
FFT Program Generation for the Cell BE⋆

Srinivas Chellappa, Franz Franchetti, and Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh PA 15213, USA

{schellap, franzf, pueschel}@ece.cmu.edu

1 Introduction

The Cell BE chip-multiprocessor (CMP) is designed for high-density floating point
computation required in multimedia, visualization, and other similar applications. Its
innovative design includes multiple SIMD vector cores (called synergistic processing
elements, or SPEs) with explicitly managed per-core local memory and inter-core com-
munication. The computational power of a single Cell BE chipis impressive: its single-
precision peak performance is 204.8 Gflop/s for the 8 SPEs alone. However, the same
features that allow for high theoretical performance make it difficult and time consum-
ing to design and optimize specific real-world computational kernels for the Cell. In-
stead of using automated tools, these programs must explicitly address multithreading,
SIMD vectorization, and data streaming in order to extract maximum performance.

In this paper we address the automation of program optimization for the Cell: we extend
the program generation system Spiral [1] to support the Cellprocessor. Spiral automates
the production, platform adaptation, and optimization of signal processing transform
libraries and targets SIMD vector extensions [2], shared memory multicore CPUs [3],
graphics processors (GPUs), and FPGAs. It is based on a domain specific, declarative,
mathematical language to describe the algorithms, and usesrewriting to parallelize and
optimize algorithms at a high level of abstraction.

We extend Spiral in two steps: First, we extend Spiral’s SIMDvector program gen-
eration capabilities to support the SIMD instructions set of the Cell SPE. Second, we
extend Spiral to support explicit DMA transfers and single-program-multiple-data mul-
tithreaded code to generate parallel multi-SPE implementations. The performance of
our single-threaded code is comparable to the best available hand tuned code. We ob-
tain about a 2x speed-up for a parallel 4-SPE implementationcomputing a single small
DFT (16 to 4,096 data points) with all data resident in the SPEs’ local stores. The pre-
sented work is preliminary. The final version of this paper will contain updated results.

Related Work. Several other projects have implemented specialized FFT libraries
tuned for the Cell [4–7]. Their main focus is to optimize DFT computations of spe-
cific sizes where the data resides in main memory. FFTW [7] uses automated search
techniques to produce its Cell FFT library.
⋆ This work was supported by NSF through awards 0325687, 0702386,by DARPA through the

Department of Interior grant NBCH1050009, and by Mercury Computer Systems, Inc.

2 Spiral

Spiral is a program generator for linear transforms including the discrete Fourier trans-
form (DFT), the Walsh-Hadamard transform (WHT), discrete cosine and sine trans-
forms, filters, and others. For a given transform (e.g., DFT of size 384), Spiral au-
tonomously generates different algorithms, represented in a declarative form as math-
ematical formulas, and their implementations to find the best match for the target plat-
form.

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
e
a
rc

h
/L

e
a
rn

in
g

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

(SPL Compiler)

Evaluation

Level

Fig. 1. Spiral’s program generation system.

Fig. 1 shows the design of the Spi-
ral system. Spiral usesbreakdown
rules to break down larger trans-
forms into smaller kernels based
on recursion. A large space of al-
gorithms (formulas) for a single
transform may be obtained using
these breakdown rules. A formula
thus obtained is structurally opti-
mized to match the architecture us-
ing a rewriting system. The output
is C code for a specific implemen-
tation of the transform. The per-
formance of this implementation is
measured and fed back into Spi-
ral’s formula generation and rewrit-
ing system. This allows Spiral to
search over a large algorithm space.
The final output of this feedback
loop is highly optimized C code.

Formula representation. A linear transform in Spiral is represented by a transform
matrix M , where performing the matrix-vector multiplicationy = Mx transforms the
input vectorx into the output vectory. Algorithms for transforms can be viewed as
structured factorizations of the transform matrices. Suchstructures are expressed in
Spiral using its own signal processing language (SPL), which is based on standard ma-
trix operators in addition to the Kronecker (tensor) product. The Kronecker product⊗
is defined as:

A ⊗ B = [akℓB], A = [akℓ].

Based on this, the well known Cooley-Tukey FFT algorithm’s corresponding break-
down rule in Spiral is:

DFTmn → (DFTm ⊗In)Dm,n(Im ⊗ DFTn)Lnm
m (1)

whereIn is the identity matrix,Dm,n the diagonal matrix, andLnm
m , a stride permuta-

tion matrix.

3 Parallelization and Vectorization for the Cell

The key observation is that the tensor product representation of the transform algorithms
in Spiral can be mapped to components of the target architecture. The tensor product
can be viewed as a program loop. A loop featuring the appropriate structure can be
implemented using multiple threads or SIMD vector instructions. For instance, in (1)
the constructIn ⊗ DFTm is an inherently paralleln-way loop, while the construct
DFTm ⊗In is easily translated into a SIMD vector loop.

We use formula rewriting to manipulate vector loops into parallel loops and vice versa,
when mapping a formula fragment to the multicore and SIMD parallelism present in the
Cell. To guide this rewriting process, we introduce thetags “simd(ν)” to denoteν-way
SIMD vectorization and “threads(p, µ)” to denotep-way multithreaded code that sends
packets of sizeµ. Using these tags allows us to generate vectorized, multithreaded code
that is optimized for large DMA packet sizes for efficient inter-core communication.

