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ABSTRACT
Spiral is a program generator for linear transforms such
as the discrete Fourier transform. Spiral generates
highly optimized code directly from a problem speci-
fication using a combination of techniques including op-
timization at a high level of abstraction using rewrit-
ing of mathematical expressions and heuristic search for
platform adaptation. In this paper, we overview the
generation of parallel programs using Spiral. This in-
cludes programs for vector architectures and programs
for shared or distributed memory platforms.

1. INTRODUCTION
Programmers in charge of developing high perfor-

mance libraries for current off-the-shelf computers are
confronted with the difficult task of optimizing for deep
memory hierarchies, extracting the fine-grain paral-
lelism for vector instruction sets, and producing mul-
tithreaded code for multicore processors. The devel-
opment of libraries for media processors like the Cell
processor and powerful graphics processors (GPUs) sup-
porting floating-point computation are even more diffi-
cult. Writing programs that take advantage of all the
performance-enhancing hardware features in a modern
commodity computer system is a nightmare.

This scenario strengthens the case for recent efforts
on automatic performance tuning, program generation,
and adaptive library frameworks that can offer high per-
formance on a variety of platforms with greatly reduced
development time. ATLAS [17] is a program generator
for basic linear algebra subroutines (BLAS). For a given
BLAS routine, ATLAS generates implementations with
different degrees of loop unrolling and blocking to find
the best match to the given microarchitecture. FLAME
is a framework to systematically generate alternative
programs from a problem specification for dense linear
algebra problems [12, 2]. These programs are imple-
mented on top of BLAS routines. FFTW [10] is a library

for the discrete Fourier transform (DFT). For small
DFT sizes, FFTW calls special code modules, called
codelets. These are pregenerated and highly optimized
using standard and DFT specific dataflow graph opti-
mization techniques [9]. For large DFT sizes, FFTW
uses heuristic search to find the best recursion strategy
to break down into codelets. FFTW supports shared
and distributed memory platforms.

Other examples of automatic tuning include [13] for
sparse linear algebra and [1] for parallel tensor compu-
tations.

The above efforts make great strides towards au-
tomating the implementation and optimization task for
important numerical functionality. However, the au-
tomation is mostly restricted to sequential code. For
example, ATLAS does not generate vector or multi-
threaded implementations. FFTW includes generated
codelets for vector architectures, but the multithreaded
functionality, as the implementation of large DFTs, is
hand-coded.

This is different in Spiral [15, 16], which is the topic
of this paper. Spiral is a program generator for lin-
ear transforms and automates the entire implementa-
tion task from problem specification to program. This
is possible because Spiral uses an internal mathemati-
cal language to express and optimize algorithms. This
way, Spiral is extensible if new forms of code have to
be generated such as vector code or multithreaded code
for shared or distributed memory platforms. This paper
gives an overview on the generation of parallel programs
using Spiral.

2. SPIRAL
Spiral is a program generator for linear transforms

such as the discrete Fourier transform (DFT), the
Walsh-Hadamard transform (WHT), the discrete cosine
and sine transforms, finite impulse response (FIR) fil-
ters, and the discrete wavelet transform, among others.
The input to Spiral is a formally specified transform
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Figure 1: The program generator Spiral.

(e.g., DFT of size 245); the output is a highly optimized
C program implementing the transform.

In Spiral (see Figure 1), recursive computation of
larger transforms by smaller transforms is expressed us-
ing rules. For a given transform, Spiral recursively ap-
plies these rules to generate one out of many possible
algorithms represented as a formula in a language called
SPL (signal processing language). This formula is then
structurally optimized using a rewriting system and fi-
nally translated into a C program (for computing the
transform) using a special formula compiler. The C pro-
gram is further optimized and then a native compiler is
used to generate an executable. Its runtime is mea-
sured and fed into a search engine, which decides how
to modify the algorithm; that is, the engine changes the
formula, and thus the code, by using dynamic program-
ming or other search methods. Eventually, this feedback
loop terminates and outputs the fastest program found
in the search. See [15, 6] for a complete description.

Mathematical foundation. A (linear) transform
is a matrix-vector multiplication x 7→ y = Mx, where
x is a real or complex input vector, M the transform
matrix, and y the result. For example, for an input
vector x ∈ Cn, the DFT is defined by the matrix

DFTn = [ωk`
n ]0≤k,`<n, ωn = exp(−2πi/n).

Algorithms for transforms can be written using the Kro-
necker product formalism [15] in the form of structured
sparse matrix factorizations. We use In to denote an
n× n identity matrix, and

A⊗B = [ak`B], A = [ak`]

for the tensor product of matrices. Then, for example,
the Cooley-Tukey FFT algorithm can be written as

DFTmn →
`
DFTm⊗ In

´
Dm,n

`
Im⊗DFTn

´
Lnm

m (1)

with the diagonal matrix Dm,n and the stride permuta-
tion matrix Lnm

m .

