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Abstract—The sparse fast Fourier transform (SFFT) is a
recent novel algorithm to compute discrete Fourier transforms
on signals with a sparse frequency domain with an improved
asymptotic runtime. Reference implementations exist for different
variants of the algorithm and were already shown to be faster
than state-of-the-art FFT implementations in cases of sufficient
sparsity. However, to date the SFFT has not been carefully
optimized for modern processors. In this paper, we first analyze
the performance of the existing SFFT implementations and
discuss possible improvements. Then we present an optimized
implementation. We achieve a speedup of 2–5 compared to
the existing code and an efficiency that is competitive to high-
performance FFT libraries.
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I. INTRODUCTION
The sparse fast Fourier transform (SFFT) [1], [2] is a recent

novel algorithm for computing a discrete Fourier transform
(DFT) if the frequency domain is approximately or exactly
sparse, a situation that is common in signal processing. A
concrete application is presented in [3], where a particular
algorithm in the GPS system is improved by using techniques
similar to the SFFT. Other applications from [1], [2] include
audio and video compression, where signals are naturally
sparse in the frequency domain. The algorithm is funda-
mentally different to prior methods for this situation, which
are based on pruning, and achieves an improved asymptotic
runtime. Four different versions of the algorithm have been
proposed; prototypical implementations of two have been made
available at [4] and a third one has been implemented. To date,
the code has not yet been packaged as an easy-to-use library
since it requires several parameters to be set that are not easy to
determine. Further, the SFFT code has not yet been optimized
to map well to the memory hierarchy and SIMD instructions
available on modern processors.

Related work. The classical approach to FFTs on signals
of length n with k-sparse (k nonzero entries) frequency
domain is pruning, which removes unneeded computations to
reduce the operations count from O(n log n) to O(n log k) [5].
However, this approach requires that the location of the k
nonzero outputs are known. Pruned FFTs can be optimized
and also efficiently implemented using SIMD instructions [6].
A different approach is taken by the FADFT-2 [7], [8], which
is a probabilistic algorithm that requires O(k polylog(n))
many operations and does not require the location of the
nonzero outputs. The SFFTs have the same property and
further improve on that by achieving up to O(k log n).

It is known that careful optimizations are needed to achieve
optimal performance, which has been done for (ordinary) FFTs
in [9], [10], [11], [12]. These optimizations include SIMD

vectorization, optimization for the memory hierarchy, and the
creation of efficient basic blocks for the small FFTs that are
needed in the recursive computation [13].

For the SFFT to date no such optimized implementation
exists.

Contributions. The main contribution of this paper are
implementations of the existing SFFT algorithms to achieve
high performance on modern processors. Specifically,
• we first analyze the performance of the existing SFFT

implementations to identify possible bottlenecks;
• we identify and perform various optimization includ-

ing improving locality and using SIMD instructions
(focussing on Intel CPUs with SSE);

• we show experimental results that demonstrate a run-
time improvement of up to five times compared to the
prior code; in particular,

• we show that for large sizes we can achieve an effi-
ciency (performance) similar to the highly optimized
library FFTW [10].

This work is based on [14], where more details can be found.
The code for all optimized SFFT implementations is available
for download at [15].

II. BACKGROUND
We briefly provide background on the SFFT and describe

its structure. The presentation of all details is beyond the scope
of this paper and we refer to [1], [2] for more information.

Overview of SFFTs. In the following we will assume that
x ∈ Cn is an n-dimensional signal, and that x̂ ∈ Cn is the
k-sparse DFT of x.

The SFFT exists at the time of this writing in four different
versions (v1–v4), each of which has different characteristics.
Currently no implementation of SFFT v4 exists. All SFFTs are
probabilistic, i.e., the correct result is only guaranteed with a
certain probability (which can be controlled by parameters).
Versions 1, 2, and 4 work on signals with noise; this means
the n − k non-significant Fourier coefficients do not have to
be exactly zero, but only small compared to the k significant
coefficients. Tables I and II give an overview of the asymptotic
runtime (or operations count) of the four SFFTs and the other
approaches mentioned before in the introduction.