Vectorization. We first discuss SIMD vectorization for the Cell, which is based on the
ideas presented in [2]. Consider the constructIn ⊗ DFTm in (1), which cannot im-
mediately be translated into an efficient SIMD vector program. However, the rewriting
rule

In ⊗ DFTm
︸ ︷︷ ︸

simd(ν)

→ Lmn
n

︸︷︷︸

simd(ν)

(
(DFTm ⊗In/ν)

−→
⊗Iν

)
Lmn

m
︸︷︷︸

simd(ν)

translates it into a perfectly vectorizable construct (denoted using the symbol
−→
⊗), at the

expense of data permutations which are handled subsequently by other rewriting rules.

Parallelization. Our goal is to generate multithreaded Cell code that computes a sin-
gle 1D DFT in parallel across multiple SPEs. Such code requires all-to-all inter-core
communication, which must be explicitly setup using DMA calls. Furthermore, DMA
requests that use larger packet sizes achieve higher interconnect bandwidths on the
Cell’s EIB [8]. We generate optimized multithreaded code with large packet sizes using
formula rewriting. The tag “threads(p, µ)” steers the rewriting process to formulas that
arep-way parallel and have a packet size ofµ. For instance, the rule

DFTm ⊗In
︸ ︷︷ ︸

threads(p,µ)

→
(
(Lmp

p ⊗ In/µp)⊗̄Iµ

)(
Ip ⊗‖ (DFTm ⊗In/p)

)(
(Lmp

p ⊗ In/µp)⊗̄Iµ

)

(2)
manipulates the first factor in (1) into a load balanced, parallel version that uses the
specified DMA packet size for inter-core communication. In (2), ⊗̄ is later translated
into DMA transfers, and⊗‖, into a parallel loop. Other formula fragments are handled
by similar rules.

4 Experimental Results and Conclusion

We evaluated our generated single-precision 1D DFT implementations on a single SPE
and on 4 SPEs of a PlayStation 3, running at 3.2 GHz, for input and output vectors

 0

 4

 8

 12

 16

 20

 32 64 96 128 160 192 224 256 288 320

Problem size

(a) DFT (single precision) on a Single-SPE
Performance [pseudo Gflop/s]

Interleaved complex

Split complex

 0

 8

 16

 24

 32

 128 256 512 1024 2048 4096

Problem Size

(b) DFT on multiple-SPEs

1-SPE

Performance [pseudo Gflop/s]

4-SPEs

Fig. 2. Performance results for the DFT on a PlayStation 3 (3.2 GHz Cell). Higheris better.

that are resident in the SPEs’ local stores. In Fig. 2 (a) we display the single-core per-
formance of our generated DFT kernels for both the split-complex and the interleaved-
complex data formats. We generated DFT kernels of sizes up to320 that are multiples
of 16. Spiral generated code achieves 16-20 Gflop/s which is is comparable to the best
reported single-core performance (22 Gflop/s for size 8,192in [5]). In Fig. 2 (b) we
compare our generated multithreaded 1D DFT code (that uses ablock-cyclic data for-
mat) run on 4 SPEs to the single-SPE kernel performance. Forn = 512 we reach the
break-even point (the runtime is about 5,000 cycles), and for n = 4, 096 we see close
to a 2x speed-up, leading to 27 Gflop/s for a single, non-streamed, 1D DFT.

Conclusion. We presented preliminary work that extends the Spiral framework to auto-
matically generate DFT code for the Cell BE. Our DFT libraries have performance com-
petitive with hand-tuned code on a single SPE, and speed up small DFT sizes by using
multiple SPEs. We are currently examining algorithmic manipulations to increase com-
munication bandwidth, and to enable double-buffering to hide communication costs.

References

1. P̈uschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M.,Singer, B.W., Xiong, J.,
Franchetti, F., Gǎcić, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proceedings of the IEEE93(2) (2005) 232–275 Special
issue onProgram Generation, Optimization, and Adaptation.

2. Franchetti, F., P̈uschel, M.: A SIMD vectorizing compiler for digital signal processing algo-
rithms. In: Proc. IEEE Int’l Parallel and Distributed Processing Symposium. (2002)

3. Franchetti, F., Voronenko, Y., Püschel, M.: FFT program generation for shared memory: SMP
and multicore. In: Supercomputing (SC). (2006)

4. Bader, D.A., Agarwal, V.: FFTC: Fastest fourier transform forthe IBM Cell Broadband En-
gine. In: 14th IEEE International Conference on High Performance Computing. (2007)

5. Cico, L., Cooper, R., Greene, J.: Performance and Programmability of the IBM/Sony/Toshiba
Cell Broadband Engine Processor. In: Proc. of (EDGE) Workshop. (2006)

6. Chow, A.C., Fossum, G.C., Brokenshire, D.A.: A programmingexample: Large FFT on the
Cell Broadband Engine. Technical report (May 2005)

7. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3.Proceedings of the IEEE
93(2) (2005) 216–231 Special issue on “Program Generation, Optimization, and Adaptation”.

8. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: Built for
speed. IEEE Micro26(3) (2006) 10–23