3. FORMAL PARALLELIZATION
The key observation is that formula constructs can be

related to properties of the target architecture. In par-
ticular, certain formula constructs can be implemented
efficiently on a particular type of hardware while they
are ill-suited for other types of hardware. As example,
in (1) the construct

Im⊗DFTn (2)

has a perfect structure for m-way parallel (shared and
distributed memory) machines. Similarly, the construct

DFTm⊗ In (3)

has a perfect structure for n-way vector SIMD (single
instruction, multiple data) architectures [5]. However,
(2) is ill-suited for vector SIMD architectures and (3) is
ill-suited for distributed memory machines.

Formulas can be manipulated using algebraic identi-
ties [14]. For instance, the identity

DFTm⊗ In = Lmn
m

`
In⊗DFTm

´
Lmn

n (4)

replaces a vector formula by a parallel formula and in-
troduces two stride permutations.

Optimization through rewriting. The basic idea
in Spiral’s formula optimization is to rewrite a generated
formula into another formula that has a structure that
maps well to a given target architecture. An example
is parallelization: Spiral rewrites formulas to obtain the
right form and the right degree of parallelism.

Spiral’s rewriting system for parallelization consists
of three crucial components to accomplish this goal:

• Tags encode target architecture types and pa-
rameters. Specifically, Spiral uses the tags
“vec(ν)” for SIMD vector extensions, “smp(p, µ)”
for shared memory, “mpi(p)” for message pass-
ing, and “gpu(n, t)” for graphics processors. The
meaning of these parameters is explained later.

• Base cases encode formula constructs that can be
mapped well to a given target architecture. For
instance, we denote a p-way parallel base case gen-
eralizing (2) by Ip⊗‖An, using the tagged opera-
tor “⊗‖” and the variable An matching any n×n
matrix.

• Rewriting rules encode how to translate general
formulas into base cases. For instance, we gener-
alize (4) into the rewriting rule

Am ⊗ In| {z }
mpi(p)

→ Lmn
m|{z}

mpi(p)

`
Ip⊗‖(In/p⊗Am)

´
Lmn

n|{z}
mpi(p)

. (5)

(5) applies identity (4), but “knows” (due to the
tag mpi(p)) that the target architecture is a p-
way parallel message passing system, and thus in-
troduces the matching base case Ip⊗‖(In/p⊗Am).
The stride permutations Lmn

m and Lmn
n will be han-

dled by further rewriting.

To identify the above components, we follow the same
procedure for all supported architectures. 1) We iden-
tify the most important platform parameters and en-
code these as tags. 2) We identify formula constructs



that can be mapped well to the target architecture, thus
defining a set of base cases. We also specify their ef-
ficient implementation. 3) We identify a set of rewrit-
ing rules, parameterized by hardware parameters, which
translate general constructs into base cases.

In the remainder of this section we provide additional
details on this approach for vector SIMD extensions,
multicore CPUs, message passing, the Cell processor,
and GPUs.

Vector SIMD instructions. To generate efficient
SIMD vector code we need to guarantee that all mem-
ory accesses are properly aligned and load/store whole
vectors. All arithmetic should be done using vector op-
erations and all data shuffling should take place in vec-
tor registers using efficient shuffle instructions (which
may differ across supported SIMD architectures). The
number of shuffle operations should be minimized.

We introduce the tag “vec(ν)” for vector SIMD oper-
ation using ν-way vector instructions. The construct

A~⊗ Iν (6)

(using the tagged operator “~⊗”) can be implemented
solely using vector arithmetic and guarantees aligned
memory access of whole vectors. Further, Spiral auto-
matically builds a library of vectorized implementations
of permutations including

L2ν
2|{z}

vec(ν)

, L2ν
ν|{z}

vec(ν)

, and Lν2

ν|{z}
vec(ν)

(7)

for every supported vector architecture. The con-
structs (6) and (7) constitute some of the base cases
for vector architectures.

Vector rewriting rules like

A⊗ In| {z }
vec(ν)

→ (A⊗ In/ν)~⊗ Iν (8)

Lnν
n|{z}

vec(ν)

→ `
In/ν ⊗ Lν2

ν|{z}
vec(ν)

´`
Ln

n/ν
~⊗ Iν

´
(9)

are parameterized by ν and encode how to turn general
constructs into vector base cases. Using vector base
cases and vector breakdown rules, Spiral successfully
vectorizes a large class of linear transform algorithms.
Further details on Spiral’s vectorization process can be
found in [5, 8].

Multicore and SMP. The goal on symmetric multi-
processors and multicore CPUs is to balance the compu-
tational load and to avoid false sharing (private data of
multiple processors stored in the same cache line). We
aim at generating programs in which each cache line is
accessed only by one processor at a time (the proces-
sor “owns” that cache line), and change of ownership
happens as little as possible, thus minimizing commu-
nication invoked by the cache coherency protocol.