Common structure of SFFTs. All SFFT versions have
a similar structure and essentially consist of two steps. First,
there are multiple rounds of HashToBins calls. HashToBins is a
function that takes a signal x as input and hashes the k Fourier
coefficients of x̂ into a small number of bins using a random
hash function. A filter function is used, which is typically a
Gaussian filter. In some versions, an additional Mansour filter
is used as a heuristic improvement. The HashToBins routine
is very similar in all SFFT versions and described in detail in



SFFT v1 SFFT v2 SFFT v3 SFFT v4

Asymptotic
Runtime

O
(
logn

√
nk log(n)

)
O
(
logn 3

√
nk2 log(n)

)
O (k logn) O (k logn log(n/k))

Algorithm Probabilistic Probabilistic Probabilistic Probabilistic
Constraints Restricted set of

input parameters
Restricted set of
input parameters

Only exactly
k-sparse signals

—

Implementation [4] [4] Unpublished None

TABLE I. SFFT V1–4 FROM [1], [2]

Pruning AAFFT

Asymptotic
Runtime

O(n log k) O(k polylog(n))

Algorithm Deterministic Probabilistic
Constraints Sparsity pattern must

be known in advance
—

Implementation [6] [8]

TABLE II. PRIOR FFTS FOR SIGNALS WITH SPARSE FREQUENCY
DOMAIN

the next section.
Finally, there is a Frequency Estimation Phase, in which

the output of the HashToBins calls is used to construct the
DFT x̂ of the input signal x. That involves finding the
correct frequency locations and magnitudes. The Frequency
Estimation Phase can be very different in the individual SFFT
versions.

We describe the two parts in greater detail next.
HashToBins. The HashToBins routine is, in various forms,

the core of all SFFT versions. The basic idea behind this
function is to hash the k non-zero Fourier coefficients into a
small number of B bins. From these bins, the actual locations
of the Fourier coefficients are then approximated.

The following steps are performed in a HashToBins call:
1) Permute the input vector x with random parameters.

It is not necessary to copy or rearrange the vector.
Instead, it is sufficient to traverse it in the permuted
order. This can be done by choosing a random step
size and offset (see the pseudo code below).

2) Multiply the permuted vector x′ with a filter vector
G ∈ Cw, where w < n. For example, G could be a
Gaussian Filter. The result of this operation is x′′ ∈
Cw.

3) Compute the sums zi =
∑B

j=1 x
′′
j·w/B+i for i =

0, . . . , B − 1.
4) Compute the B-dimensional DFT of z and output ẑ.
The first three steps can be performed jointly in a single

loop as shown in this pseudo code (assuming z is initialized
to zero):
for i = 0 ... w
z[i%B] += x[(i*stepsize+offset)%n] * filter[i]

end

Frequency estimation in different SFFT versions. The
different SFFT versions utilize the HashToBins routine in
different ways to compute the correct result.

Version 1 of the SFFT consists of multiple executions of
two kinds of HashToBins rounds: location loops and esti-

mation loops. The purpose of the first kind, location loops,
is to generate a list of candidate coordinates I . Candidate
coordinates i ∈ I have a certain probability of being indices
of one of the k significant, nonzero coefficients in x̂. This
probability is bigger for candidate coordinates occurring in
more than one location loop iteration. By running multiple
iterations of the location loops it is possible to find candidate
coordinates with a high probability of being on of the k
nonzero coordinates. The second type, estimation loops, are
used to exactly determine the coefficients x̂I for a given set of
coordinates I . This is done by reversing the filter applications
in the HashToBins rounds. If there was no hash collision,
i.e., only up to one coefficient was hashed to each bin, the
coefficient’s magnitude can be restored. The overall structure
of SFFT v1 is shown in Fig. 1(a).

SFFT v2 is very similar to version v1, but additional
HashToBins rounds are used with a special filter, which is
a modified version of the algorithm described in [16]. Here, it
will be referred to as Mansour filter.

While the core ideas of SFFT v3 are still similar to v1 and
v2, this version introduces two major improvements.

The first improvement is based on the observation that once
a frequency coefficient of the signal was found and estimated,
it can be removed from the signal. It is sufficient to update the
B-dimensional output of a HashToBins round.

The second important addition in SFFT v3 is an improved
scheme for finding the signal’s significant frequency coordi-
nates using individual HashToBins rounds. In SFFT v1 and
v2, multiple HashToBins rounds were run and their results
combined in order to get correct candidate coordinates at a high
probability. [1] proves that two distinct calls to HashToBins,
one with a phase-shift of the signal and one without, are
enough. If a coefficient is hashed to a bin, the phase difference
of the two HashToBins results is then linear in the coefficient’s
coordinate. The structure of an SFFT v3 run is shown in
Fig. 1(b).

SFFT v4 uses the same ideas as version 3, but eliminates
the restriction that only exact k-sparse signals can be used. The
details of this algorithm are very complex, and at the time of
this writing no implementation of SFFT v4 exists. Therefore
it will not be discussed here.

III. OPTIMIZATIONS
Here we present the main optimizations that we applied

to improve the performance and show profiling results for the
reference and optimized SFFT v3. More profiles can be found
in [14].

