an example, the
current implementation of the formula generator contains 13 transforms and 31
rules and would produce about 10'%3 different formulas for the DCTgl\;).

By using only the best rules available (regarding the number of additions
and multiplications), the algorithms that can be derived all have about the same
arithmetic cost. They differ, however, in their data access during computation,
which leads to very different runtime performances. As an example, Figure 3
shows a histogram of runtimes for all 31,242 formulas generated with our current
set of rules for a DCT(II(;V). The histogram demonstrates that even for a transform
of small size, there is a significant spread of running times, more than a factor
of two from the fastest to the slowest. Further, it shows that there are relatively
few formulas that are amongst the fastest.

1000

8001

6001

400r

Number of Formulas

200[

8.8 1

18 2

12 1.4 1.6
Formula Runtime (in microseconds)

Fig. 3. Histogram of running times for all 31,242 DCT®V) | size 2%, formulas generated
by SPIRAL’s formula generator on a Pentium III running Linux.

3 The Formula Generator

Briefly, the formula generator is a module that produces DSP algorithms given
as formulas for a user specified transform of given size. The formula generator is
coupled with a search module that uses a feedback loop of formula generation and
evaluation to optimize formulas with respect to a given performance measure.
Formula generation and formula manipulation fall into the realm of symbolic
computation, which lead us to choose the language and computer algebra system
GAP [8], including AREP [14], as an implementation platform. GAP provides
the infrastructure for symbolic computation with a variety of algebraic objects.
The GAP share package AREP is particularly focused on structured matrices
and their symbolic manipulation. A high level language like GAP with its readily
available functionality facilitates the implementation of our formula generator.
It provides, as an additional advantage, exact arithmetic for square roots, roots
of unity, and trigonometric expressions that make up the entries of most DSP

transforms and formulas. The current implementation of the formula generator
has about 12,000 lines of code.
The main objectives for the implementation of the formula generator are

— efficiency: it should generate formulas fast and store them efficiently; this
is imperative since the optimization process requires the generation of many
formulas;

— extensibility: it should be easy to expand the formula generator by includ-
ing new transforms and new rules.

Formula Generator
r— =71
I rules +FH——~ .
controls runtime
L — — — _ J recursive search
application module W

- - - - = 1

{ transforms |

L - - — _ _ |)

ruletrees spl compiler
formulas
translation export

Fig. 4. Internal architecture of the formula generator including the search module. The
main components are recursive data types for representing ruletrees and formulas, and
extensible data bases (dashed boxes) for rules and transforms.

The architecture of the formula generator and the process of formula genera-
tion is depicted in Figure 4. We start with a transform with given parameters as
desired by the user, e.g., a DCT&I). The transform is recursively expanded into
a ruletree. The choice of rules is controlled by the search module (see Section 4).
The ruletree then is converted into a formula, which, in turn, is exported as an
SPL program. The SPL program is compiled into a Fortran or C program (see
[7]). The runtime of the program is returned to the formula generator. Based on
the outcome, the search module triggers the derivation of different ruletrees.

By replacing the spl compiler block in Figure 4 by another evaluation func-
tion, the formula generator becomes a potential optimization tool for DSP al-
gorithms with respect to other performance measures. Examples of potential
interest include numerical stability or critical path length.

As depicted in Figure 4, and consistent with the framework presented in Sec-
tion 2, the main components of the formula generator are formulas, transforms,
rules, and ruletrees. Formulas and ruletrees are objects meant for computation
and manipulation, and are realized as recursive data types. Transforms and rules
are merely collections of information needed by the formula generator. We elab-
orate on this in the following. The search module is explained in Section 4.

Formulas: Formulas are implemented by the recursive data type SPL. We
chose the name SPL since it is similar to the language SPL understood by

the formula translator (see Section 1). A formula is an instantiation of SPL
and is called spl. An spl is a GAP record with certain fields mandatory to all
spls. Important examples are the fields dimensions, which gives the size of the
represented matrix, and the field type, which contains a string indicating the
type of spl, i.e, node in the syntax tree. Basic types are diag for diagonal matrices
or perm for permutation matrices. Examples for composed types are tensor
or directSum. The type symbol is used to symbolically represent frequently
occurring matrices such as identity matrices I,,. The list of symbols known to
the formula generator can be extended. A complete overview of all types is given
in Table 1.

<spl> ::= <matrix> ; "mat"
| <diagonal> ; "diag"
| <permutation> ; "perm"
| Symbol(<name>, <params>) ; "symbol"
| NonTerminal(<name>, <params>) ; "nonTerminal"
| <spl> * .. * <spl> ; "compose"
| DirectSum(<spl>, .., <spl>) ; "directSum"
| TensorProduct(<spl>, .., <spl>) ; "tensor"
| <scalar> * <spl> ; "scalarMultiple"
| <spl> ~ <"perm"-spl> ; "conjugate"
| <spl> ~ <positive-int> ; "power"

Table 1. The data type SPL in Backus-Naur form as the disjoint union of the different
types. The string identifying the type is given in double quotes

The data type SPL mirrors the language SPL (Section 1) with the exception
of the type nonTerminal. A nonTerminal spl represents a transform of fixed
size, e.g., DFTqg, within a formula. The non-terminal spls available depend on
the global list of transforms, which is explained below.