We introduce the tag “smp(p, µ)” for shared memory
computation on p processors with cache line size µ. The
construct

Ip⊗‖A (10)

expresses embarrassingly parallel, load balanced opera-
tion on p processors and can be easily translated into a

multithreaded program. The constructs

P ⊗̄ Iµ, P a permutation on mp points, (11)

expresses (potential) ownership change of cache lines.
(10) and (11) are shared memory base cases. The shared
memory rule set consists of rules like

Am ⊗ In| {z }
smp(p,µ)

→ `
Lmp

m ⊗ In/p

´
| {z }

smp(p,µ)

(12)

`
Ip⊗‖(Am ⊗ In/p)

´ `
Lmp

p ⊗ In/p

´
| {z }

smp(p,µ)

(P ⊗ In)| {z }
smp(p,µ)

→ `
P ⊗ In/µ)⊗̄ Iµ, P permutation (13)

and allows to parallelize even small transforms and to
produce efficient multicore code. Further information
on Spiral’s shared memory and multicore code genera-
tion can be found in [7].

Distributed memory. The goal on distributed
memory machines is to minimize the number of mes-
sages to be sent and maximize their size. In addi-
tion, the computational load should be balanced for all
processors.

We introduce the tag “mpi(p)” for message passing
on p processors. The construct (10) expresses an embar-
rassingly parallel, load balanced operation on p proces-
sors and can be easily translated into a single program
multiple data (SPMD) program. The construct

P ⊗ In| {z }
all-to-all

, P a permutation on mp points, (14)

expresses an explicit all-to-all communication between
p processors with packets of size n. (10) and (14) are
message passing base cases. The distributed memory
rule set consists of (5) and rules like

Lnp
n|{z}

mpi(p)

→ `
Ip⊗‖ Ln

n/p

´ `
Lp2

p ⊗ In/p

´
| {z }

all-to-all

(15)

and enables Spiral to generate efficient MPI code for lin-
ear transforms. Further details on Spiral’s distributed
memory code generation can be found in [3].

Cell processor. The Cell processor features a two-
way symmetric multithreaded main processor (PPE)
and 8 vector SIMD coprocessors (SPE) with private
memory. It has a theoretical single-precision peak per-
formance of 45 Pentium 4 processors running at the
same clock speed. To take full advantage of the Cell
processor’s potential one needs to write vectorized mul-
tithreaded and explicit message-passing programs to
be run on a single chip. Particularly important is
the scheduling of on-chip communication as the band-
width strongly depends on the units that communi-
cate. To enable Spiral to generate programs for the
Cell processor, we are porting and combining Spiral’s
vector SIMD, SMP and message passing capabilities to
the Cell processor.

In addition, we tackle the communication scheduling
by means of software pipelining. The construct (2) ex-
presses a loop with m iterations. It ensures that during



computing iteration i, data for iteration i − 1 can be
sent to its consumer and data for iteration i + 1 can
be received from its producer. In addition, this data is
contiguous. Together with (14) this allows Spiral to im-
plement a software pipeline and to schedule messages.
This is work in progress.

Graphics processors. The latest generation of
graphics processors (GPUs) supports programmable
pixel shaders, floating-point units, and high bandwidth
to the main memory. The theoretical single-precision
peak performance of Nvidia’s GeForce 7900 GTX is
250 Gflop/s compared to the 15.2 Gflop/s peak per-
formance of a 3.8 GHz Pentium 4. The advent of the C-
based graphics language Cg makes it easier to program
these powerful and ubiquitous special-purpose proces-
sors. Recent research shows that the newest GPUs can
be used to perform linear algebra and DFT computa-
tions [11].

General purpose computation on GPUs utilizes their
programmable shaders, which must be programmed in
a “for all pixels do” SIMD paradigm. Shader programs
can load multiple pixels (t-way vectors) from multiple
textures (rectangular data arrays), and produce a lim-
ited number of output pixels (multi-target rendering).
We define a tag “gpu(n, t)” for GPUs supporting n-way
multi-texture rendering and t color values per pixel (typ-
ically, t=4). The construct

Am ⊗× Ik ~⊗ It

encodes “for all pixel do” loops. We cast the pixel
shaders’ SIMD programming model as a GPU base case,

`
Am ⊗× Ik ~⊗ It

´`
P ~⊗ It

´
, m ≤ n,

and introduce rewriting rules like

Am ⊗ Ikt| {z }
gpu(n,t)

→ Am ⊗× Ik ~⊗ It .

Permutations must always be to the right of (i.e., pre-
cede) a “for all pixels do” loop. A full computation can
contain multiple passes with different shader programs.
This is work in progress.

