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ABSTRACT
This paper presents an extension of the Spiral system to
automatically generate and optimize FFT algorithms for the
discrete Fourier transform over finite fields. The generated
code is intended to support modular algorithms for multi-
variate polynomial computations in the modpn library used
by Maple. The resulting code provides an order of magni-
tude speedup over the original implementations in the modpn
library, and the Spiral system provides the ability to au-
tomatically tune the FFT code to different computing plat-
forms.

Categories and Subject Descriptors
D.1.2 [Software]: Programming Techniques, Automatic Pro-
gramming; G.4 [Mathematics of Computing]: Mathe-
matical Software, Efficiency; I.1.3 [Computing Method-
ologies]: Symbolic and Algebraic Manipulation, Languages
and Systems

General Terms
Algorithms, Performance

Keywords
FFT, modular arithmetic, code generation, vectorization,
high performance computing, autotuning

1. INTRODUCTION
Fast Fourier Transforms (FFTs) are at the core of many

operations in scientific computing. In computer algebra,
FFTs are used for fast polynomial and integer arithmetic
and modular methods (i.e. computation by homomorphic
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images). In recent years, the use of fast arithmetic has be-
come prevalent and has stimulated the development of soft-
ware libraries, such as modpn [FLMS06, LM06, LMP09] pro-
viding hand-optimized low-level routines implementing fast
algorithms for multivariate polynomial computations over
finite fields, in support of higher-level code. The modpn li-
brary has been integrated into the computer algebra system
Maple and runs on all computer platforms supported by
Maple. The implementation techniques employed in modpn

are often platform-dependent, since cache size, associativ-
ity properties and register sets have a significant impact.
In order to take advantage of platform-dependent optimiza-
tions, in the context of quickly evolving hardware accela-
ration technologies, automated performance tuning has be-
come necessary and should be incorporated into the modpn

library.
Spiral [www.spiral.net] is a library generation system

that automatically generates platform-tuned implementa-
tions of digital signal processing algorithms with an em-
phasis on fast transforms. Currently, Spiral can generate
highly optimized fixed-point and floating-point FFTs for a
variety of platforms with automatic tuning, and has support
for vectorization, threading, and distributed memory paral-
lelization. The code produced is competitive with the best
available code for these platforms and Spiral is used by
Intel for its IPP (Integrated Performance Primitives) and
MKL (Math Kernel Library) libraries.

In this work, Spiral was extended to generate algorithms
for FFT computation over finite fields. This addition re-
quired adding a new data type, several new rules and a new
transform definition. In addition, the backend was extended
to enable the generation of scalar and vectorized code for
modular arithmetic. With these enhancements, the Spiral
machinery can be applied to modular transforms needed by
the modpn library. In this paper we present preliminary re-
sults showing that the code generated by Spiral is approx-
imately eleven times faster than the original FFT code in
modpn.

2. SPIRAL
The Spiral system [PMJ05] uses a mathematical frame-

work for representing and deriving algorithms. Algorithms
are expressed symbolically as sparse matrix factorizations



and are derived using rewrite rules; additional rules are
used to symbolically manipulate algorithms into forms that
take advantage of the underlying hardware, including vec-
torization [FVP08] and parallelism [FVP06]. The sequence
of applications of rules is encoded as a ruletree which can
be translated into a formula and compiled with a special-
purpose compiler into efficient code. A search engine with a
feedback loop is used to tune implementations to particular
platforms. New transforms are added by introducing new
symbols and their definitions, and new algorithms can be
generated by adding new rules.

Spiral was developed for floating point and fixed point
computation; however, many of the transforms and algo-
rithms carry over to finite fields. For example, the DFT of
size n is defined when there is a primitive nth root of unity
and many factorizations of the DFT matrix depend only on
properties of primitive nth roots. In this case, the same
machinery in Spiral can be used for generating and opti-
mizing modular transforms. All that is needed is support
for new data types and code generation and the addition of
new transforms and rules.

For the modular FFT, we added a modular data type,
support for modular arithmetic and code generation, and
defined the n-point modular DFT

ModDFTn,p,ω =
[
ωk`
n

]
0≤k,`<n

,

where ωn is a primitive nth root of unity in Zp, and the
Cooley-Tukey factorization (rewrite rule)

ModDFTn,p,ω =

(ModDFTr,p,ωr ⊗ Is) Tn
s (Ir ⊗ModDFTs,p,ωs) Ln

r ,

where n = rs, ⊗ denotes the Kronecker or tensor product,
T is a diagonal matrix called the twiddle matrix, and L is a
special permutation matrix called stride permutation.

3. PERFORMANCE RESULTS
This section reports on preliminary experimental data com-

paring the performance of hand coded FFTs from the modpn

library and FFTs automatically generated by Spiral. Spi-
ral generated algorithms using the Cooley-Tukey rule, and
used dynamic programming to select an “optimal” recursive
breakdown strategy. Dynamic programming is only a heuris-
tic since an optimal algorithm of a given size can depend on
the context in which it is called; however, experience shows
that it makes good choices. All experiments were performed
on an Intel Core i7 965 quad-core processor running at 3.2
GHz with 12 GB of RAM. Generated code was compiled
with gcc version 4.3.4-1 with optimization set to O3. Vector
code used SSE4.1 with 4-way 32 bit integer vectors. Since
there is no vector version of integer division with remain-
der, in order to vectorize our Spiral generated FFT code
on the Core i7, Montgomery’s trick [Mont85] was used. Ini-
tial experiments were performed using 32 bit integers and
16 bit primes. Figure 1 compares the performance of power
of two FFTs of size 4 through 4096 using the original modpn
code and scalar and vectorized code generated by Spiral,
where performance is reported in Gops (giga-ops) or bil-
lions of operations per second (higher is better), which is
calculated assuming that DFT of size N takes a total of
(3/2)N lg(N) additions, subtractions and nontrivial multi-
plications. The Spiral generated vector code is between 11
to 23 times faster than the original modpn code.

Figure 1: Performance Comparison
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