Other fields are specific to certain types. For example, an spl of type diag
has a field element that contains the list of the diagonal entries; an spl of type
compose has a field factors containing a list of spls, which are the factors in the
represented product. For each of the types a function is provided to construct
the respective spls. As an example, we give the spl corresponding to the formula
in (3) as it is constructed in the formula generator.

ComposeSPL(TensorSPL (SPLNonTerminal ("DFT", 4), SPLDiag([1, 71)),
DirectSumSPL(SPLSymbol("I", 6), SPLMat([[1, 41, [2, -111)))

Transforms: All transforms known to the formula generator are contained in
the global list NonTerminalTable. Each entry of the list is a record corresponding
to one transform (e.g., DFT). The record for a transform M stores the necessary
information about M. Important fields include (1) symbol, a string identifying
M (e.g, “DFT”); (2) CheckParams, a function for checking the validity of the
parameters used to create an instantiation of M, usually the parameter is just
the size, but we allow for arbitrary parameters; (3) TerminateSPL, a function to
convert an instantiation of M into a plain matrix (type mat), used for verification.
An instantiation of a transform (e.g., a DFTi4) is created as an spl of type

nonTerminal as explained in the previous paragraph. The transform table can
easily be extended by supplying this record for the new transform to be included.

Rules: All breakdown rules known to the formula generator are contained
in the global list RuleTable. Each entry of the list corresponds to one rule
(e.g., Cooley-Tukey rule). Similar to the transforms, rules are records storing
all necessary information about the rule. Important fields of a rule R include
(1) nonTerminal, the symbol of the transform R applies to (e.g., “DFT”); (2)
isApplicable, a function checking whether R is applicable to a transform with
the given parameters (e.g., Cooley-Tukey is applicable iff n is not prime); (3)
allChildren, a function returning the list of all possible children configurations
for R given the transform parameters, children are non-terminal spls; (4) rule,
the actual rule, given the parameters for transform, returns an spl.

The rule table can also easily be extended by supplying this record for the
new rule to be included.

Ruletrees: A ruletree is a recursive data type implemented as a record. Im-
portant fields include (1) node, the non-terminal spl expanded at the node; (2)
rule, the rule used for expansion at the node; (3) children, ordered list of chil-
dren, which again are ruletrees. In addition, we allow for a field SPLOptions that
controls implementation choices that cannot be captured on the formula, i.e., al-
gorithmic, level. An example is the code unrolling strategy. Setting SPLOptions
to "unrolling" causes the code produced from the entire subtree to be unrolled.

There are two main reasons for having ruletrees as an additional data struc-
ture to formulas (both represent DSP algorithms): (1) ruletrees require much
less storage than the corresponding formulas (a ruletree only consists of pointers
to rules and transforms) and can be generated very fast, thus moving the bot-
tleneck in the feedback loop (Figure 4) to the spl compiler; and (2) the search
algorithms (see Section 4) use the ruletree data structure to easily derive varia-
tions of algorithms in the optimization process.

Infrastructure: In addition to these data types, the formula generator pro-
vides functionality for their manipulation and investigation. Examples include
functions that (1) convert ruletrees into formulas; (2) export formulas as SPL
programs; (3) convert formulas into plain matrices; (4) verify rules (for given
transforms) and formulas using exact arithmetic where possible; (5) compute an
upper bound for the arithmetic cost of an algorithm given as a formula.

4 Search

In this section, we discuss the search module shown in Figure 4 and how it inter-
faces with the formula generator. Given that there is a large number of formulas
for any given signal transform, an important problem is finding a formula that
runs as fast as possible. Further, the runtimes of formulas for a given transform
vary widely as shown in Figure 3. Unfortunately, the large number of formulas
for any given signal transform makes it infeasible to exhaustively time every for-
mula for transforms of even modest sizes. Thus, it is crucial to intelligently search
the space of formulas. We have implemented the following search methods.

Exhaustive Search: Determines the fastest formula, but becomes infeasible
even at modest transform sizes since there is a large number of formulas.

Dynamic Programming: A common approach has been to use dynamic
programming (DP) [15]. DP maintains a list of the fastest formulas it has found
for each transform and size. For a particular transform and its applicable rules,
DP considers all possible sets of children. For each child, DP substitutes the best
ruletree found for that transform. DP makes the assumption that the fastest
ruletree for a particular transform is also the best way to split a node of that
transform in a larger tree. For many transforms, DP times very few formulas
and still is able to find reasonably fast formulas.

Random Search: A very different approach is to generate a fixed num-
ber of random formulas and time each. This approach assumes that there is a
sufficiently large number of formulas that have runtimes close to the optimal.

STEER: As a refinement to random search, we have developed an evo-
lutionary stochastic search algorithm called STEER [16]. STEER is similar to
standard genetic algorithms [17] except it uses ruletrees instead of a bit rep-
resentation. For a given transform and size, STEER generates a population of
random ruletrees and times them. Through evolutionary techniques, STEER
produces related new ruletrees and times them, searching for the fastest one.
STEER times significantly less formulas than exhaustive search would but usu-
ally searches more of the formula space than dynamic programming.