Optimization 1: Iteration in chunks. There are several
executions of the inner loop, and each time the filter vector
is traversed. We improved this by iterating in chunks over
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Fig. 1. Algorithm structure of SFFTs

the inner loop. It is inefficient when the whole filter vector
is traversed multiple times because it may not completely fit
into the CPU cache. By iterating over shorter chunks, one can
ensure that a chunk fits into cache and thus there may be less
cache misses. In other words, the order of the loops is changed
from
for loop = 1, 2, ..., m {

for i = 1, 2, ..., filter_length {
// Compute ...

}
}

to
for chunk = 1, 2, ..., nr_of_chunks {

for loop = 1, 2, ..., m {
for i = chunk*chunksize, ...,

(chunk+1)*chunksize {
// Compute

}
}

}

It turned out that the best choice for the chunk size is the
number of bins B, as the expensive modulo computation for
the index of the output vector can be avoided in this special
case.

Optimization 2: Interleaved data layout. In the original
data layout, the individual loop outputs were stored sequen-
tially in the output vector x_sampt. An interleaved storage
scheme is better because it improves spatial locality and thus
allows for better caching when accessing the memory. This

means that the i-th element of the j-th output vector is stored
at position i ·m+ j, when m is the number of loops.

Optimization 3: Vectorization. We replaced the built-in
complex arithmetic routines that are used with the C complex
data type by explicit complex arithmetic using the double data
type. After that we implemented 2-way vectorization using
SSE intrinsics. There are two approaches when using vector
instructions: either a vector represents a complex number with
real and imaginary part, or a vector stores either two real or
imaginary parts. The second approach showed a better perfor-
mance and can also be easily extended to vector architecture
that provide longer vectors such as AVX (Advanced Vector
Extensions, a SIMD instruction set with 256 bit vectors).

Other Optimizations. The FFTs in the end of the routine
can be computed all at once, instead of several independent
FFTs. FFTW has an interface to allow the computation of
multiple DFTs, that also allows FFTW to schedule the com-
putations in the most efficient way.

We split the execution of the SFFT run into a planning
and an execution phase (the planning is required by FFTW
to at least precompute the twiddles). This way, the planning
cost can be shared among multiple SFFT calls and is only a
one-time cost.

In SFFT v3 the loop count in the HashToBins routine or the
Frequency Estimation phase is often two, and thus it makes
sense to implement a special version of HashToBins with a
fixed, constant loop count. The loop was then unrolled and
further optimizations applied.



Unoptimized Optimized

Function Runtime [s] % of Total Time Performance [Gflop/s] Runtime [s] % of Total Time Performance [Gflop/s]

HashToBins (Mansour Filter) 7.71e-05 19.81 0.20 1.45e-05 9.67 1.04
Frequency Estimation 7.33e-05 18.83 0.12 7.36e-05 48.97 0.10
HashToBins (Gauss Filter) 1.01e-04 26.01 0.14 7.39e-06 4.91 1.44
Frequency Estimation 2.46e-05 6.34 0.16 1.69e-05 11.25 0.51
HashToBins (Permuted Gauss F.) 6.72e-05 17.25 0.14 4.53e-06 3.01 0.96
Frequency Estimation 5.87e-06 1.51 0.13 1.79e-05 11.88 0.41
Other 3.99e-05 10.25 0.15 1.55e-05 10.30 0.61

Sum 3.89e-04 100.00 1.50e-04 99.99

TABLE III. RUNTIME PROFILE OF SFFT V3

The Frequency Estimation phase in all algorithm versions
was vectorized using SSE intrinsics, though the success of
this optimization was much smaller than for the HashToBins
routine. The code here is not as suited for vectorization, for
example because of the many branches inside the loops.

We replaced the O(log n)-access-time result data
type std::map with the hash-map implementation
std::unordered_map (C++11) (O(1) access-time),
which significantly improved the algorithm speed.

An OpenMP-based multithreaded implementation of the
SFFT algorithm showed no performance gain as the overhead
of the multithreading was too big. Instead, the SFFT library
was modified so that multiple SFFTs on different input data
can be run in parallel. Now multiple cores can now be used
to compute multiple SFFTs at once, where as much data as
possible shared among the threads.

The source code was ported to support the newest Intel
compiler, which performs additional optimizations. Also, the
IPP library (Intel Performance Primitives) was used in the final
implementation, mainly for its highly optimized and vectorized
trigonometric functions.

Profiling. Table III shows a runtime profiles of SFFT v3
before and after optimizations for n = 220 and k = 50. The
flop count is obtained by measurement using the processors
performance counters. Profiles for SFFT v1 and v2 show
similar results, though the optimizations were more successful
for SFFT v3, mostly because the implementation of SFFT v3
could be reduced by fixing the number of inner loops and
applying loop unrolling.