4. EXPERIMENTAL RESULTS
Spiral generates highly optimized transform programs

for a large class of advanced architectures. The gen-
erated code is consistently competitive with the best
available vendor libraries and open source libraries like
FFTW. Note that a vendor library like Intel’s IPP re-
quires many man-years of coding effort.

In the following we show a few example benchmarks.

SIMD vector code. Spiral is particularly success-
ful in optimizing for vector SIMD extensions like Intel’s
SSE, and AltiVec/VMX supported by PowerPC G4, G5
and Cell processors [5, 4, 8]. We show the performance
of Spiral generated vector code in Fig. 2: Complex 1D
DFT on Intel Pentium 4, 3.6 GHz, 8-way SIMD (SSE2),
16-bit fixed point. Spiral is almost twice as fast as In-
tel’s IPP 5.0.

SMP and multicore code. In Fig. 3 we compare
sequential and parallel performance of Spiral generated

Intel IPP 5.0
Spiral 5.0

3.6 GHz Pentium 4 (8-way 16-bit fixed-point)
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Figure 2: Vector SIMD. Performance of 1D DFTs,

Spiral and Intel IPP 5.0. Higher is better.
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Figure 3: Multicore CPU. Performance of 1D

DFTs, Spiral and FFTW 3.1. Higher is better.

1D complex double-precision DFT programs to FFTW
3.1 on a dual 2.2 GHz Opteron dualcore (4 processors)
system, AMDs newest multicore processor. Spiral gen-
erated parallel code outperforms FFTW on this machine
and makes the parallelization of very small FFTs possi-
ble [7]. Spiral provides consistent speed-up between 3x
and 3.5x using the four processors. We see Spiral’s se-
quential/parallel break even for DFT256, which runs for
less than 10,000 cycles and fits fully into the L1 cache.
FFTW has its break even for DFT2048 and starts us-
ing all four processors only at DFT220 ; before, only two
processors are used.

Message passing code. Fig. 4 shows the perfor-
mance of Spiral-generated 1D complex double-precision
DFT MPI code, run on an 8 node cluster of Opteron
2.4 GHz and Infiniband connectivity, compared to
FFTW 2.1.5 MPI (FFTW’s latest MPI version). In
this setup, Spiral-generated code is between 25% and
two times faster than FFTW 2.1.5 [3].

5. REFERENCES
[1] G. Baumgartner, A. Auer, D. E. Bernholdt,

A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R. J. Harrison, S. Hirata, S. Krishanmoorthy,
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen,
R. M. Pitzer, J. Ramanujam, P. Sadayappan, and
A. Sibiryakov. Synthesis of high-performance
parallel programs for a class of ab initio quantum
chemistry models. Proceedings of the IEEE,



FFTW 2.1.5 MPI
Spiral MPI

8 Node Cluster of 2.4 GHz Opteron (Infiniband)

Vector Length N

Gflop/s

224223222221220219218217216215214213212

2

1

Figure 4: Message passing. Performance of 1D

DFTs, Spiral and FFTW 2.1.5 MPI. Higher is better.

93(2):276–292, 2005. Special issue on “Program
Generation, Optimization, and Adaptation”.

[2] P. Bientinesi, J. A. Gunnels, M. E. Myers,
E. Quintana-Orti, and R. van de Geijn. The
science of deriving dense linear algebra
algorithms. ACM Transactions on Mathematical
Software, 31(1):1–26, March 2005.

[3] A. Bonelli, F. Franchetti, J. Lorenz, M. Püschel,
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rewriting system for the vectorization of signal
transforms. In Proc. High Performance Computing
for Computational Science (VECPAR), 2006.

[9] M. Frigo. A fast Fourier transform compiler. In
Proc. Programming Language Design and
Implementation (PLDI), pages 169–180, 1999.

[10] M. Frigo and S. Johnson. The design and
implementation of FFTW3. Proceedings of the
IEEE, 93(2):216–231, 2005. Special issue on
”Program Generation, Optimization, and
Adaptation”.

[11] N. K. Govindaraju, S. Larsen, J. Gray, and
D. Manocha. Efficient memory model for scientific
algorithms on graphics processors, 2006. UNC

Tech. Report.

[12] J. A. Gunnels, F. G. Gustavson, G. M. Henry,
and R. A. van de Geijn. Flame: Formal linear
algebra methods environment. TOMS,
27(4):422–455, 2001.

[13] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity:
Optimization framework for sparse matrix kernels.
Int’l Journal of High Performance Computing
Applications, 18(1), 2004.

[14] J. R. Johnson, R. W. Johnson, D. Rodriguez, and
R. Tolimieri. A methodology for designing,
modifying, and implementing FFT algorithms on
various architectures. Circuits Systems Signal
Processing, 9:449–500, 1990.
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