These search algorithms must interface with the formula generator to pro-
duce the formulas that they wish to time. Ruletrees were specifically designed to
be an efficient representation equivalent to a formula and a convenient interface
between the search module and the formula generator. The search algorithms
can very easily manipulate ruletrees without needing to parse through long for-
mulas. Further, the search algorithms can interface with the formula generator
to expand or change ruletrees as the search algorithms need. Dynamic program-
ming needs the ability to apply all breakdown rules to any given transform and
size, producing all possible sets of children for each applicable rule. A ruletree
is a convenient data structure as dynamic programming will substitute for each
of these children the ruletree that it has found to be fastest for that child’s
transform and size. STEER, and random search requires the ability to choose a
random applicable rule, and to choose randomly from its possible sets of chil-
dren. For crossover, STEER takes advantage of the ruletree data structure to
allow it to easily swap two subtrees between two ruletrees.

We conclude with a comparison of the different search strategies. Figure 5
shows the runtimes of the fastest formulas found by several search methods across
several transforms. In general, STEER performs the best, outperforming DP for
many of the transforms. However, STEER often times the most formulas; for
example, DP times 156 formulas and STEER 1353 formulas for the DFT of size
210 We have also compared SPIRAL against FFTW 2.1.3. At size 2%, FFTW
is about 25% slower than SPIRAL probably due to the overhead caused by
FFTW’s plan data structure. Thus, we omitted this data point in the diagram.
At size 2'°, SPIRAL is performing comparable with FETW.

20 Legend
DP

g on 4
é . ElOORmdum g g?’é;‘“’“
g STEER g = FRTW
8 w0 k
E Ew
g w g
E]
é 100 e
g g
o
DFT WHT DSTI DCTIl DSTIII DCTIV (a) ’ DFT WHT (b)

Fig.5. Runtimes of the fastest formulas, implemented in C, found on a SUN
UltraSparc-ITi 300 MHz for various transforms of size (a) 2* and (b) 2'°.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

J. M. F. Moura, J. Johnson, R. W. Johnson, D. Padua, V. Prasanna, M. Piischel,
and M. M. Veloso, “ SPIRAL: Portable Library of Optimized Signal Processing
Algorithms,” 1998, http://www.ece.cmu.edu/~spiral.

. Matteo Frigo and Steven G. Johnson, “FFTW: An adaptive software architecture

for the FFT,” in ICASSP 98, 1998, vol. 3, pp. 1381-1384, http://www.fftw.org.
C. Uberhuber et.al.,, “Aurora,” http://www.math.tuwien.ac.at/~aurora/.

M. Thottethodi, S. Chatterjee, and A. R. Lebeck, “Tuning Strassen’s Matrix Mul-
tiplication for Memory Efficiency,” in Proc. SC98: High Performance Networking
and Computing, 1998.

J. Demmel et.al., “PHIPAC,” http://www.icsi.berkeley.edu/~bilmes/phipac/.
R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated Empirical Optimiza-
tion of Software and the ATLAS project,” Tech. Rep., University of Knoxville,
Tennessee, 2000, http://www.netlib.org/atlas/.

J. Xiong, D. Padua, and J. Johnson, “SPL: A Language and Compiler for DSP
Algorithms,” in Proc. PLDI, 2001, to appear.

The GAP Team, University of St. Andrews, Scotland, GAP — Groups, Algorithms,
and Programming, 1997, http://wuw-gap.dcs.st-and.ac.uk/~gap/.

J. Johnson and R. W. Johnson, “Automatic generation and implementation of FFT
algorithms,” in Proc. SIAM Conf. Parallel Proc. for Sci. Comp., 1999, CD-Rom.
J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. of Computation, vol. 19, pp. 297-301, 1965.

K. R. Rao and J. J. Hwang, Techniques & standards for image, video and audio
coding, Prentice Hall PTR, 1996.

R. Tolimieri, M. An, and C. Lu, Algorithms for discrete Fourier transforms and
convolution, Springer, 2nd edition, 1997.

Z. Wang, “ Fast Algorithms for the Discrete W Transform and for the Discrete
Fourier Transform ,” IEEE Trans. on Acoustics, Speech, and Signal Processing,
vol. ASSP-32, no. 4, pp. 803-816, 1984.

S. Egner and M. Piischel, AREP — Constructive Representation Theory and Fast
Signal Transforms, GAP share package, 1998,
http://www.ece.cmu.edu/~smart/arep/arep.html.

H. W. Johnson and C. S. Burrus, “The design of optimal DFT algorithms using
dynamic programming,” IEEE Trans, on Acoustics, Speech, and Signal Processing,
vol. ASSP-31, pp. 378-387, 1983.

B. Singer and M. Veloso, “Stochastic search for signal processing algorithm opti-
mization,” in Conf. on Uncertainty in Artificial Intelligence, 2001, submitted.
David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