Compared to the baseline, especially the filters have im-
proved. In the baseline profile the HashToBins calls made up
more than 63 % of the runtime (Mansour Filter 19.81 %, Gauss
Filter 26 %, Permuted Gauss Filter 17.25 %). In the optimized
version the HashToBins calls sum up to less than 18 % of the
runtime (Mansour Filter 9.67 %, Gauss Filter 4.91 %, Permuted
Gauss Filter 3.01 %). Thus, all HashToBins routines, especially
the ones with Gaussian Filters, could be improved significantly.

The HashToBins calls with Gaussian Filters in SFFT v3
are well suited for vectorization, since mainly arithmetic
operations on vectors are performed. This, in combination with
an improved data layout, a different iteration scheme and other
optimizations, lead to a well performing implementation of
these filters.

The Mansour Filter HashToBins call in SFFT v3 could be
optimized so well since the it could be implemented with a
fixed loop count of 2. Additionally, both loops access the same
elements of the vector, but with an offset of 1, which yields
excellent spatial locality.

With a relative runtime of 48.97 %, the first Frequency
Estimation part is clearly the new bottleneck of the imple-
mentation.

IV. RESULTS
In this section we present some benchmark results compar-

ing runtime and performance of our optimized SFFTs to prior
versions and FFTW. FFTW is known to be one of the fastest
FFT libraries available but has no special support for sparsity.

Experimental Setup. The experiments presented were
performed on a single core of an Intel(R) Xeon(R) E5-2660
Sandy Bridge CPU, 2.20 GHz. Each core has a 64 KB L1-
cache and a 256 KB L2-cache. An additional 20 MB L3-cache
is shared among the cores. All measurements are done with
warm cache, i.e., as an average over a sufficient number of
iterations.

Speedup. The first question we address is how our opti-
mized SFFT code compares to the original implementation.
Fig. 3 shows the speedup we achieved for all three imple-
mented SFFT versions for a sparosty of k = 50. Higher
is better. For v3 we achieved between 4–5x. This shows
that processor-cognizant optimizations (vectorization, cache-
friendly memory access patterns) are worthwhile and essential.
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Fig. 3. Speedup: our optimized SFFT versus original SFFT (k = 50)

Runtime. Next, we investigate the actual runtime of SFFT
v1–3 compared to FFTW, which is run in both MEASURE and
ESTIMATE mode. The former uses search to find the best FFT
recursion; the latter uses a heuristic. Fig. 2(a) shows the results
again for fixed k = 50. The gain becomes very significant for
large sizes, in particular for v3, which is 4 orders of magnitude
faster for n = 224. Fig. 2(b) fixed the size to n = 222 and
varies k. Even for k = 212, SFFT v3 is still about 50 times
faster than FFTW.

Performance. Finally, we investigate the performance of
the different implementations, measured in Gflop/s. The perfor-
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Fig. 2. Runtime and performance benchmarks of our optimized SFFT v1–3 against FFTW. For the performance plots note that the operation counts of the
implementations have been reduced compared to the original version.

mance measures the efficiency of the code, i.e., how well it is
optimized. Fig. 2(c) shows the results. Note that the algorithms
have vastly different operation counts (even asymptotically; see
Table I), so the performance is not (inversely) proportional to
the runtime. We observe that the performance of the SFFT is
mostly lower than that of FFTW, but for large sizes and v3
we achieve about the same level. Since FFTW is known to be
highly optimized, this shows that the same can be achieved for
the SFFT.

V. CONCLUSION
Once fully implemented including the automatic choice of

the needed parameters, the SFFT has the potential to become
the algorithm of choice for many performance-critical sparse
DFTs. In this paper we contributed a speedup of about 5x for
the case of exact sparseness (SFFT v3), which may translate
to similar saving for SFFT v4 once it is implemented. With
this speed we showed that at least for large sizes we achieve
an efficiency (performance) similar to the highly optimized
FFTW.

VI. ACKNOWLEDGEMENTS
We thank the authors of SFFT for helpful discussions, for

making SFFT v3 available to us and for allowing us to post
the optimized version at [15].

REFERENCES
[1] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly Optimal

Sparse Fourier Transform,” in ACM Symposium on Theory of Computing
(STOC), 2012, pp. 563–578.

[2] ——, “Simple and practical algorithm for sparse Fourier transform,”
in ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012, pp.
1183–1194.

[3] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via the
sparse Fourier transform,” Proc. International Conference on Mobile
Computing and Networking (Mobicom), p. 353, 2012.

[4] D. Katabi, H. Hassanieh, E. Price, and P. Indyk, “SFFT Website,”
groups.csail.mit.edu/netmit/sFFT/.

[5] J. Markel, “FFT pruning,” IEEE Trans. on Audio and Electroacoustics,
vol. 19, no. 4, pp. 305–311, 1971.
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